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POWERS OF TIGHT HAMILTON CYCLES IN RANDOMLY PERTURBED
HYPERGRAPHS

WIEBKE BEDENKNECHT, JIE HAN, YOSHIHARU KOHAYAKAWA, AND GUILHERME OLIVEIRA MOTA

ABSTRACT. For k > 2 and r > 1 such that k + r > 4, we prove that, for any o > 0, there exists

€ > 0 such that the union of an n-vertex k-graph with minimum codegree (1 — (k;:zz)*l + a) n

k+r—2\—1
and a binomial random k-graph (G(k)(n,p) with p > nf( W) e on the same vertex set contains

the 7" power of a tight Hamilton cycle with high probability. This result for r = 1 was first proved
by McDowell and Mycroft.

§1. INTRODUCTION

1.1. Hamiltonian cycles. The study of Hamiltonicity (the existence of a cycle as a spanning
subgraph) has been a central and fruitful area in graph theory. In particular, by a celebrated result
of Karp [19], the decision problem for Hamiltonicity in general graphs is known to be NP-complete.
Therefore it is likely that good characterizations of graphs with Hamilton cycles do not exist, and it
becomes natural to study sufficient conditions that guarantee Hamiltonicity. Among a large variety
of such results, the most famous one is the classical theorem of Dirac from 1952: every n-vertex
graph (n > 3) with minimum degree at least n/2 is Hamiltonian [10].

Another well-studied object in graph theory is the binomial random graph G(n, p), which contains
n vertices and each pair of vertices forms an edge with probability p independently from all other
pairs. Pésa [33] and Korshunov [21] independently determined the threshold for Hamiltonicity in
G(n,p), which is (log n)/n. This implies that almost all dense graphs are Hamiltonian. In this sense
the degree constraint in Dirac’s theorem is very strong. In fact, Bohman, Frieze and Martin [5]
studied the random graph model that starts with a given, dense graph and adds m random edges.
In particular, they showed that for every o > 0 there is ¢ = c¢(«) such that if we start with a
graph with minimum degree at least an and we add cn random edges, then the resulting graph is
Hamiltonian a.a.s. (as usual, we say that an event happens asymptotically almost surely, or a.a.s., if
it happens with probability tending to 1 as n — o). By considering the complete bipartite graph
with vertex classes of sizes an and (1 — a)n, one sees that the result above is tight up to the value

of c.
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It is natural to study Hamiltonicity problems in uniform hypergraphs. Given k > 2, a k-uniform
hypergraph (in short, k-graph) H = (V, E) consists of a vertex set V and an edge set E < (‘g), thus,
every edge of H is a k-element subset of V. Given a k-graph H with a set S of d vertices (where
1 <d<k—1) we define Ng(S) to be the collection of (k — d)-sets T such that SuT € E(H), and
let degy(S) := |Ng(S)| (the subscript H is omitted whenever H is clear from the context). The
minimum d-degree §4(H) of H is the minimum of degy(S) over all d-vertex sets S in H. We refer
to 0g—1(H) as the minimum codegree of H.

In the last two decades, there has been growing interest in extending Dirac’s theorem to k-graphs.
Among other notions of cycles in k-graphs (e.g., Berge cycles), the following ‘uniform’ cycles have
attracted much attention. For integers 1 < ¢ < k—1 and m > 3, a k-graph F with m(k— /) vertices
and m edges is a called an £-cycle if its vertices can be ordered cyclically so that each of its edges
consists of k consecutive vertices and every two consecutive edges (in the natural order of the edges)
share exactly ¢ vertices. Usually (k — 1)-cycles are also referred to as tight cycles. We say that a
k-graph contains a Hamilton £-cycle if it contains an ¢-cycle as a spanning subgraph. In view of
Dirac’s theorem, minimum d-degree conditions that force Hamilton ¢-cycles (for 1 < d, ¢ < k — 1)
have been studied intensively [2,3,8,9,13-15,17,20,24, 25, 34, 36-39)].

Let G() (n,p) denote the binomial random k-graph on n vertices, where each k-tuple forms an
edge independently with probability p. The threshold for the existence of Hamilton ¢-cycles has
been studied by Dudek and Frieze [11,12], who proved that for £ = 1 the threshold is (logn)/n*~1,
and for £ > 2 the threshold is 1/n*~* (they also determined sharp thresholds for every k > 4 and
(=Fk—1).

Krivelevich, Kwan and Sudakov [22] considered randomly perturbed k-graphs, which are k-graphs
obtained by adding random edges to a fixed k-graph. They proved the following theorem, which
mirrors the result of Bohman, Frieze and Martin [5] for randomly perturbed graphs mentioned
earlier.

Theorem 1.1. [22] For any k > 2 and o > 0, there is ¢ = ci(a) for which the following holds.
Let H be a k-graph on n € (k — 1)N vertices with 6,_1(H) = an. If p = c;n~ =1 then the union
H U G®(n,p) a.a.s. contains a Hamilton 1-cycle.

The authors of [22] also obtained a similar result for perfect matchings. These results are tight
up to the value of ¢, as shown by a simple ‘bipartite’ construction. McDowell and Mycroft [29]
and, subsequently, Han and Zhao [16] extended Theorem 1.1 to Hamilton ¢-cycles and other degree

conditions.

1.2. Powers of Hamilton cycles. Powers of cycles are natural generalizations of cycles. Given
k> 2 and r > 1, we say that a k-graph with m vertices is an 7™ power of a tight cycle if its vertices
can be ordered cyclically so that each consecutive k + r — 1 vertices span a copy of K ,g’i)r_l, the
complete k-graph on k + r — 1 vertices, and there are no other edges than the ones forced by this
condition. This extends the notion of (tight) cycles in hypergraphs, which corresponds to the case

r=1.



The existence of powers of paths and cycles has also been intensively studied. For example, the
famous Pésa—Seymour conjecture, which was proved by Komlés, Sarkozy and Szemerédi [27, 28] for
sufficiently large graphs, states that every n-vertex graph with minimum degree at least rn/(r + 1)
contains the r*™® power of a Hamilton cycle. A general result of Riordan [35] implies that, for
r > 3, the threshold for the existence of the r*® power of a Hamilton cycle in G(n, p) is n~1/". The
case r = 2 was investigated by Kiithn and Osthus [26], who proved that p > n~1/2+¢ guffices for the
existence of the square of a Hamilton cycle in G(n, p), which is sharp up to the n® factor. This was
further sharpened by Nenadov and Skorié¢ [30]. Moreover, Bennett, Dudek and Frieze [4] proved
a result for the square of a Hamilton cycle in randomly perturbed graphs, extending the result of
Bohman, Frieze and Martin [5].

Theorem 1.2. [4] For any o > 0 there is K > 0 such that the following holds. Let G be a graph
with §(G) = (1/2+ a)n and suppose p = p(n) = Kn=2/31log"*n. Then the union H L G(n,p) a.a.s.
contains the square of a Hamilton cycle.

Note that in Theorem 1.2 the randomness that is required is much weaker than the one needed
in the result for the pure random model (which is essentially n~/2). The authors of [4] also asked
for similar results for higher powers of Hamilton cycles in randomly perturbed graphs.

Parczyk and Person [31, Theorem 3.7] proved that, for k¥ = 3 and r > 2, the threshold for the
existence of an r* power of a tight Hamilton cycle in the random k-graph G®*) (n,p) is n_(kzif)i1
Our main result, Theorem 1.3 below, shows that if we consider randomly perturbed k-graphs

k+r—2

-1
HUG® (n,p) with §;_, (H) reasonably large, then p = p(n) > n(RI7) e is enough to guarantee
the existence of an r* power of a tight Hamilton cycle with high probability.

Theorem 1.3 (Main result). For all integers k = 2 and r > 1 such that k +r > 4 and o > 0,
there is € > 0 such that the following holds. Suppose H is a k-graph on n vertices with

-1
Ok—1(H) = (1—<k7€_i;2> ~|—a>n (1)

-1
and p = p(n) = nf( ) “¢. Then a.a.s. the union H u G*) (n,p) contains the v power of a
tight Hamilton cycle.

We remark that our proof only gives a small €, and it would be interesting to know if one can
get a larger gap in comparison with the result in the purely random model, as in Theorem 1.2.
We remark that the case k > 3 and r = 1 of Theorem 1.3 was first proved by McDowell and
Myecroft [29]. Other results in randomly perturbed graphs can be found in [1,6,7,16,23].

The core of the proof of Theorem 1.3 follows the Absorbing Method introduced by Rodl, Rucinski,
and Szemerédi in [37], combined with results concerning binomial random hypergraphs.

This paper is organized as follows. In Section 2 we prove some results concerning random hyper-
graphs. Section 3 contains two essential lemmas in our approach, namely, Lemma 3.1 (Connecting
Lemma) and Lemma 3.2 (Absorbing Lemma). In Section 1.3 we prove our main result, Theorem 1.3.
Some remarks concerning the hypotheses in Theorem 1.3 are given in Section 5. Throughout the

paper, we omit floor and ceiling functions.



§2. SUBGRAPHS OF RANDOM HYPERGRAPHS

In this section we prove some results related to binomial random k-graphs. We will apply
Chebyshev’s inequality and Janson’s inequality to prove some concentration results that we shall
need. For convenience, we state these two inequalities in the form we need (inequalities (2) and (3)
below follow, respectively, from Janson’s and Chebyshev’s inequalities; see, e.g., [18, Theorem 2.14]).

We first recall Janson’s inequality. Let I' be a finite set and let I'), be a random subset of I' such
that each element of I' is included in I', independently with probability p. Let S be a family of
non-empty subsets of I' and for each S € S, let Ig be the indicator random variable for the event
S € Tp. Thus each Iy is a Bernoulli random variable Be(pl®l). Let X := 3¢ s Is and X := E(X).
Let Ax =} g, 7.0 E(IsIT), where the sum is over all ordered pairs 5,7 € S (note that the sum
includes the pairs (5,5) with S € §). Then Janson’s inequality says that, for any 0 <t < A,

P(X < A —t) < exp (—%) . (2)

Next note that Var(X) = E(X?) —E(X)? < Ax. Then, by Chebyshev’s inequality,

Var(X A
P(X > 2)\) < ;2 ) < A—‘f (3)

Consider the random k-graph G*) (n,p) on an n-vertex set V. Note that we can view G®) (n,p)
as I' with I" = (Z) For two k-graphs G and H, let G n H (or G u H) denote the k-graph with
vertex set V(G) nV(H) (or V(G) vV (H)) and edge set E(G) n E(H) (or E(G) v E(H)). Finally,
let

Op = Pp(n,p) =min{n"p : H € F and ey > 0}.

The following simple proposition is useful.

Proposition 2.1. Let F be a k-graph with s vertices and f edges and let G := G®*) (n,p). Let A be
a family of ordered s-subsets of V.=V (G). For each A € A, let 14 be the indicator random variable
of the event that A spans a labelled copy of F in G. Let X = Y}, 4 1a. Then Ax < s1225n25p2f /O .

Proof. For each ordered s-subset A of V, let ay be the bijection from V(F') to A following the
orders of V(F) and A. Let F4 be the labelled copy of F' spanned on A. For any 7' < V(F') with
|F[T]| > 0, denote by Wrp the set of all pairs A, B € A such that A n B = a4(T). If T has ¢
vertices and F[T] has f’ edges, then for every {A, B} € Wy, Fs u Fp has exactly 2s — s’ vertices
and at least 2f — f’ edges. Therefore, we can bound Ax by

Ax < D) [Wlp T
TCV(F)

Given integers n and b, let (n)y :=n(n—1)(n —2)---(n —b+ 1) = n!/(n —b)!. Note that there
are at most (zsﬁs,) choices for the vertex set of Fi4 U F, and there are at most

(25— ), - (

s/

)s! < (25 — §')1s12°

4



ways to label each (2s — §')-set to get {4, B}. Thus we have |Wr| < 5125225~ and

Ax < Z s12n 2 p? =T < Z s12°n%p* Jop < 512202 p* O,
TSV(F) TSV (F)

because there are at most 2° choices for 7. O

The following lemma gives the properties of G (n, p) that we will use. Throughout the rest of
the paper, we write o « 8 « v to mean that ‘we can choose the positive constants «, S and v from
right to left’. More precisely, there are functions f and g such that, given 7, whenever 8 < f(v)

and a < g(), the subsequent statement holds. Hierarchies of other lengths are defined similarly.

Lemma 2.2. Let F' be a labelled k-graph with b vertices and a edges. Suppose 1/n « 1/C «
v,1/a,1/b,1/s. Let V be an n-vertex set, and let Fi,...,F; be t <n® families of yn® ordered b-sets
on V. If p = p(n) is such that ®p(n,p) = Cn, then the following properties hold for the binomial
random k-graph G = G®)(n,p) on V.

(i) With probability at least 1 — exp(—n), every induced subgraph of G of order yn contains a
copy of F.
(i) With probability at least 1 — exp(—n), for every i € [t], there are at least (7/2)n’p® ordered
b-sets in F; that span labelled copies of F'.
(iii) With probability at least 1 — 1//n, there are at most 2n’p® ordered b-sets of vertices of G
that span labelled copies of F'.
(iv) With probability at least 1 —1/y/n, the number of overlapping (i.e., not vertex-disjoint) pairs

of copies of F in G is at most 4b*n2b—1p2e,

Proof. Let A be a family of ordered b-sets of vertices in V. For each A € A, let I4 be the indicator
random variable of the event that A spans a labelled copy of F in G. Let X4 = > 4. 4 Ia. From
the hypothesis that & > Cn and Proposition 2.1, we have

Ax < b12%n2p% /5 p < p12%020p% /(Cn). 4)

Furthermore, let S consist of the edge sets of the labelled copies of F' spanned on A in the complete
k-graph on V for all A € A. Since we can write X4 = > ¢ Is, where Ig is the indicator variable
for the event S € E(G), we can apply (2) to X 4.

For (i), fix a vertex set W of G with |[W| = «n. Let A be the family of all labelled b-sets in
W. Let X4 be the random variable that counts the number of members of A that span a labelled
copy of F' and thus E[X 4] = (yn)pp®. By (4) and (2) and the fact that 1/C' « ~,1/b, we have
P(X4 = 0) < exp(—2n). By the union bound, the probability that there exists a vertex set W of
size yn such that X4 = 0 is at most 2" exp(—2n) < exp(—n), which proves (7).

For (ii), fix i € [t] and let Xz, be the random variable that counts the members of F; that span
F. Note that E[Xz,] = yn’p®. Thus (2) implies that P(Xr, < (7/2)n’p®) < exp(—2n). By the
union bound and the fact that n® exp(—2n) < exp(—n), we see that (77) holds.



For (i), let X3 be the random variable that counts the number of labelled copies of F' in G.
Since E(X3) = (n)yp®, by (4) and (3), we obtain
Ax, - b122bn20p2a/(C) L
E[XG12  ((mep®)? Vn
For (iv), let Y be the random variable that denotes the number of overlapping pairs of copies of F'
in G. We first estimate E[Y]. We write Y = ], 5 14, where Q is the collection of the edge sets
of overlapping pairs of labelled copies of F' in the complete k-graph on n vertices. Note that if two

P(X3 > 2p"n”) < P(X3 > 2E[X3]) <

overlapping copies of I’ do not share any edge, then they induce at most 2b— 1 vertices and exactly
2a edges. Note that for 1 < ¢ < b, there are

(Zb”_ Z) (2b — i), <f> bl = (n)op_s C)) (B)i < (n)ap_s(b)?

members of Q whose two copies of F' share exactly ¢ vertices. Thus, the number of choices for the
vertex sets of pairs of copies which induce at most 2b — 2 vertices is at most Y, _; -, (n)2p—i(b)? <
n?~1. By the definition of Ay, and (4) we have

n2b71b2p2a/2 < E[Y] < (n)gb,1b2 . p2a + n2b71 . p2a + AX:; < 2b2n2b71p2a.

We next compute Ay. For each A € Q, let S4 denote the k-graph induced by A (thus Sy4 is the
union of two overlapping copies of F'). For each A, B € Q, write Sq := F; U Fy and Sp := F3 U Fy,
where each F; is a copy of F for i € [4] such that E(F}) n E(F3) # &. Define Hy := F| n F;,
Hy = (FyuFy)nF3and Hs := (Fy U Fa U F3)nFy. Since V(F1) NV (Fy) # &, V(F3)nV(Fy) # &,
and E(Fy) n E(F3) # &, we know that vy, > 1 for ¢ = 1,2,3. We claim that n"#ip®#i > n for
i = 1,2,3. Indeed, since each H; is a subgraph of F, if ey, > 1, then n"#ip°#i > ®&p > Chn;

otherwise ey, = 0 and then we have n"#ipHi = n"#i > n! = n. So we have
anlpeHl . an2p6H2 . nUH3p6H3 2 n3‘ (5)

Now we define Ap, m, g = >4 p E[Zalp], where the sum is over the pairs {A, B} with AnB #
that generate Hi, Ho, H3. Observe that the sum contains at most

<4b — oy ! v, — v > (4b — g, — vm, — vy )y < 00O TUS) (4h)3

1 2 3
terms. Thus, from (5), we obtain

AHl,HQ,Hg _ Z E[IA[B] < (4b)3bn4b*(UH1+UH2+UH3)p4a*(GH1+6H2+6H3) < (4b)3bn4bf3p4a.

AB
Let D = D(b,k,r) be the number of choices for Hy, Hy, Hs, thus
Ay = Z A, Hy, Hs < D(4b)3bn4bi3p4a-
Hi,Ha,H3

Therefore, by (3) and the fact that n is large enough, we get

B A D(4b)3bn4b—3p4a 1
P(Y > 46202 1p2) < P(Y = 2E[Y]) € —oe < < —.
( n=p™) ( [Y]) E[Y]2 (n2-1p2a /22 NG




This verifies (iv). O

For m > k + r — 1, denote by P,IZ’T the " power of a k-uniform tight path on m vertices.
Similarly, write C%" for the 7" power of a k-uniform tight cycle on m vertices. For simplicity we
say that P&" is an (r,k)-path and CR" is an (r, k)-cycle. We write P, for P& whenever k is clear
from the context. Moreover, the ends of P}, are its first and last k + r — 1 vertices (with tlhe order

k+r'72)*

in the (r, k)-path). We end this section by computing ®pr for the p = p(n) > n~ (i
Theorem 1.3. For b=k +r —1, let

g(b) = <b— (k — 1)("];“’— 1)) <k2i12>

Clearly g is an increasing function. Note that the number of edges in Pfff is given by

e = () w7177

B <m_ (k;—1)(12+r—1)> <k2:2> _ gt

Proposition 2.3. Suppose k=22, rz1,bzk+r—1,k+r >4 and C > 0. Let e be such
that 0 < e < min {(2g(b))"!, (3( ; ! ) 1}. Suppose 1/n « 1/C, 1/k, 1/r, 1/b. If p = p(n) =

k+r72)*1_6
5 then (I)pbr' > Chn.

— .
as 11

n_< k—1

Proof. Let H be a subgraph of PJ. Since for any integer k + r — 1 < ¥ < b, any subgraph of P}

has at most g(b') edges, we have the following observations.

(a) If ey > g(b') for some &' =k +r — 1, then vy > b + 1;
(b)ifeH>()forsomek—1 i<k+r—1,thenvy >0+ 1.

By (a), we have

min nMp°? =  min min n'HpfH ) > min ¥ tlpg®tl),
g(k+r—1)<en<g(b) k+r—1<b/'<b \g(V/)<eg<g(¥/+1) k+r—1<b/'<b
k+7‘ 2
Since p = n ()= , and g(b' + 1) > 0, the following holds for any o’ < b:

k+r—2 g(b'+1)
pb H1pg/+1) 5 b +1 <n71/( o )ﬂ-:)

— 9+ Ve (k=D (ktr =Dk 5 p—g(b)e,, (k=1 (k+r=1)/k 5 oy

)

where we used (k —1)(k +r —1)/k = 3/2 and g(b)e < 1/2. Therefore,

min n"HpH = Cn. (6)
glk+r—1)<en<g(b)

On the other hand, noting that g(k +r — 1) = (k” 1) by (b) we have

. . . . it+1
min n HpH = min min n"Hp®H | > min Hlp( ).
O<eg<g(k+r—1) k—1<i<k+4r—1 (£)<6H<(i:1) k—1<i<k+4+r—1



k+r—2 .
Since p = n_1/< i )_E, and (’J,;l)e <1/3forany k—1<i<k+r—2 ifi=>2 then

nitip(F) 5 ity =W+ (L) 5 piti= 501 > o,

. i+1
Otherwise ¢ = 1 and thus k& = 2, in which case we have n”lp( K = n’p = Cn. Therefore,

i VHpH > Cn. 7
O<EH$%E+T’—1) nep " ( )
From (6) and (7), we have ®pr > Cn, as desired. O

§3. THE CONNECTING AND ABSORBING LEMMAS

For brevity, throughout the rest of this paper, we write

k+r—2\"
kE—1 '

h:=k+r—1, t:=g(2h), c:= <
Recall that the ends of an (r, k)-path are ordered h-sets that span a copy of K ,(Lk) in H.

3.1. The Connecting Lemma. Given a k-graph H and two ordered h-sets of vertices A and B
)

each spanning a copy of K }(Lk in H, we say that an ordered 2h-set of vertices C' connects A and B
if CnA=CnDB = ¢ and the concatenation ACB spans a labelled copy of Pj,. We are now

ready to state our connecting lemma.

Lemma 3.1 (Connecting Lemma). Suppose 1/n « ¢ « f < o « 1/k,1/r. Let H be an n-vertex
k-graph with 6,_1(H) = (1 — ¢+ o/)n and suppose p = p(n) = n~"°"¢. Then a.a.s. H L G¥) (n,p)
contains a set C of vertex-disjoint copies of Py, with |C| < Bn such that, for every pair of disjoint
ordered h-sets spanning a copy of Kf(Lk) in H, there are at least 3>n/(2h)? ordered copies of P, in

C that connect them.

Proof. Let S be the set of pairs of disjoint ordered h-sets that each span a copy of K }(Lk) in H. Fix
{S,5'} € S and write S := (v1,...,v) and S’ := (wp,...,w1). Since dp_1(H) = (1 —c+d')n,
we can extend S to an (r,k)-path with vertices (v1,...,vep) such that the vertices of this (r, k)-
path are disjoint with {wy,...,w;} and there are at least (o/n/2)" choices for the ordered set
(Uh41,---,V2p). Similarly, we can extend S’ to an (r, k)-path (wap, ..., w;1) such that the vertices
of this (r,k)-path are disjoint with {vi,..., v} and there are at least (o/n/2)" choices for the
ordered set (wap, ..., wxhy1). So there are at least (a/n/2)?" = 248n2" choices for the ordered 2h-
sets (Vh+41,---,V2h, Wap, ..., Whyi1). Let Cg g be a collection of exactly 248n?" such ordered 2h-sets
of vertices. Clearly if an ordered set C' in Cg g spans a copy of Py, , then C' connects S and S’

Now we will use the edges of G = G*) (n,p) to obtain the desired copies of Pj, that connect
the pairs in S. Let 7 be the set of all labelled copies of P, in G. We claim that the following
properties hold with probability at least 1 — 3/4/n:

(a) [T] < 2p'n?";
(b) for every {S,S’} € S, at least 12p'n?" members of 7 connect S and S';

(¢) the number of overlapping pairs of members of 7 is at most 4(2h)%p*n*—1.



To see that the claim above holds, note that by Proposition 2.3, we can apply Lemma 2.2 with
F = P}, v = 24 and Cg ¢ in place of F;. Items (a), (b) and (c) follow, respectively, from
Lemma 2.2 (iii), (7) and (iv).

Next we select a random collection C’ by including each member of 7 independently with proba-
bility ¢ := 8/(2(2h)?n?"~1pt). By using Chernoff’s inequality (for (i) and (ii) below) and Markov’s
inequality (for (iii) below), we know that there is a choice of C’ that satisfies the following properties:

(i) IC'] < 24|T1| <
(ii) for every {S, S/} € S, there are at least 126(q/2)n?"p! = 33°n/(2h)? members of C’ that
connect S and S’;
(iii) the number of overlapping pairs of members of C’ is at most 8(2h)2¢>n*"~1p?t = 26%n/(2h)2.

Deleting one member from each overlapping pair, we obtain a collection C of vertex disjoint copies of
Pj, with |C| < Bn, and such that, for every pair of disjoint ordered h-sets each spanning a K ,(Lk) in H,
there are at least 35%n/(2h)% — 2B3%n/(2h)? = 3?n/(2h)? sets of 2h vertices connecting them. [

3.2. The Absorbing Lemma. In this subsection we prove our absorbing lemma.

Lemma 3.2 (Absorbing Lemma). Suppose 1/n < ¢ « ( €« a « 1/k,1/r. Let H be an n-vertex
k-graph with 8x_1(H) = (1 — ¢ + &) n and suppose p = p(n) = n="<. Then a.a.s. H L G¥ (n,p)
contains an (1, k)-path Paps of order at most 6h({n such that, for every set X < V(H)\V (P,ps) with
|X| < ¢?n/(2h)?, there is an (r,k)-path in H on V(Pays) U X that has the same ends as Paps-

We call the (r, k)-paths Pus in Lemma 3.2 absorbing paths. We now define absorbers.

Definition 3.3. Let v be a vertex of a k-graph. An ordered 2h-set of vertices (wi,...,wsp) is a
v-absorber if (wy, ..., wqp) spans a labelled copy of Pj, and (w1, ..., ws, v, Whi1,...,Wwss) Spans a
labelled copy of Py, , .

Proof of Lemma 3.2. Suppose 1/n « ¢ € ( « f « o « 1/k, 1/r. We split the proof into two parts.
We first find a set F of absorbers and then connect them to an (r, k)-path by using Lemma 3.1
(Connecting Lemma). We will expose G = G*)(n, p) in two rounds: G' = G U Gy with G} and Go
independent copies of G (n, p'), where (1 —p/)2 =1—p

Fix a vertex v. By the codegree condition of H, we can extend v to a labelled copy of Pj, ,; in
the form (wy,...,wp,v,wp41,...,wss) such that there are at least (an/2)2h > 24(n?" choices for
the ordered 2h-set (wq,...,wap). Let A, be a collection of exactly 24¢(n?" such ordered 2h-sets.
By definition, if an ordered set A in A, spans a labelled copy of P, , then A is a v-absorber.

Now consider G; = G®*)(n,p’) and let T be the set of all labelled copies of P, in G;. By
Proposition 2.3, we can apply Lemma 2.2 with F' = Pj; and A, in place of F;. Using the union
bound we conclude that the following properties hold with probability at least 1 — 3/y/n:

(a) [T] < 2p'n?";

(b) for every vertex v in H, at least 12(p‘n?"

members of T are v-absorbers;

(c) the number of overlapping pairs of members of 7 is at most 4(2h)%p?nth=1.

Next we select a random collection F’ by including each member of 7 independently with

probability ¢ = ¢/(2(2h)%*p*n?"~1). In view of the properties above, by using Chernoff’s inequality



(for (i) and (ii) below) and Markov’s inequality (for (iii) below), we know that there is a choice of
F’ that satisfies the following properties:
(i) |F]<¢n
(ii) for every vertex v, at least 12¢(q/2)p'n?" = 3¢%n/(2h)? members of F' are v-absorbers;
(iii) there are at most 8(2h)2¢?n*"~1p? = 2¢2n/(2h)? overlapping pairs of members of F".

By deleting from F’ one member from each overlapping pair and all members that are not in 7T,
we obtain a collection F of vertex-disjoint copies of Py, such that |F| < (n, and for every vertex v,
there are at least 3¢?n/(2h)? — 2¢?n/(2h)? = (*n/(2h)? v-absorbers.

Now we connect these absorbers using Lemma 3.1. Let V' = V(H)\V(F) and n’ = |V’[. In
particular, n’ > n/2 is sufﬁciently large. Now consider H' = H[V'] and G’ = Go[V'] = G®) (0, p).
Since |V (F)| < 2h-(n < a®n, we have §;_1(H') = (1 —c+ a/2)n. We apply Lemma 3.1 on H’
and G’ with ¢/ = «/2 and 3, and conclude that a.a.s. H' U G’ contains a set C of vertex-disjoint
copies of Pj, such that |C| < fn and for every pair of ordered h-sets in V', there are at least B%n
members of C connecting them.

For each copy of P, in F, we greedily extend its two ends by h vertices such that all new paths are
pairwise vertex disjoint and also vertex disjoint from V' (C). This is possible because of the codegree
condition of Hy and |V(F)| + 2h|F| + |V(C)| < 2h{n + 2h{n + 2h - fn < an/4. Note that both
ends of these (r, k)-paths P, are in V/\V(C). Since (n < 8?n’/(2h)?, we can greedily connect these
Pyj,. Let Py,s be the resulting (r, k)-path. By construction, |V (Paps)| < (4h + 2h) - (n = 6h(n.
Moreover, for any X < V\V(P.s) such that |X| < ¢?n/(2h), since each vertex v has at least
(?n/(2h)? v-absorbers in F, we can absorb them greedily and conclude that there is an (r, k)-path
on V(Paps) U X that has the same ends as Pyps. O

§4. PROOF OF THEOREM 1.3
We now combine Lemmas 3.1 and 3.2 to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose 1/n « ¢ « f « ( « «a,1/k,1/r. Furthermore, recall that ¢ :=
(k;gif)_l and suppose H U G (n, p) is an n-vertex k-graph with &,_;(H) > (1 — ¢+ a)n and
p=p(n) =n"° We will expose G := G*) (n,p) in three rounds: G = G1 U G2 U G3 with G1, G,
and G3 three independent copies of G*)(n, p'), where (1—p’)® = 1—p. Note that p’ > p/3 > n=¢"%.

By Lemma 3.2 with 2¢ in place of €, a.a.s. the k-graph H U G contains an absorbing (r, k)-path
Paps of order at most 6h(n, that is, for every set X < V(H)\V (Paps) such that | X| < (?n/(2h)?,
there is an (r, k)-path in H on V (Pyps)uX which has the same ends as Pps. Let V! = V(H)\V (Paps)
and n’ = |V'|. In particular, n’ > (1—6h{)n and, since ¢ is small enough, we have (n/)“*¢ > nt¢/2.
Thus p’ > p/2=n"5/2> (n/)"“¢/4 > (n/)"“ %,

Now consider H' = H[V'] and let G := G®)(n/,p’) be the subgraph of G induced by V’. Note
that 0x—1(H') = 6p—1(H) — |V (Pabs)| = (1 — ¢+ «/2) n/. By Lemma 3.1, a.a.s. the k-graph H U G},
contains a set C of vertex-disjoint copies of Pj, such that |C| < fn and for every pair of disjoint
ordered h-sets in V' that each spans a copy of K (k), there are at least 3°n’/(2h)? members of C
connecting them. Since |V (C)| + |V (Pabs)| < 2h - fn + 6h(n < an/2, we can greedily extend the
two ends of P, by h vertices so that the two new ends Ej, Ey are in V/\V(C).
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Let m := g~1(1/(2¢)). Note that m > 1/4/¢ because ¢ is small enough and g is linear. By
Proposition 2.3, we can apply Lemma 2.2 (i) with b = m on G3 and conclude that a.a.s. every
induced subgraph of G35 of order Sn contains a copy of P},. Thus we can greedily find at most
ven vertex-disjoint copies of P in V'\(V(C) u E1 U E3), which together covers all but at most Sn
vertices of V/\V(C). Since v/zn+1 < 8%n//(2h)?, we can greedily connect these (r, k)-paths P!, and
P.ys to an (r, k)-cycle Q". Let R := V(H)\V(Q") and note that |R| < |V(C)|+fn < (2h+1)2pn <
(?n/(2h)%. Since P, is an absorber, there is an (7, k)-path on V(P,ps) U R which has the same
ends as P,ps. So we can replace Pps by this (r, k)-path in Q" and obtain the ™ power of a tight
Hamilton cycle.

Moreover, since all previous steps can be achieved a.a.s., by the union bound, H UG a.a.s. contains

the desired ™" power of a tight Hamilton cycle. O

§5. CONCLUDING REMARKS

Let us briefly discuss the hypotheses in Theorem 1.3. Note that, for » = 1, the condition in (1)
is simply 0x_1(H) = an, with a any arbitrary positive constant. Thus, in this case, our theorem
is in the spirit of the original Bohman, Frieze and Martin [5] set-up, in the sense that we have
a similar minimum degree condition on the deterministic graph H. However, if r > 1, then our
minimum condition (1) is of the form 6;_1(H) = (0 + a)n for some o = o(k,r) > 0 (and arbitrarily
small > 0). Thus, for » > 1, our result is more in line with Theorem 1.2 of Bennett, Dudek and
Frieze [4] (in fact, we have ¢(2,2) = 1/2 in our result, which matches the minimum degree condition
in Theorem 1.2). It is natural to ask whether one can weaken the condition in (1) to 6;x_1(H) = an,
that is, whether one can have ¢ = 0. This problem was settled positively by Boéttcher, Montgomery;,

Parczyk and Person for graphs [7]. However, the problem remains open for k-graphs (k > 3).

Question 5.1. Let integers k = 3 and r = 2 and o > 0 be given. Is there € > 0 such that, if H is a
k+r—2

-1
k-graph on n vertices with §x—1(H) = an and p = p(n) > n~ (i) ¢, then a.a.s. H U GW (n,p)
contains the v power of a tight Hamilton cycle?

Two remarks on the value of 0 = o(k,r) in our degree condition (1) follow. These remarks show
that, even though o > 0 if » > 1, the value of ¢ is (in the cases considered) below the value that
guarantees that H on its own contains the r*® power of a tight Hamilton cycle.

Let us first consider the case k = 2, that is, the case of graphs. In this case, 0 = 1 — 1/r
and condition (1) is 6(H) = (1 — 1/r + a)n. We observe that this condition does not guarantee
that H contains the ™ power of a Hamilton cycle; the minimum degree condition that does is
d(H) = (1-1/(r+1))n =rn/(r+ 1), and this value is optimal.

Let us now consider the case k = 3 and 4 | n. In this case, a construction of Pikhurko [32] shows
that the condition d2(H) > 3n/4 does not guarantee the existence of the square of a tight Hamilton
cycle in H (in fact, his constructions is stronger and shows that this condition does not guarantee
a Kf)-factor in H). Our minimum degree condition for k = 3 and r = 2 is d5(H) = (2/3 + a)n.
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Finally, a simple calculation shows that the expected number of P! in G®) (n,p) is o(1) if p <

k+r—2\—1
((1 - s)e/n)( i) and € > 0. Thus, for such a p, a.a.s. G*)(n, p) does not contain the r*® power

of a tight Hamilton cycle.
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