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Abstract

Motivated by the Komlós conjecture in combinatorial discrepancy, we study the discrepancy
of random matrices with m rows and n independent columns drawn from a bounded lattice
random variable. It is known that for n tending to infinity and m fixed, with high probability
the ℓ∞-discrepancy is at most twice the ℓ∞-covering radius of the integer span of the support
of the random variable. However, the easy argument for the above fact gives no concrete
bounds on the failure probability in terms of n. We prove that the failure probability is inverse
polynomial in m,n and some well-motivated parameters of the random variable. We also obtain
the analogous bounds for the discrepancy in arbitrary norms.

We apply these results to two random models of interest. For random t-sparse matrices,
i.e. uniformly random matrices with t ones and m − t zeroes in each column, we show that
the ℓ∞-discrepancy is at most 2 with probability 1 −O(

√
logn/n) for n = Ω(m3 log2 m). This

improves on a bound proved by Ezra and Lovett (Ezra and Lovett, Approx+Random, 2015)
showing that the same is true for n at least mt. For matrices with random unit vector columns,
we show that the ℓ∞-discrepancy is O(exp(

√
n/m3)) with probability 1 − O(

√
logn/n) for

n = Ω(m3 log2 m). Our approach, in the spirit of Kuperberg, Lovett and Peled (G. Kuperberg,
S. Lovett and R. Peled, STOC 2012), uses Fourier analysis to prove that for m× n matrices M
with i.i.d. columns, and n sufficiently large, the distribution of My for random y ∈ {−1, 1}n
obeys a local limit theorem.
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1 Introduction

The topic of this paper is combinatorial discrepancy, a well-studied parameter of a set system
or matrix with many applications to combinatorics, computer science and mathematics [4, 9].
Discrepancy describes the extent to which the sets in a set system can be simultaneously split
into two equal parts, or two-colored in a balanced way. Let S be a collection (possibly with
multiplicity) of subsets of a finite set Ω. The ℓ∞-discrepancy of a two-coloring of the set system
(Ω,S) is the maximum imbalance in color over all sets S in S. The ℓ∞-disrepancy1 of (Ω,S) is
the minimum discrepancy of any two-coloring of Ω. Formally,

disc(Ω,S) := min
χ:Ω→{+1,−1}

max
S∈S
|χ(S)|,

where χ(S) =
∑

x∈S χ(x). More generally, the discrepancy of a matrix M ∈ Matm×n(C) or
Matm×n(R) is

disc(M) = min
v∈{+1,−1}n

‖Mv‖∞.

If M is the incidence matrix of the set system (Ω,S), then the definitions agree. Using a clever
linear-algebraic argument, Beck and Fiala showed that the discrepancy of a set system (Ω,S)
is bounded above by a function of its maximum degree ∆(S) := maxx∈Ω |{S ∈ S : x ∈ S}|. If
∆(S) is at most t, we say (Ω,S) is t-sparse.
Theorem 1.1 (Beck-Fiala [3]). If (Ω,S) is t-sparse, then disc(Ω,S) ≤ 2t− 1.

Beck and Fiala conjectured that disc(S) is actually O(
√
t) for t-sparse set systems (Ω,S).

Their conjecture would follow from the following stronger conjecture due to Komlós:

Conjecture 1.2 (Komlós Conjecture; see [11]). If every column of M has Euclidean norm at

most 1, then disc(M) is bounded above by an absolute constant independent of n and m.

This conjecture is still open. The current record is due to Banaszczyk [2], who showed
disc(M) = O(

√
logn) if every column of M has norm at most 1. This implies disc(Ω,S) =

O(
√
t logn) if (Ω,S) is t-sparse.

1often just referred to as the discrepancy
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1.1 Discrepancy of random matrices.

Motivated by the Beck-Fiala conjecture, Ezra and Lovett initiated the study of the discrepancy
of random t-sparse matrices [5]. Here, motivated by the Komlós conjecture, we study the
discrepancy of random m× n matrices with independent, identically distributed columns.

Question 1. Suppose M is an m× n random matrix with independent, identically distributed
columns drawn from a vector random variable that is almost surely of Euclidean norm at most
one. Is there a constant C independent of m and n such that for every ε > 0, disc(M) ≤ C with
probability 1− ε for n and m large enough?

The Komlós conjecture, if true, would imply an affirmative answer to this question. We
focus on the regime where n≫ m, i.e., the number of columns is much larger than the number
of rows.

A few results are known in the regime n = O(m). The theorems in this direction actually
control the possibly larger hereditary discrepancy. Define the hereditary discrepancy herdisc(M)
by

herdisc(M) = max
Y ⊂[n]

disc(M |Y ),

where M |Y denotes the m× |Y | matrix whose columns are the columns of M indexed by Y .
Clearly disc(M) ≤ herdisc(M). Often the Komlós conjecture is stated with disc replaced by

herdisc.
While the Komlós conjecture remains open, some progress has been made for random t-

sparse matrices. To sample a random t-sparse matrix M , choose each column of M uniformly
at random from the set of vectors with t ones and m − t zeroes. Ezra and Lovett showed the
following:

Theorem 1.3 ([5]). If M is a random t-sparse matrix and n = O(m), then herdisc(M) =
O(
√
t log t) with probability 1− exp(−Ω(t)).

The above does not imply a positive answer to Question 1 due to the factor of
√
log t, but is

better than the worst-case bound
√
t logn due to Banaczszyk.

We now turn to the regime n ≫ m. It is well-known that if disc(M |Y ) ≤ C holds for
all |Y | ≤ m, then disc(M) ≤ 2C [1]. However, this observation is not useful for analyzing
random matrices in the regime n ≫ m. Indeed, if n is large enough compared to m, the set of
submatrices M |Y for |Y | ≤ m is likely to contain a matrix of the largest possible discrepancy
among t-sparse m × m matrices, so improving discrepancy bounds via this observation is no
easier than improving the Beck-Fiala theorem. The discrepancy of random matrices when
n ≫ m behaves quite differently than the discrepancy when n = O(m). For example, the
discrepancy of a random t-sparse matrix with n = O(m) is only known to be O(

√
t log t), but it

becomes O(1) with high probability if n is large enough compared to m.

Theorem 1.4 ([5]). Let M be a random t-sparse matrix. If n = Ω
((

m
t

)
log
(
m
t

))
then disc(M) ≤

2 with probability 1−
(
m
t

)−Ω(1)
.

1.2 Discrepancy versus covering radius

Before stating our results, we describe a simple relationship between the covering radius of a
lattice and a certain variant of discrepancy. We’ll need a few definitions.

• For S ⊆ Rm, let span
R
S denote the linear span of of S, and span

Z
S denote the integer

span of S.

• A lattice is a discrete subroup of Rm. Note that the set span
Z
S is a subgroup of Rm,

but need not be a lattice. If S is linearly independent or lies inside a lattice, span
Z
S is a

lattice. Say a lattice in Rm is nondegenerate if span
R
L = Rm.

• For any norm ‖ · ‖∗ on Rm, we write d∗(x, y) for the associated distance, and for S ⊆ Rm,
d∗(x, S) is defined to be infy∈S d∗(x, y).

3



• The covering radius ρ∗(S) of a subset S with respect to the norm ‖·‖∗ is supx∈span
R
S d∗(x, S)

(which may be infinite.)

• The discrepancy may be defined in other norms than ℓ∞. If M is an m × n matrix and
‖ · ‖∗ a norm on Rm, define the ∗-discrepancy disc∗(M) by

disc∗(M) := min
y∈{±1}

‖My‖∗.

In particular, disc(M) is disc∞(M).

A natural relaxation of ∗-discrepancy is the odd∗ discrepancy: instead of assigning ±1 to the
columns, one could minimize ‖My‖∗ for y with odd entries. By writing each odd integer as 1
plus an even number, it is easy to see that the odd∗ discrepancy of M is equal to

d∗(M1, 2L) ≤ 2ρ∗(L).

where L is the lattice generated by the columns of M and 1 is the all-ones vector. In fact, by
standard argument which can be found in [8], the maximum odd∗ discrepancy of a matrix whose
columns generate L is sandwiched between ρ∗(L) and 2ρ∗(L).

In general, disc∗(M) can be arbitrarily large compared to the odd∗ discrepancy of M , even
for m = 1, n = 2. If r ∈ Z then M = [2r + 1, r] has ρ∗(spanZ M) = 1/2 but disc∗(M) = r + 1.
However, the discrepancy of a random matrix with many columns drawn from L behaves more
like the odd discrepancy.

Proposition 1.5. Suppose X is a random variable on Rm whose support generates a lattice

L. Then for any ε > 0, there is an n0(ε) so that for n > n0(ε), a random m × n matrix with

independent columns generated from X satisfies

disc∗(M) ≤ d∗(M1, 2L) ≤ 2ρ∗(L)

with probability at least 1− ε.

Proof. Let S be the support of S. For every subset T of S, let sT be the sum of the columns
of T . Let C be large enough that for all T , there is an integer combination vT of elements of S
with even coefficients at most C such that ‖vT − sT ‖ ≤ d∗(sT , 2L).

Choose n0(ε) large enough so that with probability at least 1−ε, if we take n0(ε) samples of
X , every element of S appears at least C+1 times. Let n ≥ n(ε) and let M be a random matrix
obtained by selecting n columns according to X . With probability at least 1−ε every vector in S
appears at least C times. We claim that if this happens, disc∗(M) ≤ d∗(M1, 2L). This is because
if T is the subset of S that appeared an odd number of times in M , d∗(M1, 2L) = d∗(sT , 2L),
but because each element of S appears at least C + 1 times, we may choose y ∈ {±1}n so that
My = sT − vT for ‖vT − sT ‖ ≤ d∗(sT , 2L).

1.3 Our results

The above simple result says nothing about the number of columns required for M to satisfy the
desired inequality with high probability. The focus of this paper is on obtaining quantitative
upper bounds on the function n0(ε). We will consider the case when span

Z
supp(X) is a lattice

L. The bounds we obtain will be expressed in terms of m and several quantities associated to
the lattice L, the random variable X and the norm ‖ · ‖∗. Without loss of generality, we assume
X is symmetric, i.e. Pr[X = x] = Pr[X = −x] for all x. For a real number L > 0 we write B(L)
for the set of points in Rm of (Euclidean) length at most L.

• The ‖ · ‖∗ covering radius ρ∗(L).
• The distortion R∗ of the norm ‖ · ‖∗, which is defined to be maximum Euclidean length of

a vector x such that ‖x‖∗ = 1. For example, R∞ =
√
m.
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• The determinant detL of the lattice L, which is the determinant of any matrix whose
columns form a basis of L.

• The determinant detΣ, where Σ = E[XX†] is the m×m covariance matrix of X .

• The smallest eigenvalue σ of Σ.

• The maximum Euclidean length L = L(Z) of a vector in the support of Z = Σ−1/2X .

• A parameter s(Z) called the spanningness. The definition of this crucial parameter is
technical and is given in Section 1.4; roughly speaking, it is large if Z is not heavily
concentrated near some proper sublattice of L.

We now state our main quantitative theorem about discrepancy of random matrices.

Theorem 1.6 (main discrepancy theorem). Suppose X is a random variable on a nondegenerate

lattice L. Let Σ := EXX† have least eigenvalue σ. Suppose suppX ⊂ Σ1/2B(L) and that

L = span
Z
suppX. If n ≥ N then

disc∗(M) ≤ d∗(M1, 2L) ≤ 2ρ∗(L)

with probability at least

1−O

(
L

√
logn

n

)
.

Here N , given by Eq. (23) in Section 2, is a polynomial in the quantities m, s(Σ−1/2X)−1, L,
R∗, ρ∗(L), and log (detL/ detΣ).
Remark 1.7 (degenerate lattices). Our assumption that L is nondegenerate is without loss
of generality; if L is degenerate, we may simply restrict to span

R
L and apply Theorem 1.6.

Further, the assumptions that L = span
Z
suppX and L is nondegenerate imply σ > 0.

Remark 1.8 (weaker moment assumptions). Our original motivation, the Kómlos conjecture,
led us to study the case when the random variableX is bounded. This assumption is not critical.
We can prove a similiar result under the weaker assumption that (E‖X‖η2)1/η = L <∞ for some
η > 2. The proofs do not differ significantly, so we give a brief sketch in Section 4.4.

Obtaining bounds on the spanningness is the most difficult aspect of applying Theorem 1.6.
We’ll do this for random t-sparse matrices, for which we extend Theorem 1.4 to the regime n =
Ω(m3 log2 m). For comparison, Theorem 1.4 only applies for n≫

(
m
t

)
, which is superpolynomial

in m if min(t,m− t) = ω(1).

Theorem 1.9 (discrepancy for random t-sparse matrices). Let M be a random t-sparse matrix.

If n = Ω(m3 log2 m) then
disc(M) ≤ 2

with probability at least 1−O

(√
m logn

n

)
.

Remark 1.10. We refine this theorem later in Theorem 3.3 of Section 3 to prove that the
discrepancy is, in fact, usually 1.

Using analogous techniques to the proof of Theorem 1.6, we also prove a similar result for a
non-lattice distribution, namely the matrices with random unit vector columns.

Theorem 1.11 (random unit vector discrepancy). Let M be a matrix with i.i.d random unit

vector columns. If n = Ω(m3 log2 m), then

discM = O(e−
√

n
m3 )

with probability at least 1−O

(
L
√

logn
n

)
.
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One might hope to conclude a positive answer to Question 1 in the regime n ≫ m from
Theorem 1.6. This seems to require the following weakening of the Komlós conjecture:

Conjecture 1.12. There is an absolute constant C such that for any lattice L generated by

unit vectors, ρ∞(L) ≤ C.

1.4 Proof overview

In what follows we focus on the case when X is isotropic, because we may reduce to this case by
applying a linear transformation. The discrepancy result for the isotropic case, Theorem 2.2, is
stated in Section 2, and Theorem 1.6 is an easy corollary. We now explain how the parameters
in Theorem 1.6 arise.

The theorem is proved via local central limit theorems for sums of vector random variables.
Suppose M is a fixed m×n matrix with bounded columns and consider the distribution overMv

where v is chosen uniformly at random from (±1)n. Multidimensional versions of the central
limit theorem imply that this distibution is approximately normal. We will be interested in
local central limit theorems, which provide precise estimates on the probability that Mv falls
in a particular region. By applying an appropriate local limit theorem to a region around the
origin, we hope to show that the probability of being close to the origin is strictly positive, which
implies that there is a ±1 assignment of small discrepancy.

We do not know suitable local limit theorems that work for all matrices M . We will consider
random matrices of the form M = MX(n), where X is a random variable taking values in some
lattice L ⊂ Rm, and MX(n) has n columns selected independently according to X . We will
show that, for suitably large n (depending on the distribution X), such a random matrix will,
with high probability, satisfy a local limit theorem. The relative error in the local limit theorem
will decay with n, and our bounds will provide quantitative information on this decay rate. In
order to understand our bounds, it helps to understand what properties of X cause the error to
decay slowly with n.

We’ll seek local limit theorems that compare Pry[My = w] to something proportional to

e−
1
2w

†(MM†)−1w. One cannot expect such precise control if the lattice is very fine. If the spacing
tends to zero, we approach the situation in which X is not on a lattice, in which case the
probability of expressing any particular element could always be zero! In fact, in the nonlattice
situation the covering radius can be zero but the discrepancy can typically be nonzero. For this
reason our bounds will depend on log(detL) and on L.

We also need ρ∗(L) and the distortion R∗ to be small in order to ensure e−
1
2w

†(MM†)−1w is
not too small for some vector w that we want to show is hit by My with positive probability
over y.

Finally, we need that X does not have most of its mass on or near a smaller sublattice L′.
This is the role of spanningness, which is analogous to the spectral gap for Markov chains. Since
we assume X is symmetric, choosing the columns M and then choosing y at random is the same
as adding n identically distributed copies of X . Intuitively, this means that if M is likely to
have My distributed according to a lattice Gaussian, then the sum of n copies of X should also
tend to the lattice Gaussian on L. If the support of X is contained in a smaller lattice L′, then
clearly X cannot obey such a local central limit theorem, because sums of copies of X are also
contained in L′. In fact, this is essentially the only obstruction up to translations. We may
state the above obstruction in terms of the dual lattice and the Fourier transform of X .

Definition 1.1 (dual lattice). If L is a lattice, the dual lattice L∗ of L is the set

L∗ = {z : 〈z, λ〉 ∈ Z for all λ ∈ L}.

The Fourier transform X̂ ofX is the function defined on θ ∈ Rm by X̂(θ) = E[exp(2πi〈X, θ〉)].
Note that |X̂(θ)| is always 1 for θ ∈ L∗. In fact, if |X̂(θ)| = 1 also implies that θ ∈ L∗, then the
support of X is contained in no (translation of a) proper sublattice of L! This suggests that, in
order to show that a local central limit theorem holds, it is enough to rule out vectors θ outside
the dual lattice with |X̂(θ)| = 1.

6



In this work, the obstructions are points θ far from the dual lattice with E[|〈θ,X〉 mod 1|2]
small, where y mod 1 is taken in (−1/2, 1/2]. However, we know that for θ very close to the dual
lattice we have |〈θ, x〉 mod 1|2 = |〈θ, x〉|2 for all x ∈ suppX , so E[|〈θ,X〉 mod 1|2] is exactly
d(θ,L∗)2. The spanningness measures the value of E[|〈θ,X〉 mod 1|2] where this relationship
breaks down.

Definition 1.2 (Spanningness for isotropic random variables). Suppose that Z is an isotropic
random variable defined on the lattice L. Let

Z̃(θ) :=
√
E[|〈θ, Z〉 mod 1|2],

where y mod 1 is taken in (−1/2, 1/2], and say θ is pseudodual if Z̃(θ) ≤ d(θ,L∗)/2. Define the
spanningness s(Z) of Z by

s(Z) := inf
L∗ 6∋ θ pseudodual

Z̃(θ).

It is a priori possible that s(Z) =∞.

Spanningness is, intuitively, a measure of how far Z is from being contained in a proper
sublattice of L. Indeed, s(Z) = 0 if and only if this the case. Bounding the spanningness is
the most difficult part of applying our main theorem. Our spanningness bounds for t-sparse
random matrices use techniques from the recent work of Kuperberg, Lovett and Peled [7],
in which the authors proved local limit theorems for My for non-random, highly structured
M . Our discrepancy bounds also apply to the lattice random variables considered in [7] with
the spanningness bounds computed in that paper; this will be made precise in Lemma 3.8 of
Section 3.1.

Related work

We submitted a draft of this work in April 2018, and during our revision process Hoberg and
Rothvoss posted a paper on arXiv using very similar techniques on a closely related problem [6].
They study random m× n matrices M with independent entries that are 1 with probability p,
and show that for discM = 1 with high probability in n provided n = Ω(m2 logm). The results
are closely related but incomparable: our results are more general, but when applied to their
setting we obtain a weaker bound of n ≥ Ω(m3 log2 m).

Organization of the paper

In Section 2 we build the technical machinery to carry about the strategy from the previous
section. We state our local limit theorem and show how to use it to bound discrepancy. In
Section 3 we recall some techniques for bounding spanningness, the main parameter that controls
our local limit theorem, and use these bounds to prove Theorem 1.9 on the discrepancy of random
t-sparse matrices. In Section 5 we use similar techniques to bound the discrepancy of matrices
with random unit columns. Section 4 contains the proofs of our local limit theorems.

Notation

If not otherwise specified, M is a random m×n matrix with columns drawn independently from
a distribution X on a lattice L that is supported only in a ball B(L), and the integer span of
the support of X (denoted suppX) is L. Σ denotes EXX†. D will denote the Voronoi cell of
the dual lattice L∗ of L. ‖ · ‖2 denotes the Euclidean norm for vectors and the spectral norm
for matrices, and ‖ · ‖∗ denotes an arbitrary norm.

Throughout the paper there are several constants c1, c2, . . . . These are assumed to be abso-
lute constants, and we will assume they are large enough (or small enough) when needed.
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2 Likely local limit theorem and discrepancy

Here we show that with high probability over the choice of M , the random variable My resem-
bles a Gaussian on the lattice L. We also show how to use the local limit theorem to bound
discrepancy.

For ease of reference, we define the rate of growth n must satisfy in order for our local limit
theorems to hold.

Definition 2.1. Define N0 = N0(m, s(X), L, detL) by

N0 := c13 max
{
m2L2(logm+ logL)2, s(X)−4L−2, L2 log2 detL

}
, (1)

where c13 is a suitably large absolute constant.

A few definitions will be of use in the next theorem.

Definition 2.2. For a matrix M , define the lattice Gaussian with covariance 1
2MM † by

GM (λ) =
2m/2 det(L)

πm/2
√
det(MM †)

e−2λ†(MM†)−1λ.

For two Hermitian matrices A and B, A � B means A−B is positive-semidefinite.

Theorem 2.1. Let X be a random variable on a lattice L such that EXX† = Im, suppX ⊂
B(L), and L = span

Z
suppX. For n ≥ N0, with probability at least 1 − c12L

√
logn
n over the

choice of columns of M , the following two properties of M hold:

1. MM † � 1
2nIm.

2. For all λ ∈ L − 1
2M1,

∣∣∣∣ Pr
yi∈{±1/2}

[My = λ]−GM (λ)

∣∣∣∣ = GM (0) · 2m
2L2

n
. (2)

where GM is as in Definition 2.2.

In particular, for all λ ∈ L − 1
2M1 with e−2λ†(MM†)−1λ > 2m2L2/n we have

Pr
y∈{±1/2}n

(My = λ) > 0.

Equipped with the local limit theorem, we may now bound the discrepancy. We restate
Theorem 1.6 using N0.

Theorem 2.2 (discrepancy for isotropic random variables). Suppose X is an isotropic random

variable on a nondegenerate lattice L with L = span
Z
suppX and suppX ⊂ B(L). If n ≥ N

then

disc∗(M) ≤ d∗(M1, 2L) ≤ 2ρ∗(L)

with probability 1− c12L
√

logn
n , where

N1 = c14 max
{
R2

∗ρ∗(L)2, N0 (m, s(X), L, detL)
}

(3)

for N0 as in Eq. (1).

Proof. By the definition of the covering radius of a lattice, there is a point λ ∈ L − 1
2M1 with

‖λ‖∗ ≤ d∗(
1
2M1,L) ≤ ρ∗(L). It is enough to show that, with high probability over the choice of

M , the point λ is hit by My with positive probability over y ∈ {±1/2}n. If so, 2y is a coloring
of M with discrepancy 2ρ∗(L).

8



Because n is at least N0(m, s(X), L, detL′), the events in Theorem 2.1 hold with probability

at least 1− c12L
√

logn
n . We claim that if the events in Theorem 2.1 occur, then λ is hit by My

with positive probability. Indeed, by the final conclusion in Theorem 2.1, it is enough to show
that

e−2λ†(MM†)−1λ > 2m2L2/n.

Because n ≥ N , e−1 ≥ 2m2L2/n. Thus, it is enough to show λ†(MM †)−1λ < 1
2 . This is true;

by MM † ≥ 1
2nIm, we have λ†(MM †)−1λ ≤ 2‖λ‖2∗R2

∗
n ≤ 2

R2
∗
n ρ∗(L)2.

Now Theorem 1.6 is an immediate corollary of Theorem 2.2.

Theorem 2.3 (Restatement of Theorem 1.6). Suppose X is a random variable on a nonde-

generate lattice L. Suppose Σ := E[XX†] has least eigenvalue σ, suppX ⊂ Σ1/2B(L), and that

L = span
Z
suppX. If n ≥ N then

disc∗(M) ≤ d∗(M1, 2L) ≤ 2ρ∗(L)

with probability at least 1− c12L
√

logn
n , where

N = c14 max

{
R2

∗ρ∗(L)2
σ

,N0

(
m, s(Σ−1/2X), L,

detL√
detΣ

)}
(4)

for N0 as in Eq. (1).

Proof. Note that σ > 0, because L is nondegenerate and L = spanZ suppX ⊂ span
R
suppX .

Thus, σ = 0 contradicts span
R
suppX ( Rm.

Let Z := Σ−1/2X so that E[ZZ†] = Im; we’ll apply Theorem 2.2 to the random variable Z,
the norm ‖ · ‖0 given by ‖v‖0 := ‖Σ1/2v‖∗, and the lattice L′ = Σ−1/2L. The distortion R0 is
at most R∗/σ1/2, the lattice determinant becomes detL′ = detL/

√
detΣ, and suppZ ⊂ B(L).

The covering radius of ρ0(L′) is exactly ρ∗(L). Since the choice of N in Eq. (23) is N1 of
Theorem 2.2 for Z, ‖ · ‖0, and L′, we have from Theorem 2.2 that

disc∗(M) = disc0(Σ
−1/2M) ≤ 2ρ0(L′) = 2ρ∗(L)

with probability at least 1− c12L
√

log n
n .

3 Discrepancy of random t-sparse matrices

Here we will state our spanningness bounds for t-sparse matrices, and before proving them,
compute the bounds guaranteed by Theorem 1.6. For S ∈

(
[m]
t

)
, let 1S ∈ Rm denote the

characteristic vector of S.

Fact 3.1 (random t-sparse vector). A random t-sparse vector is 1S for S drawn uniformly at

random from
(
[m]
t

)
. Let X be a random t-sparse vector with 0 < t < m. The lattice L ⊂ Zm is

the lattice of integer vectors with coordinate sum divisible by t; we have ρ∞(L) = 1. Observe
that L∗ = Zm + Z1

t1, where 1 is the all ones vector. Since e1, . . . , em−1,
1
t 1 is a basis for L∗,

detL = 1/ detL∗ = t.

Σi,j = E[XX†]ij =





t
m i = j

t(t−1)
m(m−1) i 6= j

The eigenvalues of Σ are t2

m with multiplicity one, and t(m−t)
m(m−1) with multiplicity m− 1.

The next lemma is the purpose of the next two subsections.
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Lemma 3.2. There is a constant c7 such that the spanningness is at least c7m
−1; that is,

s(Σ−1/2X) ≥ c7m
−1.

Before proving this, we plug the spanningness bound into Theorem 2.3 to bound the dis-
crepancy of t-sparse random matrices.

Proof of Theorem 1.9. If X is a random t-sparse matrix, ‖Σ−1/2X‖2 is
√
m with probability

one. This is because E‖Σ−1/2X‖22 = m, but by symmetry ‖Σ−1/2x‖2 is the same for every

x ∈ suppX . Hence, we may take L =
√
m. By Fact 3.1, σ is t(m−t)

m(m−1) . Now N from Theorem 2.3
is at most

c14 max





m · m(m− 1)

t(m− t)︸ ︷︷ ︸
R2∞ρ∞(L)2

σ

, m3 log2 m︸ ︷︷ ︸
m2L2(logM+logL)2

, m3
︸︷︷︸

s(X)−4L−2

m log2 t︸ ︷︷ ︸
L2 log2 detL





, (5)

which is O(m3 log2 m).

We can refine this theorem to obtain the limiting distribution for the discrepancy.

Theorem 3.3 (discrepancy of random t-sparse matrices). Let M be a random t-sparse matrix

for 0 < t < m. Let Y = B(m, 1/2) be a binomial random variable with m trials and success

probability 1/2. Suppose n = Ω(m3 log2 m). If n is even, then

Pr[disc(M) = 0] = 2−m+1 +O
(√

(m/n) logn
)

Pr[disc(M) = 1] = (1− 2−m+1) +O
(√

(m/n) logn
)

and if n is odd then

Pr[disc(M) = 0] = 0

Pr[disc(M) = 1] = Pr[Y ≥ t|Y ≡ t mod 2] +O
(√

(m/n) logn
)

Pr[disc(M) = 2] = Pr[Y < t|Y ≡ t mod 2] +O
(√

(m/n) logn
)

with probability at least 1−O

(√
m logn

n

)
. Note that

Pr[Y ≤ s|Y ≡ t mod 2] = 2−m+1
s∑

k≡t mod 2

(
m

k

)
.

Proof of Theorem 3.3. The proof is identical to that of Theorem 1.9 except we do additional
work to bound d∗(M1, 2L) instead of just using 2ρ∗(L). There are two cases:

Case 1: n is odd. The coordinates of M1 sum to nt. The lattice 2L is the integer vectors
with even coordinates whose sum is divisible by 2t. Thus, in order to move M1 to 2L,
each odd coordinate must be changed to even and the total sum must be changed by an
odd number times t. The number of odd coordinates has the same parity as t, so we may
move M to 2L by changing each coordinate by at most 1 if and only if the number of odd
coordinates is at least t.

Case 2: n is even. In this case, the total sum of the coordinates must be changed by an
even number times t. The parity of the number of odd coordinates is even, so the odd
coordinates can all be changed to even preserving the sum of all the coordinates. This
shows may move M to 2L by changing each coordinate by at most 1, and by at most 0 if
all the coordinates of M1 are even.

10



Thus, in the even case the discrepancy is at most 1 with the same failure probability and 0
with the probability all the row sums are even, and in the odd case the discrepancy is at most 1
provided the number of odd coordinates of M1 is at least t. Observe that the vector of row sums
of a m×n random t-sparse matrix taken modulo 2 is distributed as the sum of n random vectors
of Hamming weight t in Fm

2 . Lemma 3.4 below shows that the Hamming weight of this vector
is at most O(e−2n/m+3m) in total variation distance from a binomial B(m, 1/2) conditioned on
having the same parity as nt. Because this is dominated by

√
(m/n) logn for n ≥ m3 log2 m,

the theorem is proved.

Lemma 3.4 (number of odd rows). Suppose Xn is a sum of n uniformly random vectors of

Hamming weight 0 < t < m in Fm
2 and Zn is a uniformly random element of Fm

2 with Hamming

weight having the same parity as nt. If dTV denotes the total variation distance, then

dTV (Xn, Zn) = O(e−2n/m+m).

Proof. Though we will not use the language of Markov chains, the following calculation consists
of showing that the random walk on the group Fm

2 mixes rapidly by showing it has a spectral
gap.

Let X be a random element Fm
2 of Hamming weight t. Let f be the probability mass function

of X . Let hn be the probability mass function of Zn. By the Cauchy-Schwarz inequality, it is
enough to show that the probability mass function fn of the sum of n i.i.d. copies of X satisfies

∑

x∈F
m
2

|fn(x) − hn(x)|2 = O(e−2n/m)

For y ∈ Fm
2 , let χy : Fm

2 → {±1} be the Walsh function χy(x) = (−1)y·x. The Fourier transform
of a function g : Fm

2 → R is the function ĝ : Fm
2 → R given by ĝ(y) =

∑
x∈F

m
2
g(x)χy(x). The

function fn satisfies f̂n = (f̂ )n. Note that ĥn(0) = f̂n(0) = 1, ĥn(1) = f̂n(1) = (−1)nt, and
ĥ = 0 elsewhere. By Plancherel’s identity,

∑

x∈F
m
2

|fn(x)− hn(x)|2 = Ey∈Fm
2
|f̂(y)n − ĥn(y)|2 (6)

=
∑

y∈F
m
2 ,y 6=0,y 6=1

2−n|f̂(y)|2n. (7)

Now we claim that |f̂(y)| ≤ 1 − 1
m for y 6∈ {0,1}, which would imply Eq. (7) is at most

(1 − 1/m)2n ≤ e−2n/m. Indeed, if the Hamming weight of y is s, then f̂(y) is exactly the
expectation of (−1)|S∩T | where T is a random t-set and S a fixed s-set. By symmetry we may
assume t ≤ s, and since we are only concerned with the absolute value of this quantity, by taking
the complement of S we may assume s ≤ m/2. We may choose the elements of T in order; it
is enough to show that the expectation of (−1)|S∩T | is at most 1 − 1/m in absolute value even
after conditioning on the choice of the first t− 1 elements of T . Indeed, the value of (−1)|S∩T |

is not determined by this choice, so the conditional expectation is a rational number in (−1, 1)
with denominator at most m, and hence at most 1− 1/m in absolute value.

We’ll now discuss a general method for bounding the spanningness of lattice random vari-
ables.

3.1 Spanningness of lattice random variables

Suppose X is a finitely supported random variable on L. We wish to bound the spanningness
s(X) below. The techniques below nearly identical to those in [7], in which spanningness is
bounded for a very general class of random variables.

We may extend spanningness for nonisotropic random variables.
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Definition 3.1 (nonisotropic spanningness). A distribution X with finite, nonsingular covari-
ance EXX† = Σ determines a metric dX on Rm given by dX(θ1, θ2) = ‖θ1 − θ2‖X where the
square norm ‖θ‖2X is given by θ†Σθ = E[〈X, θ〉2]. Let

X̃(θ) :=
√
E[|〈θ,X〉 mod 1|2],

where y mod 1 is taken in (−1/2, 1/2], and say θ is pseudodual if X̃(θ) ≤ dX(θ,L∗)/2. Define
the spanningness s(X) of X by

s(X) := inf
L∗ 6∋ θ pseudodual

X̃(θ).

This definition of spanningness is invariant under invertible linear transformations X ← AX
and L ← AL; in particular, s(X) is the same as s(Σ−1/2X) for which we have ‖θ‖Σ−1/2X = ‖θ‖2.
Hence, this definition extends the spanningness of Definition 1.2.

Strategy for bounding spanningness

Our strategy for bounding spanningness below is as follows: we need to show that if θ is
pseudodual but not dual, i.e., 0 < X̃(θ) ≤ d(x,L∗)/2, then X̃(θ) is large. We do this in the
following two steps.

1. Find a δ such that if all |〈x, θ〉 mod 1| ≤ 1
β for all x ∈ suppX , then X̃(θ) ≥ dX(θ,L∗).

Such θ cannot be pseudodual without being dual.

2. X is α-spreading: for all θ,

X̃(θ) ≥ α sup
x∈suppX

|〈x, θ〉 mod 1|

Together, if θ is pseudodual, then X̃(θ) ≥ α/β.
To achieve the first item, we use bounded integral spanning sets as in [7]. The following

definitions and lemmas are nearly identical to arguments in the proof of Lemma 4.6 in [7].

Definition 3.2 (bounded integral spanning set). Say B is an integral spanning set of a subspace
H of Rm if B ⊂ Zm and span

R
B = H . Say a subspace H ⊂ Rm has a β-bounded integral

spanning set if H has an integral spanning set B with max{‖b‖1 : b ∈ B} ≤ β.

Definition 3.3. Let AX denote the matrix whose columns are the support of X (in some fixed
order). Say X is β-bounded if kerAX has a β-bounded integral spanning set.

Lemma 3.5. Suppose X is β-bounded. Then either

max
x∈supp(X)

|〈x, θ〉 mod 1| ≥ 1

β

or

X̃(θ) ≥ dX(θ,L∗)

Proof. To prove Lemma 3.5 we use a claim from [7] , which allows us to deduce that if 〈x, θ〉 is
very close to an integer for all x then we can “round” θ to an element of the dual lattice to get
rid of the fractional parts.

Claim 3.6 (Claim 4.12 of [7]). Suppose X is β bounded, and define rx := 〈x, θ〉 mod 1 ∈
(−1/2, 1/2] and kx to be the unique integer such that 〈x, θ〉 = kx + rx. If

max
x∈supp(X)

|rx| < 1/β

then there exists l ∈ L∗ with

〈x, l〉 = kx

for all x ∈ supp(X).
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Now, suppose maxx∈supp(X) |〈x, θ〉 mod 1| = maxx∈supp(X) |rx| < 1/β. By Claim 3.6, exists
l ∈ L∗ with 〈x, l〉 = kx for all x ∈ supp(X). By assumption,

X̃(θ) =
√
E(〈X, θ〉 mod 1)2 =

√
Er2X =

√
E〈X, θ − l〉2 ≥ dX(θ,L∗),

proving Lemma 3.5.

In order to apply Lemma 3.5, we will need to bound X̃(θ) below when there is some x with
|〈x, θ〉| fairly large.

Definition 3.4. Say X is α-spreading if for all θ ∈ Rm,

X̃(θ) ≥ α · sup
x∈suppX

|〈x, θ〉 mod 1|.

Combining Lemma 3.5 with Definition 3.4 yields the following bound.

Corollary 3.7. Suppose X is β-bounded and α-spreading. Then s(X) ≥ α
β .

A lemma of [7] immediately gives a bound on spanningness for random variables that are
uniform on their support.

Lemma 3.8 (Lemma 4.4 from [7]). Suppose X is uniform on suppX ⊂ B∞(L′) and for any

two elements x, y ∈ suppX there is an invertible linear transformation A such that Ax = y and

X = AX. Then X is

Ω

(
1

(m log(L′m))3/2

)
-spreading.

In particular, if X is β-bounded, then

s(X) = Ω

(
1

β(m log(L′m))3/2

)
.

3.2 Proof of Lemma 3.2

Using the techniques from the previous section, we’ll prove Lemma 3.2, which states that t-sparse
random vectors have spanningness Ω(m−1). In particular, we’ll prove that t-sparse random
vectors are 4-bounded and Ω(m−1)-spreading and apply Corollary 3.7.

3.2.1 Random t-sparse vectors are Ω(m−1)-spreading

Note that Lemma 3.8 gives that t-sparse vectors are Ω
(

1
(m log(m))3/2

)
-spreading, but we can do

slightly better due to the simplicity of the distribution X .
In order to show that t-sparse vectors are c-spreading, recall that we must show that if a

single vector 1S has |〈θ, 1S〉 mod 1| > δ, then E[|〈θ,X〉 mod 1|2] ≥ c2δ2. We cannot hope for
c = o(m−1), because for small enough δ the vector θ = δ(1t 1[t]− 1

m−t1m\[t]) has 〈θ, 1[t]〉 mod 1 =

δ but E[|〈θ,X〉 mod 1|2] = 1
m−1δ

2. Our bound is worse than this, but the term in Eq. (5)
depending on the spanningness is not the largest anyway, so this does not hurt our bounds.

Lemma 3.9. There exists an absolute constant c7 > 0 such that random t-sparse vectors are
c7
m -spreading.

Proof. If t = 0 or t = m, then t-sparse vectors are trivially 1-spreading. Suppose there is
some t-subset of [m], say [t] without loss of generality, satisfying |〈θ, 1[t]〉 mod 1| = δ > 0. For

convenience, for S ∈
(
[m]
t

)
, define

w(S) := |〈θ, 1S〉 mod 1|.
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We need to show that w([t]) = δ implies ESw(S)
2 = Ω(m−2δ2). To do this, we will define

random integer coefficients λ =
(
λS : S ∈

(
[m]
t

))
such that

1[t] =
∑

S∈([m]
t )

λS1S .

Because |a + b mod 1| ≤ |a mod 1| + |b mod 1| for our definition of mod1, we have the lower
bound

δ = w([t]) ≤ Eλ

∑

S∈([m]
t )

w(S)|λS | =
∑

S∈([m]
t )

w(S) · Eλ|λS |. (8)

It is enough to show Eλ|λS | is small for all S in
(
m
t

)
, because then E[w(S)] is large and

E[w(S)2] ≥ E[w(S)]2.

We now proceed to define λ. Let σ be a uniformly random permutation of [n] and let T = σ([t]).
We have

1[t] = 1T +
∑

i∈[t]:i6=σ(i)

ei − eσ(i), (9)

where ei is the ith standard basis vector. Now for each i ∈ [t] : i 6= σ(i) pick Ri at random
conditioned on i ∈ Ri but σ(i) 6∈ Ri. Then

ei − eσ(i) = 1Ri − 1Ri−i+σ(i). (10)

To construct λ, first define the indicator eU by eUS := 1S=U for U, S ∈
(
[m]
t

)
, and then define

λ = eT −
∑

i∈[t]:i6=σ(i)

eRi − eRi−i+σ(i).

By Eq. (9) and Eq. (10), this choice satisfies
∑

λS1S = 1[t].
It remains to bound Eλ|λS | for each S. We have

Eλ|λS | ≤ Pr[T = S] (11)

+

t∑

i=1

Pr[σ(i) 6= i and Ri = S] (12)

+

t∑

i=1

Pr[σ(i) 6= i and Ri − i+ σ(i) = S]. (13)

since T is a uniformly random t-set, Eq. (11) =
(
m
t

)−1
. Next we have Pr[σ(i) 6= i and Ri =

S] = m−1
m Pr[Ri = S]. However, Ri is chosen uniformly at random among the t-sets containing

i, so

Pr[Ri = S] =

(
m− 1

t− 1

)−1

1i∈S =
m

t

(
m

t

)−1

1i∈S .

Thus Eq. (12) ≤ (m − 1)
(
m
t

)−1
. Similarly, Ri − i + σ(i) is chosen uniformly at random among

sets not containing i, so Pr[Ri − i + σ(i) = S] =
(

m
t−1

)−1
1i6∈S = m−t+1

t

(
m
t

)−1
1i6∈S . Thus

Eq. (12) ≤ (m− 1)
(
m
t

)−1
. Thus, for every S we have Eλ|λS | ≤ 2m

(
m
t

)−1
. Combining this with

Eq. (8) we have
E[w(S)2] ≥ E[w(S)]2 ≥ (2m)−2δ2.

We may take c7 = 1/2.
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3.2.2 Random t-sparse vectors are 4-bounded

Recall that AX is a matrix whose columns consist of the finite set suppX =
{
1S : S ∈

(
[m]
t

)}
.

We index the columns of AX by
(
[m]
t

)
.

Lemma 3.10. X is 4-bounded. That is, kerAX has a 4-bounded integral spanning set.

Before we prove the lemma we establish some notation. We have AX : R(
[m]
t ) → Rm. Let

eS ∈ R(
[m]
t ) denote the standard basis element with a one in the S position and 0 elsewhere.

For i ∈ [m], ei ∈ Rm denotes the standard basis vector with a one in the ith position and 0
elsewhere.

Definition 3.5 (the directed graph G). For S, S′ ∈
(
[m]
t

)
we write S′ →j S if 1 ∈ S′, j 6∈ S′

and S is obtained by replacing 1 by j in S′. Let G be the directed graph with V (G) =
(
[m]
t

)

and S′S ∈ E(G) if and only if S′ →j S for some j ∈ S \ S′. Thus every set containing 1 has
out-degree m− t and in-degree 0 and every set not containing 1 has in-degree t and out-degree
0.

The following proposition implies Lemma 3.10. Note that if S′ →j S, then 1S′−1S = e1−ej.
Proposition 3.11.

S =

m⋃

j=2

{eS′ − eS + eT − eT ′ : S′ →j S and T ′ →j T }

is a spanning set for kerAX .

Proof of Proposition 3.11. Clearly S is a subset of kerAX , because if S′ →j S, then 1S′ − 1S =
e1 − ej , and so AX(eS′ − eS) = 1S′ − 1S = e1 − ej . Thus, if S′ →j S and T ′ →j T ,
AX(eS′ − eS + eT − eT ′) = 0. If S′ →j S, then AX(eS′ − eS) = 1S′ − 1S = e1 − ej . Thus, if
S′ →j S and T ′ →j T , AX(eS′ − eS + eT − eT ′) = 0, so eS′ − eS + eT − eT ′ ∈ kerAX .

Next we try to prove S spans kerAX . Note that dimkerAX =
(
m
t

)
−m, because the column

space of AX is of dimension m (as we have seen, e1 − ej are in the column space of AX for all

1 < j ≤ m; together with some 1S for 1 /∈ S ∈
(
[m]
t

)
we have a basis of Rm). Thus, we need to

show dim span
R
S is at least

(
m
t

)
−m.

For each j ∈ [m]−1, there is some pair Tj , T
′
j ∈

(
[m]
t

)
such that T ′

j →j Tj. For j ∈ {2, . . . ,m},
pick such a pair and let fj := eT ′

j
− eTj . As there are only m− 1 many fj ’s, dim span{fj : j ∈

[m]− 1} ≤ m− 1. By the previous argument, if S′ →j S, then eS′ − eS − fj ∈ kerAX . Because⋃m
j=2{eS′ − eS − fj : S

′ →j S} ⊂ S, it is enough to show that

dim span
R

m⋃

j=2

{eS′ − eS − fj : S
′ →j S} ≥

(
m

t

)
−m.

We can do this using the next claim, the proof of which we delay.

Claim 3.12.

dim span
R

m⋃

j=2

{eS′ − eS : S′ →j S} =
(
m

t

)
− 1.
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Let’s see how to use Claim 3.12 to finish the proof:

dim span
R

m⋃

j=2

{eS′ − eS − fj : S
′ →j S} ≥

dim span
R

m⋃

j=2

{eS′ − eS : S′ →j S} − dim span
R
{fj : 1 6= j ∈ [m]} ≥

(
m

t

)
− 1− (m− 1) =

(
m

t

)
−m.

The last inequality is by Claim 3.12.

Now we finish up by proving Claim 3.12.

Proof of Claim 3.12. If a directed graph H on [l] is weakly connected, i.e. H is connected when
the directed edges are replaced by undirected edges, then span{ei − ej : ij ∈ E(H)} is of di-
mension l − 1. To see this, consider a vector v ∈ span

R
{ei − ej : ij ∈ E(H)}⊥. For any ij ∈ E,

we must have that vi = vj . As H is weakly connected, we must have that vi = vj for all
i, j ∈ [l], so dim span

R
{ei − ej : ij ∈ E(H)}⊥ ≤ 1. Clearly 1 ∈ span

R
{ei − ej : ij ∈ E(H)}⊥, so

dim span
R
{ei − ej : ij ∈ E(H)}⊥ = 1.

In order to finish the proof of the claim, we need only show that our digraph G is weakly
connected. This is trivially true if t = 0, so we assume t ≥ 1. Ignoring direction of edges, the
operations we are allowed to use to get between vertices of G (sets in

(
[m]
t

)
, that is) are the

addition of 1 and removal of some other element or the removal of 1 and addition of some other
element. Thus, each set containing 1 is reachable from some set not containing 1. If S does not
contain one and also does not contain some i 6= 1, we can first remove any j from S and add 1,
then remove 1 and add i. This means S − j + i is reachable from S. If there is no such i, then
S = {2, . . . ,m}. This implies the sets not containing 1 are reachable from one another, so G is
weakly connected.

4 Proofs of local limit theorems

4.1 Preliminaries

We use a few facts for the proof of Theorem 2.1. Throughout this section we assume X is in
isotropic position, i.e. E[XX†] = Im. This means DX = D and BX(ε) = B(ε).

4.1.1 Fourier analysis

Definition 4.1 (Fourier transform). If Y is a random variable on Rm, Ŷ : Rm → C denotes
the Fourier transform

Ŷ (θ) = E[e2πi〈Y,θ〉].

We will use the Fourier inversion formula, and our choice of domain will be the Voronoi cell
in the dual lattice.

Definition 4.2 (Voronoi cell). Define the Voronoi cell D of the origin in L∗ to be the points
as close to the origin as anything else in L∗, or

D := {r ∈ Rm : ‖r‖2 ≤ inf
t∈L∗\{0}

‖r − t‖2}.

Note that volD = detL∗ = 1/ detL, where detL is the volume of any domain whose translates
under L partition Rm.
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Fact 4.1 (Fourier inversion for lattices, [7]). For any random variable Y taking values on a
lattice L (or even a lattice coset v + L),

Pr(Y = λ) = det(L)
∫

D

Ŷ (θ)e−2πi〈λ,θ〉dθ.

for all λ ∈ L (resp. λ ∈ v + L). Here D is the Voronoi cell as in Definition 4.2, but we could
take D to be any fundamental domain of L.

4.1.2 Matrix concentration

We use a special case of a result by Rudelson.

Theorem 4.2 ([10]). Suppose X is an isotropic random vector in Rm such that ‖X‖2 ≤ L
almost surely. Let the n columns of the matrix M be drawn i.i.d from X. For some absolute

constant c8 independent of m,n

E

∥∥∥∥
1

n
MM † − Im

∥∥∥∥
2

≤ c8L

√
logn

n
.

In particular, there is a constant c9 such that with probability at least 1− c9L
√

logn
n we have

MM † � 2Im (concentration)

and MM † � 1

2
Im (anticoncentration)

4.2 Dividing into three terms

This section contains the plan for the proof of Theorem 2.1. The proof compares the Fourier
transform of the random variable My to that of a Gaussian; the integral to compute the differ-
ence of the Fourier transforms will be split up into three terms, which we will bound separately.

Let M be a matrix whose columns xi are fixed vectors in L, and let YM denote the random
variable My for y chosen uniformly at random from {±1/2}n. This choice is made so that the
random variable YM takes values in the lattice coset L− 1

2M1. Let ΣM be the covariance matrix
of YM , which is given by

ΣM =
1

4

n∑

i=1

xix
†
i =

1

4
MM †.

Let Y be a centered Gaussian with covariance matrix ΣM . That is, Y has the density

GM (λ) =
1

(2π)m/2
√
detΣM

e−
1
2λ

†Σ−1
M λ.

Observe that Eq. (22) in Theorem 2.1 is equivalent to

|P(YM = λ) − det(L)GM (λ)| ≤ 1

(2π)m/2
√
detΣM

· 2m2L2n−1

for λ ∈ L − 1
2M1. To accomplish this, we will show that ŶM and Ŷ are very close. By Fourier

inversion, for all λ ∈ L− 1
2M1,

|P(YM = λ)− det(L)GM (λ)| =

det(L)
∣∣∣∣
∫

D

ŶM (θ)e−2πi〈λ,θ〉dθ −
∫

Rm

Ŷ (θ)e−2πi〈λ,θ〉dθ

∣∣∣∣ ;
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recall the Voronoi cell D from Definition 4.2. Let B(ε) ⊂ Rm denote the Euclidean ball of radius
ε about the origin. If B(ε) ⊂ D, then for all λ ∈ L − 1

2M1,

|P(YM = λ)− det(L)GM (λ)| ≤

= det(L)




∫

B(ε)

|ŶM (θ) − Ŷ (θ)|dθ
︸ ︷︷ ︸

I1

+ +

∫

Rm\B(ε)

|Ŷ (θ)|dθ
︸ ︷︷ ︸

I2

+

∫

D\B(ε)

|ŶM (θ)|dθ
︸ ︷︷ ︸

I3


 . (14)

We now show that this is decomposition holds for reasonably large ε, i.e. B(ε) ⊂ D.

Lemma 4.3. Suppose ε ≤ 1
2L . Then Then B(ε) ⊂ D; in particular, Eq. (14) holds.

Proof. Suppose θ ∈ B(ε); we need to show that any nonzero element of the dual lattice has
distance from θ at least ε. It is enough to show that any such dual lattice element has norm
at least 2ε. Suppose 0 6= α ∈ L∗. As supp(X) spans Rm, for some x ∈ supp(X), we have
0 6= 〈α, x〉 ∈ Z, so ‖x‖2‖α‖2 ≥ |〈α, x〉| ≥ 1; in particular ‖α‖2 ≥ 1

L ≥ 2ε.

Proof plan

We bound I1 by using the Taylor expansion of ŶM to see that, near the origin, ŶM is very close
to the unnormalized Gaussian Ŷ . We bound I2 using standard tail bounds for the Gaussian.
The bounds for the first two terms hold for any matrix M satisfying Eq. (concentration) and
Eq. (anticoncentration) and for the correct choice of ε. Finally, we bound I3 in expectation over
the choice of M . This is the only bound depending on the spanningness.

4.2.1 The term I1: near the origin

Here we show how to compare ŶM to Ŷ near the origin in order to bound I1 from Eq. (14). The
Fourier transform of the Gaussian Y is

Ŷ (θ) = exp(−2π2θTΣMθ).

There is a very simple formula for ŶM , the Fourier transform of YM .

Proposition 4.4. If M has columns x1, . . . xn, then

ŶM (θ) =

n∏

j=1

cos(π〈xj , θ〉). (15)

Proof. ŶM (θ) = Ey∈R{±1/2}n [e2πi〈
∑n

j=1 yjxj ,θ〉] =
∏n

j=1 Eyj [e
2πi〈yjxj,θ〉] =

∏n
j=1 cos(π〈xj , θ〉).

We can bound the first term by showing that near the origin, ŶM is very close to a Gaussian.
Recall that by Proposition 4.4,

ŶM (θ) =

n∏

j=1

cos(π〈xj , θ〉).

For θ near the origin, 〈vj , θ〉 will be very small. We will use the Taylor expansion of cosine near
zero.

Proposition 4.5. For x ∈ (−1/2, 1/2), cos(πx) = exp(π
2x2

2 +O(x4)).
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Proof. Let cos(πx) = 1−y where y ∈ [0, 1). Then log(cos(πx)) = log(1−y) = 1−y+O(y2). Since

cos(πx) = 1− π2x2

2 +O(x4), we have that y = π2x2

2 +O(x4). Thus log(cos(πx)) = 1− π2x2

2 +O(x4).
The proposition follows.

We may now apply Proposition 4.5 for ‖θ‖2 small enough.

Lemma 4.6. Suppose M satisfies Eq. (concentration) and ‖θ‖2 < 1
2L . Then there exists a

constant c10 > 0 such that

ŶM (θ) ≤ exp
(
−2π2θ†ΣMθ + E

)

for |E| ≤ c10nL
2‖θ‖4.

Proof. Because for all i ∈ [n] we have |〈xi, θ〉| ≤ ‖xi‖2‖θ‖2 < 1/2, Proposition 4.5 applies for
all i ∈ [n] and immediately yields that there is a constant c such that

ŶM (θ) = exp
(
−2π2θTΣMθ + E

)
.

for |E| ≤ c
∑n

j=1〈xj , θ〉4. Next we bound the quartic part of E by

n∑

j=1

〈xj , θ〉4 ≤ max
j∈[n]

‖xj‖22‖θ‖22
n∑

j=1

〈xj , θ〉2

≤ L2‖θ‖22θ†



n∑

j=1

xjx
†
j


 θ

≤ 2nL2‖θ‖42,

and take c10 = 2c.

Lemma 4.7 (First term). Suppose M satisfies Eq. (anticoncentration) and Eq. (concentration).
Further suppose that L2nε4 < 1, and that ε < 1

2L . There exists c11 with

I1 ≤ c11
m2L2n−1

(2π)m/2
√
det(ΣM )

.

Proof. By concentration and Lemma 4.6,

I1 =

∫

B(ε)

|ŶM (θ)− Ŷ (θ)|dθ ≤
∫

B(ε)

Ŷ (θ)
∣∣∣ec10L2n‖θ‖4

2 − 1
∣∣∣ dθ.

Let the constant c be such that |ec10x − 1| ≤ c|x| for x ∈ [−1, 1]. Thus

I1 ≤ cL2n

∫

B(ε)

Ŷ (θ)‖θ‖42dθ.

By Eq. (anticoncentration),

I1 ≤ cL2n−1

∫

B(ε)

Ŷ (θ)
(
θ†ΣMθ

)2
dθ. (16)

Note that (2π)m/2
√
det(ΣM )Ŷ is equal to the density of W = 1

2πΣ
−1/2
M G, where G is a

Gaussian vector with identity covariance matrix. Σ
−1/2
M exists because Eq. (anticoncentration)
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holds. Further, W †ΣMW = 1
4π2 ‖G‖22. Therefore

∫

Rm

Ŷ (θ)
(
θ†ΣMθ

)2
dθ =

1

(2π)m/2
√
det(ΣM )

EW

[(
W †ΣMW

)2]

=
1

16π4(2π)m/2
√
det(ΣM )

EG

[
‖G‖42

]

=
1

16π4(2π)m/2
√
det(ΣM )

(2m+m2)

≤ 3m2

16π4(2π)m/2
√
det(ΣM )

.

Plugging this into (16) and setting c11 = 3
π4 c completes the proof.

4.2.2 The term I2: Bounding Gaussian mass far from the origin

Here we bound the term I2 of Eq. (14), which is not too difficult.

Lemma 4.8 (Third term). Suppose M satisfies Eq. (anticoncentration) holds and that ε2 ≥
16m
π2n . Then

I2 ≤
e−

π2

8 ε2n

(2π)m/2
√
det(ΣM )

.

Proof. If M satisfies Eq. (anticoncentration), then B(ε) ⊃ 1
2{θ : θ†ΣMθ ≥ nε} := BM (ε/2). If

we integrate over BM (ε/2) and change variables, it remains only to calculate how much mass of
a standard normal distribution is outside a ball of radius larger than the average norm. From,
say, Lemma 4.14 of [7] , if ε2 ≥ 16m

π2n then

∫

Rm\BM (ε/2)

|Ŷ (θ)|dθ ≤ e−
π2

8 ε2n

(2π)m/2
√
det(ΣM )

.

4.2.3 The term I3: Bounding the Fourier transform far from the origin

It remains only to bound the term I3 of Eq. (14) which is given by

I3 =

∫

D\B(ε)

|ŶM (θ)|dθ.

This is the only part in which spanningness plays a role. If ε is at most the spanningness (see
Definition 1.2), we can show I3 is very small with high probability by bounding it in expectation
over the choice of M . The proof is a simple application of Fubini’s theorem.

Lemma 4.9. If EXX† = Im and ε ≤ s(X), then

E[I3] ≤ det(L∗)e−2ε2n

Proof. By Fubini’s theorem,

EM [I3] =

∫

D\B(ε)

E|ŶM (θ)|dθ

≤ det(L∗) sup{E[|ŶM (θ)|] : θ ∈ D \B(ε)}. (17)
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By Proposition 4.4 and the independence of the columns of n,

EM [|ŶM (θ)|] = (E| cos(π〈X, θ〉)|)n .

Thus,

sup{E[|ŶM (θ)|] : θ ∈ D \B(ε)} ≤ (sup{E[| cos(π〈X, θ〉)|] : θ ∈ D \B(ε)})n . (18)

| cos(πx)| is periodic with period 1/2, so it is enough to consider 〈X, θ〉 mod 1, where x mod 1
is taken to be in [−1/2, 1/2). Note that for |x| ≤ 1/2, | cos(πx)| = cos(π(x)) ≤ 1− 4x2, so

E[| cos(π〈X, θ〉)|] ≤ 1− 4E[(〈X, θ〉 mod 1)2] = 1− 4X̃(θ)2

By the definition of spanningness and the assumption in the hypothesis that ε ≤ s(X), we know
that every vector with X̃(θ) ≤ d(θ,L∗)/2 = ‖θ‖/2 is either in L∗ or has X̃(θ) ≥ ε. Thus, for
all θ ∈ D, X̃(θ) ≥ max{‖θ‖/2, ε}, which is at least ε/2 for θ ∈ D \ B(ε). Combining this with
Eq. (18) and using 1− x ≤ e−x implies

sup{E[|ŶM (θ)|] : θ ∈ D \B(ε)} ≤ e−2ε2n.

Plugging this into Eq. (17) completes the proof.

4.3 Combining the terms

Finally, we can combine each of the bounds to prove Theorem 2.1.

Proof of Theorem 2.1. Recall the strategy: we have some conditions (the hypotheses of Lemma
4.3) under which we can write the difference between the two probabilities of interest as a sum of
three terms, and we have bounds for each of the terms (Lemma 4.7, Lemma 4.9, and Lemma 4.8)
respectively. Our expression depends on ε, and so we must choose ε satisfying the hypotheses
of those lemmas. These are as follows:

(i) To apply 4.3 we need ε ≤ 1
2L ,

(ii) for Lemma 4.7 we need L2nε4 ≤ 1,

(iii) to apply Lemma 4.8, we need ε2 ≥ 16m
π2n , and

(iv) for Lemma 4.9 we need ε ≤ s(X).

It is not hard to check that setting
ε = L−1/2n−1/4

will satisfy the four constraints provided n ≥ 16L2, n ≥ (16mL)2/π4, and n ≥ s(X)−4L−2.
However, the first condition follows from the second because L ≥ √m (this follows from EXX† =
Im, which implies E[‖X‖22] = m), so

n ≥ (16mL)2/π4 and n ≥ s(X)−4L−2

suffice. By 4.3 we have

|P(YM = λ)− det(L)GM (λ)| ≤

= det(L)




∫

B(ε)

|ŶM (θ)− Ŷ (θ)|dθ
︸ ︷︷ ︸

I1

++

∫

Rm\B(ε)

|Ŷ (θ)|dθ
︸ ︷︷ ︸

I2

+

∫

D\B(ε)

|ŶM (θ)|dθ
︸ ︷︷ ︸

I3


 .

By Lemma 4.9 and Markov’s inequality, I3 is at most e−ε2n with probability at least 1 −
e−ε2n det(L∗). By Theorem 4.2, Eq. (anticoncentration) and Eq. (concentration) hold for M
with probability at least 1 − c9L

√
(logn)/n. If n is at least a large enough constant times
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L2 log2 detL, e−ε2n det(L∗) is at most L
√
(logn)/n. Thus, all three events hold with probability

at least 1− c12L
√
(logn)/n over the choice of M . Condition on these three events, and plug in

the bounds given by Lemma 4.7 and Lemma 4.8 for I1 and I2 and the bound e−ε2n = e−
√
n/L

for I3 to obtain the following:

|P(YM = λ)− det(L)GM (λ)|

≤ det(L)
(

m2L2n−1

(2π)m/2
√
det(ΣM )

+
e−

π2

8

√
n/L

(2π)m/2
√
det(ΣM )

+ e−
√
n/L

)
.

≤ det(L)
(2π)m/2

√
det(ΣM )

(
m2L2n−1 + e−

π2

8

√
n/L + (2π)m/2

√
det(ΣM )e−

√
n/L
)

≤ det(L)
(2π)m/2

√
det(ΣM )

(
m2L2n−1 + 2e

m
2 log(4πn)−√

n/L
)
, (19)

where the last inequality is by Eq. (concentration). If c13 is large enough, the quantity in
parentheses in Eq. (19) is at most 2m2L2/n and the combined failure probability of the three

required events is at most c12L
√

logn
n provided

n ≥ N0 = c13 max
{
m2L2(logm+ logL)2, s(X)−4L−2, L2 log2 detL

}
. (20)

4.4 Weaker moment assumptions

We now sketch how to extend the proof of Theorem 2.1 to the case (E‖X‖η2)1/η = L < ∞ for
some η > 2, weakening the assumption that suppX ⊂ B(L).

Theorem 4.10 (lattice local limit theorem for > 2 moments). Let X be a random variable on a

lattice L such that EXX† = Im, (E‖X‖η2)1/η = L <∞ for some η > 2, and L = span
Z
suppX.

Let GM be as in Theorem 2.1. There exists

N2 = poly(m, s(X), L,
1

η − 2
, log (detL))1+ 1

η−2 (21)

such that for n ≥ N2, with probability at least 1− 3n−η−2
2+η over the choice of columns of M , the

following two properties of M hold:

1. MM † � 1
2nIm; that is, MM † − 1

2nIm is positive-semidefinite.

2. For all λ ∈ L − 1
2M1,
∣∣∣∣ Pr
yi∈{±1/2}

[My = λ]−GM (λ)

∣∣∣∣ ≤ GM (0) · 2m2L2n− η−2
2+η . (22)

Before proving the theorem, note that it allows us to extend our discrepancy result to
this regime. The proof of the next corollary from Theorem 4.10 is identical to the proof of
Theorem 2.3 from Theorem 2.1.

Corollary 4.11 (discrepancy for > 2 moments). Suppose X is a random variable on a non-

degenerate lattice L. Suppose Σ := E[XX†] has least eigenvalue σ, (E‖Z‖η2)1/η = L < ∞ for

some η > 2 where Z := Σ−1/2X, and that L = span
Z
suppX. If n ≥ N3 then

disc∗(M) ≤ 2ρ∗(L)

with probability at least 1− 3n−η−2
2+η , where

N3 = c14 max

{
R2

∗ρ∗(L)2
σ

,N2

(
m, s(Σ−1/2X), L,

detL√
detΣ

)}
(23)

for N0 as in Eq. (1).
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Proof sketch of Theorem 4.10. We review each step of the proof of Theorem 2.1 and show how it
needs to be modified to accomodate the weaker assumptions. Recall that, to prove Theorem 2.1,
we had some conditions (the hypotheses of Lemma 4.3) under which we can write the difference
between the two probabilities of interest as a sum of three terms, and we have bounds for each
of the terms (Lemma 4.7, Lemma 4.9, and Lemma 4.8) respectively. We also need an analogue
of Theorem 4.2 which tells us that Eq. (anticoncentration) and Eq. (concentration) hold with
high probability. Neither Lemma 4.9 nor Lemma 4.8 use bounds on the moments of ‖X‖2, so
they hold as-is. Let’s see how the remaining lemmas must be modified:

Matrix concentration: By Theorem 1.1 in [12], Eq. (concentration) and Eq. (anticoncentration)

hold with probability at least 1− n− η−2
2+η provided n ≥ poly(m,L, 1

η−2 )
1+ 1

η−2 .

Lemma 4.3: The bound ε ≤ 1
2L becomes ε ≤ 1

4L
− η

η−2 . To prove Lemma 4.3 it was enough to
show α was at least twice the desired bound on ε for α 6= 0 ∈ L∗. Here we do the same,
but to show α is large we consider the random variable Y ≥ 1 defined by conditioning
|〈α,X〉| on 〈α,X〉 6= 0. Recall that we assume X is isotropic. Let Pr[〈α,X〉 6= 0], so

that ‖α‖2 = pE[Y 2] and L‖α‖ ≥ (E|〈α,X〉|η) 1
η = p

1
η (E[Y η])

1
η ≥ p

1
η (E[Y 2])

1
2 by Hölder’s

inequality. Cancelling p from the two inequalities and using Y ≥ 1 yields the desired
bound.

Lemma 4.7: The analogue of this lemma will require L2n1+ 4
2+η ε4 < 1 and ε < 1

4Ln
− 2

2+η ,

and will hold with probability at least 1 − n− η
4+η over the choice of columns of M .

The numerator of the right-hand side becomes m2L2n−η−2
2+η . Lemma 4.7 followed from

Lemma 4.6. Here the analogue of Lemma 4.6 holds with |E| ≤ c10n
1+ 4

2+ηL2‖θ‖4 if

‖zi‖ ≤ Ln
2

2+η for all i ∈ [n], which holds with probability 1 − n− η−2
2+η by Markov’s in-

equality. The rest of the proof proceeds the same.

The new constraints on ε will be satisfied if we take

ε = n− 4+η
12+3η ,

and n ≥ max
{
(4L)

12+6η
η−2 , 16

π2m
6+3η
2η−4

}
. The rest of the proof proceeds as for Theorem 2.1.

5 Random unit columns

Let X be a uniformly random element of the sphere Sm−1. Again, let M be an m × n matrix
with columns drawn independently from X . Note that X is not a lattice random variable. This
time Σ = 1

mIm, and ‖Σ−1/2X‖2 is always at most m.
We are essentially going to prove a local limit theorem, only this time we will not precisely

control the probability of hitting a point but rather the expectation of a particular function.
The function will essentially be the indicator of the cube, but it will be modified a bit to make
it easier to handle. Let B be the function, which we will determine later. Recall that, once M
is chosen, YM is the random variable obtained by summing the columns of M with i.i.d ±1/2
coefficients. ΣM is MM †/4, and Y is the Gaussian with covariance matrix ΣM We will try to
show that, with high probability over the choice of M , EB(YM ) ∼ EB(Y ). If B is supported
only in [−K,K]m, to show that discM < K it suffices to show that

|EB(YM )− EB(Y )| < EB(Y ).

5.1 Nonlattice likely local limit

We now investigate a different extreme case in which span
Z
suppX is dense in Rm. In this

case the “dual lattice” is {0}, so we define pseudodual vectors to be those vectors with X̃(θ) ≤
‖θ‖X/2, and the spanningness to be the least value of X̃(θ) at a nonzero pseudodual vector.
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Theorem 5.1. Suppose EXX† = Im, suppX ⊂ B(L), and that s(X) is positive. Let B : Rm →
R be a nonnegative function with ‖B‖1 ≤ 1 and ‖B̂‖1 ≤ ∞. If

n ≥ N1 = c16 max
{
m2L2(logM + logL)2, s(X)−4L−2, L2 log2 ‖B‖1

}
,

then with probability at least c12L
√

log n
n over the choice of M we have

|E[B(YM )]− E[B(Y )]| ≤ 2m2L2n−1

and MM † � 1
2nIm.

Proof. By Plancherel’s theorem,

E[B(YM )]− E[B(Y )] =

∫

Rm

B̂(θ)(ŶM (θ)− Ŷ (θ))dθ.

Again, we can split this into three terms:
∣∣∣∣
∫

Rm

B̂(θ)(ŶM (θ)− Ŷ (θ))dθ

∣∣∣∣ ≤
∫

B(ε)

|B̂(θ)||ŶM (θ) − Ŷ (θ)|dθ
︸ ︷︷ ︸

J1

+

∫

Rm\B(ε)

|B̂(θ)ŶM (θ)|dθ
︸ ︷︷ ︸

J2

+

∫

Rm\B(ε)

|B̂(θ)Ŷ (θ)|dθ.
︸ ︷︷ ︸

J3

(24)

The proofs of the next two lemmas are identical to that of Lemma 4.7 and Lemma 4.8, respec-
tively, except one uses the assumption ‖B‖1 ≤ 1, which implies ‖B̂‖∞ ≤ 1, to remove B̂ from
the integrand.

Lemma 5.2 (First term). Suppose Eq. (anticoncentration) and Eq. (concentration) hold. Fur-

ther suppose that L2nε4 < 1, ε < 1
2L , and that ‖B‖1 ≤ 1. There exists c15 with

J1 ≤ c15
m2L2n−1

(2π)m/2
√
det(ΣM )

.

Lemma 5.3 (Third term). Suppose Eq. (anticoncentration) holds, ε2 ≥ 16m
π2n , and ‖B‖1 ≤ 1.

Then

J3 ≤
e−

π2

8 ε2n

(2π)m/2
√
det(ΣM )

.

The proof of the next lemma is the same as that of Lemma 4.8, except in the derivation of
Eq. (17) instead of integrating over D one must integrate over the whole of Rm \ B(ε) against

B̂, hence detL∗ is replaced by ‖B̂‖1.
Lemma 5.4. If X is in isotropic position and ε ≤ s(X), then

E[J2] ≤ ‖B̂‖1e−2ε2n

We now proceed to combine the termwise bounds. As before, we may choose ε = n1/2L−1/2

provided
n ≥ (16mL)2/π4 and n ≥ s(X)−4L−2,

and with probability at least 1 − ‖B̂‖1e−ε2n − c9L
√

logn
n , we have J2 at most e−ε2n and

Eq. (concentration), Eq. (anticoncentration) hold. Condition on these events. As in the proof
of Theorem 2.1, we have
∣∣∣∣
∫

Rm

B̂(θ)(ŶM (θ)− Ŷ (θ))dθ

∣∣∣∣ ≤
1

(2π)m/2
√
det(ΣM )

(
m2L2n−1 + 2e

m
2 log(4πn)−√

n/L
)
. (25)
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If c16 is large enough, the quantity in parentheses in Eq. (19) is at most 2m2L2/n and the

combined failure probability of all the required events is at most c12L
√

logn
n provided

n ≥ N1 = c16 max
{
m2L2(logM + logL)2, s(X)−4L−2, L2 log2 ‖B‖1

}
. (26)

5.2 Discrepancy for random unit columns

Lemma 5.5. Let X be a random unit vector. Then

s(X) ≥ c17.

for some fixed constant c17.

Before we prove the lemma, let’s show how to use it and Theorem 5.1 to prove discrepancy
bounds.

Proof of Theorem 1.11. Let X be a random unit vector. We need to choose our function B.

Definition 5.1. For K > 0, let B = 1
(2K)2m 1[−K,K]m ∗ 1[−K,K]m . Alternately, one can think of

B as the density of a sum of two random vectors from the cube [−K,K]m.

It’s not hard to show ‖B‖1 = 1 using that B is a density that and that ‖B̂‖1 = 1
(2K)m using

Plancherel’s theorem. Next, we apply Theorem 5.1 to Z =
√
mX ; in order to apply the theorem

we need
n ≥ N2 := c18 max

{
m3 log2 m,m−1,m3 log2(1/K)

}
.

Thus, we may take

n ≥ c2m
3 log2 m and K = c3e

−
√

n
m3 .

We also need to obtain a lower bound on E[B(Y )] in order to use the bound on |E[B(YM )] −
E[B(Y )]| to deduce that E[B(YM )] > 0, or equivalently that discM ≤ 2K. The quantity EB(Y )
is at least the least density of Y on the support of B. The support of B is contained within a
2K
√
m Euclidean ball. Using the property MM † ≥ 1

2nIm, the density of Y takes value at least

1

(2π)m/2
√
det(ΣM )

e−2σmin(MM†)−14K2m ≥ 1

(2π)m/2
√
det(ΣM )

e−16K2m/n.

Since the error term in Theorem 5.1 is at most 1

(2π)m/2
√

det(ΣM )
2m2L2n−1, to deduce discM ≤

K it is enough to show e−16K2m/n > 2m3n−1; indeed this is true with K = c3e
−
√

n
m3 and

n ≥ m3 log2 m for suitably large c3.

5.2.1 Spanningness for random unit vectors

We now lower bound the spanningness for random unit vectors. We use the fact that for large
m the distribution of a random unit vector behaves much like a Gaussian upon projection to a
one-dimensional subspace.

Proof of Lemma 5.5. Let ‖θ‖X = 1√
m
δ > 0. We split into two cases. In the first, we show that

if δ = O(
√
m), then θ is not pseudodual. In the second, we show that if δ = Ω(

√
m) then X̃(θ)

is at least a fixed constant. This establishes that s(X) is at least some constant.
By rotational symmetry we may assume θ is δe1, where e1 is the first standard basis vector,

so
X̃(θ)2 = E[(〈X, θ〉 mod 1)2] = E[(δX1 mod 1)2].
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We now try to show θ is not a pseudodual vector if δ = O(
√
m). Recall that X is a random

unit vector; it is easier to consider the density of X1. The probability density function of δX1

for x < δ is proportional to (1− (x/δ)2)
m−3

2 =: fδ(x). Integrating this density gives us

∫ δ

−δ

(
1−

(x
δ

)2)m−3
2

dx = δ

∫ δ

0

(1− x)
m−3

2 x− 1
2 dx

=
δΓ
(
m−1
2

)
Γ
(
1
2

)

Γ
(
m
2

)

=
δ
√
π√
m

(1 + o(1)) .

Therefore, we obtain

E[(δX1 mod 1)2] =
Γ
(
m
2

)

δΓ
(
m−1
2

)
Γ
(
1
2

)
∫ δ

−δ

(x mod 1)2
(
1−

(x
δ

)2)m−3
2

dx.

If we simply give up on all the x for which |x| > 1/2, we obtain the following lower bound for
the above quantity:

Γ
(
m
2

)

δΓ
(
m−1
2

)
Γ
(
1
2

)
[∫ δ

−δ

x2

(
1−

(x
δ

)2)m−3
2

dx− 2

∫ δ

1/2

x2

(
1−

(x
δ

)2)m−3
2

dx

]

=
δ2

m
− 2Γ

(
m
2

)

δΓ
(
m−1
2

)
Γ
(
1
2

)
∫ δ

1/2

x2

(
1−

(x
δ

)2)m−3
2

dx

≥ δ2

m
− (1 + o(1))

2
√
m− 3

δ
√
π

∫ ∞

1/2

x2e−
(m−3)x2

2δ2 dx.

=
δ2

m
− (1 + o(1))

23/2δ2

m

(
1√
2π

∫ ∞

√
m−3
2δ

u2e−
u2

2 du

)

The integral in parentheses is simply the contribution to the variance of the tail of a standard
gaussian, and can be made an arbitrarily small constant by making δ/

√
m small. Thus, for

δ at most δ ≤ c19
√
m, the last line above expression is at least .62 δ2

m = .62‖θ‖2X , so θ is not
pseudodual.

Next we must handle δ larger than c19
√
m; we will show that in this case X̃(θ) is at least some

fixed constant. We use the fact that fδ is unimodal, so for any k 6= 0,
∫ k+1/2

k−1/2 (x mod 1)2fδ(x)dx

is at least the mass of fδ(x) between k − 1/2 and k times the integral of (x mod 1)2 on this
region (that is, 1/24). This product is then at least which is at least one 48th of the mass of
fδ(x) between k − 1/2 and k + 1/2. Taken together, we see that

E[(δX1 mod 1)2] ≥ 1

48
Pr[|δX1| ≥ 1/2]. (27)

We will lower bound the left-hand side by a small constant for δ = Ω(
√
m). We can do so

by bounding the ratio of
∫ 1/2

−1/2 fδ(x) to
∫∞
1/2 fδ(x). To this end we will translate and scale the

function

gδ(x) =

{
fδ(x) x ≥ 1/2
0 x < 1/2

to dominate fδ(x) for x ∈ [0, 1/2]. Let us find the smallest scaling a > 0 such that agδ(x+1/2) ≥
fδ(x) for x ∈ [0, 1/2]; equivalently, afδ(x + 1/2) ≥ fδ(x) for x ∈ [0, 1/2]. If we find such an a,
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we’ll have
∫ 1/2

0
fδ(x) ≤ a

∫∞
0

gδ(x)dx, or Pr[x ∈ [−1/2, 1/2]] ≤ a(1 − Pr[x ∈ [−1/2, 1/2]]). We
need

a(1− ((x + 1/2)/δ)2)
m−3

2 ≥ (1− (x/δ)2)
m−3

2 ,

or

a = max
x∈[0,1/2]

(
1− (x/δ)2

1− ((x + 1/2)/δ)2

)m−3
2

= max
x∈[0,1/2]

(
δ2 − x2

δ2 − (x + 1/2)2

)m−3
2

≤
(

δ2

δ2 − 1

)m−3
2

=

(
1− 1

δ2

)−m−3
2

≤ e
(m−3)

2δ2 .

As discussed, we now have Pr[x ∈ [−1/2, 1/2]] ≤ a(1 − Pr[x ∈ [−1/2, 1/2]]). Equivalently,
Pr[x ∈ [−1/2, 1/2]] ≤ a/(1 + a). Therefore

Pr[|x| > 1/2] ≥ 1/(1 + a) ≥ .5e−
m−3

2δ2 .

If δ ≥ c19
√
m, this and Eq. (27) imply E[(δX1 mod 1)2] = E[(〈θ,X〉 mod 1)2 is at least some

constant. Thus, if δ ≥ c19 then X̃(θ) is at least some constant.

6 Open problems

There is still a gap in understanding for t-sparse vectors.

Question 2. Let M be an m × n random t-sparse matrix. What is the least N such that for
all n ≥ N , the discrepancy of M is at most one with probability at least 1/2? We know that
for t not too large or small, m ≤ N ≤ m3 log2 m. The lower bound is an easy exercise.

Next, it would be nice to understand Question 1 for more column distributions in other
regimes such as n = O(m). In particular, it would be interesting to understand a distribution
where combinatorial considerations probably won’t work. For example,

Question 3. Suppose M is a random t-sparse matrix plus some Gaussian noise of of variance√
t/m in each entry. Is discM = o(

√
t logm) with high probability? How much Gaussian noise

can existing proof techniques handle?

The quality of the nonasymptotic bounds in this paper depend on the spanningness of the
distribution X , which depends on how far X is from lying in a proper sublattice of L. If X
actually does lie in a proper sublattice of L′ ⊂ L, we may apply our theorems with L′ instead.
This suggests the following:

Question 4. Is there an N depending on only the parameters in Eq. (23) other than spanning-

ness such that for all n ≥ N ,
discM ≤ max

L′⊂L
ρ∞(L′)

with probability at least 1/2?

Next, the techniques in this paper are suited to show that essentially any point in a certain
coset of the lattice generated by the columns may be expressed as the signed discrepancies of a
coloring. This is why we obtain twice the ℓ∞-covering radius for our bounds. In order to bound
the discrepancy, we must know ρ∞(L). However, the following question (Conjecture 1.12 from
the introduction) is still open, which prevents us from concluding that discrepancy is O(1) for
an arbitrary bounded distribution:
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Conjecture 6.1. There is an absolute constant C such that for any lattice L generated by unit

vectors, ρ∞(L) ≤ C.

We could also study a random version of the above question:

Question 5. Let v1, . . . , vm be drawn i.i.d from some distribution X on Rm, and let L be their
integer span. Is ρ∞(L) = O(1) with high probability in m?

Here we also bring attention to a meta-question asked in [7, 6]. Interestingly, though we use
probabilistic tools to deduce the existence of low-discrepancy assignments, the proof does not
yield any obvious efficient randomized algorithm to find them.

Question 6. If an object can be proved to exist by a suitable local central limit theorem, is
there an efficient randomized algorithm to find it?
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