
ar
X

iv
:1

80
9.

06
95

0v
1

 [
m

at
h.

C
O

]
 1

8
Se

p
20

18

Finding cliques using few probes

Uriel Feige ∗ David Gamarnik † Joe Neeman ‡

Miklós Z. Rácz § Prasad Tetali ¶

September 20, 2018

Abstract

Consider algorithms with unbounded computation time that probe
the entries of the adjacency matrix of an n vertex graph, and need to
output a clique. We show that if the input graph is drawn at random
from Gn, 1

2

(and hence is likely to have a clique of size roughly 2 logn),

then for every δ < 2 and constant ℓ, there is an α < 2 (that may
depend on δ and ℓ) such that no algorithm that makes nδ probes in
ℓ rounds is likely (over the choice of the random graph) to output a
clique of size larger than α logn.

1 Introduction

Consider an algorithm (with unlimited computation time) that may make up
to q = nδ adaptive probes, to be defined later, 1 ≤ δ < 2, to the adjacency
matrix of an input graph drawn randomly from Gn, 1

2

, and needs to return

a clique. What is the largest value of α (as a function of q, or of δ) such
that the size of the output clique is at least α log n with probability at least
1
2 (over the choice of the random graph)? (All logarithms are in base 2.)

∗Weizmann Institute of Science; uriel.feige@weizmann.ac.il. Research supported
in part by the Israel Science Foundation (grant No. 1388/16).

†MIT; gamarnik@mit.edu. Research supported in part by ONR grant N00014-17-1-
2790

‡UT Austin; joeneeman@gmail.com. Research supported in part by the Alfred P. Sloan
Foundation.

§Princeton University; mracz@princeton.edu. Research supported in part by NSF
grant DMS 1811724.

¶Georgia Tech; tetali@math.gatech.edu. Research supported in part by NSF grants
DMS-1407657 and DMS-1811935.

1

http://arxiv.org/abs/1809.06950v1

Observe that necessarily α ≤ 2, because with high probability the size of
the largest clique in the input graph is roughly 2 log n (see Remark 3).

Remark 1 The set of q probes involves at most 2q vertices. If 2q < n,
then the algorithm may w.l.o.g. remove from the input graph n− 2q vertices
prior to making any probes (since the graph is random, it does not matter
which vertices are removed), and consequently the assumption that δ ≥ 1 is
without loss of generality. For δ = 2 the algorithm can probe all entries in
the adjacency matrix, and determine the largest clique. Hence we may also
assume that δ < 2.

As a motivation for the types of algorithms considered in this paper,
consider the following algorithm for finding a clique in the random graph.
Run the greedy algorithm (iteratively choosing an arbitrary vertex and re-
moving all its non-neighbors) until 2c

√
logn vertices remain, for some choice

of constant c. Then exhaustively search among these for a clique of size
2c
√
log n. This gives a clique of size log n+ c

√
log n in time roughly n2c2 . It

is easy to see that this algorithm inspects O(n) out of O(n2) total edges.
In the probe model, we allow the algorithms to run in superpolynomial

time, but restrict the number of edges the algorithm is allowed to inspect.
Specifically, we consider algorithms evolving dynamically over a certain fixed
T number of steps. In the first step t = 1, the algorithm is allowed to choose
any pair (i1, j1), 1 ≤ i1 < j1 ≤ n, and asks the status of this pair, namely
whether it is an edge or not. Depending on the outcome, the algorithm
selects a second pair (i2, j2), 1 ≤ i2 < j2 ≤ n, and asks the status of the
pair (edge or not); it then selects (i3, j3), and so on. The algorithm runs
till t = T , may use unbounded computational time, and needs to produce a
clique as large as possible.

If T = O(n), then such an algorithm can produce a clique of size 3
2 log n

as follows. Run the greedy algorithm until
√
q vertices remain and thereafter

switch to exhaustive search. This gives a clique of size log n√
q + 2 log

√
q =

log n + 1
2 log q. When q = Θ(n) the algorithm finds a clique of size 3

2 log n

while inspecting T = O(n) edges. In general, when q = Θ(nδ/2) and δ ≥ 1,
the algorithm finds a clique of size (1+δ/2) log n while inspecting T = O(nδ)
edges.

It is an interesting question whether there is any probing type algorithm
that finds a clique larger than (1 + δ/2) log n with T = O(nδ). Not being
able to make progress on this question, we consider the following modifi-
cation of this question: what happens if the adaptiveness of the algorithm
is limited, in the sense that the algorithm is run in a limited number of

2

stages? Specifically, we consider algorithms which can probe the entries of
the adjacency matrix in a constant number of rounds, where all probes of
a round are done in parallel. Precisely, fix a constant ℓ. In step i = 1 the
algorithm selects a subset E1 of the set of pairs (i, j), 1 ≤ i < j ≤ n, and
the status of all edges in E1 is revealed. Based on the outcome a set E2 of
pairs is selected by the algorithm and the status of edges in E2 is revealed.
This is continued until at most ℓ sets E1, . . . , Eℓ are created. The algorithm
is limited by having

∑

1≤i≤ℓ

|Ei| ≤ T.

When T = O(nδ), this is effectively a bound |Ei| = O(nδ), since ℓ = O(1).
Define α⋆ = α⋆ (δ, ℓ) as the supremum over α such that there exists an

algorithm that probes at most nδ entries of the adjacency matrix of a graph
drawn at random from Gn, 1

2

, with the probes being done in ℓ rounds, and

outputs a clique of size at least α log n with probability at least 1/2. In this
paper we prove both lower and upper bounds on α⋆(δ, ℓ). Since the size of
the largest clique in a random graph is approximately 2 log n (see Remark 3),
we immediately have that α⋆ ≤ 2. Our main result is an upper bound that
is strictly better than this.

Theorem 2 For every δ < 2 and constant ℓ we have that α⋆(δ, ℓ) < 2.

We first present algorithms that find cliques in a few rounds of probes
(ℓ ∈ {1, 2, 3}) in Section 2, providing lower bounds on α⋆(δ, ℓ). We then
prove Theorem 2 in Section 3. In fact, we prove an explicit upper bound as
a function of δ and ℓ: α⋆ (δ, ℓ) ≤ 2− δ (1− δ/2)ℓ, see Theorem 9.

A natural direction for future work is to improve the bounds in this
paper. In particular, can one prove an upper bound (smaller than 2) that
holds regardless of the number of rounds ℓ? Finally, it would be desirable
to find the actual value of α⋆(δ, ℓ).

Remark 3 The size of the largest clique in a random graph is very well
understood. Define ωn = 2 log n− 2 log log n+2 log e− 1. Matula [7] showed
that for any ε > 0, the clique number ω(G) of a random graph G drawn from
Gn, 1

2

satisfies ⌊ωn − ε⌋ ≤ ω(G) ≤ ⌊ωn + ε⌋ with probability tending to 1 as

n → ∞; see also [2]. To simplify exposition, in the following we will often
neglect lower order terms and just state that the size of the largest clique
is approximately 2 log n with high probability (w.h.p.). In all such cases the
arguments can be made precise by applying Matula’s result; we leave the
details to the reader.

3

1.1 Related work

The problem of finding structure in a random graph by adaptively querying
the existence of edges between pairs of vertices was recently introduced by
Ferber, Krivelevich, Sudakov, and Vieira [4, 5]. In particular, they studied
finding a Hamilton cycle [4] and finding long paths [5] in the adaptive query
model. Conlon, Fox, Grinshpun, and He [3] also study this problem, which
they term the Subgraph Query Problem, focusing on finding a copy of a
target graph H, and in particular studying the case when H is a small
(constant size) clique. All of these works focus on sparse random graphs.

In a similar vein, we study finding large cliques in an adaptive query
model. The main difference between our work and those mentioned above—
apart from the underlying random graph being dense or sparse—is that
we study a query model where adaptiveness is limited to constantly many
rounds of probes. It would be interesting to understand the effect of limited
adaptiveness on finding other types of structures, such as a Hamilton cycle,
long paths, or a particular target graph.

2 Algorithms

In this section we present algorithms that find cliques with one, two, and
three rounds of probes. Interestingly, the algorithm for ℓ = 3 rounds of
probes described in Section 2.3 matches (to leading order) the performance
of the greedy algorithm presented in Section 1, which corresponds to the
adaptive probe model with no restriction on ℓ (ℓ = ∞).

2.1 One round algorithm

Lemma 4 For every 1 ≤ δ < 2 we have that α⋆(δ, 1) = δ.

Proof. Let q = nδ. A simple one round algorithm probes all entries induced
by

√
2q vertices. This finds a clique of size approximately 2 log

√
2q ≃ log q

(w.h.p.).
This is optimal up to lower order terms, due to the fact that in a com-

plete graph, the pattern of q probes that maximizes the number of complete
subgraphs of any given size is a clique of size

√
2q. (See Section 3 for details

on the upper bound.) �

4

2.2 Two rounds

Lemma 5 For every 1 ≤ δ ≤ 6
5 we have that α⋆(δ, 2) ≥ 4δ

3 . For every
6
5 ≤ δ < 2 we have that α⋆(δ, 2) ≥ 1 + δ

2 .

Proof. We first present the algorithm for the case when q = Θ(n).
Round 1: Probe all edges induced by a set S ⊂ V of size n1/6, and all

edges connecting S to T ⊂ V of size n5/6 (where S and T are disjoint).
Round 2: Let S′ ⊂ S be a clique of largest size within S, and let T ′ ⊂ T

be the set of vertices within T that are neighbors of all vertices of S′. Note
that S′ has size approximately 1

3 log n and T ′ has size approximately
√
n

(w.h.p.). Now probe all edges in T ′, finding a clique of size approximately
log n (w.h.p.). Together with S′, this gives a clique of size approximately
4
3 log n (w.h.p.).

For q = Θ(nδ) the same algorithm applies, with different set sizes. For
1 ≤ δ ≤ 6

5 , choose S to have size nδ/6 and T to have size nδ/|S| = n5δ/6.

Then S′ has size approximately δ
3 log n, while T

′ has size approximately nδ/2

(w.h.p.). The largest clique in T ′, together with S′, gives a clique of size

approximately 4δ
3 log n (w.h.p.). For 6

5 ≤ δ < 2, choose S to have size n
1

2
− δ

4

and T to have size n ≤ nδ/|S|. Then S′ has size approximately (1− δ
2) log n,

while T ′ has size approximately nδ/2 (w.h.p.). The largest clique in T ′,
together with S′, gives a clique of size approximately (1 + δ

2) log n (w.h.p.).
�

2.3 Three rounds

Lemma 6 For every 1 ≤ δ < 2 we have that α⋆(δ, 3) ≥ 1 + δ/2.

Proof. We first present the algorithm for the case when q = Θ(n).
Round 1: Probe all edges induced by a set S ⊂ V of size n1/4.
Round 2: Let S′ ⊂ S be a clique of largest size within S, and note that

S′ has size approximately 1
2 log n − 2 log log n (up to an additive constant,

w.h.p.). Let T be a set of n
logn vertices, with S and T disjoint. Probe all

edges between S′ and T .
Round 3: Let T ′ ⊂ T be a set of

√
n vertices that are neighbors of all

vertices of S′. Such a set T ′ exists with high probability. Probe all edges in
T ′, finding a clique of size approximately log n (w.h.p.). Together with S′,
this gives a clique of size approximately 3

2 log n (w.h.p.).
For q = Θ(nδ) the same algorithm applies, with different set sizes.

Choose S to have size n(1−δ/2)/2, in which case S′ has size (1− δ/2) log n−

5

2 log log n (up to an additive constant, w.h.p.). The set T ′ will now have size
nδ/2, and altogether we obtain a clique of size approximately (1+ δ/2) log n
(w.h.p.). �

3 Upper bounds

In proving upper bounds on the size of the clique that can be found, we use
the following definition.

Definition 7 Given a graph G = (V,E), a set S ⊂ V , and a parameter
0 ≤ β ≤ 1, we say that S is β-covered if the subgraph induced by S contains
at least β

(|S|
2

)

edges. Given positive integers n, m, and k (with k < n), and
a parameter 0 ≤ β ≤ 1, we let Nn,m,k,β denote the maximum number of sets
of size k that can be β-covered in an n vertex graph with m edges.

The following theorem gives an upper bound on Nn,m,k,β.

Theorem 8 Let G = (V,E) be a graph with n vertices and m edges. Then
the number Nn,m,k,β of sets S ⊂ V of size k that are β-covered satisfies:

• Nn,m,k,β ≤ m(1−
√
1−β)k+1n(2

√
1−β−1)k+2 when β ≤ 16

25 , and

• Nn,m,k,β ≤ m
√
βk/2+1n(1−

√
β)k+2 when β ≥ 16

25 .

Moreover, these upper bounds are tight up to lower order multiplicative
terms (when k is much smaller than m and n).

We defer the proof of Theorem 8 to Section 3.1. Using Theorem 8 we are
now ready to prove Theorem 2. In fact, we state and prove a quantitative
bound on α⋆(δ, ℓ), which implies Theorem 2. For 0 ≤ β ≤ 1 and 1 ≤ δ < 2
define

f(β, δ) :=

{

(2− δ)
√
1− β + δ − 1, if β ∈

[

0, 1625
]

,

1−
(

1− δ
2

)√
β, if β ∈

[

16
25 , 1

]

.
(1)

Theorem 9 We have that

α⋆ (δ, ℓ) ≤ min
β∈∆ℓ−1

max
i∈{1,...,ℓ}

2f
(

∑i
j=1 βj , δ

)

∑ℓ
j=i βj

, (2)

6

where f is defined in (1) and ∆ℓ−1 denotes the (ℓ− 1)-simplex.
In particular, there exists a choice of β ∈ ∆ℓ−1 in the formula above such

that for every 1 ≤ δ < 2 and constant ℓ we have that

α⋆(δ, ℓ) ≤ 2− δ

(

2− δ

2

)ℓ

. (3)

Proof. Let A be a deterministic (w.l.o.g., because the input is randomized)
algorithm that takes ℓ rounds, for some constant ℓ, and makes q = nδ probes
in total, where 1 ≤ δ < 2. We set k = α log n, for some 1 < α < 2, to be
determined later as a function of ℓ and δ. We will show that A fails (w.h.p.)
to find cliques of size k.

Let us fix nonnegative β1, . . . , βℓ satisfying
∑ℓ

i=1 βi = 1, whose values
will later be optimized as a function of δ. Consider ℓ identical copies of
A. On a given input, all copies of A run in an identical fashion and all
tentatively produce the same output clique K (of size k). We say that
round i is significant if the number of probes to K in rounds 1 up to i − 1
is at most

∑i−1
j=1 βj

(k
2

)

and the number of probes to K in rounds 1 up to i

is at least
∑i

j=1 βj
(k
2

)

. Given K and the sequence of probes, there must be
at least one significant round; this can be proven by induction for instance.
Copy i of A outputs K if the first significant round is i, and outputs nothing
otherwise. This view of multiple copies of A is identical (in its output) to a
single copy of A. We shall show that each copy succeeds to output a clique
of size k with probability less than 1/(2ℓ), and hence by a union bound the
algorithm fails with probability at least 1/2.

Consider now a single copy of A, say Ai. A set S ⊂ V of size k is referred
to as an i-eligible set if the number of probes to S in rounds 1 up to i − 1
is at most

∑i−1
j=1 βj

(k
2

)

and the number of probes to S in rounds 1 up to i is

at least
∑i

j=1 βj
(

k
2

)

. By definition, Ai is only allowed to output an i-eligible
set. Note that to determine whether a set S is i-eligible, it suffices to see
the answers to all probes up to round i − 1, as this determines the sets of
probes also in round i (and i-eligibility does not depend on the answers to
the probes in round i). Let Ei be the event that at least one of the i-eligible
sets is indeed a clique. Note that algorithm Ai produces no output unless
event Ei holds, and hence the probability that Ai succeeds is bounded above
by the probability of Ei. For each i-eligible set, after round i−1 there are at
least

∑ℓ
j=i βj

(k
2

)

pairs of vertices that have not yet been probed and hence

the probability that this set is a clique is at most 2−
∑ℓ

j=i βj(k2). To upper
bound the number of i-eligible sets, observe that at least

∑i
j=1 βj

(k
2

)

pairs of
vertices of a given i-eligible set are probed up to round i (we do not care how

7

these probes are distributed among rounds 1 to i). Therefore the number
of i-eligible sets is at most Nn,q,k,

∑i
j=1 βj

(see Definition 7). A union bound

thus gives us that

P (Ei) ≤ Nn,q,k,
∑i

j=1
βj
2−

∑ℓ
j=i βj(k2). (4)

By Theorem 8 we have that

logNn,nδ,k,β ≤ αf (β, δ) log2 n+ 4 log n.

Consequently, using the notation si :=
∑i

j=1 βj and taking logarithms in (4),
we obtain that

log P (Ei) ≤ αf (si, δ) log
2 n+ 4 log n− 1− si−1

2

(

α2 log2 n− α log n
)

= α

{

f (si, δ) −
1− si−1

2
α

}

log2 n+

(

1− si−1

2
α+ 4

)

log n.

We thus see that if α > 2f (si, δ) /(1 − si−1) then P (Ei) → 0 as n → ∞. If
this holds for every i ∈ {1, . . . , ℓ}, this proves (2).

For ℓ = 1, the expression (2) gives α⋆ (δ, 1) ≤ δ, which is tight (see
Lemma 4). In the following we assume that ℓ ≥ 2. For constant ℓ ≥ 2
and fixed 1 ≤ δ < 2, the expression in (2) gives an optimization problem
in β ∈ ∆ℓ−1 to solve to obtain an explicit upper bound on α⋆(δ, ℓ). This is
pursued in more detail in Section 3.2; in particular, the optimum is found
when δ = 1. Here we simply choose a particular β′ ∈ ∆ℓ−1 that implies (3)
(and hence also proves Theorem 2).

Specifically, let
β′
i := ri−1ε

for i = 1, . . . , ℓ, where

r :=
2

2− δ

and, since
∑ℓ

i=1 β
′
i = 1, we have that ε = (r − 1) /

(

rℓ − 1
)

. Define also, as

above, s′i :=
∑i

j=1 β
′
j . By (2), in order to show (3), it suffices to show that

2f (s′i, δ)
1− s′i−1

≤ 2− δr−ℓ (5)

for every i ∈ {1, . . . , ℓ}.

8

First, for i = ℓ we have that s′ℓ = 1 and hence f (s′ℓ, δ) = δ/2. We also
have that 1− s′ℓ−1 =

(

rℓ − rℓ−1
)

/
(

rℓ − 1
)

. Hence

2f (s′ℓ, δ)

1− s′ℓ−1

= δ
rℓ − 1

rℓ − rℓ−1
= 2− δ

rℓ − rℓ−1
,

where the second equality follows from the definition of r. Now (5) follows
by dropping the rℓ−1 term in the right hand side of the display above.

We now turn to i ≤ ℓ− 1. Note that s′i ≤ s′ℓ−1 =
(

rℓ−1 − 1
)

/
(

rℓ − 1
)

<
1/r = (2 − δ)/2 ≤ 1/2 and hence by the definition of f (see (1)) we have
that

2f (s′i, δ)
1− s′i−1

=
2
{

(2− δ)
√

1− s′i + δ − 1
}

1− s′i−1

.

Using the bound
√

1− s′i ≤ 1− s′i/2 we obtain that

2f (s′i, δ)
1− s′i−1

≤ 2− (2− δ) s′i − 2s′i−1

1− s′i−1

= 2− δ

rℓ − ri−1
.

Now (5) follows by dropping the ri−1 term in the display above. �

3.1 Bounding Nn,m,k,β: an extremal problem

In this subsection we prove Theorem 8, which gives essentially the tight
upper bound on Nn,m,k,β (see Definition 7), as we will show.

Given integers k and 1 ≤ t ≤
(

k
2

)

, let M(k, t) denote the minimum, over
all k-vertex graphs H with t edges, of the size (number of edges) of the
maximum matching in H. We use the notation M(k, β) when t is expressed
as β

(k
2

)

.

Lemma 10 Using the notation as above, Nn,m,k,β ≤
(

m
M(k,β)

)(

n
k−2M(k,β)

)

.

Proof. For a set S of size k to be β-covered, its induced subgraph must have
a matching of size M(k, β). We encode S by its matching edges followed by
the remaining vertices in S. Given that G has m edges, there are at most
(m
M(k,β)

)

ways of encoding the matching edges, and then at most
(n
k−2M(k,β)

)

ways of choosing the remaining vertices. �

9

Lemma 11 Define

µ(k, β) := min

{√
β

2
,
(

1−
√

1− β
)

}

k. (6)

We then have that

⌊µ(k, β)⌋ ≤ M(k, β) ≤ ⌊µ(k, β)⌋ + 1.

Proof. Let H be an arbitrary graph on k vertices. It is well known (see,
e.g., [6]) that if the maximum matching in H has size M , then H has a
Gallai-Edmonds (GE) decomposition satisfying c − s = k − 2M , where c
is the number of odd components C1, . . . , Cc in the GE decomposition, s
is the size of the separator set S, r is the size of the set R of remaining
vertices, and edges exiting an odd component can only be connected to S.
Every maximum matching matches all of R to itself, matches each vertex of
S to a different odd component, and leaves exactly one unmatched vertex
in every odd component that has no vertex matched to S. The value of a
GE-decomposition is c − s, and an optimal GE-decomposition is one that
maximizes c− s. If c > 0 in a GE-decomposition, then necessarily c > s.

Let H be a graph with k vertices and t edges for which the size of the
maximum matching is M(k, t). We make a structural claim that (at least)
one of the following holds:

1. The optimal GE-decomposition for H is a clique plus a set of iso-
lated vertices. If the clique size is even it serves as R in the GE-
decomposition, whereas if its size is odd it serves as an odd compo-
nent. In any case, every isolated vertex serves as an odd component,
and S is empty.

2. The optimal GE-decomposition for H is a (complete) split graph,
namely, a clique that serves as S, odd components that are single-
ton vertices, and edges between each odd component and all of S.
(Note that for the split graph to be a GE-decomposition it must be
that the independent set is larger than the clique, because c− s needs
to be positive.)

3. M(k, t) = M(k, t+ 1).

To prove the claim, we need to show that if the optimal GE-decomposition
for H is neither a clique nor a split graph, then we can find a graph with
t+1 edges that has a GE-decomposition with the same value as that for H.

10

W.l.o.g. we may assume that R ∪ S is a clique, as otherwise we can add
an edge to R ∪ S without decreasing c − s. Thereafter, if there are no odd
components the GE-decomposition is a clique and we are done. Hence we
may assume that there are odd components and c > s. As with the argument
that R ∪ S is a clique, if we cannot add edges to H while preserving c− s,
it must be that each odd component is a clique, and every vertex in every
odd component is connected to every vertex in S (if S exists). Moreover, R
is necessarily empty, as otherwise we can merge it with an odd component
(the component remains odd because R is necessarily even), and completing
that odd component to a clique we gain edges without changing c− s.

There remain several cases to consider:

1. There is exactly one odd component, C1. Then S is empty, and R
was already previously assumed to be empty. Hence H is just the odd
clique C1, and so is its GE-decomposition.

2. There are (at least) two odd components that are not singletons, say
C1 and C2. Then move all but one vertex from C1 to C2 (and remove
the edges created between C1 and C2, and make C2 into a clique). The
number of edges increases without decreasing c− s.

3. S is empty. From the previous two cases we may assume that there
are at least two odd components, and at most one of them (say C1) is
a clique. As R is empty as well, then the GE-decomposition is a clique
(C1).

4. S is nonempty (and R is empty, as argued above), there are at least
s+1 odd components, and exactly one odd component (say C1) is not
a singleton (if C1 is a singleton then we have a split graph, as desired).

(a) |C1| ≥ c. Merge S and s singletons into C1, add edges to the new
C ′
1 to make it a clique, and disconnect the remaining singletons

from S. The GE-decomposition becomes a clique C ′
1, and the

value c−s does not change. The number of edges gained is s|C1|,
and lost is (c− 1− s)s, so we strictly gained edges, as desired.

(b) c > |C1|. Increase both c and s by one by making one vertex v of
C1 a new singleton component C ′

1, and moving one vertex u from
C1 to S. After updating the edges, we lose |C1| − 2 edges of v,
but gain c− 1 new edges to u, so the number of edges increases.

Having proved our structural claim, it remains to show the quantitative
bounds. For the lower bound, it suffices to check the size of the maximum

11

matching in a clique and in a split graph, each with β
(

k
2

)

edges, since the
case that M(k, t) = M(k, t+ 1) is handled by considering t+ 1, which only
increases the computed bounds. For the upper bound it suffices to check
the size of the maximum matching in graphs that are nearly a clique and
nearly a split graph.

In a clique of size K the size of the maximum matching is
⌊

K
2

⌋

. Since

the number of edges in the clique is
(

K
2

)

= β
(

k
2

)

, we must have K ≥
√
βk,

which implies that the size of the maximum matching is at least
⌊√

β
2 k

⌋

.

For the matching upper bound, let K be such that
(K
2

)

< β
(k
2

)

≤
(K+1

2

)

.
The first inequality implies that K <

√
βk + 1. Now define a graph that is

a clique of size K with an additional vertex that is connected to β
(k
2

)

−
(K
2

)

vertices of the clique, and k − (K + 1) singleton vertices. The size of the
maximum matching in this graph is

⌊

K+1
2

⌋

and by the inequality above we

have that
⌊

K+1
2

⌋

≤
⌊√

β
2 k

⌋

+ 1.

In a (complete) split graph, let c denote the size of the independent set.
The number of non-edges is

(c
2

)

= (1− β)
(k
2

)

and hence c ≤
⌈√

1− βk
⌉

.
The size of the maximum matching is k−c, since in the maximum matching
every vertex of the clique is matched to a vertex in the independent set, and
we have that k − c ≥

⌊(

1−
√
1− β

)

k
⌋

.

For the matching upper bound, let c be such that
(c
2

)

≤ (1− β)
(k
2

)

<
(

c+1
2

)

. The second inequality implies that c ≥
⌈√

1− βk
⌉

− 1. We define a
graph on k vertices as follows. Start with a split graph on k vertices with
an independent set of size c. Now take a vertex v from the clique of the
split graph and remove (1− β)

(k
2

)

−
(c
2

)

edges connecting v to vertices of

the independent set. The resulting graph has β
(k
2

)

edges and its maximum
matching has size k − c. By the inequality above we have that k − c ≤
⌊(

1−
√
1− β

)

k
⌋

+ 1. �

Proof.[of Theorem 8] By Lemma 10 and a simple bound on binomial coef-
ficients we obtain that

Nn,m,k,β ≤
(

m

M(k, β)

)(

n

k − 2M(k, β)

)

≤ mM(k,β)nk−2M(k,β).

Using Lemma 11 we thus obtain that

Nn,m,k,β ≤ mµ(k,β)+1nk−2µ(k,β)+2,

where recall the definition of µ(k, β) from (6). Theorem 8 now follows by

observing that µ(k, β) =
(

1−√
1− β

)

k when β ≤ 16
25 and µ(k, β) =

√
β
2 k

when β ≥ 16
25 .

12

This bound is tight (up to factors of kΘ(k)) as can be seen by the following
examples. First, let β ≤ 16

25 . Suppose first that m < kn. Consider m edges
that form a split graph with a clique K of size (1 −

√
1− β)k joined to an

independent set I of size roughly m
k . Any choice of

√
1− βk vertices from I

completes together with K a split graph with β
(k
2

)

edges. If m > kn, then
make K of size m/n and I of size n− |K|. Any choice of

√
1− βk vertices

from I and (1 −
√
1− β)k vertices from K forms a split graph with β

(k
2

)

edges.
Now let β ≥ 16

25 . Consider m edges that form a clique of size
√
2m. Any

choice of
√
βk vertices from the clique and (1−√

β)k vertices from the rest
of the graph gives a subgraph with β

(k
2

)

edges. �

3.2 Explicit upper bounds for δ = 1

The expression (2) in Theorem 9 gives an optimization problem to compute
an upper bound on α⋆ (δ, ℓ). As mentioned in the proof of Theorem 9,
for ℓ = 1 this gives α⋆ (δ, 1) ≤ δ, which is tight. Here we investigate the
optimization problem of (2) for other values of ℓ. In particular, we solve
this optimization problem for every ℓ when δ = 1.

For ℓ = 2, the expression (2) gives

α⋆ (δ, 2) ≤ min
β∈[0,1]

max

{

2f (β, δ) ,
δ

1− β

}

.

For the two expressions in the display above to be less than 2, we must have
δ/(1 − β) < 2, or equivalently, β < 1 − δ/2 ≤ 1/2. Hence recalling the
definition of f (see (1)) we obtain that

α⋆ (δ, 2) ≤ min
β∈[0, 12]

max

{

2
(

(2− δ)
√

1− β + δ − 1
)

,
δ

1− β

}

.

Observe that the first expression in the display above is decreasing in β, while
the second expression is increasing in β. Therefore the unique minimizer
β′ = β′ (δ) satisfies

2
(

(2− δ)
√

1− β′ + δ − 1
)

=
δ

1− β′

and we have that

α⋆ (δ, 2) ≤
δ

1− β′ .

13

For δ = 1 we obtain that β′(1) = 1−2−2/3 and thus α⋆ (1, 2) ≤ 22/3 < 1.588.
Many of the observations made for the case of ℓ = 2 above also apply

for ℓ ≥ 3. We may write the expression (2) as follows:

α⋆ (δ, ℓ) ≤ min
β∈∆ℓ−1

max

{

max
i∈{1,...,ℓ−1}

2f (si, δ)

1− si−1
,
δ

βℓ

}

,

where si =
∑i

j=1 βj as before. If β′ = β′ (δ) denotes the optimizer then we
must have β′

ℓ > δ/2 ≥ 1/2. This implies that s′i ≤ s′ℓ−1 ≤ 1/2 for every

i ≤ ℓ− 1, where s′i =
∑i

j=1 β
′
j . Hence recalling the definition of f again we

obtain that

α⋆ (δ, ℓ) ≤ min
β∈∆ℓ−1,βℓ≥ δ

2

max

{

max
i∈{1,...,ℓ−1}

2
(

(2− δ)
√
1− si + δ − 1

)

1− si−1
,
δ

βℓ

}

.

This simplifies when δ = 1:

α⋆ (1, ℓ) ≤ min
β∈∆ℓ−1,βℓ≥ 1

2

max

{

max
i∈{1,...,ℓ−1}

2
√
1− si

1− si−1
,
1

βℓ

}

.

The optimizer β′ = β′(1) is such that all ℓ expressions on the right hand
side of the display above are equal. That is, we must have

2
√

1− s′i
1− s′i−1

=
1

β′
ℓ

for every i ∈ {1, . . . , ℓ− 1}. This set of equations can be solved and we
obtain the following optimizer:

β′
1 = 1− 2

− 2

2ℓ−1 ,

β′
i = 2

− 2
i−2

2ℓ−1 − 2
− 2

i+1−2

2ℓ−1 for i ∈ {2, . . . , ℓ− 1} ,

β′
ℓ = 2

− 2
ℓ−2

2ℓ−1 .

The optimum is therefore 1/β′
ℓ = 2

2
ℓ−2

2ℓ−1 . In conclusion, we have proved the
following corollary of Theorem 9.

Corollary 12 We have that

α⋆ (1, ℓ) ≤ 2
1− 1

2ℓ−1 .

14

Numerically, the bound above gives the following for small ℓ: α⋆ (1, 2) ≤
22/3 < 1.588, α⋆ (1, 3) ≤ 26/7 < 1.812, α⋆ (1, 4) ≤ 214/15 < 1.910, and
α⋆ (1, 5) ≤ 230/31 < 1.956. These upper bounds should be compared to the
lower bounds α⋆ (1, 2) ≥ 4/3 and α⋆ (1, ℓ) ≥ α⋆ (1, 3) ≥ 3/2 for ℓ ≥ 3 (see
Section 2).

Acknowledgements

The problem considered here was proposed by David Gamarnik at the Amer-
ican Institute of Mathematics workshop “Phase transitions in randomized
computational problems” in June 2017 [1]. It arose from a discussion with
Madhu Sudan, whose contribution to the inception of the problem is grate-
fully acknowledged. We thank AIM and the organizers, Amir Dembo, Jian
Ding, and Nike Sun, for putting together the workshop. We also thank Jane
Gao for initial discussions.

References

[1] AimPL. Phase transitions in randomized computational problems. Avail-
able at http://aimpl.org/phaserandom, 2017.

[2] B. Bollobás and P. Erdős. Cliques in random graphs. Mathematical
Proceedings of the Cambridge Philosophical Society, 80(3):419–427, 1976.

[3] D. Conlon, J. Fox, A. Grinshpun, and X. He. Online Ramsey
Numbers and the Subgraph Query Problem. Preprint available at
https://arxiv.org/abs/1806.09726., 2018.

[4] A. Ferber, M. Krivelevich, B. Sudakov, and P. Vieira. Finding Hamil-
ton cycles in random graphs with few queries. Random Structures &
Algorithms, 49(4):635–668, 2016.

[5] A. Ferber, M. Krivelevich, B. Sudakov, and P. Vieira. Finding paths
in sparse random graphs requires many queries. Random Structures &
Algorithms, 50(1):71–85, 2017.

[6] L. Lovász and M. D. Plummer. Matching Theory. American Mathemat-
ical Society, 2009.

[7] D. W. Matula. The Employee Party Problem. In Notices of the American
Mathematical Society, volume 19, pages A–382, 1972.

15

http://aimpl.org/phaserandom
https://arxiv.org/abs/1806.09726

	1 Introduction
	1.1 Related work

	2 Algorithms
	2.1 One round algorithm
	2.2 Two rounds
	2.3 Three rounds

	3 Upper bounds
	3.1 Bounding Nn,m,k,: an extremal problem
	3.2 Explicit upper bounds for =1

