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ASYMPTOTIC NORMALITY IN RANDOM GRAPHS

WITH GIVEN VERTEX DEGREES

SVANTE JANSON

Abstract. We consider random graphs with a given degree sequence

and show, under weak technical conditions, asymptotic normality of the

number of components isomorphic to a given tree, first for the random

multigraph given by the configuration model and then, by a conditioning

argument, for the simple uniform random graph with the given degree

sequence. Such conditioning is standard for convergence in probability,

but much less straightforward for convergence in distribution as here.

The proof uses the method of moments, and is based on a new estimate

of mixed cumulants in a case of weakly dependent variables.

The result on small components is applied to give a new proof of a

recent result by Barbour and Röllin on asymptotic normality of the size

of the giant component in the random multigraph; moreover, we extend

this to the random simple graph.

1. Introduction

Let G(n,d) be a random (simple) graph with n labelled vertices and a
given degree sequence d =

(
d1, . . . , dn

)
, chosen uniformly at random among

all such graphs. (We assume tacitly that d is such that some such graph
exists.) We will denote the vertices by v1, . . . , vn; thus vi has by definition
degree di.

The standard way to constuct a random graph G(n,d) is by the configu-
ration model, which was introduced by Bollobás [11]. As is well-known, this
method constructs first a random multigraph, which we denote by G∗(n,d),
and then obtains G(n,d) by conditioning on the event that G∗(n,d) is sim-
ple; see Section 4.

We are, as most papers in this field, interested in asymptotic results as

n→ ∞, where the degree sequence dn = (d
(n)
i )n1 depends on n and satis-

fies suitable conditions. The standard method is to first prove results for
the random multigraph G∗(n,dn) and then obtain corresponding results
for G(n,dn) by conditioning as above. In the present paper, we make the
common assumption that the (asymptotic) degree distribution has a finite
second moment; see Section 2 for precise assumptions. Then, it is well-
known that P

(
G∗(n,dn) is simple

)
> c for some c > 0 (at least for large n),

see Remark 2.3, and as a consequence, any property that holds w.h.p. (i.e.,
with probability tending to 1) for G∗(n,dn) holds w.h.p. also after condi-
tioning on G∗(n,dn) being simple. Hence, the transfer of such results from
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2 SVANTE JANSON

the multigraph G∗(n,dn) to the simple graph G(n,dn) is trivial. (Cf. Bol-
lobás and Riordan [13], where transfer is made possible by far from trivial
arguments also when P

(
G∗(n,dn) is simple

)
→ 0.)

However, it has repeatedly been remarked that this simple method fails
for distributional results, for example that some random variable Xn defined
by the graph is asymptotically normal, since probabilities like P(Xn 6 x)
may be changed by the conditioning. Hence, although in many cases it
seems intuitively clear that a few loops or multiple edges should not affect
the asymptotic results, and we still expect the same asymptotic distribution
for G(n,dn) as for G∗(n,dn), it is typically difficult to prove this rigorously.
We know only two papers where this has been done for asymptotic normality
of some variables, in both cases by first proving a result for G∗(n,dn) and
then showing that the proof can be modified to work for G(n,dn): Janson
and Luczak [24] showing asymptotic normality of the size of the k-core
(using a rather complicated extra argument for G(n,dn)) and Riordan [36]
showing asymptotic normality of the size of the giant component in the
weakly supercritical case (using a simple extra argument for G(n,dn) noting
that the proof only uses local explorations involving o(n) vertices).

The purpose of present paper is to do this in another case. Barbour and
Röllin [8] recently proved, for G∗(n,dn), a theorem on asymptotic normality
of a class of “local” statistics that include, for example, the number of small
components of a given type. They further used this to show asymptotic nor-
mality of the size of the giant component in the supercritical case. Our main
results show that the same results on small components and the size of the
giant hold for the random simple graph G(n,dn). (We also weaken some-
what the technical conditions for these results in [8].) Precise statements
are given in Section 3 below.

We achieve these results by the time-honoured method of moments. (Bar-
bour and Röllin [8] use Stein’s method.) Using the method of moments, we
show joint convergence of, e.g., the number of components of a given type
and the numbers of loops and pairs of parallel edges in G∗(n,dn); we may
then obtain the result for G(n,dn) by conditioning on the latter numbers
being 0. In order to do this, we thus show convergence of mixed moments.
Calculations of means and (co)variances are rather straightforward, and the
central part of the proof is to obtain bounds on higher-order cumulants.
This is similar to results by Féray [17, 18].

To describe the idea, consider as a simple case the covariance Cov(I1, I2)
of two indicators, each indicating that a particular set of vertices (and half-
edges) form a copy of a given graph H. If the two sets of vertices are disjoint,
then I1 and I2 are only weakly dependent; we exploit this by constructing

a modification I ′2 of I2 that is independent of I1, and such that I ′2
d
= I2

and P(I ′2 6= I2 | I1) = O(E I2/N). This implies Cov(I1, I2) = E(I1I2) −
E(I1I

′
2) = E

(
I1(I2−I ′2)

)
= O

(
E I1 E I2/N

)
. The general case is an extension

of this, although the details are quite technical, see Section 6. (The idea
to construct a suitable independent modification is used also in the Stein
coupling constructed by [8], although their modification is both constructed
and used differently from our modifications.)
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One feature of the construction that may be of independent interest is
that we in the proof use the bipartite version of the configuration model
to construct a random bipartite graph with the vertices [n] of G∗(n,dn) as
vertices on one side, and the edges of G∗(n,dn) as vertices on the other
side; equivalently, we construct first the random bipartite graph obtained
by bisecting each edge in G∗(n,dn); see Section 4.

Remark 1.1. As remarked by Barbour and Röllin [8], there are not many
papers at all proving asymptotic normality for statistics of the multigraph
G∗(n,dn); apart from [24], [36] and [8] just mentioned, we know of Angel,
van der Hofstad and Holmgren [1] (number of loops and multiple edges when
the second moment of the degree distribution is infinite; this is obviously
not relevant for simple graphs), KhudaBukhsh, Woroszylo, Rempa la and
Koeppl [30] (an epidemic on the graph), Ball [4] (a more general epidemic
model, and the giant component in site or bond percolation), and Athreya
and Yogeshwaran [3] (certain statistics in a subcritical case).

Remark 1.2. The method of moments is a very old method. Applications
of it are typically messy and lead to long calculations using combinatorial
estimates of multiple sums, while other methods may give shorter and more
elegant proofs. Nevertheless, it is a powerful method that often works in
combinatorial problems. I have seen several cases where results first have
been proved by the method of moments and later reproved using other meth-
ods. It seems likely that the results here will be another example of this in
the future. For example, perhaps a combination of Stein’s method for normal
approximation and Stein–Chen’s method for Poisson approximation might
be used instead of the method of moments to show the joint convergence
used in our proofs below.

2. Assumptions and notation

2.1. Some notation. [n] := {1, . . . , n}. N := {0, 1, . . . }. Sn is the set of
all permutations of [n].

(n)r := n!/(n − r)! = n(n − 1) · · · (n − r + 1) is the descending factorial.
Similarly,

((n))r :=
n!!

(n− 2r)!!
= n(n− 2) · · · (n− 2(r − 1)) = 2r(n/2)r. (2.1)

(x)+ := max(x, 0). We interpret 0/0 := 0 and 0 · ∞ := 0.
Unspecified limits are as n→ ∞; w.h.p. (with high probability) means

with probability tending to 1 as n→ ∞.
d−→ and

p−→ denote convergence in
distribution and probability, respectively. C and c denote positive constants
that may be different at each occurrence.

If G is a (multi)graph, we let V (G) denote its vertex set and E(G) its edge
set; furthermore, v(G) := |V (G)| and e(G) := |E(G)| are the numbers of
vertices and edges of G, and q(G) is its number of components. The number
of vertices of degree k is denoted by nk(G). For convenience, we often write
v ∈ G for v ∈ V (G) and |G| for |V (G)|.

The degree of a vertex v ∈ G is denoted dG(v). (A loop in a multigraph
contributes 2 to the degree of its endpoint.) Thus

∑
v∈G dG(v) = 2e(G).
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The component containing a vertex v ∈ G is denoted C(v) = CG(v). It
may be regarded as a rooted multigraph, i.e., a multigraph with a distin-
guished vertex, viz. v. We denote the components of G arranged in decreas-
ing order by C1(G), C2(G), . . . , Cq(G)(G) (with ties resolved by any fixed rule,
e.g. lexicographically).

If X is a random variable and E an event, then E(X; E) := E
(
X1{E}

)
.

We may ignore obvious roundings and write e.g. n1/2 or εn when we mean
the nearest larger or smaller integer.

2.2. Basic assumptions. As in the introduction, we assume that for each

n > 1, we are given a degree sequence dn = (di)
n
1 . Thus di = d

(n)
i depends on

n, as do many other quantities introduced below, but often we omit n from
the notation for convenience. Also as above, G(n,dn) is the random simple
graph with degree sequence dn, and G∗(n,dn) is the random multigraph
with degree sequence dn given by the configuration model. (We assume
tacitly that dn is such that a graph with these vertex degrees exists; in
particular,

∑
i di is even.) Let

N :=

n∑

i=1

di. (2.2)

Thus the random graph G∗(n,dn) has n vertices and N/2 edges.
Let nk = nk(dn) := |{i ∈ [n] : di = k}|, the number of vertices of degree

k in G∗(n,dn). Further, let Dn denote the degree of a uniformly random
vertex, i.e., Dn is a random variable with the distribution

P(Dn = k) = nk/n, k > 0. (2.3)

We will always assume the following.

(A1) Dn, the degree of a randomly chosen vertex, converges in distribution
to a random variable D with a finite and positive mean µ := ED. In
other words, there exists a probability distribution (pk)∞k=0 such that

nk
n

→ pk = P(D = k), k > 0, (2.4)

and µ =
∑∞

k=0 kpk ∈ (0,∞).
(A2) EDn → ED = µ. Assuming (A1), this is equivalent to Dn being

uniformly integrable.

(See e.g. [19, Theorem 5.5.9] for the equivalence with uniform integrabil-
ity.) Sometimes we will also use one or several of the following assumptions.

(A3) ED2
n → ED2 < ∞. Assuming (A1), this is equivalent to D2

n being
uniformly integrable. (This will always be assumed when studying
G(n,dn).)

(A4) supn ED
m
n < ∞ for every m < ∞. This implies uniform integrability

of every powers Dm
n , and thus, assuming (A1), EDm

n → EDm for every
m > 0; in particular (A2) and (A3). (We use this strong condition only
in a few results.)

(A5) ED(D − 2) > 0. This is the supercritical case, when G∗(n,dn) w.h.p.
has a giant component of order Θ(n), see Molloy and Reed [32, 33]
with refinements in, e.g., [25], [13], [28].
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(A6) p1 > 0 and p0 + p1 < 1. This excludes some less interesting cases; see
Remark 3.5.

The degree sequences dn will be fixed throughout the paper, and unspec-
ified constants may depend on them through (explicit or implicit) constants
in these assumptions, for example the distribution (pi).

Note that by (2.2), EDn = N/n. Hence, (A2) is equivalent to

N/n → µ. (2.5)

In particular, since 0 < µ < ∞ by (A1), N = Θ(n). Hence, in estimates
with unspecified constants, it does not matter whether we use e.g. O(n) or
O(N).

Remark 2.1. We assume that G(n,dn) has n vertices. This is customary,
but as always just for notational convenience. See [13], where the results
are formulated with the given dn allowed to have arbitrary lengths → ∞.

Remark 2.2. One common version of the configuration model uses random
vertex degrees di that are i.i.d. copies of a random variable D (e.g. ignor-
ing one half-edge when the sum of degrees is odd). Then, (A1) holds a.s.,
and thus (with suitable assumptions on D), the results below apply condi-
tioned on the vertex degrees. However, unconditioned results are somewhat
different, see Section 12.

Let dmax := maxi di. The uniform integrability of D2
n in (A3) means

that for any (deterministic) sequence ω(n) → ∞, ED2
n1{Dn > ω(n)} =

1
n

∑
i d

2
i 1{di > ω(n)} → 0; this implies (choosing e.g. ω(n) = n1/3) that

dmax = o
(
n1/2

)
. (2.6)

(A3) obviously also implies

ED2
n = O(1). (2.7)

Remark 2.3. The condition (2.7) (together with e.g. (A1)) implies

lim inf
n→∞

P
(
G∗(n,dn) is simple

)
> 0, (2.8)

see [21; 23]; hence (A1)–(A3) imply (2.8). The lower bound (2.8) is the basis
for most applications of the configuration models to the random simple graph
G(n,dn), since if often allows simple conditioning as said in the introduction.

When also (2.6) holds, (2.8) can easily be shown using the method of
moments; this has been the standard method since the introduction of the
configuration model [11], see [21] for a proof with no further assumptions.
This method is also the basis of our proofs below.

Remark 2.4. We will assume (A3) for our results for the simple graph
G(n,dn). In fact, the main results really require only (2.6) and (2.7); by
considering subsequences we may then assume that ED2

n → µ2 for some
µ2 < ∞, and the proofs then hold with ED2 replaced by µ2 in e.g. (7.7).
However, we prefer to state the results for the more natural condition (A3).
(An example satisfying (2.6) and (2.7) but not (A3) is obtained from any

example satisfying (A1)–(A3) by changing the degrees of n1/3 vertices to

n1/3.)
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As said above, it is shown in [21; 23] that (2.8) holds also without assuming
(2.6), but the proofs are then somewhat more complicated, and we do not
know whether they can be used to replace the assumption (A3) by (2.7) in
the theorems below. In fact, it seems likely that the results extend also to
cases without (2.7), but that would require completely different methods.

2.3. The corresponding branching process. The usual exploration pro-
cess reveals the edges (i.e., pairings of half-edges) in G∗(n,dn) one by one as
they are needed, starting with the half-edges at a vertex v and then continu-
ing with the unpaired half-edges at the neighbours of v, and so on, until the
component C(v) is fully explored. Let V be a uniformly random vertex in
G∗(n,dn). As is well-known, see e.g. [13, Lemma 4] for a formal statement,
assuming (A1)–(A2), the exploration process of C(V ) may be approximated
by a branching process T (regarded as a rooted tree, finite or infinte), in
the sense that for any fixed K, the first K generations of the two processes
may be coupled such that they are isomorphic w.h.p. (In particular, if one
of the processes has only k < K non-empty generations, then so has the
other w.h.p.) The branching process T is a Galton–Watson process where
the root has offspring distribution D as in (A1), and all other vertices have

offspring distribution D̂ − 1 where D̂ has the size-biased distribution

P(D̂ = k) := p̂k :=
kpk
µ
, k > 1. (2.9)

For a rooted unlabelled tree T , we define

pT := P(T ∼= T ), (2.10)

with ∼= meaning isomorphism (i.e., equality) as unlabelled rooted graphs.
Similarly, if T is an unrooted unlabelled tree, we define pT by (2.10), now
interpreting ∼= as isomorphism (equality) of unlabelled unrooted graphs.

For random variables that are functionals g(T ) of T , we write

E
† g(T ) := E

(
g(T ); |T | <∞

)
=

∑

T

pT g(T ), (2.11)

summing over finite unlabelled (rooted or unrooted) trees T . Obviously, it
here suffices that g is defined for finite trees.

We denote the probability generating function of D by

f(z) := E zD =
∑

k

pkz
k. (2.12)

In the supercritical case (A5), let ζ be the unique root in [0, 1) of

f ′(ζ) = µζ. (2.13)

(If (A5) does not hold, we may take ζ := 1, which always satisfies (2.13).)
As is well-known, then P

(
|T | <∞

)
= f(ζ). See further Sections 3.3 and 11.

3. Main results

The main results are stated below. Proofs are given in later sections. We
begin with some notation for subgraph counts.

LetG andH be (multi)graphs. (Think of G as big and H small.) We often
regard the small graph H as unlabelled; in particular, when we talk about
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several distinct graphs H, we mean non-isomorphic. However, for formal
definitions it is convenient to regard both G and H as labelled, meaning
that both vertices and edges, and also half-edges, are labelled. (For simple
graphs it suffices to label vertices, since the edges are identified by their
endpoints. Similarly, half-edges need to be labelled only for loops.) We
count subgraphs of G isomorphic to H in four different ways:

• ZH(G) is the number of labelled copies of H in G.
• Zu

H(G) is the number of unlabelled copies of H in G.

• ZH(G) is the number of labelled isolated copies of H in G.

• Z
u

H(G) is the number of unlabelled isolated copies of H in G.

Thus, ZH(G) can be defined as the number of injective maps H → G,
mapping vertices to vertices, edges to edges and half-edges to half-edges
such that the relations between them are preserved. ZH(G) is the number
of such maps such that the vertices in the image H ′ of H have no other
edges than those in H ′, i.e., the degrees are preserved. Furthermore,

Zu

H(G) =
1

aut(H)
ZH(G), Z

u

H(G) =
1

aut(H)
ZH(G), (3.1)

where aut(H) = ZH(H) is the number of automorphisms of H. If H is

connected, then Z
u

H(G) is the number of components of G isomorphic to H.
The simple relations (3.1) shows that it is equivalent to study labelled or

unlabelled copies. Nevertheless we will consider both since it often is natural
to count unlabelled copies (for example when counting components), but
labelled copies often (but not always) are more convenient in our proofs.

We simplify the notation and write ZH := ZH
(
G(n,dn)

)
and Z∗

H :=

ZH
(
G∗(n,dn)

)
, and similarly for the other versions of subgraph counts.

Example 3.1. Let C1 be a loop and C2 a double edge. Then a multigraph
G is simple if and only if Zu

C1
(G) = Zu

C2
(G) = 0. If particular, we obtain

G(n,dn) from G∗(n,dn) by conditioning on the event Zu∗
C1

= Zu∗
C2

= 0.

3.1. Small components. Our first theorem gives the asymptotic distribu-
tions for the number of small components of different types in G∗(n,dn).
It is well-known that most small components are trees. More precisely, for
a tree T , there is typically a linear number of components T , and asymp-
totic normality was recently shown by Barbour and Röllin [8] using Stein’s
method. We give a new proof of this (under somewhat weaker conditions),
since this is the basis of our work below. We complement this with the easy
results that the number of components isomorphic to a given conneted uni-
cyclic graph has an asymptotic Poisson distribution, and that there w.h.p.
is no small (i.e. fixed size) component with more than one cycle. The latter
results follow by standard moment calculations and are presumably known,
although we do not know any specific reference.

Theorem 3.2 (Mainly [8]). Consider the random multigraph G∗(n,dn) and
assume (A1)–(A2) and (A6).

(i) If H is a tree, then

Z
u∗
H − EZ

u∗
H√

n

d−→ N
(
0, σ2H

)
(3.2)
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for some σ2H = σH,H > 0 given by (3.7) below. Furthermore,

EZ
u∗
H /n→ λH :=

µ−e(H)

aut(H)

∏

u∈H

pdH (u)dH(u)! (3.3)

and, if v(H) > 1,

σ2H > 0 ⇐⇒ λH > 0 ⇐⇒ dH(u) ∈ {k : pk > 0} ∀u ∈ H. (3.4)

Moreover, for every tree H,

λH = pH/|H|, (3.5)

where pH is given by (2.10) (for unrooted H).
(ii) If H is a connected unicyclic multigraph, so e(H) = v(H), then

Z
u∗
H

d−→ Po(λH), (3.6)

with λH as in (3.3).
(iii) If H is a connected multigraph with more than one cycle, i.e., e(H) >

v(H), then Z
u∗
H = 0 w.h.p.

Moreover, the limits in (i)–(iii) hold jointly, for any finite number of distinct
connected multigraphs Hi, with a joint limit N

(
0,Σ

)
for the trees, for a

covariance matrix Σ =
(
σHi,Hj

)
given by

σH1,H2 := δH1,H2λH1 + λH1λH2

(2e(H1)e(H2)

µ
−

∑

k>0

nk(H1)nk(H2)

pk

)
,

(3.7)

and with the Poisson limits in (ii) independent of each other and of the joint
normal limit in (i). Furthermore, this holds with convergence of all mixed
moments. In particular, if H1 and H2 are trees, then

Cov
(
Z

u∗
H1
, Z

u∗
H2

)
= σH1,H2n+ o(n). (3.8)

Moreover, if each tree Hi has v(Hi) > 1 and satisfies the condition in (3.4),
then the covariance matrix Σ is non-singular.

In (3.7), δH1,H2 is the Kronecker delta, equal to 1 when H1 = H2 (as
unlabelled graphs); furthermore, recall that 0/0 = 0 and 0 · ∞ = 0.

Remark 3.3. The case v(H) = 1, i.e. v = K1, has to be excepted in (3.4),
since trivially Zu∗

K1
= n0 is deterministic, so σ2

K1
= 0.

Remark 3.4. The moment convergence in (3.2) implies that if H is a tree
such that σ2H > 0, then (3.2) can be written

Z
u∗
H − EZ

u∗
H(

VarZ
u∗
H

)1/2
d−→ N(0, 1), (3.9)

so Z
u∗
H really is asymptotically normal. The same applies in other theorems

below, e.g. Theorem 3.9.

Remark 3.5. The assumption (A6) excludes the two extremal cases p1 = 0
and p0 + p1 = 1, which are less interesting in the present context; in these
cases, there are only a few (o(n)) small components except (possibly) isolated
vertices and edges. Theorem 3.2 hold also when (A6) fails, except that then
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σ2H = 0 for every tree H (and (3.4) may fail) and thus e.g. (3.2) says only that
the variable converges to 0 in probability; cf. Theorem 3.10 and Remark 7.11,
where (A6) is not assumed.

Remark 3.6. Cf. the similar results for Erdős–Rényi graphs G(n, p) and
G(n,m), shown by e.g. [16], [6], [7]; see Example 12.3.

Remark 3.7. In spite of (3.3), we cannot in general replace EZ
u∗
H by its

asymptotic value nλH in (3.2); the reason is that this would require EZ
u∗
H =

nλH + o
(
n1/2

)
, and this rate of convergence in (3.3) does not hold without

further assumptions on the rate of convergence in (2.4). In particular, it does
not hold in the case of random vertex degrees mentioned in Remark 2.2, see
Section 12.

Remark 3.8. As said above, we reprove the result by Barbour and Röllin [8]
on tree components. We do not treat the more general class of local statistics
studied in [8], and leave it as an open problem whether our methods apply
to them in full generality. On the other hand, we include below results on
subgraph counts not covered by [8].

One of our main results is that Theorem 3.2 transfers to the simple random
graph G(n,dn), under weak assumptions. Obviously, we have to consider
only simple graphs H, since Zu

H = 0 if H contains a loop or a multiple edge.

Theorem 3.9. Assume (A1)–(A3) and (A6). Then, for simple graphs H,
the results in Theorem 3.2 hold also for the random simple graph G(n,dn)

and variables Z
u

H , with the same λH , σ
2
H and Σ. Furthermore, if H is a

tree, then

EZ
u

H − EZ
u∗
H = o

(
n1/2

)
, (3.10)

and thus it does not matter whether we normalize Z
u

H as in (3.2) using EZ
u

H

or EZ
u∗
H .

3.2. Small subgraphs. With a stronger moment assumption on the de-
grees, we have similar results for the number of copies (not necessarily iso-
lated) of a given tree. We assume (A4), i.e., that every moment EDm

n is
bounded, and thus in particular that D has finite moments of all orders.
(This implies (A2)–(A3) as said above.)

Theorem 3.10. Assume (A1) and (A4).

(i) For every tree T there exists σ̃2T > 0 such that

Zu∗
T − EZu∗

T√
n

d−→ N
(
0, σ̃2T

)
. (3.11)

Moreover, (3.11) holds jointly for any number of such trees T , with

a joint limit N(0, Σ̃) for some covariance matrix Σ̃. Furthermore, the
limits hold with convergence of all moments.

(ii) The results in (i) hold also for the random simple graph G(n,dn) and

variables Zu

T , with the same σ̃2T and Σ̃. Furthermore,

EZu

T − EZu∗
T = o

(
n1/2

)
, (3.12)

and thus it does not matter whether we normalize Zu

T as in (3.11) using
EZu

T or EZu∗
T .
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Remark 3.11. We consider only trees in Theorem 3.10. If H is a cycle,
then the proofs below show that Zu∗

H and Zu

H are asymptotically Poisson
distributed. However, for general unicyclic H this is not true; this is similar
to the case for G(n, p), see e.g. [14] and [27, Example 3.21]. It can be shown
that for a general connected unicyclic H, Zu∗

H and Zu

H converge to a compund
Poisson distribution. This is besides the point of the present paper, so we
leave the details to the reader.

Remark 3.12. We leave explicit calculations of asymptotics of means and
variances in Theorem 3.10 to the reader. Note that (for the simple graph
G(n,dn)) there are further trivially deterministic cases: Zu

K2
= N/2, the

number of edges in G(n,dn); similarly, for any r > 1, Zu

K1,r
=

∑n
i=1

(di
r

)
.

We do not know whether there also are further cases where the variance
(perhaps of some linear combination) is o(n) and thus vanishes in the limit
taken in (3.11).

Remark 3.13. The condition (A4) assumes that all moments of the degree
distribution are bounded. This is presumably stronger than necessary; it
seems likely that it is enough that supn ED

M
n < ∞ for some M depending

on T for convergence in distribution (3.11), although (A4) presumably is
required for moment convergence. Some condition of this type is necessary,
since otherwise Zu∗

T may be dominated by a few vertices of high degrees, as
in the following example.

Example 3.14. Let dn have one vertex v1 of degree n0.4, n0.5 vertices ui
of degree n0.1, n/2 vertices of degree 3 and the rest, about n/2, of degree 1.
Then (A1)–(A3) are satisfied, with p1 = p3 = 1/2 and µ = 2. Let H be the
tree with v(H) = 22 obtained by taking two disjoint stars K1,10 and joining
their central vertices by an edge.

Let Xn be the number of edges in G∗(n,dn) between v1 and a vertex of
degree n0.1. Each such edge is the central edge in ≈ 2n10·0.4+10·0.1 = 2n5

labelled copies of H, while the O(n) other edges are central edges in at most
O(n2) copies of H each. Hence, Z∗

H =
(
2+o(1)

)
n5+O

(
n3

)
. Furthermore, it

is easy to see (e.g. by the method of moments) that Xn
d−→ Po(1/2). Hence,

Z∗
H/

(
2n5

) d−→ Po
(
1/2

)
. (3.13)

Thus, after suitable norming, Z∗
H and Zu∗

H are asymptotically Poisson dis-
tributed and not normal.

3.3. Giant component and susceptibility. It is well-known that in the
supercritical case when (A5) holds, there is w.h.p. a unique component C1 of
order Θ(n) inG∗(n,dn) or G(n,dn), known as the giant component; see Mol-
loy and Reed [32, 33] and, e.g., [25], [13], [28]; moreover, E |C1|/n → 1−f(ζ),
which we recall from Section 2.3 is the survival probability of the branching
process T . Ball and Neal [5] proved (under some extra technical conditions,
in particular the existence of a third moment ED3 < ∞) that the vari-
ance satisfies Var |C1|/n → σ2, with σ2 given by (3.15) below. Moreover,
Barbour and Röllin [8] proved (under the same techical conditions) that for
the random multigraph G∗(n,dn), the size |C1| is asymptotically normal.
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We reprove this here with our methods (removing some unnecessary condi-
tions); moreover, we show that the result holds for the simple random graph
G(n,dn) too. (Similar results for G(n, p) and G(n,m) have been known for
a long time, see e.g. [37], [34], [35], [12].)

Remark 3.15. In the weakly supercritical case, where EDn(Dn − 2) → 0

but EDn(Dn−2) ≫ n−1/3, Riordan [36] showed asymptotic normality of the
size (and nullity) of the giant component, both for G∗(n,dn) and G(n,dn)
(assuming that the degrees are bounded), using methods different from ours.
Note that in this case, the giant is smaller: E |C1| ≪ n, but Var |C1| ≫ n.
It does not seem to be possible to prove these results by the method in the
present paper.

Theorem 3.16 (Partly [5] and [8]). (i) Assume (A1)–(A2) and (A5)–(A6).
Then the size |C1| of the giant component in G∗(n,dn) has an asymptotically
normal distribution:

|C1| − E |C1|√
n

d−→ N(0, σ2), (3.14)

where σ2 > 0 is given by, with f and ζ as in (2.12)–(2.13),

σ2 = f(ζ) +
µ2ζ2

µ− f ′′(ζ)
+ 2

µ3ζ4

(µ − f ′′(ζ))2
− f(ζ2) − 2

µζ2

µ − f ′′(ζ)
f ′(ζ2)

− µ2

(µ − f ′′(ζ))2
(
ζ4f ′′(ζ2) + ζ2f ′(ζ2)

)
. (3.15)

Furthermore, Var |C1|/n → σ2.
(ii) Assume (A1)–(A3) and (A5)–(A6). Then the results of (i) hold for

G(n,dn) too, with the same σ2.

The formula (3.15) is given (in an equivalent form) by Ball and Neal [5].
They also state that σ2 > 0, but the proof seems omitted; we give a proof
in Section 10 under our (weaker) assumptions.

The proof of Theorem 3.16 is given in Sections 9–11; it is based on the
results above and a truncation argument; as in [5] and [8], we obtain results
for the giant by subtracting all small components, and the main ideas in this
part of the proof are similar. As part of the proof, we show a more general
result in Theorem 3.17; we first introduce more notation.

A graph functional ψ is a real-valued functional ψ(H) defined for un-
labelled multigraphs H. Let ψ be a graph functional, and define for a
multigraph G

Ψ(G) :=
∑

v∈G

ψ(C(v)) =

q(G)∑

j=1

|Cj|ψ(Cj) =
∑

H

|H|ψ(H)Z
u

H(G), (3.16)

summing over all unlabelled connected H; the middle equality holds because
each component C ∼= H is counted |C| = |H| times in the sum over v.

In the supercritical case, the second sum in (3.16) may be dominated by
the single term coming from the giant component, and it is sometimes more
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interesting to exclude it and consider only small components. We define

Ψ†(G) :=

q(G)∑

j=2

|Cj |ψ(Cj). (3.17)

Recall also the notation E
† defined in (2.11).

Theorem 3.17. (i) Assume (A1)–(A2) and (A5). Let ψ be a graph func-
tional such that

ψ(H) = O
(
e(H)m + 1

)
(3.18)

for some constant m and all connected H. Define Ψ† by (3.17). Then

EΨ†
(
G∗(n,dn)

)
= nE† ψ(T ) + o(n), (3.19)

Var Ψ†
(
G∗(n,dn)

)
= nσ2ψ + o(n), (3.20)

and

Ψ†
(
G∗(n,dn)

)
− EΨ†

(
G∗(n,dn)

)
√
n

d−→ N(0, σ2ψ), (3.21)

where, summing over unlabelled, unrooted trees T1, T2,

σ2ψ :=
∑

T1,T2

|T1||T2|ψ(T1)ψ(T2)σT1,T2

= E
†
(
|T |ψ(T )2

)
+

2

µ

(
E
†(e(T )ψ(T ))

)2 −
∑

k>0

1

pk

(
E
†(nk(T )ψ(T ))

)2

(3.22)

with all sums and expectations absolutely convergent.
(ii) Assume (A1)–(A3) and (A5). Then the results in (i) hold for G(n,dn)

too.

Remark 3.18. If pk = 0 for some k, then T cannot contain any vertices
of degree k, so nk(T ) = 0. Hence the terms in the last sum in (3.22) with
pk = 0 vanish and are not a problem (recall that we interpret 0/0 as 0); we
could write the sum as a sum over {k : pk > 0}. The same applies to other
sums below with pk in the denominator.

Remark 3.19. We do not assume (A6) in Theorem 3.17, since the results
hold also when (A6) fails (so p1 = 0 by (A5)), but this case is less interesting
since then σ2ψ = 0, because |T | = ∞ a.s. and thus E

† = 0.

Example 3.20. Let ψ(H) := 1. Then (3.17) yields

Ψ†(G) =

q(G)∑

j=2

|Cj | = |G| − |C1|. (3.23)

Hence the asymptotic normality of C1 in (3.14) is equivalent to the asymp-
totic normality of Ψ†(G∗(n,dn)) and Ψ†(G(n,dn)), which follows from The-
orem 3.17, with σ2 = σ2ψ. We will show in Lemma 11.1 that this yields

(3.15), and in Lemma 10.5 that σ2 > 0, assuming (A5) and (A6).
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Similarly, we may take ψ1(H) := e(H)/|H|, so that (3.17) yields, for
G = G∗(n,dn) or G(n,dn),

Ψ†
1(G) =

q(G)∑

j=2

e(Cj) = N/2 − e(C1). (3.24)

Theorem 3.17 thus shows asymptotic normality of e(C1); more generally,
taking a linear combinaton aψ(H) + bψ1(H) = a + be(H)/|H|, we obtain
joint asymptotic normality of |C1| and e(C1). (Cf. [36] for the weakly su-
percritical case not studied here.) We conjecture that the limit distribution
has a non-singular covariance matrix; however, we have not verified this; see
Remark 10.6.

Example 3.21. Let ψ(H) = |H|; then (3.17) yields

n−1Ψ†(G) = n−1

q(G)∑

j=2

|Cj |2, (3.25)

which is the modified susceptibility χ̂(G) studied in [22]. It was shown
there that, assuming (A1)–(A3) and (A5)–(A6), χ̂(G(n,dn)) converges in

probability to E
† |T |. Theorem 3.17 yields convergence of E χ̂(G(n,dn)) to

the same limit and, moreover, asymptotic normality

n1/2
(
χ̂(G(n,dn)) − E χ̂(G(n,dn))

) d−→ N
(
0, σ2

)
, (3.26)

for some σ2 given by (3.22). This σ2 could be evaluated explicitly similarly
to Lemma 11.1, but we have not done so. We show in Example 10.7 that
σ2 > 0.

Remark 3.22. We assume (A5) (supercriticality) in Theorems 3.16 and
3.17. This is for the truncation argument allowing us to ignore large com-
ponents. (For example Lemma 9.4.)

In the critical case ED(D − 2) = 0, there are typically a few large com-

ponents of order Θ(n2/3), see [36, Theorem 1.3], and Theorem 3.16 does not
hold; thus Theorem 3.17 does not hold.

In the subcritical case, Theorem 3.16 is not interesting, but other func-
tionals are, for example the susceptibility in Example 3.21. We conjecture
that Theorem 3.17 holds under suitable conditions, now for Ψ rather than
Ψ† (the difference should be negligible), but that stronger conditions than
above (on the degree sequences or on the graph functional, or both) are re-
quired to keep the contribution from large components small. Perhaps (A4)
will do; alternatively, (3.18) may be replaced by a stronger assumption. The
paper is long as it is, and we do not consider this case further.

4. The configuration model

The standard way to constuct a random multigraph G∗(n,dn) is by the
configuration model, which was introduced by Bollobás [11]. (See [9; 38] for
related models and arguments.) As is well-known, we then assign a set of di
half-edges to each vertex vi; this gives a total of N half-edges, and we choose
a perfect matching of them uniformly at random. This defines G∗(n,dn) by
regarding each pair of half-edges in the matching as an edge.
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We will use this standard version in Section 8, but in the main part
of our arguments (Section 7), it will be convenient to use a variation of
this construction that yields the same result in a somewhat more circuitous
way. To see it, we may start with the standard construction above, but also
assume that we label the edges by putting a cuff on each edge, with the cuffs
labelled 1, . . . , N/2 (uniformly at random). Furthermore, each cuff i has two
half-edges, labelled 2i− 1 and 2i (randomly), joined to one each of the half-
edges making the edge. (The half-edges are now really quarter-edges, but
we keep the name.)

Our version of the configuration model can now be described as follows.
Let Υi = {ωi1, . . . , ωidi} be the set of half-edges assigned to vertex vi in
the standard model above. Let Υ :=

⋃
i Υi be set of all half-edges and

label them (arbitrarily) as α1, . . . , αN . Take also a second set of half-edges
β1, . . . , βN representing the half-edges at the cuffs, with β2j−1 and β2j at
cuff j, which we now for emphasis denote χj . Let π ∈ SN be a uniformly
random permutation, and join each αi to βπ(i). We denote the result by

Ĝ(n,dn). We interpret Ĝ(n,dn) as a bipartite graph by merging all half-
edges in Υi into the vertex vi, and the half-edges β2j−1 and β2j into the cuff
χj; thus the two vertex sets are {vi : i ∈ [n]} and {χj : j ∈ [N/2]}.

Finally, to obtain G∗(n,dn), we merge the two edges at each cuff into one,
and forget the cuffs. This yields evidently the same result as the standard
configuration model.

The original vertices will sometimes be called real vertices.

Remark 4.1. The reader may recognize that our construction is just the
standard configuration model construction of a random bipartite graph with
the real vertices on one side and the N/2 cuffs (each of degree 2) on the other
side, followed by contractions eliminating all cuffs.

5. Cumulants

Our proofs are based on the method of moments, in the form using cu-
mulants, see e.g. [27, Section 6.1]. We denote the r-th cumulant of a ran-
dom variable X by κr(X), and the mixed cumulant of random variables
X1, . . . ,Xr by κ(X1, . . . ,Xr). (The variables are assumed to have finite mo-
ments.) We recall the following properties of mixed cumulants, see e.g. [27,
p. 147] or [31].

(κ1) κr(X) = κ(X, . . . ,X) (r times).
(κ2) κ(X1, . . . ,Xr) is multilinear in X1, . . . ,Xr.
(κ3) κ(X1, . . . ,Xr) = 0 if {X1, . . . ,Xr} can be partitioned into two non-

empty sets of random variables that are independent of each other.
(κ4) κ(X1, . . . ,Xr) =

∑
I1,...,Iq

(−1)q−1(q − 1)!
∏q
p=1 E

∏
j∈Ip

Xj, summing

over all partitions of {1, . . . , r} into non-empty sets {I1, . . . , Iq}, q > 1.
(κ5) E(X1 · · ·Xr) =

∑
I1,...,Iq

∏q
p=1 κ({Xi : i ∈ Ip}), summing as in (κ4).

6. The main lemma

In this section we state and prove Lemma 6.1 below, whch is the central
part of the proof of the results in the present paper. Although the lemma is
motivated by its application to the configuration model and random graphs,
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we state it in a self-contained way. The lemma could be derived using the
general theory by [18], and is very similar to [17, Theorem 1.4], but we give
a complete proof, using the following notation.

Suppose that r > 1 and that for each i ∈ [r] we are given ℓi > 1 and
two sequences αi1, . . . , αiℓi ∈ [N ] and βi1, . . . , βiℓi ∈ [N ]. (These are fixed
throughout this section.)

Let π ∈ SN be uniformly random and define the random indicator vari-
ables

Yi := 1
{
π(αij) = βij ,∀j ∈ [ℓi]

}
=

ℓi∏

j=1

1
{
π(αij) = βij

}
. (6.1)

Our goal in this section is to estimate the mixed cumulant κ(Y1, . . . , Yr).
Let Ai := {αij : j ∈ [ℓi]} and Bi := {βij : j ∈ [ℓi]}. Let Γ be the graph

with vertex set [r] and an edge ik if Ai ∩ Ak 6= ∅ or Bi ∩ Bk 6= ∅. (In other
words, there is an edge ik when Yi and Yk use a common α or a common
β in the definition (6.1).) The connected components of Γ are called blocks.
Let b be the number of blocks, and denote the blocks by Γ1, . . . ,Γb (in some
order, e.g. lexicographic); thus 1 6 b 6 r and Γ1, . . . ,Γb form a partition of
[r]. Furthermore, let

e :=
∣∣∣
⋃

i∈[r]

{(αij , βij) : j ∈ [ℓi]}
∣∣∣, (6.2)

i.e., the number of distinct pairs (αij , βij).

Lemma 6.1. With notations as above,
∣∣κ
(
Y1, . . . , Yr)

)∣∣ 6 CN−(b−1)−e. (6.3)

where C is a constant that may depend on r and ℓ1, . . . , ℓr but not on N .

Remark 6.2. The estimate
∣∣κ
(
Y1, . . . , Yr)

)∣∣ 6 CN−e is straightforward; in
particular, the case b = 1 of (6.3) is easy. If the indicators 1{π(α) = β}
were independent for disjoint pairs (α, β), then the variables Yi belonging
to different blocks would be independent, and thus the mixed cumulant
would vanish when b > 2. Of course, in our setting these indicators are not
independent, but they are only weakly dependent and Lemma 6.1 yields a
substitute with an estimate that becomes smaller when the number of blocks
gets larger. We will see later that this is sufficient for our purposes.

Proof of Lemma 6.1. In this proof, C will denote various constants that may
depend on r and ℓ1, . . . , ℓr, but not on N or αij , βij . The same holds for the
implied constants in O(. . . ).

For each set R ⊆ [r], let A(R) :=
⋃
i∈RAi, B(R) :=

⋃
i∈RBi, and, gener-

alizing (6.2),

e(R) :=
∣∣∣
⋃

i∈R

{(αij , βij) : j ∈ [ℓi]}
∣∣∣. (6.4)

Thus, e := e([r]). Note that the sets A(Γ1), . . . , A(Γb) are disjoint.
The idea of the proof is, hardly surprisingly, that the values π(α) for

different α are almost independent, and thus indicators 1{π(α) = β} for
different α are almost independent. However; this is only “almost”, and
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therefore we approximate using truly independent variables, constructed in
a careful way.

We begin by constructing the random permutation π in a special way.
Define recursively L′

1, . . . , L
′
b and L1, . . . , Lb by

L′
k := 1 +

k−1∑

j=1

Lj , Lk :=
∣∣A(Γk)

∣∣L′
k, 1 6 k 6 b. (6.5)

Assume N > Lb. (Otherwise (6.3) is trivial if C is large enough.)
Let τ̂1, . . . τ̂ b be independent uniformly random permutations in SN , and

let τk := τ̂k(1) · · · τ̂k(Lk) be the random string consisting of the first Lk
values of τ̂k. We write the elements of τk as τk(ℓ), ℓ ∈ [Lk]. Using a
fixed bijection between [Lk] and A(Γk)× [L′

k], we also regard τk as an array

τk(α, ℓ), with α ∈ A(Γk) and ℓ ∈ [L′
k].

For k ∈ [b] and a set of indices J ⊆ [k− 1], say that an element τk(α, ℓ) is
bad if it also occurs in τ j for some j ∈ J . (I.e., if it equals τ j(α′, ℓ′) for some
(α′, ℓ′) ∈ A(Γj) × [L′

j].) Finally, define πkJ(α) for α ∈ A(Γk) as τk(α, ℓ) for

the smallest ℓ ∈ [L′
k] such that this element is not bad. Note that we have

defined L′
k in (6.5) so large that there is always at least one good element

for each α. (We will not use πkJ(α) for α /∈ A(Γk); we may define these

arbitrarily to make πkJ a permutation if desired, but we may also just ignore
them.)

By construction, for a given k and J , πkJ(α) are distinct for α ∈ A(Γk),

and these values are distinct from πjI(α
′) for all j ∈ J , I ⊆ [j − 1] and

α′ ∈ A(Γj).
In particular, consider the case Jk = [k − 1] for all k ∈ [b]. Then all

πk[k−1](α), for k ∈ [b] and α ∈ A(Γk), are distinct, and by symmetry, they

equal any sequence of
∑

k |A(Γk)| distinct values in [N ] with the same prob-
ability. Hence, they have the same (joint) distribution as the values π(α) for
α ∈ ⋃

k A(Γk) = A([r]). (Recall that the sets A(Γ1), . . . , A(Γb) are disjoint.)
Consequently, we may assume that

π(α) = πk[k−1](α), α ∈ A(Γk), k ∈ [b]. (6.6)

For i ∈ [r], let k(i) be the unique index such that i ∈ Γk(i). Given
J ⊆ [k(i) − 1], define further a modification of Yi in (6.1) by

Yi;J :=

ℓi∏

j=1

1
{
π
k(i)
J (αij) = βij

}
. (6.7)

Note that by (6.1) and (6.6),

Yi = Yi;[k(i)−1]. (6.8)

Define also a random variable denoted Yi;∆J by

Yi;∆J =
∑

I⊆J

(−1)|J\I|Yi;I . (6.9)
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This can be regarded as a kind of inclusion–exclusion, or Möbius inversion,
and (6.9) implies the inverse relation,

Yi;I =
∑

J⊆I

Yi;∆J , I ⊆ [k(i) − 1]. (6.10)

We now conclude from (6.8), (6.10) and the multilinearity of mixed cu-
mulants (κ2) that

κ(Y1, . . . , Yr) = κ
(
Y1;[k(1)−1], . . . , Yr;[k(r)−1]

)

=
∑

J1⊆[k(1)−1]

· · ·
∑

Jr⊆[k(r)−1]

κ(Y1;∆J1 , . . . , Yr;∆Jr). (6.11)

The number of terms in this sum is O(1), so it suffices to estimate each term
individually.

Thus, fix a sequence J1, . . . , Jr with Ji ⊆ [k(i) − 1]. Let Λ be the graph
with vertex set [b] and an edge jk (with j < k) if j ∈ ⋃

i∈Γk
Ji.

Note first that a variable Yi;∆Ji by (6.9), (6.7) and the construction of πkJ ,

depends only on τk(i) and τ j for j ∈ Ji. Consequently, if Λ is disconnected,
so we may divide Λ into two parts Λ1 and Λ2 with no edges between them,
then the random variables {Yi;∆Ji : i ∈ Λℓ} depend only on τk for k ∈ Λℓ,
ℓ ∈ {1, 2}, and thus these two sets of variables are independent. Hence, (κ3)
yields the following.

Claim 1. If Λ is disconnected, then κ
(
Y1;∆J1 , . . . , Yr;∆Jr

)
= 0.

Consequently, it suffices to consider the case when Λ is connected. For a
set R ⊆ [r], let

Y ∗
R :=

∏

i∈R

Yi;∆Ji. (6.12)

By (κ4), the mixed cumulant κ(Y1;∆J1 , . . . , Yr;∆Jr) in (6.11) can be written
as a linear combination of products

q∏

p=1

EY ∗
Rp

(6.13)

where R1, . . . , Rq is a partition of [r]. The number of terms and their coef-
ficients are O(1), and thus it suffices to estimate each product (6.13).

Define for 1 6 j < k 6 b, ℓ ∈ [Lj] and m ∈ [Lk] the indicator

ξjkℓm := 1
{
τ j(ℓ) = τk(m)

}
(6.14)

and let Ξ := {ξjkℓm} be the array of all these indicators. Thus Ξ tells us

exactly which coincidences there are among the values τk(i). (Recall that
there are no such coincidences with the same k.) This also determines, for
each k and J ⊆ [k − 1], the indices of the elements τk(α, ℓ) that are bad
when constructing πJ , and thus exactly which element τk(α, ℓ) that πkJ(α)
equals, for each α ∈ A(Γk). This implies the following.

Claim 2. For any given sequence of sets I1, . . . , Ir, Ξ determines exactly

what coincidences, if any, there are among all π
k(i)
Ii

(α) for i ∈ [r] and α ∈
A(Γk).
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Furthermore, by symmetry, conditioned on Ξ, any sequence of non-coin-

ciding values π
k(i)
Ii

(α) has the same distribution as a sequence drawn without

replacement from [N ].

Let R ⊆ [r], and consider Z :=
∏
i∈R Yi;Ii. This is, recalling (6.7), a

product of factors of the type 1{πk(i)Ii
(αiℓ) = βiℓ}. There may be some pairs

(αiℓ, βiℓ) that are repeated; we let Z̃ be the product after deleting all factors
such that (αiℓ, βiℓ) repeats a previous pair. Note that the number of factors

remaining in Z̃ is e(R) by (6.4). Suppose that

π
k(i)
Ii

(αiℓ) = π
k(j)
Ij

(αjm) (6.15)

for two of the remaining factors 1{πk(i)Ii
(αiℓ) = βiℓ} and 1{πk(j)Ij

(αjm) =

βjm}. If further k(i) = k(j), then αiℓ = αjm, by our construction of π
k(i)
J ,

and then βiℓ 6= βjm since we have eliminated repetitions. On the other hand,
if k(i) 6= k(j), then i and j belong to different blocks, so by the definition of
blocks Bi ∩ Bj = ∅ and thus βim 6= βpq. Hence, in any case, (6.15) implies
βiℓ 6= βjm, and thus

1{πk(i)Ii
(αiℓ) = βiℓ} · 1{πk(i)Ii

(αjm) = βjm} = 0. (6.16)

This and Claim 2 show that conditioned on Ξ, either
∏
i∈R Yi;Ii vanishes

because the product contains conflicting indicators, or else all π
k(i)
Ii

(αij)

occurring in the e(R) factors remaining in Z̃ are distinct and obtained by
drawing without replacement from [N ]. Hence, in any case,

E

(∏

i∈R

Yi;Ii

∣∣∣ Ξ
)
6 E

(
Z̃

∣∣ Ξ
)
6

1

(N)e(R)
6 CN−e(R). (6.17)

This is valid for any Ii ⊆ [k(i) − 1]. Hence, by the definitions (6.12) and
(6.9)

E
(∣∣Y ∗

R

∣∣ | Ξ
)

= E

(∏

i∈R

∣∣Yi;∆Ji
∣∣
∣∣∣ Ξ

)
6

∑

Ii⊆Ji, i∈R

E

(∏

i∈R

Yi;Ii

∣∣∣ Ξ
)
6 CN−e(R).

(6.18)

Suppose that j < k, and suppose that τk and τ j have no common element.
Then, for every J ⊆ [k − 1], an element τk(α, ℓ) is bad for J if and only if
it is bad for J ∪ {j}, and thus πkJ∪{j}(α) = πkJ(α) for all α ∈ A(Γk); hence

Yi;J∪{j} = Yi;J for i ∈ Γk. Consequently, (6.9) shows that then Yi;∆J = 0 for
every J such that j ∈ J . In contrapositive form, this shows the following,
recalling (6.14),

Claim 3. If Yi;∆J 6= 0, i ∈ Γk and j ∈ J , then τk and τ j have at least one
common element, i.e., ξjkℓm = 1 for some ℓ ∈ [Lj] and m ∈ [Lk].

If F is a graph with vertex set ⊆ [b], say that Ξ covers F if for every edge
jk ∈ F with j < k, there exist ℓ ∈ [Lj] and m ∈ [Lk] such that ξjkℓm = 1.
For a set R ⊆ [r], let ΛR be the graph with edges

E
(
ΛR

)
:=

⋃

k∈[b]

⋃

i∈R∩Γk

{
jk : j ∈ Ji

}
(6.19)
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Then, by (6.12) and Claim 3, if Y ∗
R 6= 0, then Ξ covers ΛR. This implies

that we can improve (6.18) to

E
(
|Y ∗
R| | Ξ

)
6 CN−e(R)1{Ξ covers ΛR}. (6.20)

Hence,

E
∣∣Y ∗
R

∣∣ 6 CN−e(R)
P
(
Ξ covers ΛR

)
. (6.21)

Recall that we have fixed J1, . . . , Jr, so ΛR is for each R ⊆ [r] a fixed non-
random graph on [b]. If F is any graph on [b], let ρ(F ) be the number of
edges in a spanning forest. (This equals b minus the number of components
of F .) We claim that if F is any graph on [b],

P(Ξ covers F ) 6 CN−ρ(F ). (6.22)

To see this, we may replace F by a spanning forest, so it suffices to show
(6.22) when F is a forest. We do this by induction on ρ(F ); the base case
ρ(F ) = 0 being trivial. If ρ(F ) > 0, let k be a leaf in F , let kℓ be the edge
incident to k, and let F ′ := F −kℓ. Recall that Ξ covers kℓ if τk and τ ℓ have
a common element. Thus, conditioning on τ j for all j 6= k, the probability
that Ξ covers kℓ is at most LkLℓN

−1 6 CN−1. Hence,

P
(
Ξ covers F

)
6 CN−1

P
(
Ξ covers F ′

)
, (6.23)

and (6.22) follows by induction.
Combining (6.21) and (6.22), we find

E
∣∣Y ∗
R

∣∣ 6 CN−e(R)−ρ(ΛR). (6.24)

Finally, consider as in (6.13) a partition R1, . . . , Rq of [r]. Then (6.2) and
(6.4) imply

e = e([r]) 6
∑

p

e(Rp). (6.25)

Furthermore,
⋃
p ΛRp = Λ by (6.19). If we take a spanning subtree Λ̂Rp ⊆

ΛRp for each p 6 q, then the union of these subtrees has the same compo-

nents as
⋃
p ΛRp = Λ. Hence, if Λ is connected,

⋃
p Λ̂Rp is connected and

has thus at least b− 1 edges, which implies
∑

p

ρ(ΛRp) > b− 1. (6.26)

Consequently, (6.24) implies by (6.25)–(6.26),

∣∣∣
q∏

p=1

EY ∗
Rp

∣∣∣ 6
q∏

p=1

E
∣∣Y ∗
Rp

∣∣ 6 CN−
∑

p e(Rp)−
∑

p ρ(ΛRp) 6 CN−e−(b−1). (6.27)

As said above, the mixed cumulant κ(Y1;∆J1 , . . . , Yr;∆Jr) in (6.11) is by (κ4)
and (6.12) a linear combination of such products, and thus (6.27) yields

∣∣κ(Y1;∆J1 , . . . , Yr;∆Jr)
∣∣ 6 CN−e−(b−1). (6.28)

We have here assumed that Λ is connected, but as said in Claim 1, the
cumulant vanishes otherwise, so (6.28) holds in general.

Finally, also as said above, the result (6.3) follows from (6.11) and (6.28).
�
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7. Proofs of Theorems 3.2, 3.9 and 3.10

We prove first Theorem 3.2 for G∗(n,dn), and show then how the proof
can be extended to Theorem 3.9 for the simple graph G(n,dn). Theo-
rem 3.10 follows by simple modifications.

As said earlier, we use the method of moments in the form with cumu-
lants; we thus show convergence of all (mixed) cumulants. The proofs will
use Lemma 6.1 to estimate higher cumulants, as detailed below. In addition,
we estimate means and variances (and higher moments for unicyclic com-
ponents) by standard methods; for the sake of focussing the presentation,
we state these results as the following lemmas but postpone their proofs to
Section 8. Recall that Z∗

H := ZH
(
G∗(n,dn)

)
,

Lemma 7.1. Assume (A1)–(A2). Then, for the random multigraph G∗(n,dn):

(i) If H is a tree, then

EZ
u∗
H = nλH + o(n) (7.1)

with λH given by (3.3).
(ii) If H1,H2 are trees, then

Cov
(
Z

u∗
H1
, Z

u∗
H2

)
= nσH1,H2 + o(n), (7.2)

where σH1,H2 is given by (3.7).
(iii) If H is a connected unicyclic multigraph, then

EZ
u∗
H → λH , (7.3)

with λH as in (3.3). Moreover, for any distinct such multigraphs
H1, . . . ,Hℓ, and integers r1, . . . , rℓ > 0, the mixed factorial moments
converge:

E

k∏

i=1

(Z
u∗
Hi

)ri →
k∏

i=1

λriHi
. (7.4)

(iv) If H is a connected multigraph with more than one cycle, i.e., e(H) >
v(H), then

EZ
u∗
H → 0. (7.5)

Lemma 7.2. Assume (A1)–(A2). For every tree H, (3.5) holds, i.e., λH =
pH/|H|.

Lemma 7.3. Assume (A1)–(A2) and (A6). If H is a tree with v(H) > 1,
then σH,H > 0 ⇐⇒ λH > 0. More generally, if H1, . . . ,Hℓ are distinct
trees with v(Hi) > 1 and λHi

> 0 for each i, then the matrix
(
σHi,Hj

)
is

non-singular.

The next lemma shows that, assuming the second moment condition (A3),
Lemma 7.1(iii) extends to include also the numbers of loops Zu∗

C1
and pair of

multiple edges Zu∗
C2

, cf. Example 3.1. (We have to restrict to simple graphs

Hi; if H is not simple, there is obviously a strong dependence between Z
u∗
H

and Zu∗
C1

or Zu∗
C2

.)
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Lemma 7.4. Assume (A1)–(A3). Let H1, . . . ,Hk be connected unicyclic
simple graphs. Then, for any integers s1, s2, r1, . . . , rk > 0,

E

((
Zu∗
C1

)
s1

(
Zu∗
C2

)
s2

k∏

i=1

(Z
u∗
Hi

)ri

)
→ λs1∗C1

λs2∗C2

k∏

i=1

λriHi
, (7.6)

where

λ∗C1 :=
ED(D − 1)

2
, λ∗C2 :=

(
ED(D − 1)

2

)2
. (7.7)

As said above, we postpone the proofs of these lemmas to Section 8.
Fix a (multi)graph H. Let h := v(H) > 1, and assume that the vertices

of H are labelled 1, . . . , h. Our aim is to estimate the cumulants κr(Z
∗
H)

for (fixed) r > 1 and corresponding mixed cumulants. In this section, C
denotes constants that may depend on the order r and the fixed (small)
graph H (and corresponding graphs below), but not on n; the same holds
for the implicit constants in O(. . . ).

We use the version of the configuration model described in Section 4. A

copy of H in G∗(n,dn) then corresponds to a copy of Ĥ in Ĝ(n,dn), where

Ĥ is obtained from H by subdividing each edge into two, and regarding the

new vertices as cuffs, and where we only count copies of Ĥ that map real
vertices to real vertices and cuffs to cuffs. We consider also the identity of
the half-edges used in the construction, and see that an isolated labelled

copy of Ĥ in Ĝ(n,dn) is described by the following data:

(φ1) For each vertex i ∈ V (H) = [h]: a real vertex vν(i) such that dν(i) =
dH(i). Furthermore, v(1), . . . , v(h) are distinct.

(φ2) For each edge ij in H: two half-edges αij ∈ Υν(i) and α′
ij ∈ Υν(j), and

also a cuff χij and a labelling of the two half-edges at χij as βij and
β′ij . Furthermore, all these half-edges for ij ∈ E(H) are distinct.

Each such family of data φ :=
(
ν(i), αij , α

′
ij , χij , βij , β

′
ij

)
defines a possible

isolated labelled copy Ĥφ of Ĥ. Thus, if Iφ is the indicator that Ĥφ exists

in Ĝ(n,dn), and Φ(Ĥ) is the set of all such data φ, then

Z
∗
H = ZH(G∗(n,dn)) =

∑

φ∈Φ(Ĥ)

Iφ. (7.8)

Furthermore, Ĥφ exists inG∗(n,dn) if and only if the construction of Ĝ(n,dn)
yields edges αijβij and α′

ijβ
′
ij for each ij ∈ E(H), which is equivalent to

π(αij) = βij and π(α′
ij) = β′ij . Consequently, each Iφ is the product of

2e(H) indicators of the type 1{π(α) = β}. Each Iφ is thus a random vari-
able of the type in (6.1).

Consider now a sequence H1, . . . ,Hr of multigraphs. By (7.8) and multi-

linearity (κ2), the mixed cumulant κ
(
Z

∗
H1
, . . . , Z

∗
Hr

)
can be expanded as

κ
(
Z

∗
H1
, . . . , Z

∗
Hr

)
=

∑

φ1∈Φ(Ĥ1)

· · ·
∑

φr∈Φ(Ĥr)

κ
(
Iφ1 , . . . , Iφr

)
, (7.9)

where the mixed cumulants may be estimated by Lemma 6.1.
It remains to estimate the parameters b and e in Lemma 6.1 and the cor-

responding number of terms in (7.9). This is done in the following lemmas,
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using a standard type of argument that is common in applications of the
method of moments in combinatorial problems.

Lemma 7.5. Assume (A1)–(A2). Let H1, . . . ,Hr be a sequence of connected
multigraphs. Then

∣∣κ
(
Z

∗
H1
, . . . , Z

∗
Hr

)∣∣ 6 C
∑

F

nv(F)−e(F)−q(F)+1, (7.10)

where we sum over all unlabelled bipartite multigraphs F that can be written

as a union
⋃r
i=1 Ĥ

′
i where Ĥ

′
i
∼= Ĥi and, as above, Ĥi is obtained from Hi

by subdividing each edge into two.

We consider only unions
⋃r
i=1 Ĥ

′
i respecting the bipartition between real

vertices and cuffs. Note that the set of F in (7.10) is finite and independent
of n.

Proof. For notational simplicity we consider the case of a single multigraph
H, i.e., H1 = · · · = Hr = H; the proof for mixed cumulants is the same.

Consider one term in the sum in (7.9); it is given by indicators Iφ1 , . . . , Iφr
corresponding to r copies Ĥφ1 , . . . , Ĥφr of Ĥ. Let F̂ :=

⋃r
i=1 Ĥφi . We apply

Lemma 6.1 with Yi := Iφi . Note that e in (6.2) equals e(F̂ ). If the graph Γ

in Section 6 has an edge jk, then Ĥφk and Ĥφj have a common half-edge,

and thus a common vertex (real or cuff); hence Ĥφk and Ĥφj are subgraphs

of the same component of F̂ . This yields a surjective map from the blocks
of Γ to the components of F̂ , and thus the number of blocks b in Lemma 6.1
satisfies b > q(F̂ ). Hence, Lemma 6.1 yields

∣∣κr
(
Iφ1 , . . . , Iφr

)∣∣ 6 CN1−q(F̂ )−e(F̂ )
6 Cn1−q(F̂ )−e(F̂ ). (7.11)

Now let us count the number of φ1, . . . , φr ∈ Φ(Ĥ) that yield a union F̂

isomorphic to some given bipartite multigraph F . Each cuff in F̂ and its 2
half-edges may be chosen in O(N) = O(n) ways. Let w be a real vertex in
F , and let m := dF (w) be its degree. Also, let K := maxi∈H dH(i) <∞. We

consider by definition only copies of Ĥ such that each vertex v has degree
equal to the corresponding vertex in H, and thus d

Ĝ
(v) 6 K. Hence, for

each such choice of v corresponding to w ∈ F , we have at most Km choices
of the m half-edges incident to it; hence the number of choices of v and its
m half-edges is O(nKm) = O(n).

Consequently, each vertex (real or cuff) in F gives O(n) choices of corre-

sponding vertex and half-edges in F̂ . Hence, the number of F̂ isomorphic to

a given F is O
(
nv(F)

)
. Finally, given F̂ , we can choose Ĥ1, . . . , Ĥr in O(1)

ways. Hence, the total number of terms in (7.9) corresponding to a given F
is O

(
nv(F)

)
, and by (7.11), their total contribution is O

(
nv(F)−e(F)−q(F)+1

)
.

This yields (7.10). �

Lemma 7.6. Let F :=
⋃r
i=1Hi, where H1, . . . ,Hr is a sequence of connected

multigraphs.

(i) Then v(F ) 6 e(F ) + q(F ).
(ii) If furthermore at least one Hi is not a tree, then v(F ) 6 e(F )+q(F )−1.
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Proof. Consider first the case when F is connected. We may then reorder

H1, . . . ,Hr such that each
⋃k
i=1Hi is connected; furthermore, we may do

this starting with any of the multigraphs as H1, and in (ii) we may thus
assume that H1 is not a tree.

Now, choose for each i > 2 a spanning tree Tk ⊆ Hk, and define Fk :=
H1 ∪

⋃k
i=2 Ti, k > 1. Thus each Fk is connected.

Let k > 1 and let T ′
k := Tk ∩Fk−1. Since T ′

k is a subgraph of Tk, which is
a tree, we see that T ′

k is a forest, and since Fk = Tk ∪Fk−1 is connected, T ′
k

is not empty. Hence, v(T ′
k) > e(T ′

k)+1. Consequently, since Fk = Tk∪Fk−1,

v(Fk) − e(Fk) = v(Fk−1) + v(Tk) − v(T ′
k) −

(
e(Fk−1) + e(Tk) − e(T ′

k)
)

6 v(Fk−1) − e(Fk−1) + v(Tk) − e(Tk) − 1

= v(Fk−1) − e(Fk−1) (7.12)

when k > 1. Hence, by induction v(Fk) − e(Fk) 6 v(H1) − e(H1). Fur-
thermore, Fr is a spanning subgraph of F , and thus v(Fr) = v(F ) and
e(Fr) 6 e(F ). Consequently,

v(F ) − e(F ) 6 v(Fr) − e(Fr) 6 v(H1) − e(H1). (7.13)

Moreover, e(H1) > v(H1) − 1 since H1 is connected, and if H1 is not a tree,
then e(H1) > v(H1). Consequently, (7.13) yields (i) and (ii) in the case
q(F ) = 1.

If q(F ) > 1, i.e., F is disconnected, denote the components of F by Fi,
i = 1, . . . , q(F ). Then, by what just has been shown, v(Fi) 6 e(Fi) + 1, and
if some Hj ⊆ Fi is not a tree, then v(Fi) 6 e(Fi). Hence, the result fullows
by summing over all components Fi. �

Lemma 7.7. Assume (A1)–(A2). Let H1, . . . ,Hr be a sequence of connected
multigraphs. Then

κ
(
Z

∗
H1
, . . . , Z

∗
Hr

)
= O(n). (7.14)

Furthermore, if at least one Hi is not a tree, then

κ
(
Z

∗
H1
, . . . , Z

∗
Hr

)
= O(1). (7.15)

Proof. An immediate consequence of Lemmas 7.5 and 7.6, applying the lat-

ter to Ĥ1, . . . , Ĥr. �

Proof of Theorem 3.2. Define

XH :=

{(
Z

u∗
H − EZ

u∗
H

)
/n1/2, H is a tree,

XH := Z
u∗
H , H has a cycle.

(7.16)

First, (iii), the case when e(H) > v(H), is easy. By Lemma 7.1(iv) and
Markov’s inequality, P(XH 6= 0) 6 EXH → 0. (Recall that XH is a non-

negative integer.) In particular, XH
p−→ 0. Furthermore, (7.15) shows that

every cumulant κr(XH) = O(1), and thus every moment is bounded by (κ5).
This implies uniform integrability of every power, and thus EXr

H → 0 for
every r. Convergence (to 0) of joint moments with other XH follows by the
Cauchy–Schwarz inequality when we have shown convergence of moments
also in (i) and (ii).
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For (i) and (ii), and joint convergence of both, we use the method of

moments, in the cumulant version. Let X̃H be random variables defined
for (unlabelled) trees and unicyclic multigraphs H to have the claimed joint
limit distribution:

(i) For trees T , X̃T have a joint normal distribution with EXT = 0 and

Cov
(
X̃T1 , X̃T2

)
= σT1,T2 .

(ii) For unicyclic F , X̃F ∼ Po(λF ) with X̃F independent of all other X̃H .

We then claim that for any r > 1 and trees or connected unicyclic multi-
graphs H1, . . . ,Hr,

κ
(
XH1 , . . . ,XHr

)
→ κ

(
X̃H1 , . . . , X̃Hr

)
. (7.17)

Indeed, this implies by (κ5) convergence of all mixed moments. Furthermore,
normal and Poisson distributions have finite moment generating functions,

and thus the joint distribution of any finite number of X̃H is determined by
its mixed moments. Hence, (7.17) implies convergence

(
XH1 , . . . ,XHr

) d−→
(
X̃H1 , . . . , X̃Hr

)
(7.18)

as claimed in the theorem. Furthermore, all moments converge, as just seen.
Note that the right-hand side in (7.17) vanishes except in the two cases

r > 1 and all Hi are the same unicyclic multigraph, or r = 2 and both H1

and H2 are trees. This follows by the independence assumption in (ii) above
together with (κ3), and the fact that all mixed cumulants of order r > 3
vanish for joint normal distributions.

In order to show (7.17), we consider three cases.

Case 1: Every Hi is a tree. Consider three subcases. First, if r = 1, then

κ
(
XH1

)
= EXH1 = 0 = κ

(
X̃H1

)
. (7.19)

Secondly, if r = 2, then (7.16) and (7.2) yield

κ
(
XH1 ,XH2

)
= Cov

(
XH1 ,XH2

)
= n−1 Cov

(
Z

u∗
H1
, Z

u∗
H2

)

→ σH1,H2 = κ
(
X̃H1 , X̃H2

)
. (7.20)

Thirdly, if r > 3, then (7.14) in Lemma 7.7 together with (3.1) and (7.16)
yields

κ
(
XH1 , . . . ,XHr

)
= Cn−r/2κ

(
Z

∗
H1
, . . . , Z

∗
Hr

)
= O

(
n1−r/2

)
→ 0. (7.21)

This verifies (7.17) in each of the three subcases.

Case 2: Every Hi is unicyclic. This case is really nothing new. By Lemma
7.1(iii), we have convergence of all mixed factorial moments to the corre-

sponding moments of X̃H1 , . . . , X̃Hr , which by well-known algebraic identi-
ties is equivalent to convergence of all mixed moments, and thus to conver-
gence of all mixed cumulants. (See [27, Section 6.1] and (κ4)–(κ5).)

Case 3: At least one Hi is a tree and at least one is unicyclic. Suppose that
there are ℓ > 1 trees (not necessarily distinct) among H1, . . . ,Hr. Then, by
(7.15) in Lemma 7.7 together with (3.1) and (7.16),

κ
(
XH1 , . . . ,XHr

)
= Cn−ℓ/2κ

(
Z

∗
H1
, . . . , Z

∗
Hr

)
= O

(
n−ℓ/2

)
→ 0. (7.22)

Hence, (7.17) holds in this case too.
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This completes the verification of (7.17) in all cases; as said above, this
proves (7.18), with convergence of all moments.

Finally, Lemma 7.1 shows (3.3), Lemma 7.2 shows (3.5), Lemma 7.3
shows the first equivalence in (3.4), and the second is obvious from (3.3).
Lemma 7.3 yields also the final claim on non-singularity of the covariance
matrix Σ =

(
σHi,Hj

)
. �

To show Theorem 3.9 for the simple random graph G(n,dn), we combine
Theorem 3.2 with asymptotics of the counts Zu∗

C1
and Zu∗

C2
of loops and double

edges. Note that Zu∗
Cj

counts all occurences of Cj , which in general differs

from Z
u∗
Cj

, the number of isolated occurences. The latter is already included

in Theorem 3.2, but Zu∗
Cj

requires an extra argument.

Z∗
C1

and Z∗
C2

can be expressed as sums (7.8) for sets Φ of data φ as above,

with the difference that in (φ1) above, we omit the condition on the degree
dν(i).

We may just as well consider a somewhat more general situation: we

say that a marked multigraph H̃ =
(
H, (ιw)w∈H

)
is a multigraph H where

each vertex v has a mark ιv ∈ {bound, free}. We then define ZH̃(G) as the
number of labelled copies of H in G such that each bound vertex w ∈ H
corresponds to a vertex v in G with the same degree dG(v) = dH(w) (while
there is no restriction for a free vertex). Hence, if all vertices in H are free,
ZH̃ = ZH , and if all vertices are bound, ZH̃ = ZH . We write, as in the
unmarked case, ZH̃ := ZH̃(G(n,dn)) and Z∗

H̃
:= ZH̃(G∗(n,dn)).

Assume that V (H) = [h] for convenience. Then Z∗
H̃

is given by (7.8) for

a set Φ(H̃) of φ defined by (φ1)–(φ2), but with the degree condition in (φ1)
omitted for free vertices. Let cuffs in subdivided multigraphs be bound by

default. Furthermore, define
⋃
i H̃i, where H̃i are marked multigraphs, by

taking the union and marking a vertex as bound if it is bound in some H̃i,
and free otherwise.

We extend Lemma 7.5 as follows.

Lemma 7.8. Assume (A1)–(A2). Let H̃1, . . . , H̃r be a sequence of connected
marked multigraphs. Then

∣∣κ
(
Z∗
H̃1
, . . . , Z∗

H̃r

)∣∣ 6 C
∑

F

nv(F)−e(F)−q(F)+1
∏

w∈F is free

EDdF (w)
n (7.23)

where we sum over all unlabelled bipartite multigraphs F that can be written

as a union
⋃r
i=1 Ĥ

′
i where Ĥ

′
i
∼= Ĥi and Ĥi is obtained from H̃i by subdividing

each edge into two as above.

Proof. We follow the proof of Lemma 7.5. The only difference is when
counting the number of ways we can choose a copy v of a vertex w ∈ F and
its m := dF (w) half-edges. If w is bound, then as in the proof of Lemma 7.5,
d
Ĝ

(v) 6 K for some K <∞, and then the m half-edges can be chosen in at
most Km = O(1) ways for each v, giving as before O(n) choices of vertex
and half-edges.

On the other hand, if w is free, then we bound for each real vertex v =

vi ∈ V (Ĝ) the number of choices of the m half-edges by d
Ĝ

(vi)
m = dmi ;
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hence, the total number of choices of v and its half-edges is at most

n∑

i=1

dmi = nEDm
n = nEDdF (w)

n . (7.24)

This gives an additional factor ED
dF (w)
n for each free w, and thus (7.23)

instead of (7.10). �

Lemma 7.9. Let F = F ′ ∪ F ′′ with F ′ =
⋃r
i=1Hi, where r > 0 and

H1, . . . ,Hr is a sequence of connected multigraphs, and F ′′ =
⋃t
i=1 Ci, where

t > 1 and each Ci is a cycle Cℓ, ℓ > 1. Say that a vertex w ∈ V (F ′′) \V (F ′)
is free, and let

s(F ) :=
1

2

∑

w free

(
dF (w) − 2

)
+
. (7.25)

Then v(F ) + s(F ) 6 e(F ) + q(F ) − 1.

Proof. Let S(F ) := v(F )+s(F )−e(F )−q(F ); thus the result is S(F ) 6 −1.
We use induction on t. If t = 1, then each free vertex w has degree

dF (w) = dC1(w) = 2, and thus s(F ) = 0. Hence, the result follows from
Lemma 7.6(ii) applied to {Hi} ∪ {C1}.

Now suppose that the results hold for some t, and add another cycle Ct+1,
of length ℓ, say. Denote the old F by Ft, so F = Ft ∪Ct+1. We consider the
changes in the quantities v(F ), e(F ), q(F ), s(F ), S(F ), which we denote by
∆v,∆e, and so on. We treat three cases separately.

(i). If the new cycle Ct+1 is disjoint from Ft, then ∆v = ℓ, ∆e = ℓ, ∆q = 1
and ∆s = 0; the latter since all new vertices have degree 2 and thus do not
contribute to s. Hence, ∆S = −1.

(ii). Suppose that Ct+1 is edge-disjoint but not vertex-disjoint from Ft.
Then ∆e = ℓ and ∆q = 0. Each vertex in Ct+1 \Ft contributes 1 to ∆v and
0 to ∆s, while each vertex in Ct+1 ∩ Ft contributes 0 to ∆v and at most 1
to ∆s, since the new cycle increases the degree by 2. (If the vertex is not
free in Ft, the contribution to ∆s is 0.) Hence, each vertex contributes at
most 1 to ∆(v + s), and thus ∆(v + s) 6 ℓ = ∆e. Consequently, ∆S 6 0.

(iii). Suppose that Ct+1 is has some edge in common with Ft. Then
∆q = 0. The edges in E(Ct+1) \ E(Ft) form k > 0 disjoint paths Pj.
Suppose that Pj contains ℓj > 1 edges. Then Pj contributes ℓj to ∆e, the
ℓj − 1 internal vertices in Pj contribute 1 each to ∆v and the two endpoints
of Pj contribute at most 1/2 each to ∆s. There are no other contributions,
and thus ∆(v + s) 6

∑
j ℓj = ∆e and consequently ∆S 6 0.

We have shown that ∆S 6 0 in all cases, which completes the induction.
�

Lemma 7.10. Assume (A1)–(A3). Let H1, . . . ,Hr be trees or connected
unicyclic simple graphs. Then, the joint limits in distribution in Theo-
rem 3.2(i)(ii) hold jointly with

Zu∗
C1

d−→ Po
(
λ∗C1

)
, (7.26)

Zu∗
C2

d−→ Po
(
λ∗C2

)
, (7.27)
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with λ∗C1 and λ∗C2 given by (7.7), and with the limits in (7.26) and (7.27)

independent of each other and of the limits for Z
u∗
Hi

in Theorem 3.2(i)(ii).

Proof. We extend the proof of Theorem 3.2, and show that the convergence
(7.17) of joint cumulants holds also if we consider besides the variables XHi

also X∗C1 := Zu∗
C1

and X∗C2 := Zu∗
C2

(possibly repeated several times), and

the corresponding X̃∗C1 ∼ Po(λ∗C1) and X̃∗C2 ∼ Po(λ∗C2), independent of

each other and all X̃H . We regard ∗Cj , j = 1, 2, as symbols used only to
denote these variables; they are not any graphs; for convenience we may say
H = ∗Cj , but it should be interpreted in this formal sense.

We have in the proof of Theorem 3.2 proved (7.17) when there is no ∗Cj
among H1, . . . ,Hr, by considering three different cases separately. We now
consider two further cases.

Case 4: Some Hi is a ∗Cj , and some Hj is a tree. Let ℓ > 1 be the number

of Hi that are trees. Regard each Hi as a marked multigraph H̃i; if Hi = ∗Cj
we let every vertex be free, and otherwise we let every vertex be bound. By
(3.1), applied also to Zu∗

Cj
, we find similarly to (7.22)

κ
(
XH1 , . . . ,XHr

)
= Cn−ℓ/2κ

(
Z∗
H̃1
, . . . , Z∗

H̃r

)
, (7.28)

which we estimate by (7.23). If d > 2, then (A3) implies, through (2.6) and
(2.7),

EDd
n 6 dd−2

max ED
2
n = O

(
n(d−2)/2

)
. (7.29)

Furthermore, if F =
⋃
Ĥ ′
i is as in Lemma 7.8, then a vertex w ∈ F is free

if and only if it belongs to Ĥ ′
i only for Hi = ∗Cj . In particular, if w ∈ F is

free then dF (w) > 2. Let s(F) be as in (7.25) with F = F , F ′′ the union of

Ĥ ′
i for Hi = ∗Cj and F ′ the union of the other Ĥi. Then Lemma 7.8, (7.29),

(7.25) and Lemma 7.9 yield
∣∣κ
(
Z∗
H̃1
, . . . , Z∗

H̃r

)∣∣ 6 C
∑

F

nv(F)−e(F)−q(F)+1+s(F) 6 C. (7.30)

Consequently, (7.28) yields

κ
(
XH1 , . . . ,XHr

)
= O

(
n−ℓ/2

)
→ 0. (7.31)

Hence, (7.17) holds in this case too.

Case 5: Some Hi is a ∗Cj , but no Hj is a tree. This is similar to Case
2. Lemma 7.4 shows convergence of all mixed factorial moments, which is
equivalent to convergence of all mixed moments and of all mixed cumulants.

This shows that (7.17) holds in all cases, which implies joint convergence
in distribution (7.18) as above. �

Proof of Theorem 3.9. Theorem 3.2(iii) (multicyclic H) transfers immedi-
ately by (2.8). Consider thus only trees and unicyclic H.

The joint convergence in distribution in (i) and (ii) for G(n,dn) is an
immediate consequence of Lemma 7.10 and conditioning on Zu∗

C1
= Zu∗

C2
= 0.

(We keep the normalization by EZ
u∗
H in (3.2).)

Furthermore, with XH as in (7.16), we have by Theorem 3.2 convergence
of every moment EXr

H , and thus EXr
H = O(1). Furthermore, (2.8) holds
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(as said in Remark 2.3, and a consequence of (7.26)–(7.27)); hence for every
even integer r,

E
(
Xr
H | Zu∗

C1
= Zu∗

C2
= 0

)
6

EXr
H

P
(
Zu∗
C1

= Zu∗
C2

= 0
) = O(1). (7.32)

In other words, the conditioned random variables
(
XH | G∗(n,dn) is simple

)

have bounded moments of arbitrary order; hence the convergence in distri-
bution of these variables just shown implies that moment convergence holds
also for the conditioned variables, i.e., for G(n,dn). Convergence of mixed
moments follows by the same argument.

In particular, this shows that for a tree H,

E
(
XH | G∗(n,dn) is simple

)
=

EZ
u

H − EZ
u∗
H

n1/2
→ 0, (7.33)

which shows (3.10), and completes the proof. �

Proof of Theorem 3.10. (i): As the proof of Theorem 3.2 (only Case 1 is
relevant), but using Lemma 7.8 (with all vertices free) instead of Lemma 7.7;
the extra factors in (7.23) are all O(1) by the assumption (A4), so this does
not affect the rest of the proof.

(ii): As the proof of Theorem 3.9, using again Lemma 7.8 and (A4) instead
of Lemma 7.7. �

Remark 7.11. Theorem 3.10 extends, with the same proof, to marked
trees T̃ , where as above each vertex is marked as either bound or free. This
includes Theorems 3.2, 3.9 and 3.10, but also mixed cases. More generally,
we may consider marked multigraphs where each vertex w is marked with
a set Dw ⊆ N of allowed degrees; we count only copies such that each w
corresponds to a vertex v ∈ G with dG(v) ∈ Dw. For example, we may
count edges such that one endpoint has prime degree and the other is a leaf.
The proofs above hold for this case too; we say that a vertex w is bound if
Dw is finite, and free otherwise. If some vertex is free we assume (A4) as
in Theorem 3.10; if all vertices are bound, the assumptions (A1)–(A2) or
(A1)–(A3) in Theorems 3.2 and 3.9 are enough.

8. Means and variances

In this section we prove Lemmas 7.1–7.4 used in the proofs in Section 7.
We will here use the standard version of the configuration model, recalled at
the beginning of Section 4; we thus use the half-edges Υ =

⋃
i Υi = {αj}N1

(see Section 4) and take a random perfect matching of them.

Proof of Lemma 7.1. Let H be a multigraph and let hk := nk(H) be the
number of vertices of degree k in H, k > 0. We argue as in Section 7; we
denote the possible isolated labelled copies of H in G∗(n,dn) by {Hφ}φ∈Φ(H),
and obtain in analogy with (7.8)

Z
∗
H =

∑

φ∈Φ(H)

Iφ, (8.1)

where now Iφ is the indicator that Hφ exists as an isolated subgraph in
G∗(n,dn). Hφ is specified by:
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(φ′1) For each vertex i ∈ V (H) = [h]: a vertex vν(i) such that dν(i) = dH(i).
Furthermore, v(1), . . . , v(h) are distinct. (As (φ1).)

(φ′2) For each vertex i ∈ V (H) = [h]: also a bijection between the dH(i)
half-edges at i ∈ H and the half-edges Υν(i) at vν(i). These bijections
define how the half-edges in

⋃
i∈[h] Υν(i) are paired in Hφ.

For each k > 0, there are hk vertices i such that dH(i) = k, and we may
choose the corresponding ν(i) in (φ′1) in (nk)hk ways; then for each of these
vertices the bijection of half-edges in (φ′2) may be chosen in k! ways. Hence,
the number of Hφ is

|Φ(H)| =
∏

k>0

(nk)hkk!hk . (8.2)

(The product in (8.2) is really finite, since hk 6= 0 only for finitely many
k.) Each Iφ is a product of e(H) indicators of specific pairings of the type
1{αk and αℓ are paired in G∗(n,dn)}. Hence,

E Iφ =
1

(N − 1)(N − 3) · · · (n− 2e(H) + 1)
=

1

((N − 1))e(H)
. (8.3)

Consequently, (8.1), (8.2) and (8.3) yield the exact formula

EZ
∗
H =

1

((N − 1))e(H)

∏

k>0

(nk)hkk!hk . (8.4)

As n→ ∞, we obtain from (8.4) using (A1) and λH defined in (3.3),

EZ
∗
H = N−e(H)

(
1 +O(N−1)

)∏

k>0

(
npk + o(n)

)hkk!hk

=
nv(H)

N e(H)

(∏

k>0

(
pkk!

)hk + o(1)
)

= nv(H)−e(H)µ−e(H)
(∏

u∈H

pdH (u)dH(u)! + o(1)
)

= nv(H)−e(H) aut(H)
(
λH + o(1)

)
. (8.5)

Using (3.1), this proves (7.1), (7.3) and (7.5).
Now consider two connected multigraphs H and H ′, and let h′k := nk(H ′).

By (8.1),

Z
∗
HZ

∗
H′ =

∑

φ∈Φ(H)

∑

φ′∈Φ(H′)

IφIφ′ . (8.6)

Let φ ∈ Φ(H) and condition on Iφ = 1. Then Hφ is a component of
G∗(n,dn), and the rest of the graph, i.e. G∗(n,dn)\Hφ, is given by another
instance of the configuration model, with nk replaced by nk − hk and N by
N−2e(H). Consequently, if we first only consider φ ∈ Φ(H) and φ′ ∈ Φ(H ′)
such that Hφ and Hφ′ are disjoint, then, using (8.4) for G∗(n,dn) \Hφ,

E

∑

φ,φ′:Hφ∩Hφ′=∅

IφIφ′ =
∑

φ

E Iφ
∑

φ′:Hφ∩Hφ′=∅

E
(
Iφ′ | Iφ = 1

)

=
∑

φ

E Iφ
1

((N − 2e(H) − 1))e(H′)

∏

k>0

(nk − hk)h′
k
k!h

′

k
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= EZ
∗
H

1

((N − 2e(H) − 1))e(H′)

∏

k>0

(nk − hk)h′
k
k!h

′

k

= EZ
∗
H EZ

∗
H′

((N − 1))e(H′)

((N − 2e(H) − 1))e(H′)

∏

k>0

(nk − hk)h′
k

(nk)h′
k

. (8.7)

If Hφ and Hφ′ are not disjoint, then both can occur as components only

if they coincide as unlabelled graphs. Hence, if H 6= H ′, then E
(
Z

∗
HZ

∗
H′

)
is

given by (8.7), while ifH = H ′, then there is an additional term aut(H)EZ
∗
H .

We switch to counting unlabelled copies, using (3.1) as usual, and obtain

E
(
Z

u∗
HZ

u∗
H′

)
= δH,H′ EZ

u∗
H

+ EZ
u∗
H EZ

u∗
H′

((N − 1))e(H′)

((N − 2e(H) − 1))e(H′)

∏

k>0

(nk − hk)h′
k

(nk)h′
k

. (8.8)

Consider first the case when H and H ′ are unicyclic. If pk > 0 for every
k such that hkh

′
k > 0, then all fractions in (8.8) tend to 1 as n→ ∞, and

thus (8.8) and (7.3) yield

E
(
Z

u∗
HZ

u∗
H′

)
→ δH,H′λH + λHλH′ . (8.9)

If pk = 0 for some k with hkh
′
k > 0, then EZ

u∗
H → λH = 0 by (7.3) and the

definition (3.3) of λH (or directly by (8.5)), and (8.8) implies that (8.9) still
holds. If H 6= H ′, (8.9) yields (7.4) with k = 2 and r1 = r2 = 1; if H = H ′,

(8.9) yields E
(
Z

u∗
H

)
2
→ λ2H , another instance of (7.4) (k = 1 and r1 = 2).

This shows (7.4) when the degree
∑

i ri = 2, The general case is proved
in the same way. The factorial moments in (7.4) means that we only count
copies that are distinct, and therefore disjoint, and we may condition on one
indicator Iφ as in (8.7) and use induction; this is a standard argument and
we omit the details.

Finally, consider the case of two trees H and H ′. Then (8.8) yields

Cov
(
Z

u∗
H , Z

u∗
H′

)
= δH,H′ EZ

u∗
H

+ EZ
u∗
H EZ

u∗
H′

( ((N − 1))e(H′)

((N − 2e(H) − 1))e(H′)

∏

k>0

(nk − hk)h′
k

(nk)h′
k

− 1
)
. (8.10)

If pk > 0 whenever hkh
′
k > 0, then

((N − 1))e(H′)

((N − 2e(H) − 1))e(H′)

∏

k>0

(nk − hk)h′
k

(nk)h′
k

=
(

1 +
2e(H)e(H ′)

N
+O

(
N−2

))∏

k>0

(
1 − hkh

′
k

nk
+O

(
n−2
k

))

= 1 +
2e(H)e(H ′)

µn
−

∑

k>0

hkh
′
k

pkn
+ o

(
n−1

)
. (8.11)
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Hence, (8.10) and (7.3) then yield

Cov
(
Z

u∗
H , Z

u∗
H′

)
= δH,H′nλH + nλHλH′

(2e(H)e(H ′)

µ
−

∑

k>0

hkh
′
k

pk

)
+ o(n).

(8.12)

If pk = 0 so nk = o(n) for some k with hkh
′
k > 0, then (8.4) yields

EZ
u∗
H ,EZ

u∗
H′ = O(nk), and it is easily seen from (8.10) and an expansion as

in (8.11) that Cov
(
Z

u∗
H , Z

u∗
H′

)
= o(n). Hence, (8.12) holds in this case too.

We have shown (8.12) in general; this is the same as (7.2) with the defi-
nition (3.7), which completes the proof of Lemma 7.1. �

Remark 8.1. We used labelled copies in the proof for convenience and
transferred the results to unlabelled copies by (3.1). Alternatively, and
essentially equivalently, we may define φ1 ≡ φ2 if φ1, φ2 ∈ Φ(H) and Hφ1 =
Hφ2 as unlabelled graphs, and note that then Iφ1 = Iφ2 . Hence Φ(H) splits
into equivalence classes of aut(H) elements each. Define Φu(H) as a subset
of Φ(H) consisting of one element from each equivalence class. Then, cf.
(8.1) and (3.1), |Φu(H)| = aut(H)−1|Φ(H)| and

Z
u∗
H =

∑

φ∈Φu(H)

Iφ, (8.13)

which can be used instead of (8.1), yielding the same results.

Proof of Lemma 7.4. This is similar to the proof of the special case (7.4) in
Lemma 7.1.

The special case k = 0 is shown in the proof of (2.8) in [21, Section 7
including Remark 6]. In general, we take copies Hφij of Hi for i = 1, . . . , k
and j = 1, . . . , ri, and condition on Iφij = 1 for all such i and j. Then

E

((
Zu∗
C1

)
s1

(
Zu∗
C2

)
s2

∣∣∣ Iφij = 1∀i, j
)
→ λs1∗C1

λs2∗C2
(8.14)

by the case k = 0 just discussed applied to G∗(n,dn) \⋃i,jHφi,j , and (7.6)

follows by the argument in (8.7). (It is here convenient to count unlabelled
copies as in Remark 8.1.) �

Proof of Lemma 7.2. Let V be a uniformly random vertex in G∗(n,dn).
Then,

P
(
C(V ) ∼= H | G∗(n,dn)

)
= |H|Zu∗

H /n, (8.15)

since each component isomorphic to H contains |H| vertices that are possible
choices of V . Hence, using (7.1),

P
(
C(V ) ∼= H

)
= |H|EZu∗

H /n→ |H|λH . (8.16)

Furthermore, by the coupling of the exploration process and the branching
process T discussed in Section 2.3,

P
(
C(V ) ∼= H

)
= P

(
T ∼= H

)
+ o(1) = pH + o(1). (8.17)

By (8.16) and (8.17), |H|λH = pH . �
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Proof of Lemma 7.3. Suppose that this fails, and that H1, . . . ,Hk are dis-
tinct trees with v(Hi) > 1, λHi

> 0 and
∑

i,j aiajσHi,Hj
= 0 for some real

numbers ai 6= 0. Hence, by (3.8),

Var
( k∑

i=1

aiZ
u∗
Hk

)
= n

k∑

i,j=1

aiajσHi,Hj
+ o(n) = o(n). (8.18)

Hence, for any tree H, by the Cauchy–Schwarz inequality and (3.8),

Cov
( k∑

i=1

aiZ
u∗
Hk
, Z

u∗
H

)
6 Var

( k∑

i=1

aiZ
u∗
Hk

)1/2
Var

(
Z

u∗
H

)1/2
= o(n), (8.19)

and thus by (3.8) again,

k∑

i=1

aiσHi,H = 0. (8.20)

For two trees T1 and T2, define

〈T1, T2〉 :=
2e(T1)e(T2)

µ
−

∑

k>0

nk(T1)nk(T2)

pk
, (8.21)

so that (3.7) can be written

σT1,T2 = δT1,T2λT1 + λT1λT2〈T1, T2〉. (8.22)

Thus, (8.20) yields, for every tree H,

k∑

i=1

aiλHi
δH,Hi

+ λH

k∑

i=1

aiλHi
〈Hi,H〉 = 0. (8.23)

By assumption (A6), there exists an r > 1 such that pr > 0. Given any tree
T with v(T ) > 1, we may replace a leaf by a vertex of degree r, joined to

r − 1 new leaves. Denote the result by T (1); this is a tree with nk(T
(1)) =

nk(T ) + (r − 2)δk1 + δkr and e
(
T (1)

)
= e(T ) + r − 1. Hence, for any other

tree T ′,

〈T (1), T ′〉 = 〈T, T ′〉 +
2(r − 1)e(T ′)

µ
− (r − 2)n1(T ′)

p1
− nr(T

′)

pr
. (8.24)

Repeat this procedure and obtain a sequence of trees T (j), j > 0, with
T (0) := T (replacing an arbitrary leaf each time). If j is large enough, then

v(T (j)) > v(Hi) for i = 1, . . . , k, and thus T (j) 6= Hi and (8.23) yields

λT (j)

k∑

i=1

aiλHi
〈Hi, T

(j)〉 = 0, j large. (8.25)

If λT > 0, then also λT (j) > 0 for every j > 1, and thus (8.25) yields∑k
i=1 aiλHi

〈Hi, T
(j)〉 = 0 for large j. Furthermore, it follows from (8.24)

that this sum is a linear function of j, and thus it vanishes for all j, i.e.,

k∑

i=1

aiλHi
〈Hi, T

(j)〉 = 0, j > 0. (8.26)
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In particular we can take j = 0 in (8.26), and see that
∑k

i=1 aiλHi
〈Hi, T 〉 = 0

for every tree T with v(T ) > 0 and λT > 0. Hence, the second term in (8.23)
vanishes for every tree H with v(H) > 1, and thus (8.23) and (8.26) imply

k∑

i=1

aiλHi
δH,Hi

= 0 (8.27)

for every such tree H. However, taking H = H1, this yields a1λH1 = 0, a
contradiction. �

9. Proof of Theorem 3.17

We say that a graph functional ψ has finite support if ψ(H) 6= 0 for only
finitely many unlabelled H, or equivalently, if there exists K <∞ such that

ψ(H) = 0 if e(H) > K. (9.1)

Lemma 9.1. Assume (A1)–(A2). Let ψ be a graph functional with finite
support and define Ψ by (3.16). Then

EΨ
(
G∗(n,dn)

)
= nEψ(T ) + o(n). (9.2)

Proof. Let V be a uniformly random vertex in G∗(n,dn), and couple the
exploration process of C(V ) with T as in Section 2.3. Let K be as in (9.1). If
the first K generations of the two processes are equal, then either C(V ) = T
(as unlabelled rooted graphs), or both have at least K edges, and in both
cases ψ(C(V )) = ψ(T ). Hence, noting that (9.1) also implies that ψ is
bounded,

Eψ
(
C(V )

)
= Eψ(T ) + o(1). (9.3)

Furthermore, conditioning on G∗(n,dn),

E
(
ψ(C(V )) | G∗(n,dn)

)
=

1

n

n∑

i=1

ψ
(
C(vi)

)
=

1

n
Ψ
(
G∗(n,dn)

)
. (9.4)

Thus, taking the expectation,

Eψ(C(V )) =
1

n
EΨ

(
G∗(n,dn)

)
. (9.5)

The result (9.2) follows by combining (9.5) with (9.3). �

Lemma 9.2. Assume (A1)–(A2). Let ψ be a graph functional with finite
support, let K be as in (9.1) and let M := supH |ψ(H)| < ∞. Then, for n
so large that N > µn/2 and N > 4K, with c := 4 + 16/µ,

Var
(
Ψ
(
G∗(n,dn)

))
6 cMK2

E
∣∣ψ(C(V ))

∣∣n. (9.6)

Proof. Let V1 and V2 be independent uniformly random vertices inG∗(n,dn).
Then

E
(
ψ(C(V1))ψ(C(V2)) | G∗(n,dn)

)
=

1

n2

∑

v1,v2∈G∗(n,dn)

ψ(C(v1))ψ(C(v2))

=
1

n2
Ψ
(
G∗(n,dn)

)2
. (9.7)

We reveal the edges in G∗(n,dn) in a special order. (Cf. the related
argument in [5, Section 4.2].) First, let Π1 and Π2 denote independent
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exploration processes of C(V1) and C(V2), starting at V1 and V2 as above.
(These may thus conflict. Think of them as exploring different copies of
G∗(n,dn).) Let Y1 := ψ(C(V1)) and Y2 := ψ(C(V2)) be given by Π1 and
Π2, respectively, and note that Y1 and Y2 are independent. Next, start from
scratch and reveal first the edges of C(V1) according to the process Π1, but
stop whenK edges have been found, or when C(V1) is exhausted (if it has less
than K edges), where again K is as in (9.1); let CK(V1) denote the explored
part of C(V1). Then reveal edges according to Π2 (starting from V2) as long
this does not involve any half-edge already paired. When the first conflict
occurs, abandon Π2 and pair the remaining half-edges uniformly at random
in any order. This yields a copy of G∗(n,dn), and we define Xj := ψ(C(Yj)),
j = 1, 2, for it.

By the construction, and (9.1), X1 = Y1. Furthermore, X2 6= Y2 only if
a conflict has occurred when revealing one of the first K edges according to
Π2. This may happen either because V2 belongs to CK(V1), or because one
of the half-edges already found during the exploration of the first K edges
of C(V2) is paired by Π2 with one of the half-edges in CK(V1). Condition
on CK(V1). Since we reveal only at most K edges and thus K + 1 vertices
in CK(V1), the first possibility has probability 6 (K + 1)/n, and the second
possibility has probability 6 2K/(N − 2K) for each of at most K pairings;
hence, we obtain the union bound, using N − 2K > N/2 > µn/4,

P
(
X2 6= Y2 | CK(V1)

)
6
K + 1

n
+

2K2

N − 2K
6

2K2

n

(
1 + 4µ−1

)
. (9.8)

The construction shows that X1 and X2 have the correct joint distribu-
tion, while Y1 and Y2 have same individual distribution as these, but are
independent of each other. Thus, by (9.7) and (9.4),

E
(
X1X2

)
= E

(
ψ(C(V1))ψ(C(V2))

)
= n−2

E
(
Ψ
(
G∗(n,dn)

)2)
, (9.9)

E
(
Y1Y2

)
=

(
EY1

)2
=

(
Eψ(C(V1))

)2
= n−2

(
EΨ

(
G∗(n,dn)

))2
. (9.10)

Consequently, recalling X1 = Y1,

n−2 Var
(
Ψ(G∗(n,dn))

)
= E(X1X2) − E(Y1Y2) = E

(
X1(X2 − Y2)

)
. (9.11)

Furthermore, by (9.8), since X1 is determined by CK(V1),

E
(
|X2 − Y2| | X1

)
6 2M P

(
X2 6= Y2 | X1

)
6

4MK2

n

(
1 + 4µ−1

)
. (9.12)

Hence, (9.11) yields

n−2 Var
(
Ψ
(
G∗(n,dn)

))
6 E

(
|X1||X2 − Y2|

)
6
cMK2

n
E |X1|, (9.13)

which yields (9.6). �

Lemma 9.3. Assume (A1)–(A2). For every ε > 0, there exists ε1 > 0
such that if J ⊂ [n] is any subset with |J | 6 ε1n, then

∑
i∈J di < εn. In

particular, every subgraph H of G∗(n,dn) with |H| 6 ε1n has e(H) < εn
(deterministically).

Proof. We have Dn := dI , where I is a uniformly random index in [n]. The
uniform integrability of Dn (see (A2)) means (see e.g. [19, Theorem 5.4.1])
that there exists ε1 such that for any event E with P(E) 6 ε1, we have
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E
(
Dn; E

)
< ε. Let E := {I ∈ J }. Then P(E) = |J |/n and

∑
i∈J di =

nE
(
Dn; E

)
. �

We consider now only the supercritical case (A5).

Lemma 9.4. Assume (A1)–(A2) and (A5). Then there exist c > 0, ε > 0
and C <∞ such that, for G∗(n,dn),

P
(
e
(
C(V )

)
= ℓ

)
6 Ce−cℓ, 0 6 ℓ 6 εn, (9.14)

P
(
|C(V )| = k

)
6 Ce−ck, 1 6 k 6 εn. (9.15)

Proof. Consider the exploration process, starting at a random vertex V and
restarting at a new random vertex when a component is completely explored.
Let Qj be the number of unpaired half-edges in the explored part when j

pairings have been made. In particular, Q0 = d(V )
d
= Dn.

By (A5), ED2 > 2µ, and thus there exists K <∞ such that

sK :=
K∑

k=1

k2pk > 2µ. (9.16)

Let ε = (sK − 2µ)/(10K3) > 0. Consider until further notice only n that
are so large that nk/n > pk − ε for k = 1, . . . ,K, and also N/n < µ+ ε, see
(A1) and (2.5).

Let k 6 K be such that pk > 3ε. During the first εn steps of the explo-
ration process, there is always at least nk − εn > (pk − 2ε)n unused vertices
of degree k, and thus the probability that the next pairing is with a half-edge
at an unused vertex of degree k is at least, noting that pk 6 µ,

k(nk − εn)

N
>
k(pk − 2ε)n

(µ+ ε)n
>
k(pk − 2ε)(1 − ε/µ)

µ
>
k(pk − 3ε)

µ
. (9.17)

Let ξ1, ξ2, . . . be independent copies of a random variables ξ with the
distribution

P(ξ = k) =

{
k(pk − 3ε)+/µ, 1 6 k 6 K,

1 −∑K
j=1 P(ξ = j), k = 0,

(9.18)

and define Sm :=
∑m

j=1(ξj − 2).

By (9.17), we can couple the exploration process with the variables ξi
such that for every j 6 εn, Qj+1 − Qj > ξj − 2 = Sj+1 − Sj, and thus, by
induction, Qj > Sj.

Suppose now that the component C(V ) has exactly ℓ edges. Then Qℓ = 0,
and hence Sℓ 6 0. However, (9.18) implies that

µE ξ =

K∑

k=1

k2(pk − 3ε)+ >

K∑

k=1

k2pk − 3K3ε > 2µ (9.19)

and thus E ξ > 2. Furthermore, ξ is bounded, and thus h(t) := E et(ξ−2) <∞
for every real t. Hence, h′(0) = E(ξ − 2) > 0, and thus there exist t0 < 0
such that h(t0) < 1. Consequently, using a Chernoff bound,

P
(
e(C(V )) = ℓ

)
6 P(Qℓ = 0) 6 P(Sℓ 6 0) 6 E et0Sℓ = h(t0)ℓ, ℓ 6 εn.

(9.20)
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This proves (9.14), with c := − log h(t0) > 0, when n is large enough. The
result (9.14) extends to all n, since it is trivial for small n if C is large
enough.

We turn to (9.15). Let ε1 be as in Lemma 9.3. Then, any component C
with |C| = k 6 ε1n has at most εn edges, and at least k − 1. Consequently,
by (9.14), if k 6 ε1n,

P
(
|C(V )| = k

)
6

εn∑

ℓ=k−1

P
(
e(C(V )) = ℓ

)
6

εn∑

ℓ=k−1

Ce−cℓ 6 C ′e−ck. (9.21)

Hence (9.15) too holds, if we redefine C and ε. �

We have a similar estimate for the supercritical branching process T .

Lemma 9.5. Assume (A1)–(A2) and (A5). Then, for the branching process
T in Section 2.3,

P
(
|T | = k

)
6 Ce−ck, 1 6 k <∞. (9.22)

Proof. This follows by standard branching process theory.
Alternatively, by the coupling in Section 2.3, or by (9.3) with ψ(T ) :=

1{|T | = k}, we have for every fixed k > 1, P
(
|C(V )| = k

)
→ P

(
|T | = k

)
,

and thus (9.22) follows from (9.15). �

Proof of Theorem 3.17. The proofs of the two parts are essentially identical,
and we give the details only for (i).

(i): Write G∗
n := G∗(n,dn).

We truncate. Define, for ℓ, L > 1,

ψℓ(H) := ψ(H) · 1{e(H) = ℓ}, (9.23)

ψ6L(H) := ψ(H) · 1{e(H) 6 L}, (9.24)

and consider the corresponding Ψℓ and Ψ6L.
Let ε > 0 be a fixed small number, chosen so small that Lemma 9.4 holds,

as well as the following argument.
If Ψ†(G∗

n) 6= Ψ6εn(G∗
n), then either e(C1) 6 εn, and thus |C1| 6 εn + 1,

or e(C2) > εn and thus |C2| > ε1n by Lemma 9.3. If ε is small enough,
then both events have probability O

(
e−cn

)
by [13, Theorem 2]. Since (3.18)

implies Ψ†(G∗
n),Ψ6εn(G∗

n) = O
(
nm+1

)
, we thus have

E
(
Ψ†(G∗

n) − Ψ6εn(G∗
n)
)2

= O
(
n2m+2e−cn

)
= O

(
e−cn

)
. (9.25)

Hence, it suffices to prove the results for Ψ6εn(G∗
n).

For every ℓ 6 εn, (3.18) and Lemma 9.4 yield

E |ψℓ
(
C(V )

)
| 6 Cℓm P

(
e(C(V )) = ℓ

)
6 Cℓme−cℓ, (9.26)

and thus by (9.5) and Lemma 9.2 (with M 6 Cℓm)

E |Ψℓ(G
∗
n)| = nE |ψℓ(C(V ))| 6 Ce−cℓn, (9.27)

Var Ψℓ(G
∗
n) 6 Cℓmℓ2 E |ψℓ(C(V ))|n 6 Cℓ2m+2e−cℓn 6 Ce−cℓn. (9.28)

Let, for L > 1,

Xn := n−1/2
(
Ψ†(G∗

n) − EΨ†(G∗
n)
)
, (9.29)

Xn;L := n−1/2
(
Ψ6L(G∗

n) − EΨ6L(G∗
n)
)
. (9.30)
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Then, assuming n > L/ε,

Xn −Xn;L = Xn −Xn;nε +
εn∑

ℓ=L+1

n−1/2
(
Ψℓ(G

∗
n) − EΨℓ(G

∗
n)
)
, (9.31)

and thus, using (9.25), (9.28) and Minkowski’s inequality,

(
Var(Xn −Xn;L)

)1/2
6

(
Var(Xn −Xn;εn)

)1/2
+

εn∑

ℓ=L+1

n−1/2
(
Var Ψℓ(G

∗
n)
)1/2

,

6 Ce−cn +

εn∑

ℓ=L+1

Ce−cℓ 6 Ce−cL. (9.32)

Furthermore, for every fixed L > 1, ψ6L is a functional with finite support,
and (3.16) yields a finite linear combination

Ψ6L(G∗
n) =

∑

e(H)6L

|H|ψ(H)Z
u∗
H . (9.33)

Terms whereH has a cycle have variance O(1), by Theorem 3.2 or directly by
Lemma 7.7. Hence, they can be ignored, and Theorem 3.2 (with Remark 3.5)
yields, by (i) and joint convergence for different trees,

Xn;L :=
Ψ6L(G∗

n) − EΨ6L(G∗
n)√

n

d−→ N
(
0, σ2L

)
, (9.34)

where

σ2L :=
∑

|T1|,|T2|6L

|T1||T2|ψ(T1)ψ(T2)σT1,T2 , (9.35)

summing over pairs of trees of order less than L.
We will verify below that the sums in (3.22) converge absolutely. Thus, as

L→ ∞, σ2L → σ2ψ defined in (3.22). The estimate (9.32), which is uniform

in n > L/ε, implies

lim
L→∞

lim sup
n→∞

E(Xn −Xn;L)2 = lim
L→∞

lim sup
n→∞

Var(Xn −Xn;L) = 0. (9.36)

This together with the limit (9.34) for each fixed L and σ2L → σ2ψ imply,

see e.g. [10, Theorem 4.2] or [29, Theorem 4.28], Xn
d−→ N

(
0, σ2ψ

)
, which is

(3.21).
Furthermore, Theorem 3.2 shows also that VarXn;L → σ2L for every fixed

L. Hence, Minkowski’s inequality and (9.32) imply, for every fixed L,
∣∣(VarXn)1/2 − σL

∣∣ 6
∣∣(VarXn)1/2 − (VarXn;L)1/2

∣∣ +
∣∣(VarXn,L)1/2 − σL

∣∣

6
(
Var(Xn −Xn;L)

)1/2
+ o(1) 6 Ce−cL + o(1), (9.37)

and thus,
∣∣(VarXn)1/2 − σψ

∣∣ 6
∣∣(VarXn)1/2 − σL

∣∣ + |σL − σψ|
6 Ce−cL + |σL − σψ| + o(1). (9.38)

Take lim supn→∞ in (9.38) and then let L→ ∞. This yields

lim sup
n→∞

∣∣(VarXn)1/2 − σψ
∣∣ = 0, (9.39)
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and thus VarXn → σ2ψ, which is equivalent to (3.20).

Similarly, if n > L/ε, then (9.25) and (9.27) yield

E |Ψ†(G∗
n) − Ψ6L(G∗

n)| 6 E |Ψ†(G∗
n) − Ψ6εn(G∗

n)| +
εn∑

ℓ=L+1

E |Ψℓ(G
∗
n)|

6 Ce−cn + C

εn∑

ℓ=L+1

Ce−cℓn 6 Ce−cLn. (9.40)

Moreover, EΨ6L(G∗
n)/n → Eψ6L(T ) by Lemma 9.1, and Eψ6L(T ) →

E
† ψ(T ) as L→ ∞ by (2.11), noting that E

† |ψ(T )| < ∞ by (3.18) and
Lemma 9.5. Hence, for any fixed L, (9.40) implies

|EΨ†(G∗
n)/n− E

† ψ(T )| 6 E |Ψ†(G∗
n)/n− Ψ6L(G∗

n)/n|
+ |EΨ6L(G∗

n)/n − Eψ6L(T )| + |Eψ6L(T ) − E
† ψ(T )|

6 Ce−cL + o(1) + |Eψ6L(T ) − E
† ψ(T )|. (9.41)

Taking lim supn→∞ and then letting L→ ∞ yields (3.19), similarly to (9.39).
Finally, to verify absolute convergence of the sums in (3.22), suppose tem-

porarily that ψ(T ) > 0, so that we may interchange order in the summations
freely. Then, considering the terms in (3.7) separately and using (3.5) and
(2.11),

∑

T1,T2

|T1||T2|ψ(T1)ψ(T2)δT1,T2λT1 =
∑

T

|T |2ψ(T )2λT =
∑

T

pT |T |ψ(T )2

= E
†
(
|T |ψ(T )2

)
, (9.42)

∑

T1,T2

|T1||T2|ψ(T1)ψ(T2)λT1λT2e(T1)e(T2) =
(∑

T

pTψ(T )e(T )
)2

=
(
E
†
(
ψ(T )e(T )

))2
, (9.43)

∑

T1,T2

|T1||T2|ψ(T1)ψ(T2)λT1λT2
∑

k>0

nk(T1)nk(T2)

pk

=
∑

k>0

1

pk

(∑

T

pTψ(T )nk(T )
)2

=
∑

k>0

1

pk

(
E
†
(
ψ(T )nk(T )

))2
. (9.44)

The expectations in (9.42) and (9.43) are finite by (3.18) and Lemma 9.5,
and so is each expectation in (9.44). If also the sum in (9.44) converges,
then (3.7) and (9.42)–(9.44) show the last equality in (3.22). In particular,
if (9.44) is finite, then (3.22) yields, since σ2ψ > 0,

∑

k>0

1

pk

(
E
†(nk(T )ψ(T ))

)2
6 E

†
(
|T |ψ(T )2

)
+

2

µ

(
E
†(e(T )ψ(T ))

)2
. (9.45)

For any ψ > 0, this applies to the truncation ψ6L for any L, since we have
ψ6L(T )nk(T ) = 0 for every T when k > L, and thus the sum over k in
(9.44) converges. Hence (9.45) holds for ψ6L, and letting L → ∞ shows
(by monotone convergence) that (9.45) holds for ψ too. We have already
seen that the right-hand side in (9.45) is finite, and thus the sum on the left
converges, for any ψ > 0 satisfying (3.18).



ASYMPTOTIC NORMALITY IN RANDOM GRAPHS 39

Consequently, all sums in (9.42)–(9.44) converge when ψ > 0. Hence,
applying this to |ψ|, we see that for every ψ satisfying (3.18), all sums in
(9.42)–(9.44) converge absolutely; hence the equalities in (9.42)–(9.44) hold
in general, which verifies (3.22), with absolute convergence everywhere.

(ii): The main difference is that we use Theorem 3.9 instead of Theo-
rem 3.2. Since we now assume (A3), (2.8) holds, and thus all estimates of
means and variances in the proof of (i) hold automatically for G(n,dn) too
by conditioning. �

Proof of Theorem 3.16. As said in Example 3.20, we apply Theorem 3.17
with ψ(H) := 1, together with Lemmas 10.5 and 11.1 below. �

10. Non-zero variance?

The asymptotic variance σ2ψ in Theorem 3.17 necessarily satifies σ2ψ > 0;

however, σ2ψ = 0 is possible. We note first some trivial cases.

Example 10.1. (a) If (A6) does not hold, so (in the supercritical case)
p1 = 0, then σ2ψ = 0 for every ψ, see Remark 3.19.

(b) If ψ(T ) = δT,K1 , then σ2ψ = 0. In fact, then Ψ(G) = n0(G) counts

isolated vertices, and thus Ψ†(G(n,dn)) is deterministic.
(c) If ψ(T ) = 0 for every tree T with pT > 0, then ψ(T ) = 0 a.s. and thus

σ2ψ = 0. In this case, ψ(Cj) = 0 for all but a few components Cj .
Parts (b) and (c) of Example 10.1 show that the values of ψ(H) for

H = K1, trees H with pH = 0, and non-trees H, do not affect σ2ψ.

We conjecture that the trivial cases in Example 10.1 (in combination) is
the only way to get σ2ψ = 0 (in the supercritical case). Formally:

Conjecture 10.2. If (A1)–(A3) and (A5)–(A6) hold, then

σ2ψ = 0 ⇐⇒ ψ(T ) = 0 for every tree T with |T | > 1 and pT > 0. (10.1)

Remark 10.3. As said in Section 3.3, we consider for simplicity only the
supercritical case in Theorem 3.17, although we expect a similar result (for
Ψ) also in the subcritical case under suitable conditions. However, note
that then there are two further trivial cases with σ2ψ = 0, viz. ψ(H) = 1 and

ψ(H) = e(H)/|H| as in Example 3.20 (and linear combinations of them),
since then Ψ(G) = |G| and e(G), respectively, which are deterministic for
G(n,dn).

Although we have not been able to verify Conjecture 10.2, we can show
σ2ψ > 0 in many cases.

Lemma 10.4. Assume (A1)–(A2) and (A5)–(A6). Suppose that the graph
functional ψ satisfies (3.18) and that σ2ψ = 0. Then ψ has the form, for
some real constants ak and every tree T with pT > 0,

ψ(T ) =
1

|T |

∞∑

k=0

aknk(T ), (10.2)

where, furthermore, for every k > 0,

pkak = E
†
(
nk(T )ψ(T )

)
− kpk

µ
E
†
(
e(T )ψ(T )

)
(10.3)
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=

∞∑

j=0

aj E
†
(nk(T )nj(T )

|T | − kpk
µ

e(T )nj(T )

|T |
)
. (10.4)

Note that (10.4) is an eigenvalue equation for the vector (ak)k.

Proof. Let Φ be the linear space of all graph functionals satisfying (3.18).
The right-hand side of (3.22) is a quadratic form in ψ ∈ Φ. Denote the
corresponding symmetric bilinear form by 〈ψ1, ψ2〉; thus σ2ψ = 〈ψ,ψ〉 and

〈ψ1, ψ2〉 = E
†
(
|T |ψ1(T )ψ2(T )

)
+

2

µ
E
†(e(T )ψ1(T ))E†(e(T )ψ2(T ))

−
∑

k>0

1

pk
E
†(nk(T )ψ1(T ))E†(nk(T )ψ2(T )). (10.5)

Since (3.20) implies σ2ψ > 0, the bilinear form (10.5) is positive semidefi-
nite, and thus the Cauchy–Schwarz inequality holds for it. In particular, if
〈ψ,ψ〉 = σ2ψ = 0, then 〈ψ,ψ′〉 = 0 for every graph functional ψ′ ∈ Φ. Hence,

taking ψ′(H) := 1{H ∼= T} for a tree T ,

0 = pT |T |ψ(T ) +
2

µ
E
†(e(T )ψ(T ))pT e(T ) −

∑

k>0

1

pk
E
†(nk(T )ψ(T ))pTnk(T ).

(10.6)

Thus, for every tree T such that pT > 0, using 2e(T ) =
∑

k knk(T ),

|T |ψ(T ) =
∑

k>0

1

pk
E
†(nk(T )ψ(T ))nk(T ) − 2

µ
E
†(e(T )ψ(T ))e(T )

=
∑

k>0

( 1

pk
E
†(nk(T )ψ(T )) − k

µ
E
†(e(T )ψ(T ))

)
nk(T ), (10.7)

which yields (10.2)–(10.3); then (10.4) follows by substituting (10.2) in
(10.3). �

Lemma 10.5. Assume (A1)–(A2) and (A5)–(A6). Let ψ(H) := 1. Then
σ2ψ > 0.

Proof. Suppose that σ2ψ = 0; thus (10.2)–(10.4) hold by Lemma 10.4. Fur-

thermore, (10.2) trivially holds with ak = 1, and since the coefficients ak in
(10.2) are uniquely determined for every k with pk > 0, (10.3) yields

pk = pkak = E
† nk(T ) − kpk

µ
E
† e(T ), k > 0. (10.8)

Summing over k yields

1 =
∑

k

(
E
† nk(T ) − kpk

µ
E
† e(T )

)
= E

† |T | − E
† e(T ) = E

†
(
|T | − e(T )

)

= E
† 1 = P(|T | <∞). (10.9)

This is a contradiction. �

Remark 10.6. As said in Example 3.20 (and more generally in Conjec-
ture 10.2), we conjecture that σ2ψ > 0 also for ψ(H) := e(H)/|H|, and for
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(non-zero) linear combinations of these two graph functionals, but we have
failed to show this in general, and leave this as an open problem.

Frank Ball (personal communication) has noted that in the case of bounded
maximum degree treated in his paper [4] (on epidemics, but with the giant
component as a special case), his formulas [4, (5.25)–(5.27)] express the as-
ymptotic variance as a sum of integrals of squares, making it easy to show
that the asymptotic variance is strictly positive in these cases. It seems
likely that this formula for the asymptotic variance holds more generally
(perhaps by purely algebraic manipulations), which might lead to a general
proof, but we have not checked the details.

Example 10.7. Let ψ(H) := |H|. (A6) shows both p1 > 0 and the existence
of r > 1 with pr > 0. There exist arbitrarily large trees T with all degrees
in {1, r}, and they have pT > 0. However, (10.2) cannot hold for all such
trees, since the right-hand side is bounded for them by |a1| + |ar|, while
ψ(T ) = |T | is unbounded. Hence Lemma 10.4 shows that σ2ψ > 0, as claimed
in Example 3.21.

11. The variance of the giant

Lemma 11.1. If ψ(H) = 1, then the variance σ2ψ in (3.22) is given by

(3.15).

Proof. Let T1 be the Galton–Watson tree with offspring distribution Y1 :=

D̂−1, with D̂ given by (2.9). Recall that T has a root with a random number
D of copies of T1 attached to it. The probability generating function of Y1
is given by, using (2.9) and (2.12),

f1(z) := E zY1 = E zD̂−1 =
∞∑

k=1

kpk
µ
zk−1 = µ−1f ′(z). (11.1)

The probability that the supercritical Galton–Watson process T1 is finite
is the unique root ζ ∈ [0, 1) of f1(ζ) = ζ, which by (11.1) is equivalent to
(2.13).

Let T2 be T1 conditioned on being finite. Then, see e.g. [2, Theorem
1.12.3], T2 is another Galton–Watson process, which is subcritical and has an
offspring distribution Y2 with probability generating function, using (11.1),

f2(z) := E zY2 =
f1(ζz)

ζ
=
f ′(ζz)

µζ
. (11.2)

In particular,

EY2 = f ′2(1) =
f ′′(ζ)

µ
. (11.3)

Since T2 is subcritical, thus f ′′(ζ)/µ < 1.
Let noutk (T2) be the number of vertices in T2 with outdegree k. Then, by

a standard calculation for subcritical Galton–Watson trees, summing the
expected number of such vertices in generation j > 0, and using (11.2)–
(11.3) and (2.9),

Enoutk (T2) =

∞∑

j=0

(EY2)
j
P(Y2 = k) =

1

1 − EY2
ζk−1

P(Y1 = k)
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=
ζk−1

P(D̂ = k + 1)

1 − EY2
=

(k + 1)pk+1ζ
k−1

µ− f ′′(ζ)
. (11.4)

If the root of T has degree ℓ, then the tree is finite with probability ζℓ, and
conditioned on this event, it has ℓ branches that are copies of T2. Hence,
using (11.4) and (2.13),

E
† nk(T ) =

∞∑

ℓ=0

plζ
ℓ
(
δkℓ + ℓEnoutk−1(T2)

)
= pkζ

k +

∞∑

ℓ=0

plζ
ℓℓ
kpkζ

k−2

µ− f ′′(ζ)

= pkζ
k + f ′(ζ)

kpkζ
k−1

µ− f ′′(ζ)
= pkζ

k +
kpkζ

kµ

µ− f ′′(ζ)
. (11.5)

Summing over k we find

E
† |T | =

∞∑

k=0

E
† nk(T ) = f(ζ) +

ζf ′(ζ)µ

µ− f ′′(ζ)
= f(ζ) +

µ2ζ2

µ− f ′′(ζ)
, (11.6)

E
† e(T ) = E

†
(
|T | − 1

)
= E

† |T | − P(|T | <∞) = E
† |T | − f(ζ)

=
µ2ζ2

µ− f ′′(ζ)
. (11.7)

Hence, (3.22) with ψ = 1 yields

σ2 = f(ζ) +
µ2ζ2

µ− f ′′(ζ)
+ 2

µ3ζ4

(µ − f ′′(ζ))2
−

∞∑

k=0

pk

(
1 + k

µ

µ − f ′′(ζ)

)2
ζ2k,

(11.8)

which yields (3.15) by expanding the square and summing, using (2.12). �

12. Random degrees

One reason for the importance of the model G(n,dn) is that for sev-
eral models of random graphs, if we condition on the degree sequence, then
we obtain a graph of the type G(n,dn), for the observed degree sequence
dn. This includes the Erdős–Rényi graphs G(n, p) and G(n,m), and several
others, see e.g. [15]. Such random graphs can thus be regarded as G(n,dn)
based on a random degree sequence dn. We obtain easily results for such
graphs too, by conditioning on dn. Note that, as pointed out e.g. by Ball
and Neal [5], the randomness in the degree sequence will in general affect
the asymptotic variance. We illustrate this by considering in some detail
the counts of small isolated trees in the basic theorem Theorem 3.9. Simi-
lar versions of e.g. Theorems 3.16 and 3.17 follow similarly; see [5] for the
variance of the size of the giant component in Theorem 3.16.

Theorem 12.1. Let (pk)∞0 be a probability distribution satisfying (A6). Sup-
pose that dn is random, and such that, with µ :=

∑
k kpk,

nk − pkn√
n

d−→ ξk, k = 0, 1, . . . , (12.1)

∑
k knk − µn√

n

d−→
∞∑

k=1

kξk, (12.2)
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jointly, where ξk are jointly normal with E ξk = 0 and some covariances
Cov(ξk, ξℓ) = γkℓ with

∑
k,ℓ kℓ|γkℓ| <∞, and furthermore that

n−1
∞∑

k=1

k2nk
p−→

∑

k

pkk
2 <∞. (12.3)

Then, for any tree H,

Z
u

H − nλH√
n

d−→ N
(
0, σ̂2H

)
, (12.4)

where λH is as in (3.3); furthermore, joint convergence holds for several

trees H, with limit N(0, Σ̂), where the covariance matrix Σ̂ is given by

σ̂H1,H2 := σH1,H2 + λH1λH2

∞∑

k,ℓ=0

(nk(H1)

pk
− k

µ
e(H1)

)(nℓ(H2)

pℓ
− ℓ

µ
e(H2)

)
γkℓ.

(12.5)

Proof. For convenience, we use the Skorohod coupling theorem [29, Theorem
4.30], and may thus assume that the limits in (12.1)–(12.3) hold a.s. Then
(A1)–(A3) hold a.s., and thus Theorem 3.9 applies, conditioned on the degree
sequence. Hence, conditionally,

Z
u

H − E
(
Z

u∗
H | dn

)
√
n

d−→ N
(
0, σ2H

)
. (12.6)

Consider a tree H and let hk := nk(H). If λH > 0, then, a.s., using (8.4)
and remembering that nk and N now are random, together with the a.s.
versions of (12.1) and (12.2),

E
(
Z

u∗
H | dn

)

nλH
=

1 +O(n−1)

n aut(H)λH
N−e(H)

∏

k

nhkk k!hk

=
(
1 +O(n−1)

)( N

nµ

)−e(H)∏

k

(
nk
npk

)hk

= 1 − e(H)

µ
√
n

∞∑

k=1

kξk +

∞∑

k=0

hk
pk
√
n
ξk + o

(
n−1/2

)

= 1 + n−1/2
∞∑

k=0

(hk
pk

− k

µ
e(H)

)
ξk + o

(
n−1/2

)
(12.7)

and thus

E
(
Z

u∗
H | dn

)
− nλH√

n

d−→ ΞH := λH

∞∑

k=0

(hk
pk

− k

µ
e(H)

)
ξk. (12.8)

On the other hand, if λH = 0, then pk = 0 for some k with hk > 0. Since
pk = 0, (12.1) implies ξk > 0 a.s., and thus ξk = 0 a.s., so nk = o(n1/2) a.s.

Hence, (8.4) implies E
(
Z

u∗
H | dn

)
= o

(
n1/2

)
a.s., and thus (12.8) holds in

this case too, with ΞH = 0.
Since (12.6) holds, with the same limit, conditioned on dn, the limits

(12.6) and (12.8) hold jointly, with independent limits. Hence, we can take
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their sum and obtain (12.4) with σ̂2H1,H2
:= σ2H1,H2

+ Cov
(
ΞH1 ,ΞH2

)
, i.e.,

(12.5). �

Example 12.2. One case studied also by Ball and Neal [5] is when the
degrees di are i.i.d. random variables that are copies of a given D, which
we assume satisfies ED2 < ∞. (We ignore one half-edge if the sum N
otherwise becomes odd.) Then, by the central limit theorem and the law of
large numbers, (12.1)–(12.3) hold with

γkℓ = δkℓpk − pkpl. (12.9)

Hence, Theorem 12.1 shows that (12.4) holds. Furthermore, the double sum
in (12.5) is by (12.9)

∞∑

k=0

pk

(nk(H1)

pk
− k

µ
e(H1)

)(nk(H2)

pk
− k

µ
e(H2)

)

−
∞∑

k=0

pk

(nk(H1)

pk
− k

µ
e(H1)

) ∞∑

ℓ=0

pℓ

(nℓ(H2)

pℓ
− ℓ

µ
e(H2)

)
. (12.10)

By simple algebra, using
∑

k nk(H) = |H| and
∑

k knk(H) = 2e(H), the
first sum in (12.10) equals

∞∑

k=0

nk(H1)nk(H2)

pk
− 4e(H1)e(H2)

µ
+

ED2

µ2
e(H1)e(H2) (12.11)

and the second and third are just

|Hj| − e(Hj) = 1. (12.12)

Hence, (12.5) and (3.7) yield, after some interesting cancellations,

σ̂H1,H2 = δH1,H2λH1 + λH1λH2

(
ED(D − 2)

µ2
e(H1)e(H2) − 1

)
. (12.13)

Example 12.3. Consider the Erdős–Rényi graphs G(n, p) and G(n,m),
where we keep the average degree constant by choosing p = µ/n and m =

µn/2+o(n1/2) for some fixed µ > 0. The number of isolated trees of a given
size in G(n,m) was studied already by Erdős and Rényi [16], but in the
range of m considered here, their result contains an error as was pointed out
by Barbour [6], who proved asymptotic normality for G(n, p) using Stein’s
method. The result was extended by Barbour, Karoński and Ruciński [7] to

counts of isolated copied of individual trees, our Z
u

T ; the method yields also
joint convergence. (We are not aware of any similar result on asymptotic
normality proved for G(n,m), but such results might be in the literature.)
Although this result thus can be proved directly in a rather simple way, at
least for G(n, p), we find it instructive to see how it follows, for both models,
from the general results in the present paper.

Asymptotic normality of nk was shown for G(n, p) by [7], see also [27,
Example 6.35]. This was extended to G(n,m) in [20, Theorem 4.1], which
implies (as a consequence of [20, (4.2)]) that (12.1)–(12.3) hold for both

G(n, p) and G(n,m) (with p = µ/n and m = µn/2+ o(n1/2) as above), with
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pk = µke−µ/k!, the Poisson Po(µ) distribution, and asymptotic covariances

γkℓ =

{
δkℓpk − pkpℓ + (k−µ)(ℓ−µ)

µ pkpℓ, G(n, p),

δkℓpk − pkpℓ − (k−µ)(ℓ−µ)
µ pkpℓ, G(n,m).

(12.14)

Comparing with Example 12.2, we see that γkℓ has an additional term, with
different signs in the two cases. To calculate the contribution from that term
to (12.5), we calculate, recalling D ∼ Po(µ) so ED2 = µ2 + µ,

∞∑

k=0

(nk(H)

pk
− k

µ
e(H)

)
(k − µ)pk =

∞∑

k=0

(k − µ)nk(H) −
∞∑

k=0

pkk(k − µ)

µ
e(H)

= 2e(H) − µ|H| − e(H) = −(µ − 1)|H| − 1. (12.15)

Define χ := +1 for G(n, p) and χ := −1 for G(n,m). Then, using (12.14) in
(12.5) yields, using (12.13) and (12.15) in the calculations,

σ̂H1,H2 = δH1,H2λH1

+ λH1λH2

(µ− 1

µ
e(H1)e(H2) − 1 +

χ

µ

(
(µ− 1)|H1| + 1

)(
(µ − 1)|H2| + 1

))
.

(12.16)

Thus, Theorem 12.1 yields asymptotic normality of the counts of isolated
trees, in both G(n, p) and G(n,m), with asymptotic covariances (12.16).

Remark 12.4. The model in Example 12.2 with D ∼ Po(µ) thus gives a
result with a covariance matrix (12.13) that is half-way between the results
for G(n, p) and G(n,m). As has been remarked before, the same is seen
in the much simpler (but related) case e(G) of the number of edges; ele-
mentary calculations yield Var e(G) = Var(N/2) ∼ µn/4 for the model in
Example 12.2, Var e(G) ∼ µn/2 for G(n, p), and of course Var e(G) = 0 for
G(n,m).
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