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Abstract
We provide an explicit algorithm for sampling a uniform sim-

ple connected random graph with a given degree sequence. By

products of this central result include: (1) continuum scaling

limits of uniform simple connected graphs with given degree

sequence and asymptotics for the number of simple connected

graphs with given degree sequence under some regularity con-

ditions, and (2) scaling limits for the metric space structure of

the maximal components in the critical regime of both the con-

figuration model and the uniform simple random graph model

with prescribed degree sequence under finite third moment

assumption on the degree sequence. As a substantive applica-

tion we answer a question raised by Černý and Teixeira study

by obtaining the metric space scaling limit of maximal compo-

nents in the vacant set left by random walks on random regular

graphs.
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1 INTRODUCTION

Motivated by applications in a wide array of fields ranging from sociology to systems biology and

most closely related to this work, in probabilistic combinatorics and statistical physics, the last few

years have witnessed an explosion in both network models as well as interacting particle systems on

these models. In this context, the two major themes of this work are as follows:
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(a) Connectivity, percolation and critical random graphs: A fundamental question in this general area

is understanding connectivity properties of the network model, including the time and nature of emer-

gence of the giant component. Writing [n] ∶= {1, 2,… , n} for the vertex set, most of these models have

a parameter t (related to the edge density) and a model dependent critical time tc such that for t < tc
(subcritical regime), there exists no giant component (size of the largest component |𝒞1(t)| = oP(n)),
while for t > tc (supercritical regime), the size of the largest component scales like f (t)n with f (t) > 0

and is model dependent. Behavior in the so-called “critical regime” (i.e., when t = tc) is the main con-

tent of this paper. To prime the reader let us informally describe the types of results closest in spirit

to this work. We defer precise definitions of technical aspects (e.g., definitions of the limiting objects,

the underlying topology, etc.) to Section 5.1 and precise statements of related results to Section 4.

The prototypical example of the “critical” phenomenon is the Erdős-Rényi random graph at critical-

ity which is constructed as follows: Fix a parameter 𝜆 ∈ R and vertex set [n] and let ERRG(n, 𝜆) be

the random graph obtained by placing each of the
(n

2

)
possible edges independently with probability

n−1 + 𝜆n−4∕3. Maximal component sizes in ERRG(n, 𝜆) were studied extensively in [8, 18, 41, 45, 49].

The scaling limit of the maximal components of ERRG(n, 𝜆) when viewed as metric spaces was iden-

tified in [4]. It is believed that a large class of random discrete structures, in the critical regime, belong

to the “Erdős-Rényi universality class.” Soon after the work [4], an abstract universality principle was

developed in [14, 17] which was used to establish Erdős-Rényi type scaling limits for a wide array of

critical random graph models including the configuration model and various models of inhomogeneous

random graphs. It is strongly believed that the components of critical percolation on high-dimensional

tori [33, 34, 38], and the hypercube [36] also share the Erdős-Rényi scaling limit, but these problems

are open at this point.

(b) Vacant set left by random walk (VSRW) on graphs: The second main theme is the area of random

interlacements and percolative properties of the vacant set of random walks on finite graphs, see for

example, [55]. See [24] for a recent survey most closely related to this paper, and [28] for an introduc-

tion to random interlacements. This question was initially posed by Hilhorst who wanted to understand

the geometry of crystals affected by corrosion. The precise mathematical model is as follows: consider

a finite graph on [n] vertices (and to fix ideas assumed connected) which represents the crystalline

structure of the object of interest. Now suppose a “corrosive particle” wanders through the structure via

a simple random walk {Xt ∶ t ≥ 0} (started from say a uniformly chosen vertex), marking each vertex

it visits as “corroded” (this marking does not affect the dynamics of the walk). For a fixed parameter

u ≥ 0, define the vacant set as the set of all vertices that have not been “corroded” (i.e., not visited by

the walk) by time un,

𝒱 u = [n] ⧵
{

Xt ∶ 0 ≤ t ≤ nu
}
. (1.1)

When u is “small” one expects that only a small fraction of the vertices have been visited by the

corrosive particle and thus the maximal connected component 𝒞1(u) of the noncorroded set 𝒱 u has

a large connected component of size 𝒞1(u) = ΘP(n), while if u increases beyond a “critical point”

u⋆ then the corrosion in the crystal has spread far enough that the maximal connected component in

𝒞1(u) = oP(n). The “critical” u = u⋆ regime and in particular the fractal properties of connected

components in this regime are of great interest.

1.1 Organization of the paper

In the remaining subsections of the introduction, we describe the random graph models considered

in this paper and give an informal description of our results. Section 2 contains precise statements of
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our main results regarding scaling limits. Section 3 contains the explicit algorithm for generating a

uniform connected graph with prescribed degrees (Theorem 3.2). We have deferred major definitions

to Section 5. We discuss the relevance of this work and connections to existing results in Section 4.

In Section 6, we present the proof of Theorem 3.2. We start Section 7 with the statement of Lemma

7.3 that contains the main technical estimates related to the uniform measure on plane trees with a

prescribed child sequence. This lemma forms the crucial work horse in the rest of the proofs. The proof

of this lemma occupies the rest of Section 7. Sections 8 and 9 contain the proofs of our main results.

1.2 Random graph models

Fix a collection of n vertices labeled by [n] = {1, 2,… , n} and an associated degree sequence d =
d(n) = (𝑑 (n)

v , v ∈ [n]) where 𝓁n ∶=
∑

v∈[n] 𝑑
(n)
v is assumed even. There are two natural constructions

resulting in generating a random graph on the above vertex set with the prescribed degree sequence.

(a) Uniform distributed simple graph: Let Gn,d denote the space of all simple graphs on [n]-labeled

vertices with degree sequence d. Let Pn,d denote the uniform distribution on this space and write

𝒢n,d for the random graph with distribution Pn,d.

(b) Configuration model [12, 19, 48]: Recall that a multigraph is a graph where we allow multiple

edges and self-loops. Write Gn,d for the space of all multigraphs on vertex set [n] with prescribed

degree sequence d. Write CMn(d) for the random multigraph constructed sequentially as follows:

Equip each vertex v ∈ [n] with 𝑑 (n)
v half-edges or stubs. Pick two half-edges uniformly from the

set of half-edges that have not yet been paired, and pair them to form a full edge. Repeat till all

half-edges have been paired. Write Pn,d for the law of CMn(d).

1.3 Informal description of our contribution

This work has five major contributions which we now informally describe:

(a) We provide an explicit algorithm (Theorem 3.2) for sampling a uniform connected random graph

with given degree sequence by first sampling a planar tree with a modified degree sequence via an

appropriately defined tilt with respect to the uniform distribution on the space of trees with this modi-

fied degree sequence. This allows us to derive scaling limits for the uniform distribution on the space

of simple connected graphs with degree sequence satisfying regularity conditions including a finite

number of surplus edges (Theorem 2.4).

(b) We then use this result to derive scaling limits for the critical regime of both the configuration

model as well as the uniform random graph model with prescribed degree sequence (Theorem 2.2).

Theorem 2.2 is an improvement over the result concerning the scaling limit of the configuration model

under critical percolation proved in [14, Thm. 4.7]. Indeed, the result in [14, Thm. 4.7] follows from

Theorem 2.2. However, Theorem 2.2 is stronger than [14, Thm. 4.7] as we explain below.

The proof of [14, Thm. 4.7] proceeds in the following steps: One constructs a process (Confn(t), t ≥
0) that is a dynamical version of the configuration model. (In [14], this process is actually denoted by

CMn(⋅), but we use Confn(⋅) to avoid confusing this process with CMn(d) defined above.) The scaling

limit of this process inside the critical window can be obtained by using a general universality principle

developed in [14]. Now, for a supercritical configuration model with degree sequence (𝑑1,… , 𝑑n), the

graph obtained under percolation with edge retention probability p ∈ (0, 1) can be generated as follows:

(1) First sample M ∼ Binomial
(∑

𝑑i∕2, p
)
. Then M has the same distribution as the number of edges

remaining after percolation. (2) Conditional on M, uniformly sample 2M many half-edges from the set
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of
∑
𝑑i many half-edges, and construct a configuration model with these half-edges. This construction

enables one to couple the graph obtained under critical percolation on a supercritical configuration

model with Confn(t) in the critical window. From there, one obtains the scaling limit of the percolated

graph by comparing it with the scaling limit of Confn(t) inside the critical window.

However, we do not see an obvious coupling with the processConfn(⋅)when working with a critical

configuration model with a given deterministic degree sequence. Thus, the above approach fails in

this case. Furthermore, [14, Thm. 4.7] was proved under exponential moment condition on the degree

sequence, whereas Theorem 2.2 requires only finite third moment. The technique used in this paper is

also completely disjoint from [14].

(c) Write C(n, n + k) for the number of connected graphs with n labeled vertices and n + k edges.

Deriving asymptotics for C(n, n + k) for fixed k as n → ∞ has inspired a large body work both in the

combinatorics community [13,30,54,59] as well as in the probability community [8,39,57]. Extending

such results to count connected graphs with prescribed degree sequence seems beyond the ken of

existing techniques. As a consequence of our proof technique, we derive asymptotics for such counts

(Theorem 2.5).

(d) As a substantive application, we answer a question raised by Černý and Teixeira ([23, Rem. 6.1

(2)] (also see the work of Sznitman, for example, [56, Rem. 4.5]) by obtaining the metric space scaling

limit of the VSRW on random regular graphs. This is the first result about scaling limit of maximal

components in the critical regime for this model. We remark here that we do not see a clear way of

applying the techniques of [14] to obtain the scaling limit of the VSRW on random regular graphs.

Indeed, it is easy to check that conditional on the number of edges remaining in the VSRW (run up to

some time) on a regular configuration model being M, the degree sequence of the vacant set cannot

be generated by uniformly sampling 2M half-edges from the set of all half-edges. So we do not see an

obvious way of coupling the VSRW with the process Confn(⋅) as explained in (b) above.

The eventual hope, albeit not addressed in this paper is as follows: Consider spatial systems such as

the 𝑑-dimensional lattice or perhaps more relevant to this paper, asymptotics for the vacant set left by

random walks on the 𝑑-dimensional torus (Z∕nZ)𝑑 in the large n → ∞ network limit. As described in

[56], the basic intuition is that for high enough dimensions 𝑑, the corresponding objects should behave

similar to what one sees in the context of 2𝑑-regular random graphs.

(e) The results of this paper are stepping stones in the study of the minimal spanning tree (MST) of

graphs with given degree sequence. In [6], using Theorem 2.2 and Theorem 3.2 of this paper, the

scaling limit of the MST constructed by assigning exchangeable pairwise distinct weights to the edges

of a random (simple) 3-regular graph and a 3-regular configuration model is obtained.

The only other model for which the scaling limit of the MST has been established is the complete

graph [5]. This scaling limit should be universal in the sense that the MST of many standard models

exhibiting mean-field behavior should coincide with it (possibly up to some multiplicative factor). We

would eventually like to address the question of universality of the MST of a wide array of models

including graphs with given degree sequences. We expect the results of this paper to play a key role in

this program.

2 MAIN RESULTS

We will now describe our main results. We describe the general results in Section 2.1. We then discuss

the application regarding vacant sets left by random walks in Section 2.2. We first fix a convention

that we will follow throughout this paper.



BHAMIDI AND SEN 5

Convention. For any metric measure space X = (X, 𝑑, 𝜇) and 𝛼 > 0, 𝛼X will denote the metric

measure space (X, 𝛼𝑑, 𝜇), for example, the space where the metric has been multiplied by 𝛼 and the

measure 𝜇 has remained unchanged. Precise definitions of metric space convergence including the

Gromov-Hausdorff-Prokhorov (GHP) topology are deferred to Section 5.

2.1 Scaling limits of random graphs with prescribed degrees

This section describes our main results on graphs with prescribed degree sequence. The first result

describes maximal component structure for critical random graphs under appropriate assumptions. For

each n ≥ 1, let d = d(n) = (𝑑 (n)
v , v ∈ [n]) be a degree sequence with vertex set [n]. For simplicity, we

will omit the superscript and write 𝑑v, v ∈ [n]. We will work with degree sequences that satisfy the

following assumption.

Assumption 2.1. Let Dn be a random variable with distribution given by

P
(
Dn = i

)
= 1

n
#
{

j ∶ 𝑑j = i
}
,

that is, Dn has the law of the degree of a vertex selected uniformly at random from [n]. Assume the

following hold as n → ∞:

(i) There exists a limiting random variable D with P(D = 1) > 0 such that Dn
d

−→ D.

(ii) Convergence of third moments (and hence all lower moments):

E
[
D3

n
]
∶= 1

n
∑
v∈[n]

𝑑3
v → E

[
D3

]
< ∞.

(iii) We are in the critical scaling window, that is, there exists 𝜆 ∈ R such that

𝜈n ∶=
∑

v∈[n] 𝑑v(𝑑v − 1)∑
v∈[n] 𝑑v

= 1 + 𝜆

n1∕3
+ o(n−1∕3).

In particular, E[D2] = 2 E[D].

Recall the definitions of the random graphs 𝒢n,d and CMn(d) from Section 1.2.

Theorem 2.2 (Scaling limit of graphs with given degree sequence). Suppose the sequence {d(n)}n≥1

satisfies Assumption 2.1 with limiting random variable D.

(i) Let 𝒞 n
(i) be the ith largest component of 𝒢n,d. Endow 𝒞 n

(i) with the graph distance and the uniform
probability measure on its vertices. Then there exists a sequence MD(𝜆) = (MD

1
(𝜆),MD

2
(𝜆),…)

of (random) compact metric measure spaces such that

1

n1∕3

(
𝒞 n

(1),𝒞
n
(2),…

) d
−→ MD(𝜆)

with respect to product topology induced by GHP distance on each coordinate.
(ii) The conclusion of part (i) continues to hold with the same limiting sequence MD(𝜆) if we replace

𝒢n,d by CMn(d).
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Remark 1. The limit objects MD(𝜆) are described explicitly in Construction 5.6. The limiting spaces,

up to a multiplicative factor, coincide with the scaling limit of the maximal components of the critical

Erdős-Rényi random graph; see [3, p. 748].

Remark 2. Assume the setup of Theorem 2.2, and let

Nn
(i)(𝜆) ∶= ||E(𝒞 n

(i)(𝜆)
)|| − ||𝒞 n

(i)(𝜆)|| + 1

denote the number of surplus edges in 𝒞 n
(i)(𝜆). Then it was shown in [27] that there exists a random

sequence ZD(𝜆) such that under the conditions of Theorem 2.2, as n → ∞,((
n−2∕3|𝒞 n

(i)(𝜆)|,Nn
(i)(𝜆)

)
, i ≥ 1

)
d

−→ ZD(𝜆).

Thus, Theorem 2.2 gives further insight into the geometry of these maximal components. The precise

theorem and limit object ZD(𝜆) as constructed in [27] are described in Theorem 5.3.

The main ingredient in proving Theorem 2.2 is the following result about the uniform distribution

on the space of all connected simple graphs with a prescribed degree sequence. For each fixed m̃ ≥ 1,

let d̃(m̃) = (𝑑 (m̃)
1
,… , 𝑑 (m̃)

m̃ ) be a given degree sequence. We will often suppress the superscript and write

d̃, 𝑑i etc. Consider the following assumption on the sequence {d̃(m̃)}m̃≥1:

Assumption 2.3.
(i) 𝑑j ≥ 1 for 1 ≤ j ≤ m̃, and 𝑑1 = 1.

(ii) There exists a probability mass function (p.m.f.) (p̃1, p̃2,…) with

p̃1 > 0,
∑
i≥1

ip̃i = 2, and
∑
i≥1

i2p̃i < ∞

such that

1

m̃
#
{

j ∶ 𝑑j = i
}
→ p̃i for i ≥ 1, and

1

m̃
∑
i≥1

𝑑2
i →

∑
i≥1

i2p̃i.

In particular, max1≤j≤m̃ 𝑑j = o(
√

m̃).

Remark 3. We make two observations about the above set of assumptions.

(i) The assumption 𝑑1 = 1 makes the notation in the proofs simpler. It has no other special relevance.

Indeed, since p̃1 > 0, a positive proportion of vertices have degree one when m̃ is large. Thus,

we can always consider the vertex that has the smallest label among all vertices that have degree

one.

(ii) We will work with connected graphs with fixed complexity, that is, for all m̃ ≥ 1, the degree

sequence d̃(m̃) will satisfy
∑

j∈[m̃] 𝑑j = 2(m̃− 1) + 2k for some fixed k ≥ 0. Hence in this case, the

assumption
∑

i≥1 ip̃i = 2 is redundant as it follows from the other assumptions.

Let Gcon
d̃

be the set of all connected, simple, labeled (by [m̃]) graphs with degree sequence d̃ where

the vertex labeled j has degree 𝑑j.
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Theorem 2.4 (Scaling limit of connected graphs with given degree sequence). Consider a sequence
of degree sequences d̃(m̃) = (𝑑1,… , 𝑑m̃) satisfying Assumption 2.3. In addition, assume that for all m̃,∑

j∈[m̃]
𝑑j = 2(m̃ − 1) + 2k (2.1)

for some (fixed) nonnegative integer k. Sample 𝒢 con
d̃

uniformly from Gcon
d̃

, and endow it with the graph
distance and the uniform probability measure on vertices. Then there exists a random compact metric
measure space M(k) such that

1√
m̃
𝒢 con

d̃

d
−→ 1

𝜎
M(k)

in the GHP sense, where 𝜎2 =
∑

i≥1 i2p̃i − 4 is the asymptotic variance.

Remark 4. The limit object M(k) is described explicitly in Construction 5.5.

Part of the conclusion in Theorem 2.4 is that when the degree sequence satisfies (2.1) and

Assumption 2.3, Gcon
d̃

is nonempty for large m̃. Our next result concerns enumeration of the set Gcon
d̃

.

Theorem 2.5 (Asymptotic number of connected graphs with given degree sequence when the complex-

ity is fixed). Consider a sequence of degree sequences d̃(m̃) = (𝑑1,… , 𝑑m̃) satisfying Assumption 2.3.
Assume further that for all m̃, (2.1) holds for some fixed nonnegative integer k. Let 𝜎2 =

∑
i≥1 i2p̃i − 4

be the asymptotic variance. Then

lim
m̃

||Gcon

d̃
|| ×∏m̃

i=1

(
𝑑i − 1

)
! × m̃k∕2(

m̃ + 2k − 2
)
!

= 𝜎k

k!
E

[(
∫

1

0

e(x)𝑑x
)k]

,

where
(
e(x), 0 ≤ x ≤ 1

)
is a standard Brownian excursion.

Remark 5. Let C(n, n + k) denote the number of connected graphs with n labeled vertices and n + k
edges. Wright [59] showed that for any fixed k ≥ −1,

C(n, n + k) ∼ 𝜌knn+(3k−1)∕2 as n → ∞,

where the constants 𝜌k satisfy a certain recurrence relation. Spencer [54] proved a connection between

this purely combinatorial result and a probabilistic object by showing that

𝜌k =
1

(k + 1)!
E

[(
∫

1

0

e(x)𝑑x
)k+1]

, k ≥ −1,

where (e(x), 0 ≤ x ≤ 1) is a standard Brownian excursion. Theorem 2.5 proves the analogue of this

result for connected graphs when the degree sequence is fixed.

2.2 Geometry of vacant sets left by random walk

Fix r ≥ 3 and n ≥ 1. Here and throughout we assume nr is even. Recall the definitions of Gn,d, Pn,d,

Gn,d, and Pn,d from Section 1.2. Let d(n)
r = (r, r,… , r), and define

Gn,r ∶= Gn,d(n)
r
, and Gn,r ∶= Gn,d(n)

r
.
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FIGURE 1 Connectivity structure at u = u⋆ + 0.5 [Colour figure can be viewed at wileyonlinelibrary.com]

Analogously write Pn,r (resp. Pn,r) for Pn,d(n)
r

(resp. Pn,d(n)
r

). Let 𝒢n,r ∼ Pn,r. For any (multi)graph G,

write PG for the distribution of a simple random walk (Xt, t ≥ 0) on G with the initial state X0 chosen

uniformly at random. Recall the definition of the vacant set from (1.1). Define,

u⋆ = r(r − 1) ln(r − 1)
(r − 2)2

. (2.2)

Write 𝒞1(u) for the maximal connected component in 𝒱 u. Then the following was shown in [58]:

With Pn,r-probability converging to one as n → ∞,

(a) given any u < u⋆ and 𝜎 > 0, there exist strictly positive constants 𝜌, c > 0 depending only on

u, 𝜎, r such that

P𝒢n,r
(||𝒞(1)(u)|| ≥ 𝜌n

) ≥ 1 − cn−𝜎 ;

(b) for any fixed u > u⋆ and 𝜎 > 0, there exists 𝜌′ > 0 depending only on u, 𝜎, r such that

P𝒢n,r
(||𝒞(1)(u)|| ≥ 𝜌′ log(n)

) ≤ cn−𝜎.

Figures 1 and 2 display the connectivity structure of the vacant set just above and just below u⋆ respec-

tively where the underlying graph is a r = 4-regular random graph on n = 50, 000 vertices. The

maximal component has been colored red, the second largest component blue, and all other components

have been colored cyan.

The main aim of this section is the study of the annealed measures:

Pn,r(⋅) ∶=
1|Gn,r| ∑

G∈Gn,r

PG(⋅) and Pn,r(⋅) ∶=
∑

G∈Gn,r

Pn,r
(
G
)
PG(⋅).

Building on the work of Cooper and Frieze [25], Černý and Teixeira in [23, Thm. 1.1] showed the

following for the above annealed distribution: Let {un}n≥1 be any sequence such that there exists fixed

http://wileyonlinelibrary.com
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FIGURE 2 Connectivity structure at u = u⋆ − 0.5 [Colour figure can be viewed at wileyonlinelibrary.com]

𝛽 < ∞ such that, n1∕3|un−u⋆| ≤ 𝛽 for all large n. Then given any 𝜀 > 0, there exists A ∶= A(𝜀, r, 𝛽) > 0

such that for all n large,

Pn,r
(
A−1n2∕3 ≤ |𝒞(1)(un)| ≤ An2∕3

) ≥ 1 − 𝜀. (2.3)

They also showed that analogous results hold for Pn,r(⋅). The n2∕3 scaling of the maximal compo-

nent size suggests that the critical behavior for this model resembles that of the critical Erdős-Rényi

random graph. Our next theorem confirms this assertion.

Theorem 2.6 (Scaling limit of the vacant set). Let r ≥ 3.

(i) Let 𝒢n,r ∼ Pn,r and u⋆ be as in (2.2). Run a simple random walk on 𝒢n,r up to time nun starting
from a uniformly chosen vertex, where

n1∕3(u⋆ − un) → a0 ∈ R. (2.4)

Let𝒞(j) be jth largest component of the subgraph of𝒢n,r induced by the vacant set𝒱 un . Endow𝒞(j) with
the graph distance and the uniform probability measure on its vertices. Then there exists a sequence
Mvac(a0) =

(
Mvac

1
(a0),Mvac

2
(a0),…

)
of random compact metric measure spaces such that under the

annealed measure Pn,r,

n−1∕3 ⋅
(
𝒞(1),𝒞(2),…

) d
−→ Mvac(a0) =

(
Mvac

1
(a0),Mvac

2
(a0),…

)
with respect to product topology induced by GHP distance (see Section 5.2 for definition) on each
coordinate.

(ii) The conclusion in part (i) continues to hold with the same limiting sequence Mvac(a0) if we replace
𝒢n,r by CMn(d(n)

r ) and Pn,r by the corresponding annealed measure Pn,r.

http://wileyonlinelibrary.com
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Remark 6. A complete description of the limiting spaces appearing in Theorem 2.6 requires cer-

tain definitions and is thus deferred to Section 5. The limiting object Mvac(a0) is explicitly defined in

Construction 5.7. The connection between the scaling limit of the critical Erdős-Rényi random graph

ERRG(n, 𝜆) and the limiting spaces in the results stated in this section is also explained in Section 5.

The above result deals with the VSRW on the random r-regular graph. We in fact conjecture that

for the corresponding problem on random graphs with general prescribed degree sequence, one has

analogous results with a universality phenomenon under moment conditions on the degree sequence.

Conjecture 2.7. Let d = d(n) = (𝑑 (n)
1
,… , 𝑑 (n)

n ) be a degree sequence, and let Dn denote the degree

of a vertex chosen uniformly from [n]. Assume that as n → ∞, Dn
d

−→ D with E(D2) < ∞ and
E(D2

n) → E(D2). Further assume

𝜈 ∶= E[D(D − 1)]
E[D]

> 1 and P(D ≥ 3) > 0.

Consider the VSRW on 𝒢n,d or CMn(d) at level u. We conjecture that the following hold:

(a) There exists a (model dependent) critical point u⋆ such that for u < u⋆, size of the maximal
component |𝒞(1)(u)| = ΘP(n) whilst for u > u⋆, |𝒞(1)| = oP(n).

(b) If E(D3) < ∞ and E(D3
n) → E(D3), then for un satisfying

lim
n→∞

n1∕3(u⋆ − un) = a0

for some a0 ∈ R, the connectivity structure of VSRW at level un with edges in the maximal
components rescaled by n−1∕3 satisfy results analogous to Theorem 2.6.

(c) (Personal communication from Remco van der Hofstad) Let pk ∶= P(D = k), k = 0, 1,…. Assume
that there exists C > 0 and 𝜏 ∈ (3, 4) such that

pk ∼ Ck−𝜏 as k → ∞.

(In particular, E[D2] < ∞, but E[D3] = ∞.) Then the maximal components in the critical scaling
window still belong to the Erdős-Rényi universality class as in (b) above with distances scaling like
n−1∕3. This contrasts drastically with critical percolation on these random graphs where maximal
components with distances scaled by n− 𝜏−3

𝜏−1 converge to limiting random fractals [15, 16].

Remark 7. At this point, we owe the reader two clarifications regarding the conjecture. First we

need to clarify the phrase “results analogous to Theorem 2.6” in (b). Second we need to explain how

the claim in (c) differs from critical bond percolation. Both of these clarifications are deferred to

Section 4(c).

3 SAMPLING CONNECTED UNIFORM RANDOM GRAPHS WITH
PRESCRIBED DEGREES

In this section we describe an explicit algorithm for generating connected random graphs with pre-

scribed degree sequence. This is a core ingredient in the proofs of all the main results. We start by

setting up notation related to plane trees that will be used both in the statement of the result and

throughout the proof sections below.
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FIGURE 3 An example of an admissible pair of leaves [Colour figure can be viewed at wileyonlinelibrary.com]

3.1 Plane trees: Basic functionals and exploration

Throughout the sequel we let t denote a plane tree, and use 𝜌 to denote the root. Write ℒ (t) for the set

of leaves of t, that is, the vertices that have no children. For each nonroot vertex u ∈ t, let ←−u denote the

parent of u. Let [𝜌, u] (resp. [𝜌, u)) denote the ancestral line of u including (resp. excluding) u. Thus

[𝜌, u) = [𝜌,←−u ] if u ≠ 𝜌. Using the planar embedding, any plane tree t can be explored in a depth-first

manner (our convention is to go to the “leftmost” child first). Let ≺DF be the linear order on vertices of

a plane tree induced by a depth-first exploration starting from the root, that is, x ≺DF y if x is explored

strictly before y in a depth-first search of the plane tree.

Definition 3.1 (Admissible pairs of leaves). For leaves u, v ∈ ℒ (t), we say that the ordered pair

(u, v) is admissible if ←−v ≠ 𝜌, and

←−←−v ∈ [𝜌,←−u ), and ←−u ≺DF
←−v .

Let A(t) denote the set of admissible pairs of t.

See Figure 3 for an example of an admissible pair. We introduce a linear order≪ on A(t) as follows:

For (u1, v1), (u2, v2) ∈ A(t), we write (u1, v1) ≪ (u2, v2) if either ←−u 1 ≺DF
←−u 2 or if ←−u 1 = ←−u 2 and

←−v 1 ≺DF
←−v 2. For u ∈ ℒ (t), define

A(t, u) ∶= {v ∈ ℒ (t) ∶ (u, v) ∈ A(t)} , and ft(u) ∶= |A(t, u)|. (3.1)

Note that

|A(t)| = ∑
u∈ℒ (t)

ft(u). (3.2)

Now fix k ≥ 1. Define

Ak(t) =
{{

(u1, v1),… , (uk, vk)
}

∣ (uj, vj) ∈ A(t) and u1, v1,… , uk, vk are 2k distinct leaves

}
.

Let Aord
k (t) be the collection of all such ordered k-tuples of admissible pairs. Clearly,

A1(t) = A(t), |Aord
k (t)| = k! × |Ak(t)|, and |Aord

k (t)| ≤ |A(t)|k.
For later use, define A(t)k = ⊗k

i=1
A(t) be the k-fold Cartesian product of A(t).

http://wileyonlinelibrary.com
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FIGURE 4 An example of the operation ℐ applied on the tree t and admissible pair (u, v) in Figure 3 [Colour figure can be

viewed at wileyonlinelibrary.com]

Given a plane tree t, write 𝝃(t) = (𝜉v(t), v ∈ t), where 𝜉v(t) is the number of children of v in t.
Furthermore, write s(t) = (si(t), i ≥ 0) for the child frequency distribution (CFD) of t. Namely,

si(t) ∶= # {v ∈ t ∶ 𝜉v(t) = i} , i ≥ 0.

Given a sequence of integers s = (si, i ≥ 0), we say that the sequence is a tenable CFD for a tree if

there exists a finite plane tree t with s(t) = s. It is easy to check s is tenable if and only if si ≥ 0 for all

i with s0 ≥ 1, and ∑
i≥0

si = 1 +
∑
i≥0

isi < ∞.

Given a tenable CFD s, let Ts denote the set of all plane trees having CFD s.

Finally fix k ≥ 1 and let T
(k)
s denote the set of all pairs (t, x), where t ∈ Ts and x ∈ Ak(t). For a

plane tree t and x =
{
(u1, v1),… , (uk, vk)

}
∈ Ak(t), let ℐ (t, x) be the rooted space obtained by adding

an edge between ←−u j and ←−v j, and deleting uj, vj and the two edges incident to them for j = 1,… , k.

(See Figure 4 for an illustration.) We endow the space ℐ (t, x) with the graph distance and the uniform

probability measure on all vertices. Similarly if tlab is a labeled plane tree (i.e., a plane tree where the

vertices are labeled) and x ∈ Ak(tlab), then ℐ (tlab, x) is the labeled graph obtained by following the

same construction and retaining the vertex labels.

3.2 Algorithm for sampling connected random graphs with given degree sequence

Let d̃ = d̃(m̃) be as in Theorem 2.4, and recall that 𝒢 con
d̃

represents a random connected graph with

degree sequence d̃ sampled uniformly from Gcon
d̃

. Recall also that under Assumption 2.3, 𝑑1 = 1.

Consider the remaining vertices
{

2,… , m̃
}

, and form the child sequence 𝝃 =
(
𝜉j, 2 ≤ j ≤ (m̃ + 2k)

)
via

𝝃 ∶=
(
𝑑2 − 1,… , 𝑑m̃ − 1, 0,… , 0

)
(with 2k zeros at the end). (3.3)

By the hypothesis of Theorem 2.4,

m̃+2k∑
j=2

𝜉j = (m̃ − 1 + 2k) − 1, (3.4)

and thus 𝝃 represents a valid child sequence for a tree on

m ∶= m̃ − 1 + 2k (3.5)

http://wileyonlinelibrary.com
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vertices. Let s = s(m) = (s0, s1,…) be the frequency distribution of 𝝃, that is,

si = #
{

2 ≤ j ≤ m̃ + 2k ∶ 𝜉j = i
}
. (3.6)

Sample (𝒯s, X̃) from T
(k)
s uniformly. Assume that X̃ = {(u1, v1),… , (uk, vk)}, where

(u1, v1)≪ · · ·≪ (uk, vk).

Label uj as m̃ + 2j − 1 and vj as m̃ + 2j, 1 ≤ j ≤ k. Label the other m̃ − 1 vertices of 𝒯s uniformly

using labels 2,… , m̃ so that in the resulting labeled plane tree j has 𝑑j − 1 many children. (Thus there

are (s0 − 2k)! ×
∏

i≥1 si! many ways of obtaining such a labeling of 𝒯s.) Call this labeled plane tree

𝒯 lab
s . Construct the graph ℐ (𝒯 lab

s , X̃), attach a vertex labeled 1 to the root, and then forget about the

planar order and the root. Let 𝒢 be the resulting graph.

Theorem 3.2. Let 𝒢 be the random graph resulting from the above construction. Then 𝒢 ∼
Unif(Gcon

d̃
), that is, 𝒢

d
= 𝒢 con

d̃
.

Remark 8. Note that

||T(k)
s
|| = ∑

t∈Ts

|Ak(t)| = ∑
t∈Ts

|Aord
k (t)|∕k! = |Ts| × E

(|Aord
k (𝒯s)|)∕k!,

where 𝒯s ∼ Unif(Ts). It thus follows from Lemma 7.3(iii) and the convergence of the second coordi-

nate in Equation (7.1) given below that T
(k)
s is nonempty for large m̃ when d̃(m̃) is as in Theorem 2.4. In

particular, it is possible to sample (𝒯s, X̃) as described above.

Remark 9. To implement the above algorithm, we have to sample (𝒯s, X̃) as described above. Let

us briefly discuss how this can be done in polynomial time. We can sample (𝒯s, X̃) in two steps:

(i) Let 𝒯s ∼ Unif(Ts). Sample 𝒯s according to law

P
(
𝒯s = t

)
P
(
𝒯s = t

) = |Ak(t)|
E
[|Ak(𝒯s)|] =∶ g(t) , t ∈ Ts. (3.7)

(ii) Conditional on 𝒯s, sample X̃ uniformly from Ak(𝒯s).
To perform the sampling in (ii), we can list the elements in A(𝒯s) by checking if (u, v) ∈ A(𝒯s)

for every u, v ∈ ℒ (𝒯s). This requires one to perform O(m2) many checks. Turning to (i), we can use

rejection sampling to generate 𝒯s: First note that |Ak(t)| ≤ m2k for any t ∈ Ts. If we had a lower bound

E[|Ak(𝒯s)|] ≥ 𝜀 for some 𝜀 > 0, then it would follow from (3.7) that g(t) ≤ m2k∕𝜀. We can generate

𝒯s using a uniform permutation on m elements as described in Lemma 7.4. Let 𝒯 (j)
s , j ≥ 1, be i.i.d.

copies of 𝒯s, and independent of this sequence sample i.i.d. Uniform[0, 1] random variables Uj, j ≥ 1.

Set 𝒯s equal to 𝒯 (j⋆)
s , where

j⋆ = inf
{

j ≥ 1 ∶ Uj × m2k ≤ 𝜀 ⋅ g(𝒯 (j)
s )

}
.

This sampling scheme terminates in OP(m2k∕𝜀) many steps. The only caveat here is that one has to

find 𝜀 > 0 that satisfies E[|Ak(𝒯s)|] ≥ 𝜀. However, it is often easy to obtain bounds of the form
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E[|Ak(𝒯s)|] ≥ m−r for some integer r. For example, if k = 1, s1 ≥ 2 and s2 ≥ 1, then one can show

that E[|A1(𝒯s)|] ≥ m−4 just by considering admissible pairs of leaves (u, v) for which

𝜉←−u (𝒯s) = 1 = 𝜉←−v (𝒯s) and
←−←−u =

←−←−v .

(Recall that 𝜉w denotes the number of children of w.) In the case of degree sequences as in Theorem

2.4, the corresponding child sequence s (as defined in (3.6)) satisfies Assumption 7.1 stated below.

In this case it follows from Lemma 7.3 (ii), (iii), and (v) stated below that E[|Ak(𝒯s)|] = Θ(m3k∕2).
In particular, the above sampling scheme terminates in OP(mk∕2) many steps provided one can find a

constant C that satisfies E[|Ak(𝒯s)|] ≥ Cm3k∕2.

4 DISCUSSION

Here we briefly discuss related work, the relevance of the work in this paper and possible extensions

and questions raised by this work.

(a) Graphs with prescribed degree distribution: Graphs with prescribed degree sequence have played

an integral part in probabilistic combinatorics over the last decade and have also been heavily used

in the applied fields including epidemic modeling [20, 43, 51] community detection and clustering

[31] and so on. In the context of this paper, the critical point for existence of a giant component was

established in [48]. When the degree sequence results in trees, under suitable assumptions on the degree

sequence, Broutin and Marckert in [21] showed that these trees appropriately normalized converge to

Aldous’s continuum random tree; this result will show up in a number of our proofs.

(b) Critical random graphs: In the context of continuum scaling limits of maximal components in

the critical regime, the only other result for the configuration model was derived in [14]; here using

completely different techniques, critical percolation on the supercritical regime of the configuration

model where the degree distribution has exponential tails was studied. Associated dynamic versions

of this model were constructed and coupled appropriately to Aldous’s multiplicative coalescent. A

general universality principle also derived in the same paper then resulted in the scaling limits of

maximal components at critical percolation. The techniques in that paper, however, do not extend to

this work. Here we need start directly with a critical prescribed degree sequence; the proof techniques

in this paper are completely different and use a combinatorial description of the uniform distribution

on the space of connected simple graphs with a prescribed degree sequence.

(c) Vacant sets and random interlacements on general random graphs: With regards to vacant sets,

Theorem 2.6 applies to random regular graphs. However as elucidated in Conjecture 2.7, we believe

that analogous results hold for the VSRW problem on 𝒢n,d or CMn(d) constructed using general

degree sequence satisfying the hypothesis of Conjecture 2.7. Let us now address the two clarifications

described in Remark 7. Assuming one can establish the critical point for VSRW for such graphs, we

can look at the following two regimes:

(i) Finite third moment: we conjecture that one can construct a (model dependent) random variable

D∗
vac (analogous to (5.14) for the random regular graph) and 𝜆∗vac a function of both the distribution

of D and a0 (analogous to (5.13)) such that the maximal connected components in the critical regime

with edges rescaled by n−1∕3 converge to MD∗
vac(𝜆∗vac). This explicates the “universality” phenomenon

we expect in this regime.
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(ii) Infinite third moment regime: This regime seems more nontrivial. Personal communication from

Remco van der Hofstad suggests that the limits here differ substantially from critical percolation. Scal-

ing limits for critical percolation in such heavy tailed random graphs were derived in [16], where

scaling limits of maximal components in Aldous’s multiplicative coalescent were established in terms

of tilted inhomogeneous continuum random trees. One ramification of these results ([16, Thm. 1.2])

is the continuum scaling limits of the maximal components in the critical regime of the so-called

Norros-Reittu model where the driving weight sequence is assumed to have heavy tails with exponent

𝜏 ∈ (3, 4). These were extended to critical percolation for the configuration model with heavy tailed

degree sequence in [15]. For a full description of this random graph model as well as the correspond-

ing limits we refer the interested reader to [16]. Calculations by Remco van der Hofstad suggest (see

[37, section 4.8.4] for a detailed discussion) that the maximal components in the critical regime for

the VSRW model still scale like n−1∕3 and lie in the Erdős-Rényi universality regime [4]. In that sense,

random walk percolation differs from bond percolation in this regime.

Let us now say a few words on how one can go about proving the above conjecture (at least in the

finite third moment setting). As will become evident from the proofs, the result follows owing to the

following three ingredients (1) Theorem 2.2; (2) a result of Cooper and Frieze [25] which expresses

the annealed measure for the vacant set problem in terms of the random graphs with prescribed degree

sequence; (3) refined bounds on the degree sequence of the vacant in the critical scaling window

derived in [23]. Parts (1) and (2) continue to hold for the vacant set problem for random walks on

general graphs with prescribed degree sequence. Thus to extend our results to the vacant set problem

for general graphs, all one needs is an extension of the refined bounds in (3) to random walks on general

graphs.

(d) Proof techniques: The techniques used in this paper differ from the standard techniques used to

show convergence of such random discrete objects to limiting random tree like metric spaces. One

standard technique (used in [4,17]) is to construct an exploration process of the discrete object of inter-

est that converges to the exploration process of a continuum random tree (see [29, 44] for beautiful

treatments), and encode the “surplus” edges as a random point process falling under the exploration,

and show that this point process converges to a Poisson point process in the limit. In this work, we

use a different technique that requires less work. We first prove convergence of the object of inter-

est in the Gromov-weak topology, essentially showing that for each fixed k ≥ 2, the distance matrix

constructed from k randomly sampled vertices converges in distribution to the distance matrix con-

structed from k points appropriately sampled from the limiting structure. This result, coupled with

a global lower mass bound implies via general theory [11] that convergence occurs in the stronger

Gromov-Hausdorff-Prokhorov sense. In the context of critical random graphs, this technique was first

used in [16] to analyze the so-called rank-one critical inhomogeneous random graph.

5 DEFINITIONS AND LIMIT OBJECTS

This section collects all the basic definitions and existing results in the literature that are needed in the

proof for easy reference.

5.1 Notation and conventions

For any set A, we write |A| or #A for its cardinality and 1 {A} for the associated indicator function. For

any graph H, we write V(H) and E(H) for the set of vertices and the set of edges of H respectively. We
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write |H| for the number of vertices in H, that is, |H| = |V(H)|. We use the standard Landau notation

of o(⋅), O(⋅), Θ(⋅), and the corresponding order in probability notation oP(⋅) and OP(⋅). We use
P

−→,
d

−→, and
a.s.
−→ to denote convergence in probability, weak convergence and almost-sure convergence.

Throughout this paper, C,C′, c, c′ will denote positive universal constants, and their values may

change from line to line. Special constants will be indexed as c1, c2 etc.

5.2 Gromov-Hausdorff-Prokhorov metric

We mainly follow [1, 5, 22]. Let us recall the Gromov-Hausdorff distance 𝑑GH between metric spaces.

Fix two metric spaces X1 = (X1, 𝑑1) and X2 = (X2, 𝑑2). For a subset C ⊆ X1 × X2, the distortion of C
is defined as

dis(C) ∶= sup {|𝑑1(x1, y1) − 𝑑2(x2, y2)| ∶ (x1, x2), (y1, y2) ∈ C} . (5.1)

A correspondence ℛ between X1 and X2 is a measurable subset of X1 × X2 such that for every

x1 ∈ X1, there exists at least one x2 ∈ X2 such that (x1, x2) ∈ ℛ and vice-versa. The Gromov-Hausdorff

distance between the two metric spaces (X1, 𝑑1) and (X2, 𝑑2) is defined as

𝑑GH(X1,X2) =
1

2
inf {dis(ℛ) ∶ ℛ is a correspondence between X1 and X2} . (5.2)

Suppose (X1, 𝑑1) and (X2, 𝑑2) are two metric spaces and p1 ∈ X1, and p2 ∈ X2. Then the pointed
Gromov-Hausdorff distance between X1 ∶= (X1, 𝑑1, p1) and X2 ∶= (X2, 𝑑2, p2) is given by

𝑑
pt
GH(X1,X2) =

1

2
inf {dis(ℛ) ∶ ℛ is a correspondence between X1 and X2 and (p1, p2) ∈ C} . (5.3)

We will use the Gromov-Hausdorff-Prokhorov distance that also keeps track of associated mea-

sures on the corresponding metric spaces. A metric measure space (X, 𝑑, 𝜇) is a metric space (X, 𝑑)
with an associated finite measure 𝜇 on the Borel sigma algebra on X. Given two metric measure spaces

(X1, 𝑑1, 𝜇1) and (X2, 𝑑2, 𝜇2) and a measure 𝜋 on the product space X1 × X2, the discrepancy of 𝜋 with

respect to 𝜇1 and 𝜇2 is defined as

D(𝜋;𝜇1, 𝜇2) ∶= ‖𝜇1 − 𝜋1‖ + ‖𝜇2 − 𝜋2‖ (5.4)

where 𝜋1, 𝜋2 are the marginals of 𝜋 and ‖ ⋅‖ denotes the total variation of signed measures. Define the

function 𝑑GHP as

𝑑GHP(X1,X2) ∶= inf

{
max

(
1

2
dis(ℛ), D(𝜋;𝜇1, 𝜇2), 𝜋(ℛc)

)}
, (5.5)

where the infimum is taken over all correspondences ℛ and measures 𝜋 on X1 × X2.

Similar to (5.3), we can define a “pointed Gromov-Hausdorff-Prokhorov distance” 𝑑
pt
GHP between

two metric measure spaces X1 and X2 having two distinguished points p1 and p2 respectively by taking

the infimum in (5.5) over all correspondences ℛ and measures 𝜋 on X1 × X2 such that (p1, p2) ∈ ℛ.

The function 𝑑GHP is a pseudometric that defines an equivalence relation ∼: for two metric measure

spaces X and Y , X ∼ Y ⇔ 𝑑GHP(X,Y) = 0. Let �̄� be the space of equivalence classes of compact metric

measure spaces and 𝑑GHP be the induced metric. Then by [1], (�̄�, 𝑑GHP) is a complete separable metric
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space. Sometimes we will be interested in not just one metric space but an infinite sequence of metric

spaces. Then the relevant space will be �̄�N equipped with the product topology inherited from 𝑑GHP.

To ease notation, we will continue to use 𝑑GHP instead of 𝑑GHP. Similarly we will write X = (X, 𝑑, 𝜇)
to denote both the metric space and the corresponding equivalence class.

5.3 Gromov-weak topology

Here we mainly follow [32]. Introduce an equivalence relation on the space of complete and separa-

ble metric spaces that are equipped with a probability measure on the associated Borel 𝜎-algebra by

declaring two such spaces (X1, 𝑑1, 𝜇1) and (X2, 𝑑2, 𝜇2) to be equivalent when there exists an isometry

𝜓 ∶ support(𝜇1) → support(𝜇2) such that 𝜇2 = 𝜓∗𝜇1 ∶= 𝜇1 ◦𝜓−1, that is, the push-forward of 𝜇1

under 𝜓 is 𝜇2. Write 𝔖∗ for the associated space of equivalence classes. As before, we will often ease

notation by not distinguishing between a metric space and its equivalence class.

Fix l ≥ 2, and a complete separable metric space (X, 𝑑). Then given a collection of points x ∶=
(x1, x2,… , xl) ∈ Xl, let D(x) ∶= (𝑑(xi, xj))i,j∈[l] denote the symmetric matrix of pairwise distances

between the collection of points. A function Φ∶ 𝔖∗ → R is called a polynomial of degree l if there

exists a bounded continuous function 𝜙∶ Rl2
+ → R such that

Φ((X, 𝑑, 𝜇)) ∶= ∫ 𝜙(D(x))𝑑𝜇⊗l(x). (5.6)

Here 𝜇⊗l is the l-fold product measure of 𝜇. Let 𝚷 denote the space of all polynomials on 𝔖∗.

Definition 5.1 (Gromov-weak topology). A sequence {(Xn, 𝑑n, 𝜇n)}n≥1 in 𝔖∗ is said to converge to

(X, 𝑑, 𝜇) ∈ 𝔖∗ in the Gromov-weak topology if and only if Φ((Xn, 𝑑n, 𝜇n)) → Φ((X, 𝑑, 𝜇)) for all

Φ ∈ 𝚷.

In [32, Thm. 1] it is shown that 𝔖∗ is a Polish space under the Gromov-weak topology. It is also

shown that, in fact, this topology can be completely metrized using the so-called Gromov-Prokhorov

metric.

For any metric measure space (X, 𝑑, 𝜇) and 𝛿 > 0, define

𝜅𝛿(X) = 𝜅𝛿(X, 𝑑, 𝜇) ∶= inf
x∈X

{
𝜇
{

y ∶ 𝑑(y, x) ≤ 𝛿
}}

.

The following theorem gives a criterion for lifting Gromov-weak convergence to

Gromov-Hausdorff-Prokhorov convergence.

Theorem 5.2 ([11], Theorem 6.1). Suppose (X, 𝑑, 𝜇) and (Xn, 𝑑n, 𝜇n), n ≥ 1, are elements in 𝔖∗
such that
(a) support(𝜇n) = Xn for all n ≥ 1 and support(𝜇) = X,
(b) (Xn, 𝑑n, 𝜇n) → (X, 𝑑n, 𝜇) with respect to Gromov-weak topology, and
(c) lim infn→∞ 𝜅𝛿(Xn) > 0 for all 𝛿 > 0.

Then (X, 𝑑) is compact and (Xn, 𝑑n, 𝜇n) → (X, 𝑑, 𝜇) with respect to Gromov-Hausdorff-Prokhorov
topology.

5.4 Spaces of trees with edge lengths, leaf weights, and root-to-leaf measures

The rest of this section largely follows [16]. In the proof of the main results we need the following two

spaces built on top of the space of discrete trees. The first space TIJ was formulated in [9,10] where it
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was used to study trees spanning a finite number of random points sampled from an inhomogeneous

continuum random tree (ICRT). A more general space T∗
IJ was used in the proofs in [16]. The index I in

TIJ and T∗
IJ is needed for the purpose of keeping track of the number of marked “hubs,” that is, vertices

of high (or infinite) degrees in such trees (see [9, 10, 16] for a proper definition). For our purpose it

will suffice to consider the case I = 0. So we only define the space TJ ∶= T0J and T∗
J ∶= T∗

0J .

The space TJ: Fix J ≥ 1. Let TJ be the space of trees having the following properties:

(a) There are exactly J leaves labeled 1+,… , J+, and the tree is rooted at another labeled vertex 0+.

(b) Every edge e has a strictly positive edge length le.

A tree t ∈ TJ can be viewed as being composed of two parts:

(1) shape(t) describing the shape of the tree (including the labels of leaves) but ignoring edge lengths.

The set of all possible shapes Tshape
J is obviously finite for fixed J.

(2) The edge lengths l(t) ∶=
(
le, e ∈ t

)
. Consider the product topology on TJ consisting of the discrete

topology on Tshape
J and the product topology on R𝑑 .

The space T∗
J : We will need a slightly more general space. Along with the two attributes above in TJ ,

the trees in this space have the following two additional properties. Let ℒ (t) ∶=
{

1+,… , J+} denote

the collection of leaves in t. Then every leaf i+ ∈ ℒ (t) has the following attributes:

(d) Leaf weights: A nonnegative number LW(i+).
(e) Root-to-leaf measures: A probability measure 𝜈t,i on the path [0+, i+] connecting the root and

the leaf i+. Here the path is viewed as a line segment pointed at 0+ and has the usual Euclidean

topology.

In addition to the topology on TJ , the space T∗
J with these additional two attributes inherits the product

topology on RJ owing to leaf weights and (𝑑ptGHP)
J owing to the root-to-leaf measures.

Additionally, we include a special element 𝜕 in T∗
J . This will be useful in the proofs as we will view

any rooted tree that does not have exactly J distinct leaves as 𝜕, which will allow us to work entirely

in the space T∗
J .

5.5 Scaling limits of component sizes at criticality

The starting point for establishing the metric space scaling limit is understanding the behavior of the

component sizes. We first set up some notation. Fix parameters 𝛼, 𝜂, 𝛽 > 0, and write 𝝁 = (𝛼, 𝜂, 𝛽) ∈
R3

+. Let (B(s), s ≥ 0) be a standard Brownian motion. For 𝜆 ∈ R, define

W𝝁,𝜆(s) ∶=
√
𝜂

𝛼
B(s) + 𝜆s − 𝜂s2

2𝛼3
, s ≥ 0. (5.7)

Write W
𝝁,𝜆

for the process reflected at zero:

W
𝝁,𝜆

(s) ∶= W𝝁,𝜆(s) − min
0≤u≤s

W𝝁,𝜆(u), s ≥ 0. (5.8)

Consider the metric space,

l2↓ ∶=
{

x = (xi ∶ i ≥ 1) ∶ x1 ≥ x2 ≥ · · · ≥ 0,

∞∑
i=1

x2
i < ∞

}
, (5.9)
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equipped with the natural metric inherited from l2. It was shown by Aldous in [8] that the excursions

of W
𝝁,𝜆

from zero can be arranged in decreasing order of lengths as

𝝃𝝁(𝜆) =
(|𝛾𝝁(i) (𝜆)|, i ≥ 1

)
, (5.10)

where |𝛾𝝁(i) (𝜆)| is the length of the ith largest excursion 𝛾
𝝁
(i) (𝜆), and further 𝝃𝝁(𝜆) ∈ l2↓. Let 𝒫𝛽 be a rate

𝛽 Poisson process R2
+ independent of W𝝁,𝜆(⋅). For each i ≥ 1, write N𝝁

(i) (𝜆) for the number of points of

𝒫𝛽 that fall under the excursion 𝛾
𝝁
(i) (𝜆).

Aldous in [8] studied the maximal components of the Erdős-Rényi random graph in the critical

regime and proved a remarkable result that says that the sizes of the maximal components scaled by

n−2∕3 and the number of surplus edges in the maximal components of ERRG(n−1 + 𝜆n−4∕3) converge

jointly in distribution to
((|𝛾𝝁er

(i) (𝜆)|,N𝝁er
(i) (𝜆)

)
, i ≥ 1

)
, where 𝝁er = (1, 1, 1). This result has since been

generalized to a number of other random graph models. In the context of graphs with given degree

sequence, Nachmias and Peres [50] studied critical percolation on random regular graphs; Riordan

[53] analyzed the configuration model with bounded degrees; Joseph [42] considered i.i.d. degrees.

A stronger result under finite third moment assumptions was obtained in [27]. We will state a weaker

version of this result next.

Theorem 5.3 ([27]). Consider a degree sequence d = d(n) satisfying Assumption 2.1 with the limiting
random variable D and define 𝜎r ∶= E[Dr], r = 1, 2, 3. Write 𝒞 n

(i)(𝜆) for the ith largest connected
component of CMn(d) (or 𝒢n,d). Let

Nn
(i)(𝜆) ∶= ||E(𝒞 n

(i)(𝜆)
)|| − ||𝒞 n

(i)(𝜆)|| + 1

denote the number of surplus edges in 𝒞 n
(i)(𝜆). Then as n → ∞,((

n−2∕3|𝒞 n
(i)(𝜆)|,Nn

(i)(𝜆)
)
, i ≥ 1

)
d

−→ ZD(𝜆) ∶=
((|𝛾𝝁D

(i) (𝜆)|,N𝝁D
(i) (𝜆)

)
, i ≥ 1

)
with respect to product topology. Here 𝝁D = (𝛼D, 𝜂D, 𝛽D) is given by

𝛼D = 𝜎1, 𝜂D = 𝜎3𝜎1 − 𝜎2
2
, and 𝛽D = 1∕𝜎1.

This result, in a stronger form, can be found in [27, Thm. 2 and Rem. 5]. We will use this result in

the next section to describe the limiting metric measure spaces arising in Section 2.

5.6 The limiting metric measure spaces

A compact metric space (X, 𝑑) is called a real tree [29,44] if between every two points there is a unique

geodesic such that this path is also the only nonself-intersecting path between the two points. Functions

encoding excursions from zero can be used to construct such metric spaces via a simple procedure. We

describe this construction next.

For 0 < a < b < ∞, an excursion on [a, b] is a continuous function h ∈ C([a, b],R) with

h(a) = 0 = h(b) and h(t) > 0 for t ∈ (a, b). The length of such an excursion is b− a. For l ∈ (0,∞), let

ℰl be the space of all excursions on the interval [0, l]. Given an excursion h ∈ ℰl, one can construct a

real tree as follows. Define the pseudo-metric 𝑑h on [0, l]:

𝑑h(s, t) ∶= h(s) + h(t) − 2 inf
u∈[s,t]

h(u), for s, t ∈ [0, l]. (5.11)
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Define the equivalence relation s ∼ t ⇔ 𝑑h(s, t) = 0. Let [0, l]∕ ∼ denote the corresponding

quotient space and consider the metric space 𝒯h ∶= ([0, l]∕ ∼, 𝑑h), where 𝑑h is the metric on the

equivalence classes induced by 𝑑h. Then 𝒯h is a real tree ([29, 44]). Let qh ∶ [0, l] → 𝒯h be the

canonical projection and write 𝜇𝒯h for the push-forward of the Lebesgue measure on [0, l] onto 𝒯h via

qh. Furthermore, we assume that 𝒯h is rooted at 𝜌 ∶= qh(0). Equipped with 𝜇𝒯h , 𝒯h is now a rooted

compact metric measure space. Note that by construction, for any x ∈ 𝒯h, the function h is constant

on q−1
h (x). Thus for each x ∈ [0, l], we write ht(x) = h(q−1

h (x)) for the height of this vertex.

The Brownian continuum random tree defined below is a fundamental object in the literature of

random real trees.

Definition 5.4 (Aldous’s continuum random tree [7]). Let e be a standard Brownian excursion on

[0, 1]. Construct the random compact real tree 𝒯2e as in (5.11) with h = 2e. The associated measure

𝜇𝒯2e is supported on the collection of leaves of 𝒯2e almost surely.

Write 𝜈 for the law of a standard Brownian excursion on the space of excursions on [0, 1] namelyℰ1.

For k ≥ 0, let ẽ(k) be a random excursion with distribution �̃�k given via the following Radon-Nikodym

density with respect to 𝜈:

𝑑�̃�k

𝑑𝜈
(h) =

[∫ 1

0
h(u)𝑑u

]k

E

[(∫ 1

0
e(u)𝑑u

)k
] =

( ∫𝒯h
ht(x)𝜇𝒯h (𝑑x)

)k

E
[ ∫𝒯e

ht(x)𝜇𝒯e (𝑑x)
]k , h ∈ ℰ1. (5.12)

Construction 5.5 (The space M(k)). Fix k ≥ 0.

(a) Let ẽ(k) be as above, and write 𝒯 ⋆ = 𝒯2ẽ(k) . Let 𝜇𝒯 ⋆ denote the associated measure.
(b) Conditional on 𝒯 ⋆, sample k leaves {xi ∶ 1 ≤ i ≤ k} in an i.i.d. fashion from 𝒯 ⋆ with density

proportional to ht(x)𝜇𝒯 ⋆ (𝑑x).
(c) Conditional on the two steps above, for each of the sampled leaves xi, sample a point yi uniformly

at random on the line [𝜌, xi]. Identify xi and yi, that is, introduce the equivalence relation xi ∼ yi,
1 ≤ i ≤ k, and form the quotient space 𝒯⋆∕ ∼.

Set M(k) to be the resultant (compact) random metric measure space.

Next recall the definition of ZD(𝜆) from Theorem 5.3.

Construction 5.6 (The sequence MD(𝜆)).

(a) Sample ZD(𝜆) =
((|𝛾𝝁D

(i) (𝜆)|,N𝝁D
(i) (𝜆)

)
, i ≥ 1

)
. For simplicity, write

𝜉i = |𝛾𝝁D
(i) (𝜆)|, and Ni = N𝝁D

(i) (𝜆).

(b) Conditional on ZD(𝜆), construct the spaces Si independently for i ≥ 1, where Si
d
= M(Ni).

Set

MD(𝜆) =
(
MD

1
(𝜆),MD

2
(𝜆),…

)
, where MD

i (𝜆) =
𝛼D

√
𝜉i√

𝜂D
⋅ Si, i ≥ 1.

Note that the sequence MD(𝜆) of limiting spaces depends only on the first three moments of the

random variable D (which is also true for ZD(𝜆)—the scaling limit of the component sizes and the

number of surplus edges).
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Finally, let a0 be as in theorem 2.6. Define

𝜆vac =
a0(r − 2)2

r(r − 1)
, and pvac = exp

(
− r ln(r − 1)

(r − 2)

)
, (5.13)

and let Dvac be the mixture random variable

Dvac = (1 − pvac) ⋅ 𝛿0 + pvac ⋅ Binomial

(
r, 1

r − 1

)
. (5.14)

Construction 5.7 (The sequence Mvac(a0)). Set

Mvac(a0) ∶= MDvac
(
𝜆vac

)
.

Remark 10. The Erdős-Rényi scaling limit identified in [3,4] can be recovered by taking the limiting

random variable to be Der ∼ Poisson(1), that is, the scaling limit ofERRG(n−1+𝜆n−4∕3) (after rescaling

the graph distance by n−1∕3) is given by

Mer (𝜆) ∶= MDer (𝜆).

(Note that in this case, 𝛼Der = 𝜂Der = 𝛽Der = 1.) The result for ERRG(n−1 + 𝜆n−4∕3) can be obtained

from Theorem 2.2 by observing the following two facts:

(i) The (random) degree sequence of ERRG(n−1 + 𝜆n−4∕3) satisfies Assumption 2.1 with limiting

random variable Der .

(ii) Conditional on the event where the degree sequence equals d, ERRG(n−1 +𝜆n−4∕3) is uniformly

distributed over Gn,d.

6 PROOF OF THEOREM 3.2

Since Theorem 3.2 does not require any of the ingredients required for the remaining theorems, we

start by giving a quick proof of this result. Fix a graph G ∈ Gcon
d̃

. Root the graph at the only neighbor

of 1 (recall that 𝑑1 = 1), and remove the vertex 1 and the edge incident to it. Suppose H is the resulting

rooted, labeled graph. We can construct a labeled plane tree from H in the following way:

(i) Call the root u1. Set the status of all its neighbors as “discovered,” and set the status of u1 as

“explored.” Shuffle all its neighbors uniformly and go to the “leftmost” neighbor and call it u2.

(ii) When we are at ur (r ≥ 2), search for all its neighbors (other than ur−1) in the graph at that time. If

none of these neighbors have been discovered previously, then shuffle them uniformly, set their

status as “discovered,” set the status of ur as “explored,” and go to the leftmost neighbor and call

it ur+1.

If some of these neighbors have been previously discovered, then these edges create surplus.

Suppose we have found 𝓁0,r many surplus edges before exploring ur, and at ur we found 𝓁1,r
many new surplus edges e1,… , e𝓁1,r . Assume that ej = (ur, yj) and y1 ≺DF · · · ≺DF y𝓁1,r . For

j = 1,… ,𝓁1,r, delete the edge ej, and create two leaves labeled m̃+2𝓁0,r+2j−1 and m̃+2𝓁0,r+2j,
where ur =

←−−−−−−−−−−−−−−−
m̃ + 2𝓁0,r + 2j − 1 (i.e., ur is the parent of the leaf labeled m̃ + 2𝓁0,r + 2j − 1),

and similarly yj =
←−−−−−−−−−−−
m̃ + 2𝓁0,r + 2j. Shuffle the neighbors of ur uniformly (including the newly
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created leaves), set their status as “discovered,” set the status of ur as “explored,” and move to

the leftmost neighbor of ur and call it ur+1. (Note that we do not set the status of m̃ + 2𝓁0,r + 2j,
j = 1,… ,𝓁1,r, as discovered at this point.)

If ur has no neighbors other than ur−1, then go to the next (in the depth-first order) discovered

but unexplored vertex and call it ur+1.

Let tlab
∗ be the resulting labeled plane tree, and set x∗ = {(m̃ + 1, m̃ + 2),… , (m̃ + 2k − 1, m̃ + 2k)}.

Note that (m̃ + 2j − 1, m̃ + 2j) is an admissible pair for 1 ≤ j ≤ k. Note also that the child sequence of

tlab
∗ is the sequence 𝝃 defined in (3.3). Thus (tlab

∗ , x∗) is a random, labeled element of T
(k)
s . Let DF(H)

be the set of all possible realizations of (tlab
∗ , x∗).

In the above exploration process, when we are at the vertex labeled j ∈ {2,… ,m}, the shuffling

can be done in exactly (𝑑j −1)! many ways. Since the vertices labeled m̃+1,… , m̃+2k all have degree

one, when we are at any of these vertices, we simply proceed to the next step. Furthermore, each one of

the
∏m̃

j=2(𝑑j − 1)! combinations of shufflings results in a unique realization of (tlab
∗ , x∗). It thus follows

that

||DF(H)|| = m̃∏
j=2

(𝑑j − 1)!. (6.1)

Note also that for every (tlab, x) ∈ DF(H),

P
(
(𝒯 lab

s , X̃) = (tlab, x)
)
= 1|T(k)

s | × 1

(s0 − 2k)! ×
∏

i≥1 si!
, (6.2)

where (𝒯 lab
s , X̃) are as defined before Theorem 3.2.

Now, clearly ℐ (tlab, x) = H for every (tlab, x) ∈ DF(H). Conversely, if (tlab, x) is a labeled element

of T
(k)
s satisfying (a) the vertices of tlab are labeled 2,… , m̃+2k, (b) x = {(m̃+1, m̃+2),… , (m̃+2k−

1, m̃ + 2k)} and (m̃ + 1, m̃ + 2) << · · · << (m̃ + 2k − 1, m̃ + 2k), and finally (c) ℐ (tlab, x) = H, then

(tlab, x) ∈ DF(H). Indeed, in each step of the above exploration procedure, if the shuffling agrees with

the planar order in tlab, then for this combination of shufflings the resulting realization of (tlab
∗ , x∗) will

be (tlab, x). Thus

P
(
ℐ (𝒯 lab

s , X̃) = H
)
=

∑
(tlab,x)∈DF(H)

P
(
(𝒯 lab

s , X̃) = (tlab, x)
)

=
∏m̃

j=2(𝑑j − 1)!|T(k)
s | × 1

(s0 − 2k)! ×
∏

i≥1 si!
, (6.3)

where the last step uses (6.1) and (6.2). Since this probability is constant and the map from G to H is

a bijection, we get the desired result. ▪

7 PROPERTIES OF PLANE TREES

We start by describing the setting and assumptions. Assume that for each m ≥ 1, s(m) = (s(m)
i , i ≥ 0) is

a tenable CFD for a tree on m vertices (thus
∑

i≥0 s(m)
i = m). When there is no scope of confusion, we

will simply write s and si instead of s(m) and s(m)
i . Analogous to Assumption 2.3, we make the following

assumption on {s(m)}m≥1:
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Assumption 7.1. There exists a p.m.f. (p0, p1,…) with

p0 > 0,
∑
i≥1

ipi = 1, and
∑
i≥0

i2pi <∞

such that

si

m
→ pi for i ≥ 0, and

1

m
∑
i≥0

i2si →
∑
i≥0

i2pi.

In particular, Δm ∶= max {i ∶ si ≠ 0} = o(
√

m).
We will write 𝜎2 =

∑
i i2pi − 1 for the variance associated with the p.m.f. (p0, p1,…).

Then the following was shown in [21].

Theorem 7.2 ([21, Thm. 1]). Let 𝒯s be a uniform element of Ts endowed with the uniform prob-
ability measure on m vertices and viewed as a metric measure space. Under Assumption 7.1, as
m → ∞,

𝜎√
m
𝒯s

d
−→ 𝒯2e

with respect to the GHP topology (see Definition 5.4).

Remark 11. In [21, Thm. 1], the convergence is stated to hold in the Gromov-Hausdorff sense.

However, it is easy to see that the proof in fact implies convergence in the GHP sense.

The following technical lemma collects all the ingredients necessary for proving our main results.

Its proof can be read independently of the rest. So if the reader wishes, they can go through the state-

ment of Lemma 7.3 and move on to the next section to read the proofs of the main theorems, and then

come back to the proof of this lemma at leisure.

Lemma 7.3. Suppose Assumption 7.1 is satisfied by s = s(m). Let 𝒯s be a uniform plane tree with
CFD s. Then the following assertions hold.

(i) For each k ≥ 1, we can construct independent random vectors (U(1)
m ,V (1)

m ),… , (U(k)
m ,V (k)

m ) such
that U(j)

m , j = 1,… , k, have uniform distribution on the s0 leaves and V (j)
m , j = 1,… , k, have uniform

distribution on the m vertices, and

m−1∕2𝑑𝒯s

(
U(j)

m ,V
(j)
m
) d
−→ 0 for j = 1,… , k.

In particular,

𝑑GHP

(
1√
m
𝒯s,

1√
m
𝒯 ℒ

s

)
d

−→ 0,

where 𝒯 ℒ
s denotes the metric measure space obtained when the underlying tree is endowed with the

uniform probability measure on the set of leaves ℒ (𝒯s). (Recall that the measure on the space 𝒯s is
the uniform probability measure on all vertices.)
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(ii) Recall the definition of an admissible pair of leaves (Definition 3.1) and of the function f𝒯s

(Equation (3.1)). Let Um be uniformly distributed over ℒ (𝒯s). Then for every k ≥ 1,

sup
m

E

(|A(𝒯s)|
s0

√
m

)k

≤ sup
m

E

(
f𝒯s(Um)√

m

)k

<∞.

(iii) For every k ≥ 1,

1

m3k∕2

(||A(𝒯s)||k − ||Aord
k (𝒯s)||) d

−→ 0.

(iv) Let k ≥ 0 and 𝓁 ≥ 1. Suppose u1,… , uk ∈ ℒ (𝒯s), and v1,… , v𝓁 are vertices of 𝒯s. Write
u = (u1,… , uk) and v = (v1,… , v𝓁). Let 𝒯s(u, v) be the element of T∗

k+𝓁 as in Section 5.4 defined
as follows: If the subtree of 𝒯s spanned by the root 𝜌 and u1,… , uk, v1,… , v𝓁 does not have (k + 𝓁)
distinct leaves, then set 𝒯s(u, v) = 𝜕. Otherwise set 𝒯s(u, v) to be the subtree of 𝒯s spanned by the
root 𝜌 and u1,… , uk, v1,… , v𝓁 , and for 1 ≤ i ≤ k, attach the leaf value m−1∕2f𝒯s(ui) to ui, and endow
[𝜌, ui] with a probability measure by assigning mass p(i)

x to each x ∈ [𝜌, ui), where

p(i)
x ∶= 1

f𝒯s(ui)
⋅ #

{
v ∈ A

(
𝒯s, ui

) |||| ←−←−v = x
}
.

(The leaf values and root-to-leaf measures attached to vj, 1 ≤ j ≤ 𝓁, are irrelevant in our proof and
can be taken to be zero and 𝛿{𝜌} respectively.)

Consider independent random variables U(i)
m , i = 1,… , k, and V (j)

m , j = 1,… ,𝓁, where U(i)
m ,

i = 1,… , k have uniform distribution on the s0 leaves of 𝒯s, and V (j)
m , j = 1,… ,𝓁 have uniform

distribution on the m vertices. Let U = (U(i)
m , i = 1,… , k) and V = (V (j)

m , j = 1,… ,𝓁). Then

1√
m
𝒯s(U,V)

d
−→ 1

𝜎
𝒯k,𝓁 ,

where 𝒯k,𝓁 is the random element of T∗
k+𝓁 constructed as follows: The shape of 𝒯k,𝓁 is that of the

subtree of 𝒯2e spanned by (k + 𝓁) points x1,… , xk+𝓁 sampled independently according to the mass
measure 𝜇𝒯2e . The leaf weight attached to xi is p0𝜎 ⋅ ht(xi)∕2, i = 1,… , k, and the measure on [𝜌, xi]
is the normalized line measure.

(v) The following joint convergence holds:(
1√
m
𝒯s,

|A(𝒯s)|
s0

√
m

)
d

−→
(

1

𝜎
𝒯2e,

p0𝜎

2 ∫𝒯2e

ht(x) 𝜇𝒯2e (𝑑x)
)

(7.1)

with respect to product topology induced by GHP topology on the first coordinate and Euclidean
topology on the second coordinate.

7.1 Proof of Lemma 7.3(i)

Let Tlab
s be the set of all labeled plane trees on m vertices with the following property: The vertices are

labeled by [m] such that vertices labeled 1,… , s0 are leaves, vertices labeled s0 + 1,… , s0 + s1 have
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one child,..., and vertices labeled (m − sΔm + 1),… ,m have Δm many children. As before, we denote

by 𝜉j the number of children of the vertex labeled j.
We will now describe a way of generating a tree uniformly distributed over Tlab

s . Let 𝜋 be a uniform

permutation on [m]. Let

S(j) ∶=
j∑

i=1

(𝜉𝜋(i) − 1), j = 1,… ,m. (7.2)

Extend the definition of 𝜋 periodically by letting 𝜋(j) = 𝜋(j − m) for all integers j. Let i0 denote the

location of the first global minima of (S(j), 1 ≤ j ≤ m) and consider the Vervaat transform w.r.t. this

location:

Sexc(j) =
j∑

i=1

(
𝜉𝜋(i0+i) − 1

)
, 0 ≤ j ≤ m. (7.3)

Let 𝒯 lab−
s be the plane tree whose Łukasiewicz path (see, e.g., [44] for definition) is

(
Sexc(j), 0 ≤ j ≤

m
)
. Let v1 ≺DF v2 ≺DF · · · ≺DF vm be the vertices of 𝒯 lab−

s arranged in depth-first order (thus v1 is

the root of 𝒯 lab−
s ). Label vj as 𝜋(i0 + j), 1 ≤ j ≤ m. Denote the resulting labeled plane tree by 𝒯 lab

s .

Note that 𝒯 lab
s is a random element of Tlab

s , and 𝒯 lab−
s is obtained from 𝒯 lab

s by removing the labels

but retaining the plane embedding.

Lemma 7.4. Let 𝒯 lab
s and 𝒯 lab−

s be as above.

(a) 𝒯 lab
s ∼ Unif(Tlab

s ).
(b) 𝒯 lab−

s
d
= 𝒯s, that is, 𝒯 lab−

s ∼ Unif(Ts).

Proof. Each of the (m − 1)! rotation classes of the m! permutations on [m] gives rise to a unique

realization of 𝒯 lab
s and vice versa. Consequently, |Tlab

s | = (m − 1)!, and

P(𝒯 lab
s = tlab) = 1

(m − 1)!
= 1|Tlab

s | for any tlab ∈ T
lab
s .

This implies

P
(
𝒯 lab−

s = t
)
=

∏
i≥0 si!

(m − 1)!
= 1|Ts| for any t ∈ Ts.

▪

We now state a useful concentration inequality.

Lemma 7.5. There exist universal constants c1, c2 > 0 such that for any m ≥ 1 and probability
vector q ∶= (q1,… , qm),

P

(
max
j∈[m]

||||
j∑

i=1

q𝜋(i) −
j
m
|||| ≥ x𝜎(q)

)
≤ exp

(
− c1x log log x

)
, for x ≥ c2,

where 𝜋 is a uniform permutation on [m], and 𝜎(q) ∶=
√

q2
1
+ · · · + q2

m. Consequently,

P

(
max

1≤j1<j2≤m

||||
j2∑

i=j1+1

q𝜋(i) −
j2 − j1

m
|||| ≥ 2x𝜎(q)

)
≤ 2 exp

(
− c1x log log x

)
, for x ≥ c2.
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Proof. The result is essentially contained in [16, Lem. 4.9], and we only outline how to extract the

result from its proof. We can work with 𝜋 generated in the following way: let X1,… ,Xm be i.i.d.

Unif[0, 1], and set 𝜋(i) = ji, where Xj1 < · · · < Xjm . Write X(i) = Xji . Then

max
j∈[m]

( j∑
i=1

q𝜋(i) −
j
m

)
≤ max

j∈[m]

( j∑
i=1

q𝜋(i) − X(j)

)
+ max

j∈[m]

||||X(j) −
j
m
||||. (7.4)

By the DKW inequality [46],

P

(
max
j∈[m]

||||X(j) −
j
m
|||| ≥ 𝜎(q)x

)
≤ 2 exp

(
−2m ⋅ (𝜎(q)x)2

) ≤ 2 exp
(
−2x2

)
, (7.5)

where the last step uses the inequality: m𝜎(q)2 ≥ (
∑

i qi)2 = 1. From [16, eqs. (4.14) and (4.15)] we

have

P

(
max
j∈[m]

( j∑
i=1

q𝜋(i) − X(j)

)
≥ x𝜎(q)

)
≤ exp

(
− c3x log log x

)
, for x ≥ c4. (7.6)

Combining (7.4)-(7.6), it follows that

P

(
max
j∈[m]

( j∑
i=1

q𝜋(i) −
j
m

)
≥ x𝜎(q)

)
≤ exp

(
− c5x log log x

)
, for x ≥ c6. (7.7)

Now note that

max
j∈[m]

(
j
m

−
j∑

i=1

q𝜋(i)
)

≤ max
j∈[m]

(
X(j) −

j∑
i=1

q𝜋(i)
)
+ max

j∈[m]

||||X(j) −
j
m
||||.

Furthermore, the arguments used in the proof of [16, eq. (4.15)] can be used to prove a tail bound

similar to (7.6) for maxj∈[m]
(
X(j)−

∑j
i=1

q𝜋(i)
)
. Combining this observation with (7.7) yields the desired

result. ▪

Lemma 7.6. For each m ≥ 1, let q = q(m) = (q(m)
1
,… , q(m)

m ) be a probability vector such that
qmax ∶= maxj q(m)

j → 0 as m → ∞. Then for each k ≥ 1, we can construct independent random vectors
(U(1)

m ,V (1)
m ),… , (U(k)

m ,V (k)
m ) on 𝒯 lab

s such that U(j)
m , j = 1,… , k, are distributed according to q and V (j)

m ,
j = 1,… , k, have uniform distribution on the m vertices, and

m−1∕2𝑑𝒯 lab
s

(
U(j)

m ,V
(j)
m
) d
−→ 0 for j = 1,… , k.

Proof. Recall from around (7.2) the construction of 𝒯 lab
s using a uniform permutation 𝜋. Set

G(x) =
⌊mx⌋−1∑

i=0

q𝜋(i+i0+1), x ∈ [0, 1],

whereas before i0 is the location of the first global minima of (S(j), 1 ≤ j ≤ m). Let 𝜎(q) be as in

Lemma 7.5. Then 𝜎(q) ≥ qmax ≥ 1∕m, and consequently y𝜎(q) ≥ 2∕m if y ≥ 2. Furthermore,

||G(x) − x|| ≤ ||G(x) −
⌊mx⌋

m
|| + 1

m
for all x ∈ [0, 1].
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Combining these observations with Lemma 7.5 yields, for y ≥ max{2, 4c2},

P

(
sup

x∈[0,1]

||||G(x) − x
|||| ≥ y𝜎(q)

)
≤ P

(
sup

x∈[0,1]

||||G(x) −
⌊mx⌋

m
|||| ≥ y𝜎(q)∕2

)
≤ 2 exp

(
− c1(y∕4) log log(y∕4)

)
. (7.8)

Since 𝜎(q) ≤ √
qmax → 0 by assumption, we get, in particular,

sup
u∈[0,1]

|G−1(u) − u| d
−→ 0, (7.9)

where G−1(u) = inf {x ∈ [0, 1] ∶ G(x) ≥ u}.

Let Hm be the height function of 𝒯 lab
s , that is,

Hm(j) = 𝑑𝒯 lab
s

(
𝜋(i0 + 1), 𝜋(i0 + j + 1)

)
, j = 0,… ,m − 1.

Then for any 1 ≤ j1 ≤ j2 ≤ m,

||||𝑑𝒯 lab
s

(
𝜋(i0 + j1), 𝜋(i0 + j2)

)
−
(

Hm
(
j1 − 1

)
+ Hm(j2 − 1) − 2 ⋅ min ⋆Hm(k)

)|||| ≤ 2, (7.10)

where min⋆ denotes minimum taken over j1 −1 ≤ k ≤ j2 −1. Now [21, Prop. 5 and Lem. 7] imply that

(
m−1∕2Hm(⌊mx⌋), x ∈ [0, 1]

) d
−→

(
2e(x)∕𝜎, x ∈ [0, 1]

)
(7.11)

with respect to Skorohod J1 topology on D[0, 1]. Let X ∼ Unif[0, 1]. Let V (1)
m (resp. U(1)

m ) be the vertex

labeled 𝜋
(
i0 + ⌈mX⌉) (resp. the vertex labeled 𝜋

(
i0 + ⌈mG−1(X)⌉)) in 𝒯 lab

s . Then V (1)
m has uniform

distribution on the m vertices, and U(1)
m is distributed according to q. Now, using (7.9), |G−1(X)−X| d

−→
0. It thus follows from (7.10) and (7.11) that

m−1∕2𝑑𝒯 lab
s

(
U(1)

m ,V (1)
m

) d
−→ 0.

We can take k independent copies of X and repeat the same argument to complete the proof. ▪

Completing the proof of Lemma 7.3(i). By Lemma 7.4, 𝒯s
d
= 𝒯 lab−

s . Thus the claim follows by an

application of Lemma 7.6 with the choice

qi =
1 {𝜉i = 0}

s0

. ▪

7.2 Proof of Lemma 7.3(ii)

If f is a finite forest of plane trees, let the CFD of f be s̃(f ) = (s̃i(f ), i ≥ 0), where s̃i(f ) is the number of

vertices in f that have exactly i children. Note that for any sequence of integers s̃ = (s̃i, i ≥ 0) satisfying

s̃i ≥ 0,
∑

i
is̃i < ∞, and

∑
i

s̃i −
∑

i
is̃i ≥ 1,



28 BHAMIDI AND SEN

there exists a forest with CFD s̃. Such a forest has exactly (
∑

i s̃i −
∑

i is̃i) many trees and
∑

i s̃i many

vertices. Given such a sequence s̃, let Fs̃ denote the set of all plane forests with ranked roots having

CFD s̃. Thus each forest in Fs̃ comes with an ordering of the roots so it makes sense to talk about the

“first” tree of the forest, the “second” tree etc.

The following lemma gives a useful set of estimates.

Lemma 7.7. Let s̃ be a tenable CFD for a forest of plane trees, and let

z̃ =
∑

i
s̃i −

∑
i

is̃i, Δ̃ = max
i

{i ∶ s̃i ≠ 0} , and m̃ ∶=
∑

i
s̃i,

that is, z̃ is the number of trees, Δ̃ is the maximum number of children, and m̃ is the total number of
vertices in any forest in Fs̃. Sample a forest uniformly from Fs̃, and let Xj denote the number of children
of the root of the jth tree, 1 ≤ j ≤ z̃. Then for any 𝜎1,… , 𝜎r ≥ 1 and 1 ≤ j1 < · · · < jr ≤ z̃,

E

[
X𝜎1

j1
× · · · × X𝜎r

jr

]
≤ r2r

(∑
i

i2s̃i

m̃

)r(
1 + Δ̃

z̃

)
(Δ̃)𝜎1+···+𝜎r−r, (7.12)

whenever r ≤ m̃∕2. As a consequence, the sum of the number of children of all roots in the randomly
sampled forest satisfies the moment bound

E
[
X1 + · · · + Xz̃

]k ≤ Kk

(
1 + Δ̃

z̃

) k∑
r=1

z̃r
(∑

i

i2s̃i

m̃

)r

Δ̃k−r (7.13)

whenever k ≤ m̃∕2, and where Kk is a constant depending only on k.

Proof. Using exchangeability, it is enough to consider j1 = 1,… , jr = r in (7.12). Recall (see, e.g.,

[52, eq. (6.19)]) that

||Fs̃|| = z̃(m̃ − 1)!∏
i≥0 s̃i!

. (7.14)

Let 𝛿0 = (1, 0, 0…), 𝛿1 = (0, 1, 0,…), and similarly define 𝛿i for i ≥ 2. Consider the case where

z̃ ≥ 2, and either i1 ≠ i2 and s̃i1 ≥ 1 and s̃i2 ≥ 1, or i1 = i2 = i and s̃i ≥ 2 . Then from any forest F in

Fs̃ in which the roots of the first two trees have respectively i1 and i2 many children, we can delete the

first two roots and the edges incident to them, declare the children of the first two roots in F to be the

roots of the newly created trees, and then rank the roots of the resulting trees using the planar order to

obtain a forest in Fs̃−𝛿i1
−𝛿i2

. The inverse map is straightforward: Given any forest F in Fs̃−𝛿i1
−𝛿i2

, create

two new vertices 𝜌1 and 𝜌2, connect each of the first i1 roots of F by an edge to 𝜌1, and connect each

of the next i2 roots of F by an edge to 𝜌2, and then declare 𝜌1 and 𝜌2 to be respectively the first and

second roots of the resulting forest, and let the i1 + i2 + jth root of F be the j+ 2th root of the resulting

forest, j ≥ 1. It thus follows that

P
(
X1 = i1,X2 = i2

)
=

|Fs̃−𝛿i1
−𝛿i2

||Fs̃| . (7.15)

When i1 ≠ i2,

P
(
X1 = i1,X2 = i2

)
=

(z̃ − 2 + i1 + i2)s̃i1 s̃i2

z̃(m̃ − 1)(m̃ − 2)
≤ 4

(
1 + i1 + i2

z̃

) s̃i1 s̃i2

m̃2
,
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where the last inequality is true whenever m̃ ≥ 4. When i1 = i2 = i and m̃ ≥ 4,

P
(
X1 = i,X2 = i

)
= (z̃ − 2 + 2i)s̃i(s̃i − 1)

z̃(m̃ − 1)(m̃ − 2)
≤ 4

(
1 + 2i

z̃

) s̃2
i

m̃2
.

In general, for m̃ ≥ 2r,

P
(
X1 = i1,… ,Xr = ir

) ≤ 2r
(

1 + i1 + · · · + ir
z̃

) s̃i1 × · · · × s̃ir

m̃r

≤ r2r
(

1 + Δ̃
z̃

) s̃i1 × · · · × s̃ir

m̃r .

Note that ∑
i≥1

i𝜎j
s̃i

m̃
≤ Δ̃(𝜎j−2)∨0

∑
i≥1

i2 s̃i

m̃
≤ Δ̃(𝜎j−1)

∑
i≥1

i2 s̃i

m̃
.

Combining the above, we see that for m̃ ≥ 2r,

E

[
X𝜎1

1
× · · · × X𝜎r

r

]
≤ r2r

(
1 + Δ̃

z̃

)(∑
i

i2s̃i

m̃

)r

Δ̃
∑r

j=1
(𝜎j−1),

which proves (7.12). The bound in (7.13) follows by a direct expansion. ▪

We now introduce some notation. For any plane tree t and a vertex u, define

B1(t, u) =
{

v ∶ ←−v ∈ [𝜌, u)
}
⧵[𝜌, u], and B2(t, u) =

{
v ∶ ←−v ∈ B1(t, u)

}
,

where 𝜌 is the root of t. Thus for any u ∈ ℒ (t),

ft(u) = |A(t, u)| ≤ |B2(t, u)|. (7.16)

For any plane tree t and a vertex u, define

B−
1
(t, u) =

{
v ∶ ←−v ∈ [𝜌, u), u ≺DF v

}
, and B+

1
(t, u) =

{
v ∶ ←−v ∈ [𝜌, u), v ≺DF u

}
⧵[𝜌, u).

So if our convention is to explore the children of a vertex from left to right in a depth-first search, then

B−
1
(t, u) (resp. B+

1
(t, u)) is the collection of vertices that are at distance one from the path [𝜌, u) and lie

on the right (resp. left) side of [𝜌, u).
For a plane tree t and u ∈ ℒ (t), let Anc(1)(t, u) be the plane subtree of t whose vertex set is given by

V = [𝜌, u] ∪ B1(t, u),

and furthermore, the vertex u is marked in Anc(1)(t, u).
Now, from (3.2) and (7.16) it is clear that

E

(|A(𝒯s)|
s0

√
m

)k

= E

[
E

(
1√
m

f𝒯s(Um)
||||𝒯s

)]k

≤ E

(
f𝒯s(Um)k

mk∕2

)
≤ E

(|B2(𝒯s,Um)|k
mk∕2

)
. (7.17)
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For any i ≥ 0, and any plane tree t with root 𝜌 and a marked leaf u, write ki(t) for the num-

ber of vertices in [𝜌, u] with i many children. (Thus, k0(t) = 1, as u is the only leaf in [𝜌, u].) Let

k(t) =
(
ki(t), i ≥ 0

)
. Let ℱ be the (random) plane forest with ranked roots obtained from 𝒯s by

deleting the vertices of [𝜌,Um] and the edges incident to them, rooting the resulting trees at the ver-

tices in B1(𝒯s,Um), and ranking the roots using the depth-first order. The CFD of ℱ is given by(
s − k

(
Anc(1)(𝒯s,Um)

))
. Clearly, there is a bijection between the realizations of (𝒯s,Um) and those

of
(
Anc(1)(𝒯s,Um),ℱ

)
. Thus, for all possible realizations t of Anc(1)(𝒯s,Um),

P
(
ℱ = f , Anc(1)(𝒯s,Um) = t

)
= 1

s0|Ts| for all f ∈ Fs̃(t), (7.18)

where s̃(t) ∶= s − k(t), and furthermore,

P
(
Anc(1)(𝒯s,Um) = t

)
=

||Fs̃(t)||
s0|Ts| .

Writing Pt = (⋅ | Anc(1)(𝒯s,Um) = t), it follows that

Pt
(
ℱ = f

)
= 1|Fs̃(t)| for any f ∈ Fs̃(t). (7.19)

Define the conditional expectation operator Et in an analogous fashion. Let

E ∶=
{

ht(Um) < m∕2
}
.

By [2, Thm. 1], there exists m0 ≥ 1 such that for all m ≥ m0,

P(Ec) ≤ 7 exp(−𝜃m), (7.20)

where 𝜃 > 0 is a constant depending only on p1 and
∑

i i2pi. (Here (pj, j ≥ 0) is as in Assumption 7.1.)

Let z̃, m̃, Δ̃ be as in Lemma 7.7 with s̃ = s̃(t). Then m̃ ≥ m∕2 on the event E, s̃i ≤ si, and Δ̃ ≤ Δ. In

particular, on the event E, ∑
i≥1

i2s̃i

m̃
≤ 2

∑
i≥1

i2si

m
= O(1),

where the last step uses Assumption 7.1. Thus it follows from Lemma 7.7 that

1E Et

[|B2(𝒯s,Um)|k] ≤ K
k∑

r=1

(
z̃rΔk−r + z̃r−1Δk−r+1

)
for some constant K > 0. Hence,

E

[
1E|B2(𝒯s,Um)|k] ≤ K

k∑
r=1

(
Δk−r

E
[||B1(𝒯s,Um)||r] + Δk−r+1

E
[||B1(𝒯s,Um)||r−1])

. (7.21)

Let Sexc be as in (7.3). Letting

q ∶= (q1,… , qm), where qi =
𝜉i

m − 1
, i = 1,… ,m,
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an application of Lemma 7.5 shows that

P

(
max
j∈[m]

||||
j∑

i=1

q𝜋(i+i0) −
j
m
|||| ≥ 2x𝜎(q)

)
≤ 2 exp

(
− c1x log log x

)
, for x ≥ c2,

where i0 has the same meaning as in (7.3). Since

||||
j∑

i=1

(
𝜉𝜋(i+i0) − 1

)
m − 1

−
( j∑

i=1

q𝜋(i+i0) −
j
m

)|||| = j
m(m − 1)

≤ 1

m − 1
,

we conclude that

P

(
max
j∈[m]

||Sexc(j)|| ≥ y
√

m
)

≤ exp
(
− cy log log y

)
, y ≥ c′.

This implies that the same tail bound holds for |B−
1
(𝒯s,Um)|. Since |B+

1
(𝒯s,Um)| d

= |B−
1
(𝒯s,Um)|,

and |B1(𝒯s,Um)| = |B−
1
(𝒯s,Um)| + |B+

1
(𝒯s,Um)|, we have

P

(||B1(𝒯s,Um)|| ≥ y
√

m
)

≤ exp
(
− cy log log y

)
, y ≥ c′. (7.22)

Combining (7.21) and (7.22), we conclude that

sup
m

m−k∕2
E

[
1E|B2(𝒯s,Um)|k] <∞.

From (7.20), it follows that for m ≥ m0,

E

[
1c

E ⋅ |B2(𝒯s,Um)|k] ≤ 7mk exp(−𝜃m).

We complete the proof of Lemma 7.3(ii) by combining these observations with (7.17). ▪

7.3 Proof of Lemma 7.3(iii)

It is enough to consider k ≥ 2, since |A(𝒯s)| = |Aord
1

(𝒯s)|. Note that Lemma 7.3(ii) shows that|A(𝒯s)|∕m3∕2 is tight. Now,

||A(𝒯s)||k − ||Aord
k (𝒯s)||

= #
{(

(u1, v1),… , (uk, vk)
)
∈ A(𝒯s)k || {ui, vi} ∩

{
uj, vj

} ≠ ∅ for some i ≠ j
}

≤ k2||A(𝒯s)||k−2(R11 + 2R12 + R22), (7.23)

where

R11 = #
{(

(u1, v1), (u2, v2)
)
∈ A(𝒯s)2 || u1 = u2

}
, R12 = #

{(
(u1, v1), (u2, v2)

)
∈ A(𝒯s)2 || u1 = v2

}
,
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and

R22 = #
{(

(u1, v1), (u2, v2)
)
∈ A(𝒯s)2 || v1 = v2

}
.

We have,

R11 =
∑

u∈ℒ (𝒯s)

∑
v1∈A(𝒯s,u)

#
{

v2
|| (u, v2) ∈ A(𝒯s)

}
≤ m

∑
u∈ℒ (𝒯s)

f𝒯s(u) = m||A(𝒯s)|| = mOP(m3∕2) = oP(m3).

A similar argument shows that R12 + R22 = oP(m3). Combined with (7.23), this gives

||A(𝒯s)||k − ||Aord
k (𝒯s)|| = OP

(
m3(k−2)∕2

)
oP(m3) = oP(m3k∕2),

as desired. ▪

7.4 Proof of Lemma 7.3(iv)

We will make use of the following lemma.

Lemma 7.8. Let Um be uniformly distributed on the s0 leaves. Then

1√
m

max
k≤ht(Um)

|||||#
{

v ∈ A
(
𝒯s,Um

) |||| ht
(←−←−v ) ≤ k

}
−

p0𝜎
2k

2

|||||
d

−→ 0.

We first prove Lemma 7.3(iv) assuming Lemma 7.8.

Completing the proof of Lemma 7.3(iv): Theorem 7.2 shows that the shape of the subtree of m−1∕2𝒯s
spanned by (k + 𝓁) vertices sampled independently and uniformly from [m] converges to the shape of

𝜎−1𝒯k,𝓁 . By Lemma 7.3(i), the same conclusion holds if the first k vertices are sampled independently

and uniformly from the s0 leaves, and the other 𝓁 vertices are sampled independently and uniformly

from [m]. Convergence of the root-to-leaf measures and the leaf values is a consequence of Lemma

7.8. ▪
The rest of this section is devoted to the proof of Lemma 7.8. We start with the following lemma.

Lemma 7.9. Let s̃ = s̃𝜅 be a sequence of CFDs indexed by 𝜅. We will suppress 𝜅 in the notation
most of the time. Let m̃, Δ̃, z̃ and X1,… ,Xz̃ be as in Lemma 7.7. Let f ∶ Z≥0 → R≥0. Assume that

(i) z̃ → ∞;
(ii) there exists a > 0 such that

∑
i≥0 f (i)s̃i∕m̃ → a;

(iii) sup𝜅
∑

i≥0 f 2(i)s̃i∕m̃ < ∞;
(iv) Δ̃ = o(z̃); and
(v) max1≤i≤Δ̃ f (i) = o(z̃).

Then

1

z̃
⋅ max

1≤j≤z̃
|| j∑

i=1

f (Xi) − aj|| d
−→ 0.
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Proof. An argument similar to the one used in (7.15) gives

P
(
X1 = i

)
= (z̃ − 1 + i)s̃i

z̃(m̃ − 1)
.

Hence

E

[ z̃∑
i≥1

f (Xi)
z̃

]
= E

[
f (X1)

]
=

Δ̃∑
i=1

(
(z̃ − 1 + i)m̃

z̃(m̃ − 1)

)
f (i)s̃i

m̃
→ a. (7.24)

Similarly, using (7.15), a direct computation shows that Cov
(
f (X1), f (X2)

)
→ 0, which in turn implies

Var
[ z̃∑

i≥1

f (Xi)
z̃

]
→ 0. (7.25)

Combining (7.24) and (7.25), we see that

z̃∑
i≥1

f (Xi)∕z̃
P

−→ a. (7.26)

Let Ŝ = (Ŝ0, Ŝ1,…) denote the frequency distribution of X1,… ,Xz̃. Since

P
(
X1 = i1,… ,Xz̃ = iz̃

)
= |Fs−ŝ||Fs|

for any (i1,… , iz̃) with frequency distribution ŝ,

P
(
X1 = i1,… ,Xz̃ = iz̃ || Ŝ = ŝ

)
=

∏
i≥0 ŝi!
z̃!

(7.27)

Define y1,… , yz̃ as follows:

y1 = · · · = yŜ0
= 0, yŜ0+1 = · · · = yŜ0+Ŝ1

= 1,… .

Then conditional on Ŝ, the distribution (7.27) can be generated by uniformly permuting y1,… , yz̃ and

removing the y labels. Set

q̂ ∶= (q̂1,… , q̂z̃), where q̂i =
f (yi)∑z̃
j=1 f (yj)

.

From Lemma 7.5, for a uniform permutation 𝜋 (independent of Ŝ) on z̃ elements and 𝜀 > 0,

P

(
max
1≤j≤z̃

||||
j∑

i=1

q̂𝜋(i) −
j
z̃
|||| ≥ 𝜀

|||| Ŝ
)

≤ exp

(
− c1

(
𝜀

𝜎(q̂)

)
log log

(
𝜀

𝜎(q̂)

))
on

{
c2𝜎(q̂) ≤ 𝜀

}
.

(7.28)

Since

𝜎(q̂)2 ≤ q̂max = z̃∑
1≤i≤z̃ f (Xi)

× max
1≤i≤Δ̃

f (i)
z̃

P
−→ 0,
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we conclude from (7.28) that

P

(
max
1≤j≤z̃

||||
∑j

i=1
f (Xi)∑z̃

k=1 f (Xk)
−

j
z̃
|||| ≥ 𝜀

)
→ 0,

which combined with (7.26) yields the claim. ▪

Proof of Lemma 7.8. It follows from [21, Prop. 5] that

1√
m

max
k≤ht(Um)

||||#
{

v || v ∈ B−
1
(𝒯s,Um), ht

(←−v ) ≤ k
}

− 𝜎2k
2

|||| P
−→ 0, (7.29)

and a similar statement is true with B+
1

by symmetry. Now recall from (7.19) that conditional on

Anc(1)(𝒯s,Um), the forest ℱ (defined around (7.18)) is uniformly distributed over Fs̃, where s̃ is the

CFD of the vertices in [𝜌,Um]c. We make the following observations about the forest ℱ :

(i) The CFD s̃ of ℱ satisfies

si − ht(Um) ≤ s̃i ≤ si,

where ht(Um) = ΘP(
√

m) by Theorem 7.2.

(ii) Similarly, the number of vertices m̃ (say) in ℱ satisfies

m − ht(Um) ≤ m̃ ≤ m.

(iii) (7.29) and its analogue for B+
1

combined with the fact ht(Um) = ΘP(
√

m) shows that the number

of roots of ℱ , namely |B1(𝒯s,Um)| satisfies

|B1(𝒯s,Um)| = ΘP(
√

m).

Thus, when s satisfies Assumption 7.1, the CFD of ℱ and the function f (i) = i satisfy the assumptions

of Lemma 7.9 with a = 1. This combined with (7.29) gives

1√
m

max
k≤ht(Um)

||||#
{

v || ←−v ∈ B−
1
(𝒯s,Um), ht

(←−←−v ) ≤ k
}

− 𝜎2k
2

|||| P
−→ 0, (7.30)

and a similar statement is true with B+
1

.

Let Anc(2)(t, u) be the plane subtree of t whose vertex set is given by

V (2) = [𝜌, u] ∪ B1(t, u) ∪ B2(t, u),

and furthermore, the vertex u is marked in Anc(2)(t, u). Let ℱ (2) be the plane forest with ranked roots

obtained by deleting the vertices of Anc(1)(𝒯s,Um) and the edges incident to them, rooting the resulting

trees at the vertices of B2(𝒯s,Um), and ranking them in the depth-first order. Then conditional on

Anc(2)(𝒯s,Um), ℱ (2) is again uniformly distributed over the set of plane forests with ranked roots with

the remaining child sequence. Furthermore, reasoning similar to above shows that the CFD of ℱ (2)

and the function f (i) = 1 {i = 0} satisfies the assumptions of Lemma 7.9 with a = p0.

Applying Lemma 7.9 to the forest ℱ (2) and the function f (i) = 1 {i = 0}, and combining this with

(7.30) yields the claim in Lemma 7.8. ▪
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7.5 Proof of Lemma 7.3(v)

First recall from Lemma 7.3 (i) that𝒯 ℒ
s denoted the metric measure space obtained when the underly-

ing tree is endowed with the uniform probability measure on ℒ (𝒯s). Let U(i)
m, 1 ≤ i ≤ k, and x1,… , xk

be as in Lemma 7.3(iv). Lemma 7.3(i) together with Theorem 7.2 shows that for all k ≥ 1,(
1√
m
𝒯s,

1√
m
𝒯 ℒ

s ,
1

k
√

m

(
ht(U(1)

m ) + · · · + ht(U(k)
m )

))

d
−→

(
1

𝜎
𝒯2e,

1

𝜎
𝒯2e,

1

k𝜎

(
ht(x1) + · · · + ht(xk)

))
with respect to product topology induced by GHP topology on the first two coordinates and Euclidean

topology on R on the third coordinate. Thus by Lemma 7.8,(
1√
m
𝒯s,

1

k
√

m

(
f𝒯s(U

(1)
m ) + · · · + f𝒯s(U

(k)
m )

))
d

−→
(

1

𝜎
𝒯2e,

p0𝜎

2k

(
ht(x1) + · · · + ht(xk)

))
.

(7.31)

Now for any 𝜀 > 0 and k ≥ 1,

P

(|||| 1

k
√

m

(
f𝒯s(U

(1)
m ) + · · · + f𝒯s(U

(k)
m )

)
− |A(𝒯s)|

s0

√
m

|||| ≥ 𝜀

)

= P

(|||| 1

k
√

m

(
f𝒯s(U

(1)
m ) + · · · + f𝒯s(U

(k)
m )

)
−

E
(
f𝒯s(U

(1)
m )||𝒯s

)√
m

|||| ≥ 𝜀

)

≤ 1

𝜀2km
E

[
Var

(
f𝒯s(U

(1)
m )||𝒯s

)]
≤ 1

𝜀2km
E

[
f𝒯s(U

(1)
m )2

]
≤ C
𝜀2k

,

where the first equality holds because of (3.2) and the last step uses Lemma 7.3(ii). By a similar

argument, we can show that

P

(||||1

k
(
ht(x1) + · · · + ht(xk)

)
− ∫𝒯2e

ht(x)𝜇𝒯2e (𝑑x)
|||| ≥ 𝜀

)
≤ C
𝜀2k

.

These observations combined with (7.31) yield(
1√
m
𝒯s,

|A(𝒯s)|
s0

√
m

)
d

−→
(

1

𝜎
𝒯2e,

p0𝜎

2 ∫𝒯2e

ht(x) 𝜇𝒯2e(𝑑x)
)
,

which is the desired result. ▪

8 ASYMPTOTICS FOR CONNECTED GRAPHS WITH GIVEN DEGREE
SEQUENCE

The aim of this section is to prove Theorems 2.4 and 2.5. Recall Theorem 3.2 that described an

algorithm for generating the uniform measure on the space of simple connected graphs with a pre-

scribed degree sequence with some fixed number k of surplus edges. Using this Theorem together with

the technical Lemma 7.3, we will complete the proofs of the above two theorems.



36 BHAMIDI AND SEN

FIGURE 5 An example of the operation 𝒬 applied on the tree t and admissible pair (u, v) in Figure 3 [Colour figure can be

viewed at wileyonlinelibrary.com]

8.1 Proof of Theorem 2.4

It suffices to work with k ≥ 1. Let s = s(m) be as in (3.6). Note that when {d̃(m̃)}m̃≥1 satisfies Assumption

2.3, {s(m)}m≥1 satisfies Assumption 7.1 with limiting p.m.f. (pi, i ≥ 0), where

pi ∶= p̃i+1, i = 0, 1,… .

In view of Theorem 3.2, it is enough to prove the result for m̃−1∕2ℐ (𝒯s, X̃).
For a plane tree t and x =

(
(u1, v1),… , (uk, vk)

)
∈ A(t)k, let 𝒬(t, x) be the space obtained by

identifying uj and
←−←−v j (or equivalently, deleting uj and adding an edge between ←−uj and

←−←−v j) for 1 ≤
j ≤ k; see Figure 5 for an illustration. We endow the space 𝒬(t, x) with the graph distance and the

push-forward of the uniform probability measure on t.
Identifying the vertices ofℐ (𝒯s, X̃) (resp.𝒬(𝒯s, X̃)) with vertices of𝒯s, for every z ∈ 𝒬(𝒯s, X̃)⧵

{vj ∶ 1 ≤ j ≤ k}, we can find a corresponding vertex in ℐ (𝒯s, X̃), which we also denote by z. Let

ℛ ⊆ 𝒬(𝒯s, X̃) ×ℐ (𝒯s, X̃) be the correspondence

ℛ =
{
(z, z) ∶ z ∉ {v1,… , vk}

}
∪
{
(vj,

←−vj ) ∶ 1 ≤ j ≤ k
}
.

Consider a geodesic path 𝒫 = (z = w1,… ,wr = z′) in 𝒬(𝒯s, X̃) between z, z′ ∈ 𝒬(𝒯s, X̃) ⧵
{v1,… , vk}. By replacing every consecutive occurrence of ←−uj ,

←−←−vj (resp.
←−←−vj ,

←−uj) in 𝒫 by ←−uj ,
←−vj ,

←−←−vj (resp.
←−←−vj ,

←−vj ,
←−uj), we get a path between z and z′ in ℐ (𝒯s, X̃). From this it follows that

𝑑ℐ (w,w′) ≤ 𝑑𝒬(z, z′) + k for all (z,w), (z′,w′) ∈ ℛ,

where 𝑑ℐ and 𝑑𝒬 respectively denote the metrics on ℐ (𝒯s, X̃) and 𝒬(𝒯s, X̃). By a similar argument

we can show that

𝑑𝒬(z, z′) ≤ 𝑑ℐ (w,w′) + k + 2 for all (z,w), (z′,w′) ∈ ℛ.

Hence

dis(ℛ) ≤ k + 2. (8.1)

http://wileyonlinelibrary.com
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Let 𝜋 be the probability measure on 𝒬(𝒯s, X̃) ×ℐ (𝒯s, X̃) given by

𝜋({z, z}) = 1

m̃ − 1
for z ∈ 𝒬(𝒯s, X̃) ⧵ {v1,… , vk}.

Clearly, 𝜋(ℛc) = 0. Note also that the projection of 𝜋 onto ℐ (𝒯s, X̃) is the uniform probability

measure on the vertices of ℐ (𝒯s, X̃). Now, in 𝒬(𝒯s, X̃), the measure assigned to
←−←−vj is at most k∕(m̃−

1 + 2k), 1 ≤ j ≤ k. Thus the discrepancy of 𝜋 is bounded by

1

2

[(
1

m̃ − 1
− 1

m̃ − 1 + 2k

)
× (m̃ − 1) + k2

m̃ − 1 + 2k
+ k

m̃ − 1 + 2k

] ≤ 3k + k2

2m̃
.

Combining the last display with (8.1), we get

𝑑GHP

(
1√
m̃
ℐ (𝒯s, X̃), 1√

m̃
𝒬(𝒯s, X̃)

)
≤ k + 2

2
√

m̃
+ 3k + k2

2m̃
.

Thus it is enough to prove the result for the space m−1∕2𝒬(𝒯s, X̃), where m = m̃ − 1 + 2k as defined

in (3.5).

Recall the Gromov-weak topology from Section 5.3. We will first prove convergence of

m−1∕2𝒬(𝒯s, X̃) in the Gromov-weak topology by making use of a technique from [16] and then

strengthen it to convergence in the GHP sense. Let Φ and 𝜙 be as in (5.6). Then

E

(
Φ
(

1√
m
𝒬
(
𝒯s, X̃

)))
=

∑
(t,x)∈T

(k)
s
Φ
(

1√
m
𝒬
(
t, x

))
|T(k)

s |
=

∑
t∈Ts

∑
x∈Ak(t) Φ

(
1√
m
𝒬
(
t, x

))/(|Ts| ⋅ sk
0
mk∕2

)
∑

t∈Ts
|Ak(t)|/(|Ts| ⋅ sk

0
mk∕2

)
=

∑
t∈Ts

∑
x∈Aord

k (t) Φ
(

1√
m
𝒬
(
t, x

))/(|Ts| ⋅ sk
0
mk∕2

)
∑

t∈Ts
|Aord

k (t)|/(|Ts| ⋅ sk
0
mk∕2

) . (8.2)

Recall that 𝒯s is a uniform plane tree with CFD s. Then

∑
t∈Ts

∑
x∈Aord

k (t) Φ
(

1√
m
𝒬
(
t, x

))
|Ts| ⋅ sk

0
mk∕2

= E

[ ∑
x∈Aord

k (𝒯s)

Φ
(

1√
m
𝒬
(
𝒯s, x

)) 1

sk
0
mk∕2

]
(8.3)

= E

[ ∑
x∈A(𝒯s)k

Φ
(

1√
m
𝒬
(
𝒯s, x

)) 1

sk
0
mk∕2

]
+ o(1),

where the second equality follows from Lemma 7.3 (ii) and (iii). Writing

x =
(
(u1, y1),… , (uk, yk)

)
,
∑

1 =
∑

u1∈ℒ (𝒯s)
⋮

uk∈ℒ (𝒯s)

, and
∑

2 =
∑

y1∈A(𝒯s,u1)
⋮

yk∈A(𝒯s,uk)

,
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we note that

1

sk
0
mk∕2

∑
x∈A(𝒯s)k

Φ
(

1√
m
𝒬
(
𝒯s, x

))
= 1

sk
0
mk∕2

∑
1

∑
2 Φ

(
1√
m
𝒬
(
𝒯s, x

))

=
∑

1

(
1

sk
0

) k∏
i=1

( f𝒯s(ui)√
m

)∑
2

k∏
i=1

(
1

f𝒯s(ui)

)
Φ
(

1√
m
𝒬
(
𝒯s, x

))
. (8.4)

We now recall some constructs from [16]. Recall the space T∗
J from Section 5.4. Let t be an element

in T∗
k+𝓁 with root 0+ and leaves 1+,… , (k + 𝓁)+. Recall from Section 5.4 that for each i, there is a

probability measure 𝜈t,i(⋅) on the path [0+, i+] for 1 ≤ i ≤ k+𝓁. For 1 ≤ i ≤ k, sample yi according to

the distribution 𝜈t,i(⋅) independently for different i and identify i+ with yi. Let t′ denote the (random)

space thus obtained, and let 𝑑t′ denote the induced metric on t′. Define the function g(k)
𝜙
∶ T∗

k+𝓁 → R by

g(k)
𝜙
(t) ∶=

{
E
[
𝜙 (𝑑t′ (i+, j+) ∶ k + 1 ≤ i < j ≤ k + 𝓁)

]
, if t ≠ 𝜕,

0, if t = 𝜕.
(8.5)

In words, we look at the expectation of 𝜙 applied to the pairwise distances between the last 𝓁 leaves

after sampling yi on the path [0+, i+] for 1 ≤ i ≤ k and identifying i+ with yi. Note that here the

expectation is only taken over the choices of yi.

Write 𝑑𝒬 for the induced metric on the space m−1∕2𝒬
(
𝒯s, x

)
, and let

∑
3 =

∑
v1,…,v𝓁∈[m]. Then

Φ
(

1√
m
𝒬
(
𝒯s, x

))
=

∑
3

1

m𝓁
𝜙

(
𝑑𝒬(vi, vj) ∶ 1 ≤ i < j ≤ 𝓁

)
.

Write u = (u1,… , uk), v = (v1,… , v𝓁), and let U = (U(i)
m, 1 ≤ i ≤ k), V = (V (j)

m , 1 ≤ j ≤ 𝓁), and

𝒯s(u, v) be as in Lemma 7.3(iv). Then we immediately see that

||||∑ 2

k∏
i=1

(
1

f𝒯s(ui)

)
Φ
(

1√
m
𝒬
(
𝒯s, x

))
−
∑

3
1

m𝓁
g(k)
𝜙

(
1√
m
𝒯s(u, v)

)|||| ≤ ‖𝜙‖∞ P
(
𝒯s(u,V) = 𝜕||𝒯s

)
.

Now P
(
𝒯s(U,V) = 𝜕

)
→ 0 as a consequence of Lemma 7.3(iv). Furthermore, by Lemma 7.3(ii),{∏k

i=1

(
f𝒯s(U

(i)
m)∕

√
m
)}

m≥1
is uniformly integrable. Thus, combining the last display with (8.3) and

(8.4) yields

∑
t∈Ts

∑
x∈Aord

k (t) Φ
(

1√
m
𝒬
(
t, x

))
|Ts| ⋅ sk

0
mk∕2

= E

[ k∏
i=1

( f𝒯s(U
(i)
m)√

m

)
g(k)
𝜙

(
1√
m
𝒯s(U,V)

)]
+ o(1). (8.6)

Since the functional g(k)
𝜙

is continuous on the space T∗
k+𝓁 [16, Prop. 4.25], combining (8.6) with Lemma

7.3(iv) and using uniform integrability (Lemma 7.3(ii)), we get

∑
t∈Ts

∑
x∈Aord

k (t) Φ
(

1√
m
𝒬
(
t, x

))
|Ts| ⋅ sk

0
mk∕2

→
(p0𝜎

2

)k
E

[
∫x1∈𝒯2e

· · ·∫xk+𝓁∈𝒯2e

𝜇⊗k+𝓁
𝒯2e

(𝑑x1 … 𝑑xk+𝓁)
k∏

i=1

ht(xi) ⋅ g(k)
𝜙

(
1

𝜎
𝒯k,𝓁

)]
. (8.7)
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Taking Φ ≡ 1 in (8.7), we get∑
t∈Ts

|Aord
k (t)||Ts| ⋅ sk

0
mk∕2

→
(p0𝜎

2

)k
E

[(
∫𝒯2e

ht(x) 𝜇𝒯2e (𝑑x)
)k]

. (8.8)

Combining the above, we conclude that

E

[
Φ
(

1√
m
𝒬
(
𝒯s, X̃

))]
→

E

[
∫x1

· · · ∫xk+𝓁
𝜇⊗k+𝓁
𝒯2e

(𝑑x1 … 𝑑xk+𝓁)
∏k

i=1 ht(xi) ⋅ g(k)
𝜙

(
1

𝜎
𝒯k,𝓁

)]
E

[(
∫𝒯2e

ht(x) 𝜇𝒯2e(𝑑x)
)k]

= E

[
Φ
(

1

𝜎
M(k)

)]
.

This shows that

1√
m
𝒬
(
𝒯s, X̃

) d
−→ 1

𝜎
M(k) (8.9)

with respect to Gromov-weak topology.

We will now improve this convergence to GHP convergence using Theorem 5.2. From the

definition of (𝒯s, X̃) (given right below (3.6)), it is clear that

P
(
𝒯s = t

)
= |Ak(t)||T(k)

s | =
|Aord

k (t)|∑
t′∈Ts

|Aord
k (t′)|

for any t ∈ Ts. Hence for any bounded continuous (w.r.t. GHP topology) h,

E

[
h
(

1√
m
𝒯s

)]
=

E

[
h
(

1√
m
𝒯s

)
⋅ ||Aord

k (𝒯s)||s−k
0

m−k∕2

]
E
[|Aord

k (𝒯s)|s−k
0

m−k∕2
] .

Using Lemma 7.3(iii), and Lemma 7.3(v) together with uniform integrability (Lemma 7.3(ii)), we

conclude that

E

[
h
(

1√
m
𝒯s

)]
→ E

[
h
(

1

𝜎
𝒯2ẽ(k)

)]
,

where ẽ(k) is as defined before (5.12). Hence m−1∕2𝒯s
d

−→ 𝜎−1𝒯2ẽ(k) in the GHP sense, and in particu-

lar, for each 𝛿 > 0, 1∕𝜅𝛿
(
m−1∕2𝒯s

)
, m ≥ 1, is a tight sequence of random variables. This immediately

implies that 1∕𝜅𝛿
(
m−1∕2𝒬(𝒯s, X̃)

)
, m ≥ 1, is also a tight sequence of random variables for each 𝛿 > 0.

Combining this with (8.9) and Theorem 5.2, we see that

1√
m
𝒬
(
𝒯s, X̃

) d
−→ 1

𝜎
M(k)

with respect to GHP topology. This concludes the proof of Theorem 2.4. ▪
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8.2 Proof of Theorem 2.5

Recall the relation between m and m̃ from (3.5). Now it follows from (6.3) that

||Gcon
d̃

|| = ||T(k)
s
|| × (s0 − 2k)! ×

∏
i≥1 si!∏m̃

j=1(𝑑j − 1)!
.

Furthermore, ||T(k)
s
|| = ∑

t∈Ts

|Ak(t)| = ∑
t∈Ts

|Aord
k (t)|∕k!.

We thus have

||Gcon
d̃

|| = sk
0
mk∕2 × ||Ts|| × (s0 − 2k)! ×

∏
i≥1 si!∏m̃

j=1(𝑑j − 1)! × k!
×

∑
t∈Ts

|Aord
k (t)|||Ts||sk

0
mk∕2

∼
sk

0
mk∕2 × (m̃ + 2k − 2)! × (s0 − 2k)!

s0! ×
∏m̃

j=1(𝑑j − 1)! × k!
×
(p0𝜎

2

)k
E

[(
∫

1

0

2e(x)𝑑x
)k]

,

where the last step uses (8.8) and the expression for |Ts| from (7.14). Using the relations m∕m̃ ∼ 1

and s0!∕(s0 − 2k)! ∼ sk
0
(mp0)k, a simple rearrangement of terms completes the proof. ▪

9 PROOF OF THEOREMS 2.2 AND 2.6

We start with the distribution of the configuration model.

Lemma 9.1 ([35], Proposition 7.7). Let G be a multigraph on vertex set [n] in which there are xij
many edges between i and j, 1 ≤ i < j ≤ n, and vertex i has xii many loops. Let 𝑑 i = xii +

∑n
j=1 xij be

the total degree of i (note that a loop contributes two to the degree). Let

d = (𝑑1,… , 𝑑n), and 𝓁n =
n∑

i=1

𝑑 i.

Then

Pn,d
(
G
)
= 1

(𝓁n − 1)!!
×

∏
i∈[n] 𝑑 i!∏

i∈[n] 2xii
∏

1≤i≤j≤n xij!
.

We now state two fundamental results about the configuration model and uniform simple graphs

with prescribed degree.

(a) From Lemma 9.1 (see also [19,47]), it follows that conditional on being simple, the configuration

model has the same distribution as 𝒢n,d, that is,

P
(
CMn(d) ∈ ⋅ || CMn(d) ∈ Gn,d

)
= P

(
𝒢n,d ∈ ⋅

)
. (9.1)

(b) By [40, Thm. 1.1], under Assumption 2.1, there exists a constant c > 0 such that the probability

that CMn(d) is simple satisfies

P
(
CMn(d) ∈ Gn,d

)
→ c, as n → ∞. (9.2)
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This connection between CMn(d) and 𝒢n,d is a very useful tool as it enables one to prove certain

results about the uniform simple graph with given degrees by first obtaining a similar result for the

configuration model, and then using (9.1) and (9.2) to deduce the same for the simple graph.

For any nonnegative random variable X with 0 < E X < ∞, define the corresponding size biased

random variable X◦ via

P
(
X◦ ≤ x

)
=

E
[
X1X≤x

]
E
[
X
] , x ∈ [0,∞).

Proposition 9.2. Assume that d satisfies Assumption 2.1 with limiting random variable D, and let
D◦ denote the corresponding size-biased random variable. Let

p◦
i ∶= P

(
D◦ = i

)
=

iP
(
D = i

)
E
[
D
] , i = 1, 2,… .

(i) Let 𝒞(k) be the kth largest component of CMn(d). Then the following hold for each k ≥ 1:

1|𝒞(k)| ∑
v∈𝒞(k)

𝑑2
v

P
−→

∑
i≥1

i2p◦
i < ∞; (9.3)

P
(
𝒞(k) is simple

)
→ 1; (9.4)

1|𝒞(k)|#{v ∈ 𝒞(k) ∶ 𝑑v = i
} P
−→ p◦

i for i ≥ 1. (9.5)

(ii) Further (9.3) and (9.5) continue to hold if we replace CMn(d) by 𝒢n,d.

Proof. Given a sequence a1,… , a𝓁 of positive real numbers, the (random) size-biased permutation

𝜋(1),… , 𝜋(𝓁) can be obtained as follows:

P
(
𝜋(1) = i

)
= ai∑𝓁

j=1 aj
, and P

(
𝜋(k) = i || 𝒮k−1

)
=

ai1{i∉𝒮k−1}∑
j∉𝒮k−1

aj
, k = 2,… ,𝓁,

where 𝒮k = {𝜋(1),… , 𝜋(k)}. It is a standard fact that the random graph CMn(d) can be explored in a

depth-first way so that the vertices appear as a size-biased permutation, where vertex i has size 𝑑i; see

[27, section 5.1] or [53]. It further follows from [27, Lem. 15] and Theorem 5.3 that for every 𝜀 > 0,

there exists T𝜀 > 0 such that

lim sup
n

P
(
𝒞(k) is explored by time T𝜀n2∕3

) ≥ 1 − 𝜀. (9.6)

[27, Lem. 5] shows that for every T > 0,

sup
0≤u≤T

|||| 1

n2∕3

⌊un2∕3⌋∑
i=1

𝑑2
𝜋(i) −

𝜎3u
𝜎1

|||| P
−→ 0, (9.7)

where 𝜎r = E[Dr], r = 1, 2, 3. Combining (9.6) and (9.7), we get

1

n2∕3

( ∑
v∈𝒞(k)

𝑑2
v − 𝜎3

𝜎1

||𝒞(k)||) P
−→ 0.

Since 𝜎3∕𝜎1 = E
[
D◦2

]
=

∑
i≥1 i2p◦

i , the last display together with Theorem 5.3 yields (9.3).
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(9.4) follows from [27, section 5.3] or by following verbatim the proof of this exact result but under

slightly different moment assumptions in [26, eq. (7.6)]. (9.5) follows from [27, eq. (6.4)].

Finally, part (ii) follows from (i) by an application of (9.1) and (9.2). ▪

Proof of Theorem 2.2(i). Note that P
(
D = 1

)
> 0 under Assumption 2.1. Hence p◦

1
> 0.

Furthermore, under Assumption 2.1,∑
i≥1

ip◦
i = E

[
D◦] = E D2∕E D = 2.

Hence, by Proposition 9.2 (ii), for every k ≥ 1, (𝑑v, v ∈ 𝒞(k)) satisfies Assumption 2.3 (after a possible

relabeling of vertices) with limiting p.m.f. (p◦
1
, p◦

2
,…).

Let 𝒫 denote the partition of 𝒢n,d into different components. Then conditional on 𝒫 , each com-

ponent is uniformly distributed over the set of simple, connected graphs with the degrees prescribed by

the partition 𝒫 . Furthermore, different components are conditionally independent. We thus conclude

using Theorem 5.3 and Theorem 2.4 that for every k ≥ 1,

n−2∕3
(|𝒞(1)|,… , |𝒞(k)|) d

−→
(|𝛾𝝁D

(1) (𝜆)|,… , |𝛾𝝁D
(k) (𝜆)|)

jointly with (
1√|𝒞(1)|𝒞(1),… ,

1√|𝒞(k)|𝒞(k)

)
d

−→ 𝛼D√
𝜂D

(
S1,… , Sk

)
in the GHP sense, where Si are as in Construction 5.6, and 𝜂D, and 𝛼D are as in Theorem 5.3. (Here we

have used the fact
∑

i≥1 i2p◦
i − 4 = 𝜂D∕𝛼2

D.) Combining the two yields the result. ▪

Proof of Theorem 2.2(ii). By Proposition 9.2 (i), for every k ≥ 1, (𝑑v, v ∈ 𝒞(k)) satisfies

Assumption 2.3 (after a possible relabeling of vertices) with limiting p.m.f. (p◦
1
, p◦

2
,…). As before, let

𝒫 denote the partition of CMn(d) into different components. For each k ≥ 1, define the event

Ek ∶=
{
𝒞(j) is simple for all 1 ≤ j ≤ k

}
.

Then note that by Lemma 9.1, conditional on the event Ek ∩{𝒫 = P}, 𝒞(j), j ≥ 1 are independent, and

for each i ≤ k, 𝒞(i) is uniformly distributed over the set of simple, connected graphs with the degrees

prescribed by the partition P. Since P(Ec
k) → 0 by (9.4), the result follows by imitating the argument

used in the proof of Theorem 2.2(i). ▪

Proof of Theorem 2.6(ii). For every u ≥ 0, let 𝒱 u denote the vacant set left by a random walk on

CMn(d(n)
r ) run up to time nu. Let ℰ u be the set of all edges of CMn(d(n)

r ) both of whose endpoints are

in 𝒱 u, that is,

ℰ u ∶=
{
{v1, v2} ∈ CMn(d(n)

r ) ∶ v1, v2 ∈ 𝒱 u}.
Define the vacant graph Vu by Vu ∶= ([n],ℰ u), and let Du ∶=

(
Du(j), j ∈ [n]

)
be the degree sequence

of Vu. Then, by [23, Prop. 3.1], for any collection A of multigraphs on [n],

Pn,r
(
Vu ∈ A

)
=

∑
d

Pn,r
(
Du = d

)
× Pn,d

(
A
)
. (9.8)



BHAMIDI AND SEN 43

In words, the vacant graph Vu can be generated in two steps: (1) sample the degree sequence Du

under the annealed measure Pn,r, and then (2) construct a configuration model with this degree

sequence.

Let su =
(
su

0
,… , su

r
)

denote the (random) frequency distribution corresponding to Du, that is,

su
i = #{j ∈ [n] ∶ Du(j) = i}, 0 ≤ i ≤ r. Then, by [23, eq. (6.1)], for every 𝜀 > 0,

Pn,r

(||||1

n
su⋆

i − P
(
Dvac = i

)|||| ≥ 𝜀

)
→ 0, 0 ≤ i ≤ r,

where u⋆ is as in (2.2), and Dvac is as in (5.14). The simple observation

||su⋆
i − sun

i
|| ≤ (|a0| + 1)n2∕3(r + 1)

for large n when un satisfies (2.4) leads to

Pn,r

(||||1

n
sun

i − P
(
Dvac = i

)|||| ≥ 𝜀

)
→ 0, 0 ≤ i ≤ r. (9.9)

Furthermore, by [23, eq. (6.4)],

Pn,r

(
n1∕3

||||
∑r

i=0(i2 − 2i)sun
i∑r

i=0 isun
i

− 𝜆vac

|||| ≥ 𝜀

)
→ 0, (9.10)

where 𝜆vac is as in (5.13). Combining (9.9) and (9.10), we see that the degree sequence Dun satisfies

Assumption 2.1 with limiting random variable Dvac and 𝜆 = 𝜆vac. (That Assumption 2.1(ii) is satisfied

follows directly from the fact that Dun (j) ≤ r for all j ∈ [n].) In view of (9.8), an application of Theorem

2.2(ii) completes the proof. ▪

Proof of Theorem 2.6(i). Let Vu, Du, and su be as in the proof of Theorem 2.6(ii), but with 𝒢n,r as

the underlying graph (instead of CMn(d(n)
r )). By [25, Lem. 7], the analogue of (9.8) is true in this case,

that is,

Pn,r
(
Vu ∈ A

)
=

∑
d

Pn,r
(
Du = d

)
× Pn,d

(
A
)
,

for any collection A of simple graphs on [n]. Furthermore, using (9.1) and (9.2), we conclude

that (9.9) and (9.10) continue to hold in this case. We complete the proof by an application of

Theorem 2.2(i). ▪
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