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COUNTING RESTRICTED ORIENTATIONS OF RANDOM GRAPHS

MAURÍCIO COLLARES, YOSHIHARU KOHAYAKAWA, ROBERT MORRIS,

AND GUILHERME OLIVEIRA MOTA

Abstract. We count orientations of G(n, p) avoiding certain classes of oriented graphs.

In particular, we study Tr(n, p), the number of orientations of the binomial random graph

G(n, p) in which every copy of Kr is transitive, and Sr(n, p), the number of orientations

of G(n, p) containing no strongly connected copy of Kr. We give the correct order of

growth of logTr(n, p) and logSr(n, p) up to polylogarithmic factors; for orientations

with no cyclic triangle, this significantly improves a result of Allen, Kohayakawa, Mota

and Parente. We also discuss the problem for a single forbidden oriented graph, and

state a number of open problems and conjectures.

1. Introduction

An orientation ~H of a graphH is an oriented graph obtained by assigning an orientation

to every edge of H . Over 40 years ago, Erdős [7] initiated the study of D(G, ~H), the

number of ~H-free orientations of a graph G, and in particular posed the problem of

determining D(n, ~H) := max
{
D(G, ~H) : |V (G)| = n

}
. For tournaments, this problem

was resolved by Alon and Yuster [4], who proved that D(n, Tk) = 2ex(n,Kk) holds for any

tournament Tk, and all sufficiently large n ∈ N.

Recently, Allen, Kohayakawa, Mota and Parente [2] introduced a related problem in the

context of random graphs: that of determining the typical number of C�
r -free orientations

of the Erdős–Rényi random graph G(n, p), where C�
r is the directed cycle of length r.

The main result of [2] is as follows.

Theorem 1.1. Let r > 3. Then, with high probability as n → ∞,

log2D
(
G(n, p), C�

r

)
=






(
1 + o(1)

)
p

(
n

2

)
if n−2 ≪ p ≪ n−(r−2)/(r−1),

o
(
pn2
)

if p ≫ n−(r−2)/(r−1).

Our first theorem provides the following improvement in the case r = 3; the Θ̃(·)-
notation indicates upper and lower bounds that differ by a polylogarithmic factor.
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Theorem 1.2. The following bounds hold with high probability as n → ∞.

log2D
(
G(n, p), C�

3

)
=





(
1 + o(1)

)
p

(
n

2

)
if n−2 ≪ p ≪ n−1/2,

Θ̃
(
n/p
)

if p ≫ n−1/2. (1)

We will in fact prove a similar upper bound for D(G(n, p), C�
r ) for all r > 3 (see

Theorem 6.1). However, we do not believe that our bound is sharp when r > 4; instead,

we believe that the natural generalization of the lower bound construction in Theorem 1.2

(see Section 2) is sharp up to polylogarithmic factors.

Conjecture 1.3. Let r > 4. If p ≫ n−(r−2)/(r−1), then

logD
(
G(n, p), C�

r

)
= Θ̃

(
n

p1/(r−2)

)

with high probability as n → ∞.

Note that D(G,C�
3 ) is the number of orientations of G in which every triangle is

transitive, or equivalently, in which no triangle is strongly connected. This suggests two

natural generalizations of Theorem 1.2, which we discuss below.

Avoiding non-transitive tournaments. Our first generalization deals with the number of

orientations of G(n, p) avoiding non-transitive tournaments of a given size.

Definition 1.4. Let Tr(n, p) denote the random variable which counts the number of

orientations of the random graphG(n, p) in which every copy ofKr is transitively oriented

(we will simply say that “every Kr is transitive”).

Our next main result generalizes Theorem 1.2 by determining the typical value of

log Tr(n, p) up to polylogarithmic factors for every r > 3.

Theorem 1.5. Let r > 3. The following bounds hold with high probability as n → ∞.

log2 Tr(n, p) =






(
1 + o(1)

)
p

(
n

2

)
if n−2 ≪ p ≪ n−2/(r+1),

Θ̃
(
p2−(

r
2)n4−r

)
if n−2/(r+1) ≪ p ≪ n−2/(r+2), (2)

Θ̃
(
n/p
)

if p ≫ n−2/(r+2). (3)

Note that the functions in (2) and (3) coincide when r = 3. Figure 1 illustrates the

typical behaviour of Tr(n, p) given by Theorem 1.5 when r > 4. We remark that, despite

the more complicated behaviour of Tr(n, p) when r > 4, the proof of Theorem 1.5 is not

significantly more difficult than that of Theorem 1.2.
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Figure 1. The graph of b = b(a), where Tr(n, p) = exp
(
nb+o(1)

)
and p

(
n
2

)
= na.

Avoiding strongly connected tournaments. The construction used to prove the lower bounds

in Theorems 1.2 and 1.5 and Conjecture 1.3 can also be used to prove the lower bound

in the following conjecture.

Conjecture 1.6. Let ~H be a strongly connected tournament on r > 3 vertices, and

suppose that p ≫ n−2/(r+1). Then

logD
(
G(n, p), ~H

)
= Θ̃

(
n

p(r−1)/2

)

with high probability as n → ∞.

Theorem 1.2 proves the conjecture in the case r = 3. Moreover, we are able to prove

that the upper bound holds if we instead forbid all strongly connected tournaments on r

vertices.

Definition 1.7. Let Sr(n, p) denote the random variable which counts the number of

orientations of the random graph G(n, p) in which no copy of Kr is strongly connected.

Note that Tr(n, p) 6 Sr(n, p), and that D(G(n, p), C�
r ) 6 Sr(n, p), since every strongly

connected orientation of Kr contains a Hamiltonian cycle. The following theorem deter-

mines the typical value of logSr(n, p) up to polylogarithmic factors for every r > 3.

Theorem 1.8. Let r > 3. The following bounds hold with high probability as n → ∞.

log2 Sr(n, p) =





(
1 + o(1)

)
p

(
n

2

)
if n−2 ≪ p ≪ n−2/(r+1),

Θ̃

(
n

p(r−1)/2

)
if p ≫ n−2/(r+1).
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We consider this result to be reasonably strong evidence in favour of Conjecture 1.6. In

Section 7 we will discuss other forbidden oriented graphs; we do not know of any oriented

graph ~H containing a cycle for which our lower bound construction fails to give sharp

bounds on D
(
G(n, p), ~H

)
.

The rest of the paper is organised as follows: in Section 2 we prove the various lower

bounds; in Sections 3, 4 and 5 we prove the upper bounds in Theorems 1.2, 1.5 and 1.8

respectively; in Section 6 we prove an upper bound for arbitrary cycles, and in Section 7

we discuss some further open problems and conjectures.

2. Lower bounds

Each of the bounds proved in this section (and the general lower bound given in Sec-

tion 7.2) follows from the same simple construction. Roughly speaking, we fix a linear

order on the vertex set (let us identify it with the set [n] = {1, . . . , n}), choose a “critical

length” a, and orient all edges of length at least a in the same direction (“forward”). The

edges shorter than a may be oriented in either direction, as long as they are not at risk of

creating a forbidden substructure; by choosing a carefully, we can guarantee that (with

high probability) there are many such “free” edges.

To illustrate this construction with a simple example, let us begin by proving the

lower bound in equation (1) in the case p = o(1). (The case p = Θ(1) follows from

Proposition 2.2, below.)

Proposition 2.1. If ω ≫ 1 and n−1/2 6 p = o(1), then

logD
(
G(n, p), C�

3

)
>

n

ω · p (4)

with high probability as n → ∞.

Proof. We may assume that ω → ∞ sufficiently slowly. We will show that with high

probability there exists a set of at least n/ωp edges which can be oriented freely without

creating a non-transitive triangle. To do so, set a = 2 · p−2/ω, and note that a = o(n),

since p > n−1/2 and ω → ∞, and that a ≫ 1, since p = o(1) and ω → ∞ sufficiently

slowly. Let us say that an edge uv is a-short if its length |u − v| is less than a, and

a-long otherwise. Note that if we orient all a-long edges forward, then any non-transitive

triangle must contain at least two a-short edges (a “dangerous triangle”), at least one of

which must be oriented backward.

Now, observe (e.g., by Chernoff’s inequality) that with high probability the number of

a-short edges in G(n, p) is
(
1 + o(1)

)
pan, and that the expected number of triangles in

G(n, p) containing at least two a-short edges is O
(
p3a2n

)
≪ pan. By Markov’s inequality,

it follows that with high probability there exists a set of at least pan/2 = n/ωp edges

that are not in any such triangle and therefore can be oriented freely, as required. �

We conjecture (see Conjecture 7.5) that the lower bound on D
(
G(n, p), C�

3

)
given by

Proposition 2.1 is sharp up to a constant factor in the exponent when p is not too large.
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On the other hand, when p > 1/ logn we can obtain a stronger lower bound by varying the

linear order used in the construction. The following proposition also provides a suitable

lower bound for all non-acyclic ~H when p = Θ(1).

Proposition 2.2. If ~H contains a cycle and p ≫ (logn)/n, then

D
(
G(n, p), ~H

)
> pn · n! / eo(n)

with high probability as n → ∞.

Proposition 2.2 is a straightforward consequence of a result of Goddard, Kenyon, King

and Schulman [9, Theorem 2.5] which gives a lower bound on the number of acyclic ori-

entations of an arbitrary graph G in terms of its degree sequence (see also [10]). However,

since the proof requires some tedious calculation using Stirling’s formula, we provide the

details of the proof in the appendix.

It is also straightforward to replace the factor of 1/ω in (4) by a small fixed constant

using the second moment method. To illustrate this, we will prove the following bound

on Tr(n, p).

Proposition 2.3. Let r > 3. There exists c > 0 such that if n−2/(r+1) ≪ p ≪ n−2/(r+2),

then

log Tr(n, p) > c · n4−r

p(
r
2)−2

with high probability as n → ∞.

Observe that Propositions 2.1 and 2.2 imply the lower bound in equation (3), and

Proposition 2.3 implies the lower bound in (2). Indeed, the lower bound in (3) follows

simply by noticing that in a C�
3 -free oriented graph, all copies of Kr are transitive.

Since the proof of Proposition 2.3 requires some slightly tedious calculations, we will

give here just a sketch of the proof; for the full details, see the appendix.

Sketch proof of Proposition 2.3. We repeat the proof strategy of Proposition 2.1, using

the second moment method instead of Markov’s inequality. Choose a = c · n3−rp1−(
r
2),

and observe that the lower bound on p implies that a = o(n), and the upper bound

implies that a = Ω(p−2). As before, say that an edge is a-short if its length is less than a,

and a-long otherwise. Note that any non-transitive copy of Kr contains a cyclic triangle,

so if we orient all a-long edges forward, then any non-transitive Kr must contain at least

two a-short edges sharing a vertex, at least one of which must be oriented backward.

Let X denote the number of copies of Kr in G(n, p) that are “dangerous”, in the

sense that they contain two a-short edges incident to a single vertex. A straightforward

calculation gives

E[X ] = Θ
(
nr−2a2p(

r
2)
)

6 pan/2r2,

if c > 0 is sufficiently small, and

Var(X) = O
(
n2r−5a3p2(

r
2)−1 + n2r−5a2p2(

r
2)−3 + nr−1a2p(

r
2)+r−1

)
≪ (pan)2,
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since pan ≫ 1 and a = Ω(p−2). It follows, by Chebyshev’s inequality, that X 6 pan/r2

with high probability, and hence there exists a set of at least pan/2 edges that can be

oriented freely, as required. �

It is straightforward to generalize this idea to prove the lower bounds in Theorem 1.8

and Conjectures 1.3 and 1.6, so we will be somewhat brief with the details. To avoid te-

dious calculations, we will prove the slightly weaker bounds given by Markov’s inequality,

rather than the slightly stronger bounds given by the second moment method.

Proposition 2.4. Let r > 3 and ω ≫ 1. If p > n−(r−2)/(r−1), then

logD
(
G(n, p), C�

r

)
>

n

ω · p1/(r−2)

with high probability as n → ∞.

Proof. The lower bound in Proposition 2.2 is stronger when p = Ω(1), so we may assume

p = o(1). Set a = p−(r−1)/(r−2)/ω = o(n), and consider any orientation ~G of G(n, p) in

which all a-long edges are oriented forward. We claim that if a copy C = (c1, . . . , cr) of

Cr in G(n, p) is oriented cyclically in ~G, then |ci − cj | 6 (r− 1)(a− 1) for every i, j ∈ [r].

To see this, simply note that every backwards edge has length at most a− 1, and at most

r − 1 of the edges can be directed backwards.

In particular, if we orient only the a-long edges ofG(n, p) forward, the number of choices

for V (C) of size r such that C could form a C�
r for some orientation of the a-short edges

is at most n(ra)r−1. Therefore, the expected number of such copies of Cr in G(n, p) is

O
(
prar−1n

)
≪ pan, so the claimed bound follows as in the proof of Proposition 2.1. �

The next proposition implies the lower bounds in Conjecture 1.6 and Theorem 1.8.

Proposition 2.5. Let r > 3 and ω ≫ 1. If p > n−2/(r+1), then

logSr(n, p) >
n

ω · p(r−1)/2

with high probability as n → ∞.

Proof. By Proposition 2.2, we may again assume that p = o(1). Set a = p−(r+1)/2/ω =

o(n). Denoting by v and w the leftmost and rightmost vertices of a strongly connected

copy of Kr, as in Proposition 2.4, we see that |w − v| 6 (r − 1)(a − 1). Therefore, all

vertices in a “dangerous” copy ofKr are within distance O(a) of each other. The expected

number of such copies of Kr in G(n, p) is O
(
p(

r
2)ar−1n

)
≪ pan, so the claimed bound

again follows as before. �

Finally, the lower bounds of the form
(
1 + o(1)

)
p
(
n
2

)
in Theorems 1.5 and 1.8 follow

easily from the observation that, by Markov’s inequality, if p ≪ n−2/(r+1) then with high

probability G(n, p) contains o(pn2) copies of Kr. Indeed, if we orient the edges that are

contained in a copy of Kr according to a fixed linear order of the vertex set, then we may

orient the remaining edges arbitrarily.
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3. Upper bound for triangles

In this section we prove the following theorem, which implies the upper bound in

Theorem 1.2, and whose proof contains the key idea introduced in this paper.

Theorem 3.1. Let 0 < p 6 1. Then, with high probability as n → ∞,

D
(
G(n, p), C�

3

)
6 exp

(
6n(log n)2

p

)
.

In order to prove Theorem 3.1, we start with the simple (but key) observation that

knowing the orientation of two edges of a triangle in a C�
3 -free graph is sometimes enough

to uniquely determine the orientation of the third edge. Given any C�
3 -free orientation ~G

of G(n, p), we will use this fact to find a small set of “non-redundant” edges S ⊂ E( ~G)

such that the prescribed orientation ~G is uniquely determined by S. This is formalized

in the deterministic lemma below. We remark that the next sections will use similar

deterministic statements (in Claim 4.4, Claim 5.4, and Lemma 6.4).

Lemma 3.2. Let ~G be a C�
3 -free orientation of a graph G on n vertices. There exists a

set S ⊂ E( ~G) with

|S| 6 2n · α(G)

such that ~G is the unique C�
3 -free orientation of G containing S.

Proof. We prove the lemma by induction on n. For n = 1 it is trivial, so let n > 2 and

assume that the statement is true for n − 1. Pick a vertex v ∈ V (G), and let S ′ be the

set given by the lemma applied to ~G′ = ~G − v. Note that |S ′| 6 2(n − 1)α(G), since

α(G′) 6 α(G), and that ~G′ is the unique C�
3 -free orientation of G′ containing S ′.

Now, let T ⊂ E( ~G) \E( ~G′) be minimal such that ~G is the unique C�
3 -free orientation of

G containing S ′ ∪ T . (Note that such a set exists, since E( ~G) \E( ~G′) has this property.)

Set T+ := {(v, w) : (v, w) ∈ T} be the edges of T oriented away from v; we claim that

|T+| 6 α(G). (5)

Indeed, suppose that there exists an edge (u, w) ∈ E( ~G′) such that (v, u), (v, w) ∈ T+.

Recall that only one orientation of the edge uw can appear together with S ′ in a C�
3 -

free graph, and therefore every C�
3 -free graph containing T \ {(v, w)} contains the edge

(v, w), as we can deduce the orientation of vw from those of uv and uw. Thus, setting

T ′ := T \ {(v, w)}, it follows that ~G is the unique C�
3 -free orientation of G containing

S ′ ∪ T ′, contradicting the minimality of T . Hence the set {w : (v, w) ∈ T+} must in fact

be independent, and therefore we have |T+| 6 α(G), as claimed.

To complete the proof, simply note that the same bound holds for T− := T \ T+, by

symmetry, and hence, setting S := S ′ ∪ T , we have |S| 6 2n · α(G), as required. �

We remark that Lemma 3.2 can be stated as an extremal result about a deterministic

process that resembles graph bootstrap percolation (also known as weak saturation), see

e.g. [5, 6].
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The following corollary is an immediate consequence of Lemma 3.2.

Corollary 3.3. A graph G on n vertices admits at most

2nα(G)∑

i=0

(
e(G)

i

)
2i

C�
3 -free orientations.

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Note that if p2n ≪ (log n)2 then the trivial bound D(G,C�
3 ) 6

2e(G) is sufficient, so we may assume this is not the case. It follows that, with high

probability, we have e
(
G(n, p)

)
=
(
1 + o(1)

)
p
(
n
2

)
and α

(
G(n, p)

)
6

3 logn
p

(by the first

moment method, since the expected number of independent sets of this size is o(1)).

Therefore, by Corollary 3.3,

D
(
G(n, p), C�

3

)
6

2n ·α(G(n,p))∑

i=0

(
e
(
G(n, p)

)

i

)
2i

6
6n log n

p
·
(

pn2

6n logn
p

)
· n6n/p 6 exp

(
6n(log n)2

p

)

with high probability, as required. �

4. Avoiding non-transitive tournaments

Recall that Tr(n, p) denotes the number of orientations of G(n, p) in which every copy

of Kr is transitive. In this section we prove the following two theorems, which (together

with Theorem 3.1) imply the upper bounds in Theorem 1.5.

Theorem 4.1. Let r > 4. If p > n−2/(r+2), then

Tr(n, p) 6 exp

(
O
(
n(log n)2

)

p

)

with high probability as n → ∞.

Theorem 4.2. Let r > 4. If p 6 n−2/(r+2), then

Tr(n, p) 6 exp

(
O
(
n4−r(log n)2

)

p(
r
2)−2

)

with high probability as n → ∞.

Before proving these theorems, let us first note that a slightly weaker version of Theo-

rem 4.1 follows easily from Theorem 3.1. Indeed, if

p ≫ n−2/(r+2)(logn)2/(r+2)(r−3),

then with high probability every triangle in G(n, p) is contained in a copy of Kr (see [15]),

and hence every orientation of G(n, p) in which every Kr is transitive is also C�
3 -free.

8



In order to remove this polylogarithmic factor, and to prove Theorem 4.2, we will use

the following slightly technical lemma, which follows easily from the Janson inequalities

(see, e.g., [3, 11]). For completeness, we provide a proof in the appendix.

Lemma 4.3. For each r > 4, there exists C > 0 such that if

p ≫ n−2/(r+1)(logn)4/(r+1)(r−2),

then the following holds with high probability as n → ∞. Set

tr(n, p) :=

{
Cp2−(

r
2)n3−r logn if p 6 n−2/(r+2)

C logn
p

if p > n−2/(r+2).
(6)

For every v ∈ V
(
G(n, p)

)
and every T ⊂ N(v) of size at least tr(n, p), there exists a copy

of Kr in G(n, p) containing v and at least two vertices of T .

To prove Theorems 4.1 and 4.2, we now simply repeat the proof of Theorem 3.1,

replacing α(G) by tr(n, p).

Proof of Theorems 4.1 and 4.2. We begin with a deterministic claim corresponding to

Lemma 3.2. Given n ∈ N and p ∈ (0, 1), let G be a graph on n vertices that satisfies the

conclusion of Lemma 4.3, that is, for every v ∈ V (G) and every T ⊂ N(v) of size at least

tr(n, p), there exists a copy of Kr in G containing v and at least two vertices of T .

Claim 4.4. Let ~G be an orientation of G in which every Kr is transitive. There exists a

set S ⊂ E( ~G) with

|S| 6 2n · tr(n, p)
such that ~G is the unique orientation of G containing S in which every Kr is transitive.

Proof of Claim 4.4. Observe first that, since every copy of Kr in G is transitive in ~G,

every triangle in G that is contained in a copy of Kr is also transitive. Fix an ordering

v1, . . . , vn of V (G), let k ∈ [n], and suppose that we have already found a set Sk ⊂
E
(
~G
[
{v1, . . . , vk}

])
such that

|Sk| 6 2k · tr(n, p),
and ~G

[
{v1, . . . , vk}

]
is the unique orientation of G

[
{v1, . . . , vk}

]
containing Sk in which

every triangle that is contained in a copy of Kr in G is transitive.

Now, let Sk+1 ⊂ E
(
~G
[
{v1, . . . , vk+1}

])
be minimal such that Sk+1 ⊃ Sk, and such

that ~G
[
{v1, . . . , vk+1}

]
is the unique orientation of G

[
{v1, . . . , vk+1}

]
containing Sk+1

in which every triangle that is contained in a copy of Kr in G is transitive. Setting

T+ := {w : (vk+1, w) ∈ Sk+1}, we claim that

|T+| 6 tr(n, p). (7)

Indeed, if |T+| > tr(n, p) then there exists a copy of Kr in G containing vk+1 and at

least two vertices u, w ∈ T+, and hence the triangle uwvk+1 must be transitive in ~G. But

this means that (as in the proof of Lemma 3.2) we can deduce the orientation of either

9



uvk+1 or wvk+1 from that of the other, together with that of uw, and hence Sk+1 is not

minimal. This contradiction proves (7). Similarly, defining T− := {w : (w, vk+1) ∈ Sk+1},
an analogous argument shows that |T−| 6 tr(n, p). Proceeding inductively, we obtain a

set S = Sn as claimed. �

We now prove Theorem 4.1. Suppose p > n−2/(r+2). It follows from Claim 4.4 (and

Lemma 4.3) that, with high probability,

Tr(n, p) 6

2n · tr(n,p)∑

i=0

(
pn2

i

)
2i 6 n3Cn/p ·

(
pn2

2Cn logn
p

)
6 exp

(
2Cn(log n)2

p

)
,

as required.

To prove Theorem 4.2, we suppose from now on that p 6 n−2/(r+2). Note that if

p(
r
2)−1nr−2 6 (log n)2 then the trivial bound 2e(G) is sufficient, so we may assume this is

not the case. It follows that, with high probability, we have e
(
G(n, p)

)
=
(
1 + o(1)

)
p
(
n
2

)

and G(n, p) satisfies the conclusion of Lemma 4.3. Hence, by Claim 4.4,

Tr(n, p) 6

2n · tr(n,p)∑

i=0

(
pn2

i

)
2i 6 exp

(
O
(
tr(n, p) · n log n

))

with high probability, as required. �

5. Avoiding strongly connected tournaments

Recall that Sr(n, p) denotes the number of orientations of G(n, p) in which no copy of

Kr is strongly connected. In this section we prove the following theorems, which (together

with Theorem 3.1) imply the upper bound in Theorem 1.8.

Theorem 5.1. Let r > 4. If n−2/(r+1) ≪ p 6 (logn)−2/(r−2)
, then

Sr(n, p) 6 exp

(
O
(
n(log n)1+1/(r−2))

p(r−1)/2

)
(8)

with high probability as n → ∞.

Theorem 5.2. If p > (log n)−2/(r−2)
, then

Sr(n, p) 6 exp

(
O
(
n(log n)2

)

p

)
(9)

with high probability as n → ∞.

The proofs of Theorems 5.1 and 5.2 are similar to the proofs of Theorems 4.1 and 4.2.

Instead of Lemma 4.3, we will use the following straightforward fact, which also follows

easily from the Janson inequalities (see the appendix).
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Lemma 5.3. For every r > 3, there exists C > 0 such that the following holds with high

probability as n → ∞. Set

sr(n, p) =

{
C(logn)1/(r−1)

pr/2
if p 6 (log n)−2/(r−1)

C logn
p

if p > (logn)−2/(r−1).

Then every set S ⊂ V
(
G(n, p)

)
with |S| > sr(n, p) contains a copy of Kr.

We can now easily deduce Theorem 5.1, using the method of the previous two sections.

Proof of Theorems 5.1 and 5.2. Once again, we begin with a deterministic claim (cf.

Lemma 3.2 and Claim 4.4). Given n ∈ N and p ∈ (0, 1), let G be a graph on n ver-

tices that satisfies the conclusion of Lemma 5.3 for r − 1, that is, every set of vertices of

G of size at least sr−1(n, p) contains a copy of Kr−1.

Claim 5.4. Let ~G be an orientation of G in which no copy of Kr is strongly connected.

There exists a set S ⊂ E( ~G) with

|S| 6 2n · sr−1(n, p)

such that ~G is the unique orientation of G containing S with no strongly connected Kr.

Proof of Claim 5.4. We will use the simple observation that every orientation of Kr−1

contains a Hamiltonian path. Now, we can simply choose the set S greedily, vertex by

vertex, as before. To be precise, fix an ordering v1, . . . , vn of V (G), let k ∈ [n], and

suppose that we have already found a set Sk ⊂ E
(
~G
[
{v1, . . . , vk}

])
such that

|Sk| 6 2k · sr−1(n, p),

and ~G
[
{v1, . . . , vk}

]
is the unique orientation of G

[
{v1, . . . , vk}

]
containing Sk in which

no copy of Kr is strongly connected.

Now, let Sk+1 ⊂ E
(
~G
[
{v1, . . . , vk+1}

])
be minimal such that Sk+1 ⊃ Sk, and such that

~G
[
{v1, . . . , vk+1}

]
is the unique orientation of G

[
{v1, . . . , vk+1}

]
containing Sk+1 in which

no copy of Kr is strongly connected. Setting T+ := {w : (vk+1, w) ∈ Sk+1}, we claim that

|T+| 6 sr−1(n, p). (10)

Indeed, if T+ were larger than this, then there would exist a copy of Kr−1 in G[T+],

and this copy of Kr−1 contains a Hamiltonian path in ~G, from a to b, say. Moreover,

the orientations of the edges in this path are determined by Sk, and we can therefore

deduce the orientation of the edge bvk+1 from Sk+1 \ {(vk+1, b)}. This contradicts the

minimality of Sk+1, and hence proves (10). Defining T− := {w : (w, vk+1) ∈ Sk+1}, a
similar argument shows that |T−| 6 sr−1(n, p). Taking S = Sn finishes the proof. �

Suppose now that n−2/(r+1) ≪ p 6 (logn)−2/(r−2). It follows from Claim 5.4 (and the

first case of Lemma 5.3) that, with high probability,

Sr(n, p) 6

2n · sr−1(n,p)∑

i=0

(
pn2

i

)
2i 6 exp

(
O
(
n(log n)1+1/(r−2))

p(r−1)/2

)
,

11



and Theorem 5.1 is proved. To prove Theorem 5.2, note that if p > (log n)−2/(r−2), then

a similar calculation using Lemma 5.3 shows that

Sr(n, p) 6

2n · sr−1(n,p)∑

i=0

(
pn2

i

)
2i 6 exp

(
O
(
n(log n)2

)

p

)

with high probability, as claimed. �

6. Avoiding longer cycles

In this section, we show an upper bound for the number of orientations avoiding ori-

ented cycles of length r (denoted by C�
r ). As stated in Conjecture 1.3, we believe sub-

stantially better upper bounds are possible for r > 4.

Theorem 6.1. Let r > 3. Then

logD
(
G(n, p), C�

r

)
= Õ

(
n

p

)

with high probability as n → ∞.

The proof of Theorem 6.1 follows directly from Lemma 6.4 below, which is a generali-

sation of Lemma 3.2 to longer cycles. To prove Lemma 6.4, we start with the following

simple observation.

Lemma 6.2. Let ~G be a C�
r -free graph, v a vertex of ~G and P = (w1, . . . , wk) a directed

path in ~G[N(v)] such that wi ∈ N+(v) for 1 6 i 6 r − 2. Then P ⊂ N+(v).

Proof. If the conclusion were not true, there would exist a minimal i such that wi ∈
N−(v). By hypothesis, we would have i > r − 2. But then (v, wi−(r−2), . . . , wi, v) would

be a directed cycle of length r, a contradiction. �

By reversing the orientation of all edges of G, we can deduce from Lemma 6.2 that if

the last r− 2 vertices of a directed path contained in N(v) are in N−(v), then the whole

path is in N−(v).

The main additional ingredient in the proof of Lemma 6.4 is the Gallai–Milgram the-

orem [8]; the proof of Theorem 6.1 was inspired by a similar application in [1].

Theorem 6.3 (Gallai–Milgram [8]). The vertex set of every directed graph ~G can be

partitioned into at most α(G) vertex-disjoint directed paths.

We are now ready to prove the main lemma of this section.

Lemma 6.4. Let ~G be a C�
r -free orientation of a graph G on n vertices. There exists a

set S ⊂ E( ~G) with

|S| 6 2n · (r − 2)α(G)

such that ~G is the unique C�
r -free orientation of G containing S.

12



Proof. We proceed by induction on n. Let v ∈ V (G) be any vertex of G, and let G′ =

G \ v. By induction, there exists a set S ′ ⊂ E( ~G′) of size 2(n − 1) · (r − 2)α(G) such

that ~G′ = ~G \ v is the unique C�
r -free orientation of G′ containing S ′. Our aim is to find

a set of edges T of size 2(r − 2)α(G) such that ~G is the unique C�
r -free orientation of G

containing S ′ ∪ T .

We start by applying Theorem 6.3 to partition the graph ~G[N+(v)] into a collection

P+ of at most α(G) oriented paths, and define T+ to be the set of edges given by

T+ =
{
(v, w) : w is one of the first r − 2 vertices in some P ∈ P+

}
.

We define T− similarly by decomposing ~G[N−(v)] into at most α(G) oriented paths and

taking the last r − 2 vertices of each path. We claim that T = T+ ∪ T− has the desired

property.

To check the claim, we must show that any C�
r -free orientation

~H ofG containing S ′∪T

equals ~G. By the induction hypothesis, ~G[V (G′)] = ~H [V (G′)], so it suffices to show that

N+
G (v) ⊂ N+

H(v) and N−
G (v) ⊂ N−

H (v). Since ~H contains T+ ⊂ T , we know N+
H (v)

contains the first r − 2 vertices in each path of P+. By Lemma 6.2, N+
H (v) contains all

paths in P+, and since P+ was a partition of N+
G (v), we conclude that N+

G (v) ⊂ N+
H (v).

A similar argument works for T−, and therefore we have checked the claim. Taking

S = S ′ ∪ T finishes the proof. �

Proof of Theorem 6.1. This proof closely mirrors that of Theorem 3.1, with Lemma 6.4

replacing Lemma 3.2. We obtain

D
(
G(n, p), C�

r

)
6

2n(r−2) ·α(G(n,p))∑

i=0

(
e
(
G(n, p)

)

i

)
2i 6 exp

(
6n(r − 2)(log n)2

p

)

with high probability, as required. �

7. Open problems

In this section we will mention some further open problems and possible directions

for future research; in particular, we will discuss the problem of removing the polyloga-

rithmic factors that separate the upper and lower bounds in Theorems 1.2, 1.5 and 1.8,

and the problem of determining the behaviour of D
(
G(n, p), ~H

)
, the number of ~H-free

orientations of G(n, p), for an arbitrary oriented graph ~H.

First, we remark that if ~H is contained in a transitive tournament then the situation

is different; more precisely, the following theorem is an easy consequence of a well-known

theorem of Rödl and Ruciński [14].

Theorem 7.1. Let r > 3 and p ≫ n−2/(r+1). With high probability, every orientation of

G(n, p) contains a transitive copy of Kr.
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To deduce Theorem 7.1 from the main theorem of [14], simply fix a linear order of

the vertices, and define an edge-colouring from an orientation by colouring forward-

pointing edges blue and backwards edges red. In this setting, a monochromatic copy

of Kr corresponds to a transitively-oriented Kr (but not vice-versa). If p ≫ n−2/(r+1),

then [14, Theorem 1] ensures (with high probability) the existence of a monochromatic

copy of Kr in any 2-colouring of G(n, p), and therefore for this range of p it is impossible

to avoid a transitively-oriented copy of Kr.

We remark that Theorem 7.1 does not give the correct threshold for the event “every

orientation of G(n, p) contains a transitive triangle”, since every orientation of K4 con-

tains a transitive triangle, and the event {K4 ⊂ G(n, p)} has a threshold at Θ(n−2/3).

Nevertheless, we suspect that n−2/(r+1) is the correct threshold for the event “every ori-

entation of G(n, p) contains a transitive copy of Kr” for every r > 4.

Therefore, we will assume throughout this section that ~H contains a cycle. For this

case, we state (somewhat imprecisely) the central question that is suggested by the work

in this paper.

Question 7.2. Is the lower bound construction described in Section 2 always sharp?

The results proved in this paper provide some evidence in favour of a positive answer to

this question (at least in a weak sense). It is moreover plausible that it is true in a much

stronger sense: that (with high probability) almost all ~H-free orientations of G(n, p) are

“close” to one of the orientations given by the construction described in Section 2.1

Problem 7.3. Determine the typical structure of an ~H-free orientation of G(n, p).

For example, in the case ~H = C�
3 one might hope to prove that if p ≫ n−1/2, then

the following holds with high probability: for almost all C�
3 -free orientations of G(n, p),

there exists an ordering of the vertices such that Θ(n/p) edges are oriented backwards,

and all but o(n/p) of those edges have length O(1/p2).

7.1. Removing the polylogarithmic terms. An important (and probably very chal-

lenging) step in the direction of Problem 7.3 would be to remove the polylogarithmic

factor between our upper and lower bounds on log Tr(n, p) and log Sr(n, p).

Problem 7.4. Determine the typical values of log Tr(n, p) and logSr(n, p) up to a con-

stant factor for each r > 3 and every function p ≫ n−2/(r+1).

Note that some polylogarithmic factor is necessary, at least when p is large, since

Tr(n, 1) = Sr(n, 1) = n!

for every r > 3. In the case r = 3, we conjecture that a combination of the lower

bounds given by Propositions 2.1 and 2.2 is sharp up to the implicit constant factor in

the exponent.

1Of course, one can ask the same questions for a family ~H of forbidden oriented graphs, such as the
family of non-transitive tournaments (or the family of strongly-connected tournaments) of a given size.
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Conjecture 7.5. D
(
G(n, p), C�

3

)
6 2O(n/p) · n! for every p > n−1/2.

7.2. General forbidden structures. In this section we will discuss the general lower

bound on D
(
G(n, p), ~H

)
given by the construction described in Section 2, where ~H is an

arbitrary oriented graph that contains a cycle. Let m2( ~H) denote the 2-density of the

underlying graph of ~H,

m2( ~H) = max

{
e(~F )− 1

v(~F )− 2
: ~F ⊂ ~H, v(~F ) > 3

}
.

Note that any oriented graph can be decomposed into strongly connected components in

a unique way, and let s( ~H) denote the number of strongly connected components of ~H.

Proposition 7.6. Suppose that ~H contains a cycle. If p ≫ n−1/m2( ~H) and ω ≫ 1, then

logD
(
G(n, p), ~H

)
>

pn

ω
·max

{(
pe(

~F )−1ns(~F )−1
) −1

v(~F )−s(~F )−1
: ~F ⊂ ~H, v(~F ) > s(~F )+ 2

}

with high probability as n → ∞.

Proof. When p = Ω(1), the claimed lower bound is of order o(n), and therefore follows

from Proposition 2.2. When p = o(1), we first need to observe that, since ~H contains a

cycle, there is a strongly connected component ~F ⊂ ~H with v(~F ) > 3, and this implies

that there exists ~F ⊂ ~H with v(~F ) > s(~F ) + 2 and pe(
~F )−1ns(~F )−1 = o(1). Given any such

~F , consider the construction of Section 2 with

a =
1

ω
·
(
pe(

~F )−1ns(~F )−1
) −1

v(~F )−s(~F )−1
,

that is, orient all edges of length at least a from left to right. Note that a ≫ 1, by

our choice of ~F , and that p ≫ n−1/m2( ~H) implies that a = o(n). Now, observe that the

expected number of potential copies of ~F in G(n, p) is

O
(
ns(~F )av(

~F )−s(~F )pe(
~F )
)
≪ pan,

since any two vertices in the same strongly connected component of a copy of ~F must lie

within distance O(a) of one another, and since v(~F ) > s(~F ) + 2. By Markov’s inequality,

it follows that with high probability there exists a set of at least pan/2 edges that can be

oriented freely without creating a copy of ~F , and hence of ~H . Since this holds for each
~F ⊂ ~H with v(~F ) > s(~F ) + 2 and pe(

~F )−1ns(~F )−1 = o(1), the claimed bound follows. �

We can now rephrase Question 7.2 more precisely in this setting.

Question 7.7. Suppose that ~H contains a cycle, and let p ≫ n−1/m2( ~H). Is it true that

logD
(
G(n, p), ~H

)
= Θ̃

(
max

~F⊂ ~H, v(~F )>s(~F )+2

{
pn ·

(
pe(

~F )−1ns(~F )−1
) −1

v(~F )−s(~F )−1

})

with high probability as n → ∞?
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Observe that the oriented subgraph ~F ⊂ ~H which corresponds to the maximum in

Proposition 7.6 depends on p, and in general it can change arbitrarily many times as p

increases. A positive answer to Question 7.7 would therefore imply the existence of ~H

for which D
(
G(n, p), ~H

)
exhibits arbitrarily many thresholds between n−1/m2( ~H) and 1.
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Appendix

In this appendix, we will prove Propositions 2.3 and 2.2 and Lemmas 4.3 and 5.3. We

start out by recalling Janson’s inequality, which will be used in two of the proofs (see,

e.g., [3, 11]).

Lemma A.1 (Janson’s inequality). Suppose that {Bi}i∈I is a family of subsets of a finite

set X and let 0 6 p 6 1. Let

µ =
∑

i∈I

p|Bi| and ∆ =
∑

i∼j

p|Bi∪Bj |, (A.11)

where the sum is over ordered pairs and i ∼ j means that i 6= j and Bi ∩Bj 6= ∅. Then,

P(Bi 6⊂ Xp for all i ∈ I) 6 exp

(
−min

{
µ

2
,
µ2

2∆

})
.

A.1. Proofs. We now prove Propositions 2.3 and 2.2 and Lemmas 4.3 and 5.3.

Proof of Proposition 2.3. We will basically repeat the proof strategy of Proposition 2.1;

namely, we will count the number of edges which are contained in a “dangerous Kr”,

that is, a Kr containing two a-short edges incident to a single vertex. This time, we will

replace Markov’s inequality by an application of the second moment method.

Set a = n3−rp1−(
r
2)/4r2, and observe that the bounds on p imply n ≫ a > p−2/4r2.

Note that any non-transitive copy of Kr contains a cyclic triangle, and therefore contains

two a-short edges sharing a vertex. Let X be a random variable counting the number

of such Krs in G(n, p). By first choosing the vertex to which the two a-short edges are

incident, then choosing the other endpoints of those edges, then choosing the remaining

n− 3 vertices arbitrarily, we obtain

E(X) 6 n

(
2a

2

)(
n− 3

r − 3

)
p(

r
2) 6

pan

2r2
.

The above estimate overcounts by considering three of the vertices as special. Compen-

sating for this, we obtain

E(X) > nr−2a2p(
r
2)/rr >

pan

4rr+2
.
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We are done if we show that X 6 pan/r2 with high probability, because forcing every

edge from each of the X copies of Kr to be oriented forward leaves at least pan/2 free

edges.

All that is left is a routine application of the second moment method, the details of

which we include for completeness. Note first that E(X) = Ω(pan) = Ω(n/p) ≫ 1. In

order to compute Var(X), we consider pairs (R1, R2) of edge-intersecting copies of Kr in

Kn, each of which having two a-short edges sharing a vertex. We split into two cases:

(1) To count pairs with |R1 ∩R2| = 2, we choose vertices one by one and observe that

the restriction on a-short edges implies that three elements of R1 ∪ R2 must be

at distance at most a from previous vertices. Therefore, the contribution to the

variance from those pairs is Θ
(
n2r−5a3p2(

r
2)−1

)
= Θ

(
(E(X))2/pan

)
.

(2) If |R1 ∩R2| = r′ for 3 6 r′ 6 r − 1, the contribution to the variance, which we will

denote by Vr′ , is Θ
(
n2r−r′−2a2p2(

r
2)−(

r′

2)
)
. Since Vr′+1/Vr′ = Θ

(
n−1p−r′

)
, we can

conclude that Vr′ is unimodal for this range of p. It thus suffices to bound the cases

r′ = 3 or r′ = r − 1. For those values, (E(X))2/V3 = Θ(na2p3) ≫ pan ≫ 1 and

(E(X))2/Vr−1 = Θ(ap2−r) ≫ 1.

Therefore, the variance is a sum of r − 2 terms, each of which being o
(
(E(X))2

)
. By

Chebyshev’s inequality, X = Θ (E(X)), as desired. �

To prove Proposition 2.2 we will need the following lemma of Goddard, Kenyon, King

and Schulman [9].

Lemma A.2 ([9], Theorem 2.5). Let G be a graph. Then the number of acyclic orienta-

tions of G is at least
∏

v∈V (G)

((
d(v) + 1

)
!
)1/(d(v)+1)

.

Since d(v) = (1 + o(1))pn with high probability whenever p ≫ (logn)/n, Proposi-

tion 2.2 follows from Lemma A.2 and a standard calculation using Stirling’s approxima-

tion.

Proof of Proposition 2.2. We will use the following weak version of Stirling’s inequality,

valid for every n > 1.

(2πn)1/2
(n
e

)n
6 n! 6 e

√
n
(n
e

)n
.

Let xv = d(v) + 1. Lemma A.2, together with the fact that x1/x is monotone decreasing

for x > 3, implies that there are at least

∏

v∈V

(xv!)
1/xv >

∏

v∈V

xv(2πxv)
1/2xv

e
>
∏

v∈V

xv · (2n)1/2nπ1/2xv

e

acyclic orientations of a graph G. In the G(n, p) case, for p ≫ (logn)/n it holds that

d(v) = (1 + o(1))pn for every v with high probability. Therefore, the number of acyclic
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orientations of G(n, p) is at least

(1 + o(1))npnnn ·
√
2nπ1/4p

en
= pnn! / eo(n),

as desired. �

We remark that a simple argument of Manber and Tompa [12] shows that the number

of acyclic orientations of any graph G is at most
∏

v∈V (G)(d(v) + 1). For random graphs,

Reidys [13] showed stronger upper and lower bounds that hold with high probability, as

well as concentration of the logarithm of the number of acyclic orientations around its

expectation.

We now proceed to the proofs of Lemmas 4.3 and 5.3.

Proof of Lemma 4.3. Recall that

tr(n, p) :=

{
Cp2−(

r
2)n3−r logn if p 6 n−2/(r+2),

C(logn)/p if p > n−2/(r+2).

Fix v ∈ [n] and T ⊂ N(v) with |T | = t. Let S be the family of possible vertex sets for

copies of Kr satisfying the conclusion of the lemma, that is,

S =

{
S ∈

(
[n]

k

)
: v ∈ S and |S ∩ T | = 2

}
.

Since T ⊂ N(v), we may assume G(n, p) contains all edges between v and vertices in T .

Therefore, for a given S ∈ S, the edges that must be in G(n, p) for it to form a copy of

Kr are

F (S) =

(
S

2

)
\ ({v} × T ) .

We will use Janson’s inequality to show that

P(F (S) 6⊂ E(G(n, p)) for every S ∈ S) 6 exp(−2t log n). (A.12)

This requires bounding the parameters µ and ∆ in (A.11). We start with bounding µ to

obtain

µ =
∑

S∈S

p|F (S)| =

(
n− 1− t

r − 3

)(
t

2

)
p(

r
2)−2

>
Ct log n

r!
, (A.13)

where in the last inequality we used the definition of t. For bounding ∆, we will need to

consider pairs of copies of Kr which intersect. To analyze the possible intersections, let

K(b, c) =
{
(S1, S2) ∈ S2 : |(S1 ∪ S2) ∩ T | = b, |S1 ∩ S2| = c and F (S1) ∼ F (S2)

}

be the family of pairs of copies of Kr which contribute to ∆, and note that K(b, c) is

always empty unless 2 6 b 6 4, due to the definition of S, and unless 2 6 c 6 r − 1, due

to the definition of the relation ‘∼’. We can thus write

∆(b, c) =
∑

(S1,S2)∈K(b,c)

p|F (S1)∪F (S2)| (A.14)
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so that ∆ =
∑4

b=2

∑r−1
c=2 ∆(b, c). Having defined µ and ∆, our main technical goal will

be to bound min(µ/2, µ2/2∆), which will take several steps. First, to get a more explicit

expression for ∆(b, c), we will use the following simple fact.

Claim A.3. |K(b, c)| 6
(
t
b

)(
n−1−t

2r−b−c−1

)
· 32r.

Proof. To estimate |K(b, c)|, we will count the possible ways of choosing S1 ∪ S2 then

choose whether each element goes in S1, S2, or both. To form S1 ∪ S2, we include v, then

b elements from T , then the remaining elements from outside T . A moment’s thought

reveals that |(S1 ∪ S2) \ (T ∪ {v})| = (2r− c)− (b+ 1), implying the desired bound. �

Note that some simple counting shows that |F (S1) ∪ F (S2)| = 2
(
r
2

)
−
(
c
2

)
− b for every

(S1, S2) ∈ K(b, c). Applying this and Claim A.3 to (A.14), we obtain

∆(b, c) 6

(
t

b

)(
n− 1− t

2r − c− b− 1

)
32rp2(

r
2)−(

c
2)−b =: D(b, c) (A.15)

To understand the behavior of ∆(b, c), we will make a series of claims.

Claim A.4. The sets K(2, 2) and K(3, 2) are empty.

Proof. Let (S1, S2) ∈ K(b, c). If b = 2, then S1 and S2 contain the same two elements

x, y of T . Therefore, {v, x, y} ⊂ S1 ∩ S2, and so c > 3. If b = 3, however, then S1 and

S2 share a single element x of T ; if we also assume c = 2, then the copies of Kr over S1

and S2 share a single edge, which must be {v, x}. But then F (S1) ∩ F (S2) = ∅, because
edges from v to T were excluded from consideration. �

We now state two observations which will simplify future calculations.

Claim A.5. t ≪ pn/(log n).

Proof. This follows from the hypothesis p ≫ n−2/(r+1)(logn)4/(r+1)(r−2). �

Claim A.6. For every b and c, it holds that D(b+ 1, c) 6 D(b, c).

Proof. D(b+ 1, c)/D(b, c) = Θ(t/pn) ≪ 1, by Claim A.5. �

We can now state and prove our main technical claim for proving Lemma 4.3. In the

right-hand side of the inequality below, the denominator is sub-optimal for simplicity of

proof. It is shown only to make the dependence on C explicit.

Claim A.7. The following relation holds between µ and ∆.

min

{
µ

2
,
µ2

2∆

}
>

C

6r · 32r · (r!)2 · t logn.

Proof of Claim A.7. By (A.13), it suffices to bound µ2/∆. We will show that

µ2 >
C

32r · (r!)2 · t logn ·∆(b, c)
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for every b and c such that K(b, c) 6= ∅. We start with b = 2 (thus 3 6 c 6 r − 1, by

Claim A.4). Using inequalities (A.13) and (A.15) and the fact that t > C(log n)/p, we

can bound
µ2

∆(2, c)
>

1

32r · (r!)2 · t2nc−3p(
c
2)−2

>
C

32r · (r!)2 · t logn,

where the last inequality used that nc−3p(
c
2)−3

> 1 for this range of p and c (for c > 4,

this is equivalent to p > n−2/(c+2), which is true since p ≫ n−2/(r+1) and c 6 r − 1). By

Claim A.6, it only remains to check the case (b, c) = (4, 2), which also satisfies the desired

inequality since
µ2

∆(4, 2)
= Θ(pn) ≫ t log n,

by Claim A.5. Summing over valid values of b and c (at most 3r of them) and rearranging

concludes the proof of Case 2, thereby proving the claim. �

By choosing C large enough, Claim A.7 and Janson’s inequality allow us to deduce

(A.12). Since there are at most n choices for v and at most nt choices for T , the conclusion

of the lemma holds with high probability for all v and T by the union bound. �

Now we prove Lemma 5.3. Since this is a simpler application of Janson’s inequality

than the previous one, we will be somewhat brief.

Proof of Lemma 5.3. Fix r > 3 and let C be sufficiently large. Recall that

sr(n, p) =

{
C(logn)1/(r−1)

pr/2
if p 6 (logn)−2/(r−1)

C logn
p

if p > (log n)−2/(r−1).

Denoting s := sr(n, p), by the union bound over all subsets of [n] of size s it is enough to

show that

P(G(s, p) 6⊃ Kr) ≪
(
n

s

)−1

. (A.16)

We define the random variable X to be the number of Krs in G(s, p) and compute the

parameters µ and ∆ in (A.11). We have

µ =

(
s

r

)
p(

r
2) >

Cr−1

2r!
· s log n.

Now we need to consider interactions between two edge-intersecting copies of Kr. Parti-

tioning according to the number of vertices in their intersection, we conclude that

∆ =

r−1∑

a=2

∆(a) =

r−1∑

a=2

(
s

2r − a

)
p2(

r
2)−(

a
2).

The following claim will allow us to use Janson’s inequality.

Claim A.8. We have

min

{
µ

2
,
µ2

2∆

}
>

1

2r
·min

{
Cr−1

2r!
, C

}
· s logn,
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Proof. We split into two cases corresponding to the definition of s.

Case 1: p 6 (logn)−2/(r−1). We will show that µ > ∆/r. We can bound

µ

∆(a)
>

sr · p(r2)

s2r−a · p2(r2)−(a2)
=
(
s · p(a+r−1)/2

)a−r

>

(
(logn)1/(r−1) p(a−1)/2

)a−r

> (logn)(2−a)(a−r)/(r−1)
> 1,

where, in the second line, the first inequality follows from the definition of s, the second

from the bound on p and the last from 2 6 a 6 r− 1. We obtain µ > ∆(a), and summing

over a shows that µ > ∆/r, concluding this case.

Case 2: p > (log n)−2/(r−1). In this case, we need to bound µ2/∆ as well. We will do so

by bounding µ2/∆(a) for every 2 6 a 6 r − 1. Replacing s = C(log n)/p and using the

lower bound on p shows that

µ2

∆(a)
= s

(
s · pa/2

)a−1
> Ca−1 · s · (log n)(a−1)(r+1−a)/(r−1) > Ca−1 · s · logn.

Therefore, µ2 > C · s logn · ∆(a). We can again sum over a and rearrange to obtain

µ2/∆ > (C/r) · s logn, which proves this case and therefore the claim. �

Choosing C large enough, we can apply Janson’s inequality and conclude (A.16), which

finishes the proof of Lemma 5.3. �
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Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, São Paulo, SP,

Brazil

E-mail address : yoshi@ime.usp.br

IMPA, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, RJ, Brazil

E-mail address : rob@impa.br
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