
RANDOM GRAPHS WITH GIVEN VERTEX DEGREES

AND SWITCHINGS

SVANTE JANSON

Abstract. Random graphs with a given degree sequence are often con-
structed using the configuration model, which yields a random multi-
graph. We may adjust this multigraph by a sequence of switchings,
eventually yielding a simple graph. We show that, assuming essentially
a bounded second moment of the degree distribution, this construction
with the simplest types of switchings yields a simple random graph with
an almost uniform distribution, in the sense that the total variation
distance is o(1). This construction can be used to transfer results on
distributional convergence from the configuration model multigraph to
the uniform random simple graph with the given vertex degrees. As
examples, we give a few applications to asymptotic normality. We show
also a weaker result yielding contiguity when the maximum degree is
too large for the main theorem to hold.

1. Introduction

We consider random graphs with vertex set [n] := {1, . . . , n} and a given
degree sequence d =

(
d1, . . . , dn

)
. In particular, we define G(n,d) to be the

random (simple) graph with degree sequence d chosen uniformly at random
among all such graphs. We will consider asymptotic results as n→∞, where

the degree sequence d = dn = (d
(n)
i )n1 depends on n, but usually we omit n

from the notation.
The standard methods to constuct a random graph with a given degree

sequence begin with the configuration model, which was introduced by Bol-
lobás [7]. (See [6; 31] for related models and arguments.) As is well-known,
this method yields a random multigraph, which we denote by G∗(n,d), with
the given degree sequence d; see Section 3.1. This random multigraph may
contain loops and multiple edges; however, in the present paper (as in many
others), we will consider asymptotic results as n→∞, where d = dn satis-
fies (at least)

n∑
i=1

di = Θ(n),

n∑
i=1

d2i = O(n), (1.1)

and then (see e.g. the proof of Lemma 4.1) the expected number of loops
and multiple edges is O(1), which might seem insignificant when n is large.
(Recall that Θ(n) means a number in the interval [cn, Cn] for some constants
c, C > 0.)
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2 SVANTE JANSON

In fact, we are mainly interested in the more regular case where, as
n→∞,

1

n

n∑
i=1

di → µ,
1

n

n∑
i=1

d2i → µ2 (1.2)

for some µ, µ2 ∈ (0,∞). Obviously, (1.2) implies (1.1). Conversely, if (1.1)
holds, then there is always a subsequence satisfying (1.2). It follows, see
Section 4.4 for details, that for our purposes (1.1) and (1.2) are essentially
equivalent. We will thus use the more general (1.1) in the theorems.

In some applications, the random multigraph G∗(n,d) may be at least as
good as the simple graph G(n,d). For example, this may be the case in an
application where the random graph is intended to be an approximation of
an unknown graph “in real life”; then the multigraph model may be just as
good as an approximation. On the other hand, if we, as is often the case,
really want a random simple graph (i.e., no loops or multiple edges), then
there are several ways to proceed.

The standard method, at least in the sparse case studied in the present
paper, is to condition G∗(n,d) on the event that it is a simple graph; it is
a fundamental fact of the configuration model construction (implicit in [7])
that this yields a random simple graph G(n,d) with the uniform distribution
over all graphs with the given degree sequence. This method has been very
successful in many cases. In particular, under the condition (1.1) on d,

lim inf
n→∞

P
(
G∗(n,d) is simple

)
> 0, (1.3)

see e.g. [16; 18], and then any result on convergence in probability for
G∗(n,d) immediately transfers to G(n,d). (See also Bollobás and Rior-
dan [8], where this method is used, with more complicated arguments, also
in cases with P

(
G∗(n,d) is simple

)
→ 0.) However, as is also well-known,

results on convergence in distribution do not transfer so easily, and fur-
ther arguments are needed. (See [21], [29], [19] for examples where this has
succeded, with more or less complicated extra arguments.)

Another method to create a simple graph from G∗(n,d) is to erase all
loops and merge any set of parallel edges into a single edge. This creates
a simple random graph, but typically its degree sequence is not exactly the
given sequence d. Nevertheless, this erased configuration model may be
as useful as G∗(n,d) in some applications. This construction is studied in
Britton, Deijfen and Martin-Löf [9] and van der Hofstad [15, Section 3], but
will not be considered further in the present paper where we insist on the
degree sequence being exactly d.

In the present paper, we consider a different method, where we also ad-
just G∗(n,d) to make it simple, but this time we keep the degree sequence d
exact by using switchings instead of erasing. More precisely, we process the
loops and multiple edges in G∗(n,d) one by one. For each such bad edge, we
chose another edge, uniformly at random, and switch the endpoints of these
two edges, thus replacing them by another pair of edges. See Section 3.2
for details. Assuming (1.1), this typically gives a simple graph after a single
pass through the bad edges (Theorem 3.2); if not, we repeat until a simple

graph is obtained. We denote the resulting graph by Ĝ(n,d) and call it the
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switched configuration model. The idea to use switchings in this context goes
back to McKay [25] for the closely related problem of counting simple graphs

with a given degree sequence (assuming max di = O(n1/4), but not (1.1)),
and was made explicit for generating G(n,d) by McKay and Wormald [26]
(using somewhat different switchings). See the survey by Wormald [33] for
further uses of switchings. Recent refinements of the method, extending it
to larger classes of degree sequences by employing more types of switchings,
are given in Gao and Wormald [10, 11, 12]. We will not use these recent
refinements (that have been developed to handle also rather dense graphs);
instead we focus on the simple case when (1.1) holds and only a few switch-
ings are needed; we also use only the oldest and simplest types of switchings,
used already by McKay [25] (called simple switchings in [33]). Although the
switching method for this case has been known for a long time, it seems to
have been somewhat neglected. Our purpose is to show that the switching
method is powerful also in this case, and that it complements the condition-
ing method discussed above for the purpose of proving asymptotic results
for G(n,d).

Remark 1.1. From the point of view of constructing a random simple graph
with given degree sequence by simulation, the standard approach using con-
ditioning means that we sample the multigraph G∗(n,d); if it happens to be
simple, we accept it, and otherwise we discard it completely and start again,
repeating until a simple graph is found. (See e.g. [32].) The approach in the
present paper is instead to keep most of the multigraph even when it is not
simple, and resample only a few edges. The disadvantage is that the result

Ĝ(n,d) is not perfectly uniformly random, but Theorem 2.1 below shows
that is a good approximation, and asymptotically correct. The advantage

is that Ĝ(n,d) typically does not differ much from G∗(n,d), and thus we
often can show estimates of the type (2.10) in Corollary 2.3 below.

Remark 1.2. In e.g. [26; 11; 12], an exactly uniformly distributed simple
graph (i.e., G(n,d)) is constructed by combining switchings with rejection
sampling, meaning that we may, with some carefully calculated probabilities,
abort the construction and restart. (Cf. the conditioning method where, as
discussed in Remark 1.1, we restart as soon as anything is wrong, instead of
trying to fix it by switchings.) Our focus is not on actual concrete construc-
tion of instances of G(n,d) by simulation, but rather to have a method of
construction that can be used theoretically to study properties of G(n,d),
and for our purposes the approximate uniformity given by Theorem 2.1 is
good enough. (And better, since the method is simpler.)

Remark 1.3. Switchings have also recently been used (in a different way)
by Athreya and Yogeshwaran [1] to prove asymptotic normality for statistics
of G∗(n,d) (in a subcritical case) using martingale methods.

Remark 1.4. For convenience, we state the results for a sequence dn of de-
gree sequences where dn has length (number of vertices) n. More generally,
one might consider a subsequence, or other sequences of degree sequences
dj with lengths nj →∞. This will be used in the proofs, see Section 4.4.

The main results are stated in Section 2, and proved in Sections 4–7. A
few applications are given in Section 8.
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2. Notation and main results

2.1. Some notation. Unspecified limits are as n→∞; w.h.p. (with high

probability) means with probability tending to 1 as n→∞.
d−→ and

p−→
denote convergence in distribution and probability, respectively.

If Xn are random variables and an are positive numbers, then Xn =
Op(an) means limK→∞ supn P(|Xn| > Kan) = 0, and Xn = op(an) means

supn P(|Xn| > εan) = 0 for every ε > 0; thus Xn = op(an) ⇐⇒ Xn/an
p−→

0.
Given a degree sequence d = (di)

n
1 , we let

dmax := max
16i6n

di, (2.1)

N :=
n∑
i=1

di. (2.2)

Thus a graph with degree sequence d has n vertices and N/2 edges. Note

that (1.1) implies N = Θ(n) and dmax = O(n1/2).
If S is a measurable space, then M(S) is the Banach space of finite

signed measures on S, and P(S) is the subset of probability measures. If
λ, ν ∈ P(S), then their total variation distance is defined by

dTV(λ, ν) := sup
A⊆S

∣∣λ(A)− ν(A)
∣∣ = 1

2‖λ− ν‖M(S) (2.3)

(where we tacitly only consider measurable A). If X and Y are random
elements of S with distributions λ and ν, we also write

dTV(X,Y ) := dTV(λ, ν) = sup
A⊆S

∣∣P(X ∈ A)− P(Y ∈ A)
∣∣. (2.4)

If S is e.g. a separable metric space (for example, as in our applications, a
discrete finite or countable set), then

dTV(X,Y ) = minP
(
X ′ 6= Y ′

)
, (2.5)

taking the minimum over all couplings (X ′, Y ′) of X and Y , i.e., pairs of
random variables X ′, Y ′ (defined on the same probaility space) such that

X ′
d
= X and Y ′

d
= Y . (See e.g. [4, Appendix A.1] or [17, Section 4].)

If Sn, n > 1, is a sequence of measurable spaces, and Xn and Yn are
random variables with values in Sn, then Xn and Yn are contiguous if for
any sequence of measurable sets (events) En ⊆ Sn,

P(Xn ∈ En)→ 0 ⇐⇒ P(Yn ∈ En)→ 0. (2.6)

See e.g. [23, Section 9.6] and [17].
If G is a (multi)graph, we let E(G) denote its edge set and e(G) := |E(G)|

its number of edges (counted with multiplicity).
Pk denotes a path with k edges and k + 1 vertices, and Ck a cycle with

k vertices, k > 1. In particular, C1 is a loop, and C2 is a pair of parallel
edges. We denote the disjoint union of (unlabelled) graphs by +, and write
e.g. 2P2 for P2 + P2.
C and c denote positive constants that may be different at each occur-

rence. (They typically depend on the sequence of degree sequences, but they
do not depend on n.)
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2.2. Main results. Ĝ(n,d) is, by construction, a random simple graph
with the given degree sequence d. However, it does not have a uniform dis-
tribution over all such graphs, i.e., it will not be equal to the desired random
graph G(n,d); see Example 3.5. Nevertheless, our main result is the follow-

ing theorem, which says in a strong form that Ĝ(n,d) has asymptotically

the same distribution as G(n,d); in the notation of [17], Ĝ(n,d) and G(n,d)

are asymptotically equivalent. Hence, Ĝ(n,d) is a useful approximation of
G(n,d), and as stated formally in Corollary 2.2 below, results on both con-
vergence in probability and convergence in distribution that can be proved

for Ĝ(n,d) transfer to G(n,d). Proofs are given in Section 6.

Theorem 2.1. Assume that d = (d
(n)
i )n1 depends on n and satisfies the

conditions (1.1) and

dmax = o
(
n1/2

)
. (2.7)

Then, as n→∞,

dTV

(
Ĝ(n,d), G(n,d)

)
→ 0. (2.8)

In other words, there exists a coupling of Ĝ(n,d) and G(n,d) such that

P
(
Ĝ(n,d) 6= G(n,d)

)
→ 0. (2.9)

Corollary 2.2. Assume that d satisfies (1.1) and (2.7). Suppose that Xn =

fn
(
G(n,d)

)
for some function fn of labelled simple graphs, and let X̂n =

fn
(
Ĝ(n,d)

)
. If τ is a constant such that X̂n

p−→ τ as n→∞, then also

Xn
p−→ τ . More generally, if Y is a random variable such that X̂n

d−→ Y

as n→∞, then also Xn
d−→ Y .

Moreover, Ĝ(n,d) is obtained from G∗(n,d) using only a few switchings.
Hence it is often easy to prove the estimate (2.10) below, and then the
next corollary shows that results on convergence in distribution for G∗(n,d)

transfer to Ĝ(n,d), using Ĝ(n,d) as an intermediary in the proof.

Corollary 2.3. Assume that d satisfies (1.1) and (2.7). Suppose that
Xn = fn

(
G(n,d)

)
for some function fn, which is defined more generally

for labelled multigraphs, and let X∗n = fn
(
G∗(n,d)

)
. Suppose also that

fn
(
Ĝ(n,d)

)
− fn

(
G∗(n,d)

) p−→ 0. (2.10)

If Y is a random variable such that X∗n
d−→ Y as n→∞, then also Xn

d−→
Y .

We show in Example 3.7 that the condition maxi di = o(n1/2) is needed
in Theorem 2.1 and its corollaries above. However, we will also show the
following weaker statement without this assumption. The proof is given in
Section 7.

Theorem 2.4. Assume that d = (d
(n)
i )n1 depends on n and satisfies (1.1).

Then, as n→∞, the random graphs Ĝ(n,d) and G(n,d) are contiguous.

In other words, any sequence of events En that holds w.h.p. for Ĝ(n,d) holds
also w.h.p. for G(n,d), and conversely.
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3. The construction of Ĝ(n,d)

3.1. The configuration model. The well-known configuration model was
introduced by Bollobás [7] to generate a random multigraph with a given
degree sequence d = (di)

n
1 . (N :=

∑
i di is assumed to be even.) The

construction works by assigning a set of di half-edges to each vertex i; this
gives a total of N half-edges. A perfect matching of the half-edges is called
a configuration, and defines a multigraph in the obvious way: each pair of
half-edges in the matching is regarded as an edge in the multigraph. We say
that the configuration projects to a multigraph. We choose a configuration
uniformly at random, and let G∗(n,d) be the corresponding multigraph.

We denote the half-edges at a vertex i by i1, . . . , idi .
Note that the mapping from configurations to multigraphs is not injective,

since we may permute the half-edges at each vertex without changing the
multigraph. Nevertheless, we often informally identify a configuration and
the corresponding multigraph, and we use graph theory language for con-
figurations too. In particular, a pair {iα, jβ} in a configuration Γ is called
an edge in Γ, with endpoints i and j, and may be written iαjβ; similarly,
the particular case {iα, iβ} is called a loop, two pairs (edges) {iα, jβ} and
{iγ , jδ} are said to be parallel; a configuration is simple if it has no loops or
parallel edges.

3.2. The switched configuration model. We construct the switched
configuration model by first constructing a random configuration Γ0 and
the corresponding multigraph G∗(n,d) as above. Formally, we will do the
switchings in the configuration, where all edges are uniquely labelled; they
induce corresponding switchings in the multigraph, and informally we may
think of the multigraph only.

We say that an edge in a configuration or multigraph is bad if it is a
loop or if it is parallel to another edge. If there is no bad edge in Γ0 (or
equivalently, in G∗(n,d)), then G∗(n,d) is simple, and we accept it as it
is. Otherwise, we choose a bad edge in Γ0, say iαjβ (where i = j in the
case of a loop), and choose another edge kγ`δ uniformly at random among
all other edges in Γ0; we also order the two half-edges kγ and `δ randomly.
We then make a switching, and replace the two edges iαjβ and kγ`δ by the
new edges iα`δ and kγjβ. This gives a new configuration Γ1 on the same set
of half-edges, and thus a new multigraph G1 that still has the same degree
sequence d. Moreover, we have removed one bad edge (in the case of parallel
edges, also another bad edge may have become good); however, it is possible
that we have created a new bad edge (or several). If the new configuration
Γ1 has no bad edge, then the corresponding multigraph G1 is simple and
we stop; otherwise we pick a bad edge in Γ1, and repeat until we obtain a

simple graph. Ĝ(n,d) is defined to be the simple random graph we have
when we terminate.

Remark 3.1. The description above is somewhat incomplete, since we have
not specified which bad edge we switch, if there is more than one. We
assume that we have some fixed rule for this, e.g. the lexicographically first
bad edge, or a random one; different rules may yield somewhat different
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final distributions, and thus formally different random graphs Ĝ(n,d), see
Example 3.6, but our results hold for any such rule. See Lemma 4.2.

Of course, if the degree sequence d is not graphic, i.e., no simple graph
with this degree sequence exists, then the switching process will never ter-
minate. We conjecture that if the sequence d is graphic, then the switching
process almost surely terminates, but we leave this as an open problem, see
Remark 3.4. However, we show in Section 4 the following theorem, which
is enough for our purposes; it shows that assuming (1.1), the process w.h.p.
terminates very quickly.

Theorem 3.2. Assume (1.1). Then, during the construction of Ĝ(n,d),
w.h.p. no new bad edges are created and the process terminates after Op(1)
switchings.

Remark 3.3. It is easily seen that if we switch a bad edge iαjβ with an
edge kγ`δ that has a vertex in common with iαjβ, i.e., {i, j} ∩ {k, `} 6= ∅,
then there will always be a new bad edge created. It is therefore reasonable
to modify the construction by choosing the edge kγ`δ uniformly at random
among all edges vertex-disjoint from the bad edge iαjβ. (Provided this is
possible, which it is e.g. if the maximum degree is < N/4, as is the case for
all large n when (1.1) holds.)

Theorem 3.2 implies that assuming (1.1), w.h.p. we never switch two edges
with a common vertex; hence the modified version will w.h.p. yield exactly

the same result Ĝ(n,d), and consequently Theorems 2.1 and 2.4 holds for
the modified construction too.

Example 3.5 shows that the modified construction does not yield exactly

the same distribution of Ĝ(n,d), nor the uniform distribution.

Remark 3.4. Theorem 3.2 shows that, under our conditions, the switch-
ing process w.h.p. terminates with a simple graph after a finite number of
switchings. A different question is whether it always terminates, for a given
n and a graphic degree sequence d. First, it is easy to see that the process
might loop and never terminate, even using the modification in Remark 3.3,
see Example 3.8; however, in that example at least, this has probability 0.
Hence the right question is whether the process terminates a.s. (i.e., with
probability 1).

It can be shown, see Sjöstrand [30], that there always exists a sequence
of switchings leading to a simple graph. It follows that if we choose the bad
edge to switch at random, then the process terminates a.s. with a simple
graph. (Note that the switching process is a finite-state Markov process,
where the simple graphs are absorbing states.) We conjecture that the same
holds for any rule choosing the bad edge to switch, but this remains an open
problem.

For completeness, if the switching process does not terminate, we define

Ĝ(n,d) by restarting with a new random configuration. (This makes no
difference for our results.)

3.3. Examples.

Example 3.5. We consider a small example, both to illustrate the con-
struction and to show that it does not yield perfect uniformity.
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Let n = 6 and the degree sequence d = (2, 2, 1, 1, 1, 1). Thus N = 8 and
there are N/2 = 4 edges. There are 7!! = 105 different configurations of 5
different isomorphism types, as shown in Figure 1. Of these configurations,
72 yield simple graphs: 48 of the type P3 + P1 and 24 of the type 2P2. The
random simple graph G(6,d) thus has the distribution

P
(
G(6,d) ∼= P3 + P1

)
= 2

3 , P
(
G(6,d) ∼= 2P2

)
= 1

3 . (3.1)

The remaining 33 configurations yield non-simple graphs: 24 C1 + P2 + P1,
6 C2 + 2P1 and 3 2C1 + 2P1. It is easily seen that modifying a graph C1 +
P2 +P1 by switching the bad edge and another one, randomly chosen, gives
P3+P1 or 2P2 with the same probabilities 2

3 and 1
3 as in (3.1), while C2+2P1

may give P3+P1 but never 2P2 (it may also give 2C1+2P1 or C2+2P1 again
if we switch the two parallel edges with each other; then further switchings
are needed); the final possibility 2C1 +2P1 will give C1 +P2 +P1 or C2 +2P1

after the first switching. It follows that if we continue until we have a

simple graph Ĝ(n,d), then the probability of it being P3 + P1 is strictly

larger that 2
3 ; hence Ĝ(n,d) and G(n,d) do not have the same distribution.

An elementary but uninteresting calculation shows that for this example,

P
(
Ĝ(6,d) ∼= P3 + P1

)
= 24

35 , P
(
Ĝ(6,d) ∼= 2P2

)
= 11

35 . (3.2)

The same holds also if we modify the construction by always switching
with an edge disjoint from the bad one (see Remark 3.3), although the exact
probabilities will be different: 31

45 and 14
45 .

Figure 1. Multigraphs (unlabelled) given by the degree se-
quence (2, 2, 1, 1, 1, 1) in Example 3.5.

Example 3.6. As another example, let n = 7 and d = (2, 2, 2, 1, 1, 1, 1);
thus there are N/2 = 5 edges. Suppose that a realization of the configuration
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Figure 2. A multigraph given by the degree sequence
(2, 2, 2, 1, 1, 1, 1) in Example 3.6.

model yields the multigraph C1 +C2 + 2P1 in Figure 2. There are three bad
edges: one loop and two parallel edges.

If we choose to first switch the loop, then with probability 1
2 we switch it

with one of the parallel edges, yielding the simple graph C3 +2P1. If instead
we switch the loop with one of the isolated edges, the result is C2 +P2 +P1,
which after a second switching yields either a simple graph P4+P1 or P3+P2,
or (if we switch the two parallel edges with each other) C2 + P2 + P1 again
or 2C1 + P2 + P1; in the latter cases, we obtain P4 + P1 or P3 + P2 after
further switchings. Hence, the probability that the final graph contains a
cycle C3 is 1

2 .
On the other hand, if we begin by switching one of the parallel edges,

then there are three possibilities:

(i) With probability 1
4 , we switch with the loop, and obtain again C3+2P1.

(ii) With probability 1
2 we switch with an isolated edge and obtain C1 +

P3 + P1 and after a second switching either P4 + P1 or P3 + P2.
(iii) With probability 1

4 we switch the two parallel edges with each other,

yielding either (with probability 1
8 each) the same multigraph C1 +

C2 + 2P1 and we restart, or 3C1 + 2P1. In the latter case, we next
switch a loop with either (probability 1

2 each) another loop, yielding
C1 +C2 + 2P1 and we restart, or with an isolated edge, yielding 2C1 +
P2 + P1, which eventually yields either P4 + P1 or P3 + P2.

Summing up this case, we start again with a graph C1 + C2 + 2P1 with
probability 3

16 , and thus the total probability that we end with case (i) is
1
4/

13
16 = 4

13 .
Consequently, conditioned on this realisation of G∗(7,d), the probability

that the final graph Ĝ(7,d) has a cycle C3 is 1
2 or 4

13 , depending on our
choice for the first switching. This shows that the order of the switchings
matters. However, Theorem 2.1 is valid in any case, and thus such choices
make no difference asymptotically.

With the modification in Remark 3.3, we never switch two parallel edges
with each other so some possibilities disappear in this example; the final
probabilities are 1

2 and 1
3 , but the conclusion remains the same.

Example 3.7. Fix a > 0, consider for simplicity only even n, and let
d := (m,m, 1, . . . , 1), where m := b

√
anc. Thus all vertices except 1 and 2

have degree 1. Note that (1.1) holds, but not (2.7).
Let L1 and L2 be the numbers of loops at 1 and 2, and let M12 be the

number of edges 12 in the multigraph G∗(n,d). Note that besides these
edges, G(n,d) contains m − 2Lj −M12 edges from j to a leaf (j = 1, 2),
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and a perfect matching of all remaining vertices. In particular, there are
n/2−O(n1/2) isolated edges.

The multigraph G∗(n,d) is simple if L1 = L2 = 0 and M12 6 1. It is easy

to see, e.g. by the method of moments, that asymptotically, L1
d−→ Po(a/2),

L2
d−→ Po(a/2), and M12

d−→ Po(a), jointly with independent limits. When

we construct Ĝ(n,d) by switchings, there is thus only Op(1) bad edges;

moreover, w.h.p. each switching will be with one of the n/2−O(n1/2) isolated
edges. In this case, no new bad edge is created by the switchings, and

we reach a simple graph Ĝ(n,d) after L1 + L2 + (M12 − 1)+ switchings;
furthermore, no edge 12 is created by the switchings. It follows that w.h.p.

Ĝ(n,d) has an edge 12 if and only if M12 > 1. Consequently,

P
(
12 ∈ E(Ĝ(n,d))

)
= P(M12 > 1) + o(1)→ P

(
Po(a) > 1

)
= 1− e−a.

(3.3)

On the other hand, a simple graph with degree sequence d has either

(i) no edge 12 and m edges from each of 1 and 2 to leaves k > 3, together
with a perfect matching of the remaining n− 2m− 2 vertices.

(ii) an edge 12 and m − 1 edges from each of 1 and 2 to leaves k > 3,
together with a perfect matching of the remaining n− 2m vertices.

Let the numbers of graphs of these two types be N0 and N1. Then

N0 =

(
n− 2

m

)(
n− 2−m

m

)
(n− 2m− 3)!! (3.4)

N1 =

(
n− 2

m− 1

)(
n− 1−m
m− 1

)
(n− 2m− 1)!! (3.5)

and a simple calculation yields

N1

N0
=

m2

n− 2m
→ a. (3.6)

Hence,

P
(
12 ∈ E(G(n,d))

)
=

N1

N0 +N1
→ a

1 + a
. (3.7)

Comparing (3.3) and (3.7), we see that the limits differ, and thus The-
orem 2.1 does not hold for this example. Similarly, Corollaries 2.2 and 2.3
fail, for example if fn(G) is the indicator of the event that the multigraph
G contains an edge where both endpoints have degrees > 2. This example
shows that the condition (2.7) cannot be omitted from Theorem 2.1 and its
corollaries.

Figure 3. A multigraph given by the degree sequence
(3, 2, 1, 1) in Example 3.8.

Example 3.8. Let d = (3, 2, 2, 1), and suppose that the initial multigraph
G∗(4,d) has edges 12, 12, 13, 34, see Figure 3. If we switch one of the parallel
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edges 12 with 34, then we may get a simple graph, but we may also create
another edge 13 and get the edge set 12, 13, 13, 24. The latter multigraph is
isomorphic to the original one, and we may continue and cycle between these
two multigraphs for ever. Hence, there is no deterministic guarantee that the
switching process always leads to a simple graph. Note also the modification
in Remark 3.3 does not help; we still can make the same switchings.

However, note that in this example, switching the same edges but in
different orientations yields a simple graph. Since we order the half-edges
at random when switching, the infinite sequence of switchings above has
probability 0; more generally, it is easily verified that for this example, a.s.
the process terminates after a finite number of switchings.

4. The distribution of Ĝ(n,d)

4.1. More notation. Let S be number of switchings used in the construc-
tion. Let Γk (0 6 k 6 S) be the configuration after k switchings, and let Gk
be the corresponding multigraph. Thus G∗(n,d) = G0 and Ĝ(n,d) = GS .

Let Bk be the set of endpoints of bad edges in Gk, and let Ak be the set
of their neighbours in Gk.

Let bk be the bad edge in Γk−1 chosen for the kth switching, and let ek
be the (random) other edge used in that switching.

An m-edge (in a graph or configuration) is a set of m parallel edges that
are not loops, and such that there are no further edges parallel to them. (I.e.,
the multiplicity of the edge equals m.) Let L be the number of loops in Γ0

(i.e., in G0 = G∗(n,d)), and let Mm (m > 2) be the number of m-edges.
Furthermore, let

M :=
∑
m>2

(
m

2

)
Mm, (4.1)

the number of pairs of parallel edges in Γ0.
Let Gn be the set of all simple graphs on [n] with degree sequence d. Let

λ ∈ P(Gn) be the distribution of G(n,d), i.e., the uniform distribution on

Gn, and let λ̂ ∈ P(Gn) be the distribution of Ĝ(n,d).
We sometimes tacitly assume that n (and thus N) is large enough to avoid

trivialities (such as division by 0).

4.2. Silver and golden. We say that the construction of Ĝ(n,d) is silver
if

(S1) No new bad edge is created during the construction.
(S2) No additional edge ek used for a switching has an endpoint in B0.
The construction is golden if it is silver and furthermore

(G1) G∗(n,d) has no triple edges. I.e., Mm = 0 for m > 3.
(G2) The loops and double edges in G∗(n,d) are vertex-disjoint.
(G3) The additional edges ek used for the switchings are vertex-disjoint with

each other.

Let S and G be the events that the construction is silver or golden, respec-
tively, and let Sc and Gc be their complements. Furthermore, let Ss :=
S ∩ {S = s} and Gs := G ∩ {S = s} (s > 0).
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In a silver construction, each m-edge is reduced to a single (good) edge
by m− 1 switchings, and thus

S = L+
∑
m>2

(m− 1)Mm. (4.2)

In particular, in a golden construction, recalling (4.1),

S = L+M2 = L+M. (4.3)

In a silver construction, (4.2) and (4.1) yield the inequality

S 6 L+M. (4.4)

Lemma 4.1. (i) If (1.1) holds, then the construction of Ĝ(n,d) is w.h.p.
silver.

(ii) If (1.1) and (2.7) hold, then the construction of Ĝ(n,d) is w.h.p.
golden.

Proof. (i): A well-known simple calculation shows that, assuming (1.1),

EL =
∑
i

di(di − 1)

2(N − 1)
6

1

N

n∑
i=1

di(di − 1) 6
1

N

n∑
i=1

d2i = O(1), (4.5)

EM =
∑
i<j

di(di − 1)dj(dj − 1)

2(N − 1)(N − 3)
6 C

(
1

N

n∑
i=1

di(di − 1)

)2

= O(1). (4.6)

Hence, E(L+M) = O(1), i.e., there is a constant C such that

E(L+M) 6 C. (4.7)

Fix a large integerK, and assume that L+M 6 K. Then |B0| 6 L+2M 6
2K. Let k > 0, and suppose that the construction has been silver for the
first k switchings (in the obvious sense). Thus no new bad edges have been
created and hence Bk ⊆ B0. By the Cauchy–Schwarz inequality and (1.1),
the number of half-edges belonging to vertices in B0 is

∑
i∈B0

di 6
(
|B0|

∑
i∈B0

d2i

)1/2
6 (2K)1/2

( n∑
i=1

d2i

)1/2
= O

(
n1/2

)
, (4.8)

and thus

|Ak| 6
∑
i∈Bk

di 6
∑
i∈B0

di = O
(
n1/2

)
. (4.9)

Furthermore, the number of half-edges belonging to vertices in Ak is, by the
argument in (4.8) together with (4.9),∑

i∈Ak

di 6
(
|Ak|

n∑
i=1

d2i

)1/2
= O

(
|Ak|1/2n1/2

)
= O

(
n3/4

)
. (4.10)

It follows from (4.8) and (4.10) that when we pick a random edge ek+1 for
the next switching, the probability that it has an endpoint in B0 or Ak is
O(n−1/4) = o(1). Hence, w.h.p. we switch with an edge ek+1 not having
any endpoint in Bk ∪ Ak, and it is easy to see that then no new bad edge
is created. Furthermore, w.h.p. ek+1 has no endpoint in B0. Consequently,
w.h.p. the construction remains silver for the (k+1)th swithching too. Since
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only L+M 6 K switchings are needed, it follows by induction that w.h.p.
the construction is silver until the end.

We have shown that for every fixed K, P
(
Sc∩{L+M 6 K}

)
→ 0. Hence,

using also Markov’s inequality and (4.7),

P(Sc) 6 P
(
Sc ∩ {L+M 6 K}

)
+ P

(
L+M > K

)
6 o(1) +

E(L+M)

K

6 o(1) +
C

K
. (4.11)

Thus lim supn→∞ P(Sc) 6 C/K. Since K is arbitrary, P(Sc)→ 0.
(ii): The expected number of triples of parallel edges in G∗(n,d) is at

most, using (1.1) and (2.7),∑
i<j

d3i d
3
j

C

N3
6 C

d2max

N3

(∑
i

d2i

)2
6 C

d2max

n
= o(1). (4.12)

Hence, (G1) holds w.h.p.
Similar calculations show that the expected number of pairs of 2 loops,

a loop and a double edge, or 2 double edges, are o(1). Hence, (G2) holds
w.h.p.

Finally, fix k > 1. Given e1, . . . , ek−1, these have (at most) 2(k − 1)
endpoints. There are at most 2(k − 1)dmax edges with an endpoint in this
set. Since ek is drawn at random among the N/2 − 1 edges distinct from
bk, the probability that ek is not vertex-disjoint from e1, . . . , ek−1 is at most
2(k − 1)dmax/(N/2 − 1) = o(1). Note also that if the construction is silver
and L + M 6 K, then at most K switchings are done by (4.4). It follows
that for any fixed K,

P
(
Gc ∩ S ∩ {L+M 6 K}

)
= o(1). (4.13)

The argument in (and after) (4.11) shows that P
(
Gc∩S

)
→ 0. Hence, using

also part (i), P
(
Gc
)
6 P

(
Gc ∩ S

)
+ P

(
Sc
)
→ 0. �

Proof of Theorem 3.2. Immediate from Lemma 4.1(i), since a silver con-
struction creates no new bad edges by (S1) and uses S 6 L+M switchings
by (4.4), so ES 6 E(L+M) = O(1) by (4.7) and thus S = Op(1). �

4.3. The choice of a bad edge. As said in Remark 3.1, the random graph

Ĝ(n,d) may depend on the (unspecified) rule for choosing the bad edge for
each switching. However, all rules yield asymptotically the same result, at
least provided (1.1) holds.

Lemma 4.2. Assume (1.1). Let Ĝ1(n,d) and Ĝ2(n,d) be created by us-
ing two different rules for choosing the bad edge for each switching. Then

dTV(Ĝ1(n,d), Ĝ2(n,d))→ 0.

Proof. Suppose that we have a silver construction of Ĝ1(n,d); then only
edges that are bad already in Γ0 will be switched. It follows that we

may couple the two constructions of Ĝ(n,d), starting with the same Γ0,

such that if the construction of Ĝ1(n,d) is silver, then, in the sequence

of graphs G0, . . . , GS = Ĝ(n,d), exactly the same switchings are made in
both constructions, although perhaps in different order; consequently, the
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two constructions yield the same Ĝ(n,d). (On the level of configurations,
the switchings may differ, because of the choice of one parallel edge out of
several.) Consequently, for this coupling, by Lemma 4.1(i),

P
(
Ĝ1(n,d) 6= Ĝ2(n,d)

)
= o(1). (4.14)

This proves the lemma by (2.5). �

Lemma 4.2 implies that if Theorem 2.1 or Theorem 2.4 holds for some
rule, then it holds for any rule. We may thus for the proofs below assume
that we each time choose the bad edge in Γk that is first according to the
following order.

(B1) First the loops, in lexicographic order.
(B2) The m-edges in lexicographic order of their endpoints, and for each

m-edge its m edges in Γk in lexicographic order.

The exact definition of the lexicographic order in these cases is left to the
reader. In fact, any fixed order would do.

4.4. The subsubsequence principle. Next we note that it suffices to
prove that Theorems 2.1 and 2.4 always hold for some subsequence. This
is a general argument, which we repeat for convenience: Suppose that The-
orem 2.1 fails; then there exists a sequence dn satisfying the assumptions
and such that (2.8) fails; thus there exists ε > 0 and a subsequence such

that dTV

(
Ĝ(n,d), G(n,d)

)
> ε for every n in the subsequence. But by

assumption we can find a subsubsequence such that Theorem 2.1 holds, a
contradiction. The proof for Theorem 2.4 is essentially the same.

In particular, assuming (1.1), by selecting a suitable subsequence we may
in the remainder of the proofs assume that (1.2) holds for some µ > 0 and
µ2 <∞. Let ν := µ2 − µ; then (1.2) implies N/n→ µ and

1

n

n∑
i=1

di(di − 1)→ ν,
1

N

n∑
i=1

di(di − 1)→ ν

µ
. (4.15)

If ν = 0, then (4.15) and (4.5)–(4.6) show that EL → 0 and EM → 0.
Consequently, w.h.p. L = M = 0, so G∗(n,d) is simple, in which case

Ĝ(n,d) = G∗(n,d); thus dTV(Ĝ(n,d), G∗(n,d)) → 0. Furthermore, by the
fact that G(n,d) has the same distribution as G∗(n,d) conditioned on being
simple, we can couple G(n,d) and G∗(n,d) such that they are equal when
G∗(n,d) is simple; thus by (2.5),

dTV(G(n,d), G∗(n,d)) 6 P
(
G∗(n,d) is not simple

)
→ 0. (4.16)

Hence Theorems 2.1 and 2.4 follow trivially when ν = 0. Consequently, in
the proofs we may assume ν > 0.

4.5. Silver constructions. Consider a silver construction. Each switching
of a loop creates a copy of P2, and each set of m−1 switchings of an m-edge
creates m− 1 copies of P3 having a common middle edge, which is the one
edge remaining of the original m parallel ones. Colour the created copies of
P2 and P3 red ; these are regarded as (not necessarily disjoint) subgraphs of
the configuration. Note that the non-leaves in the red paths belong to B0,
while a leaf is an endpoint of some ek and thus, by (S2), lies outside B0. By
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(S2), the edges in the red paths will not be used by later switchings, and

thus the red paths remain as subgraphs of ΓS , and thus of GS = Ĝ(n,d).
The red paths do not have to be vertex-disjoint. However, by the remarks

above and (S1)–(S2), the set R of red paths in ΓS , or equivalently in GS =

Ĝ(n,d), has the following properties.

(P1) Each red path has length 2 or 3, i.e., is a copy of P2 or P3.
(P2) The red paths are edge-disjoint, except that several red paths P3 may

share the same middle edge.
(P3) An leaf of a red path is not a non-leaf of another red path.

Define the gap of a red path as its pair of endpoints. This is the pair of
endpoints of the edge ek used to create this red path. By (S1) and (S2), ek
was a good edge in Γ0, i.e., there was no parallel edge in Γ0. Thus the red
paths have also the properties:

(P4) The gaps of the red paths are distinct pairs of vertices.
(P5) The gaps of the red paths are non-edges in GS .

Furthermore, by (B2):

(P6) If a red P3 is given by the edges iαjβ, jγkδ, kε`ζ in ΓS , then necessarily
the edge jγkδ comes after jβkε in the lexicographic order.

Conversely, in a silver construction, the red paths in ΓS determine pre-
cisely the switchings that have been made; hence they together with ΓS
determine the initial configuration Γ0 and also, by (B1)–(B2), the order of
the switchings. Moreover, given any simple configuration Γ (on the given set
of half-edges) with corresponding graph G and a set of red paths in Γ (or G)
satisfying (P1)–(P6) (with obvious notational changes here and below: ΓS
is replaced by Γ and GS by G), there exists a unique initial configuration Γ0

and a unique silver sequence of switchings, satisfying (B1)–(B2), that yields
ΓS = Γ with the given red paths. Each such history with a given number S
of switchings has the same probability.

Consequently, dropping “red”:

Claim 1. For a fixed s > 0, the conditional probability P
(
ΓS = Γ | Ss

)
is

proportional to the number of sets of s paths in Γ that satisfy (P1)–(P6).

We project to graphs. For a simple graph G and a configuration Γ pro-
jecting to G, there is an obvious bijection between sets of paths in G and
sets of paths in Γ. Note that the conditions (P1)–(P5) depend only on the
paths in G, while (P6) depends also on the specific configuration Γ.

Given a simple graph G ∈ Gn, and a set R of s paths in G that satisfy
(P1)–(P5), let the weight w(R;G) be the probability that the lifting of
R to paths in a configuration Γ, chosen uniformly at random among all
configuration Γ that project to G, satisfies also (P6). Furthermore, for
G ∈ Gn and s > 0, let ζS,s(G) be the sum of the weights of all sets of s
paths in G that satisfy (P1)–(P5).

Recall that each simple graph G ∈ Gn is the projection of the same
number A :=

∏
i di! of configurations. It follows that the number of pairs

(Γ,R) where Γ is a configuration projecting to G and R is a set of s paths
in Γ satisfying (P1)–(P6) equals

∑
Rw(R;G)A = AζS,s(G). Consequently,

Claim 1 implies:
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Claim 2. For a fixed s > 0, and all G ∈ Gn, the conditional probability

P
(
Ĝ(n,d) = G | Ss

)
is proportional to ζS,s(G).

Let λ̂S,s be the distribution of Ĝ(n,d) conditioned on Ss, i.e.,

λ̂S,s{G} = P
(
Ĝ(n,d) = G | Ss

)
. (4.17)

Claim 2 says that the probability λ̂S,s(G) is proportional to ζS,s(G), and
thus to ζS,s(G)λ{G}, recalling that λ is the uniform distribution. To find
the normalizing constant, recall that λ is the distribution of G(n,d), which
implies, using the notation ZS,s := ζS,s

(
G(n,d)

)
,∑

G∈Gn

ζS,s(G)λ{G} = E
[
ζS,s
(
G(n,d)

)]
= EZS,s. (4.18)

Consequently, since λ̂S,s is a probability measure,

λ̂S,s{G} =
ζS,s(G)

EZS,s
λ{G}. (4.19)

4.6. Golden constructions. For the proof of Theorem 2.1, we simplify
and consider only golden constructions. In a golden construction, it follows
from (G1)–(G3) that the red paths are vertex-disjoint. Conversely, a silver
construction yielding vertex-disjoint red paths is golden.

It follows that Claims 1 and 2 above hold also if we replace Ss by Gs
and consider only sets R of vertex-disjoint paths, so ζS,s(G) is replaced by
ζG,s(G), defined as the total weight of all sets of s vertex-disjoint paths in

G that satisfy (P1)–(P5). Thus, in analogy to (4.17)–(4.19), letting λ̂G,s be

the distribution of Ĝ(n,d) conditioned on Gs, and ZG,s := ζG,s(G(n,d)),

λ̂G,s{G} := P
(
Ĝ(n,d) = G | Gs

)
=
ζG,s(G)

EZG,s
λ{G}. (4.20)

Hence,

‖λ̂G,s − λ‖M(Gn) =
∑
G∈Gn

∣∣λ̂G,s{G} − λ{G}∣∣ =
∑
G∈Gn

∣∣∣ζG,s(G)− EZG,s
EZG,s

∣∣∣λ{G}
=

E
∣∣ZG,s − EZG,s

∣∣
EZG,s

. (4.21)

This will be studied in the following sections. We first find the weights
w(R;G).

Lemma 4.3. Suppose that G ∈ Gn and that R consists of ` > 0 paths P2 and
m > 0 paths P3 in G, all vertex-disjoint. Then the weight w(R;G) = 2−m.

Proof. Given any configuration projecting to G, we obtain all other such
configurations by permuting the half-edges at each vertex. Hence, if H ∼= P3

is a path in G, then it follows by symmetry, permuting only the half-edges at
the two central vertices of H, that the probability is 1

2 that (P6) holds for the
lift of H to a random configuration Γ that projects to G. Furthermore, for
disjoint H1, . . . ,Hm, the corresponding events are independent. The result
follows. �
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For `,m > 0 and G ∈ Gn, let ζ`,m(G) be the number of sets {F1, . . . , F`,
H1, . . . ,Hm} of vertex-disjoint paths in G such that each Fi ∼= P2 and
each Hj

∼= P3, and (P5) holds. (We ignore the order of F1, . . . , F` and
H1, . . . ,Hm.) Note that (P2)–(P4) holds for any set of vertex-disjoint paths.
Hence, Lemma 4.3 yields

ζG,s(G) =
∑

`+m=s

2−mζ`,m(G). (4.22)

Remark 4.4. The proof of Lemma 4.3 is easily extended to the more general
sets of paths in Section 4.5. If the paths P3 in R are grouped according to
their middle edges, with mk groups of k − 1 paths having the same middle
edge (and thus coming from switchings of an k-edge in Γ0), k > 2, then
w(R;G) =

∏
k k
−mk . We will not use this formula, and omit the details.

5. Some subgraph counts in G∗(n,d)

The equations (4.21) and (4.22) show that it suffices to show good esti-
mates for the special subgraph counts ζ`,m(G(n,d)). In order to do so, we
use the standard method to study the random multigraph G∗(n,d) instead
(cf. Section 1). Let Z∗`,m := ζ`,m

(
G∗(n,d)

)
.

For two multigraphs H and G, let ψH(G) be the number of subgraphs of
G isomorphic to H. Define

XH := ψH
(
G∗(n,d)

)
. (5.1)

Note that L = XC1 and M = XC2 . We are mainly interested in the case
when H = P2 or P3, and we write Xk := XPk

.
We begin with an estimate that does not require (2.7).

Lemma 5.1. Assume that d satisfies (1.1). Then, for every fixed `,m > 0,

E
(
X`

2X
m
3

)
= O

(
n`+m

)
. (5.2)

Proof. First, deterministically using (1.1), since there are at most
(
di
2

)
copies

of P2 with middle vertex i,

X2 6
n∑
i=1

(
di
2

)
= O(n). (5.3)

We estimate X3 too from above by overcounting. For i, j ∈ [n] and
α ∈ [di], β ∈ [dj ], let Ii,α,j,β be the indicator of the event that the half-edges
iα and jβ form an edge. Then

X3 6 X̂3 :=
∑
i<j

di∑
α=1

dj∑
β=1

(di − 1)(dj − 1)Ii,α,j,β. (5.4)

We show, by induction on m, that for every fixed m > 0,

E X̂m
3 = O

(
nm
)
. (5.5)

This is trivial for m = 0, and for m = 1 we have (cf. the similar (4.6))

E X̂3 =
∑
i<j

di∑
α=1

dj∑
β=1

(di − 1)(dj − 1)E Ii,α,j,β =
∑
i<j

di(di − 1)dj(dj − 1)

N − 1
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6
C

n

(
n∑
i=1

di(di − 1)

)2

= O(n). (5.6)

For the induction step, note that (5.4) yields the expansion

E X̂m
3 =

∑
i1<j1,...,im<jm

∑
α1,...,αm

∑
β1,...,βm

E
m∏
k=1

(dik − 1)(djk − 1)Iik,αk,jk,βk .

(5.7)

First, let 1 6 k < ` 6 m, and consider all terms in (5.7) where (ik, αk, jk, βk) =
(i`, α`, j`, β`). In these terms, Ii`,α`,j`,β` is redundant, and (di`−1)(dj`−1) <

d2max 6 Cn, and eliminating these factors yields E X̂m−1
3 . Hence, the in-

duction hypothesis shows that the contribution of these terms is at most

CnE X̂m−1
3 = O(nm).

Summing over all pairs (k, `) still yields O(nm).
The remaining terms in (5.7) are those where them quadruples (ik, αk, jk, βk)

are distinct. In this case, either

E
m∏
k=1

Iik,αk,jk,βk =
1

(N − 1)(N − 3) · · · (N − 2m+ 1)
(5.8)

6
C

(N − 1)m
= C

m∏
k=1

E Iik,αk,jk,βk , (5.9)

(where C = Cm depends on m), or
∏m
k=1 Iik,αk,jk,βk = 0 identically because

of conflicts. Consequently, the sum of these terms in (5.7) is at most∑
i1<j1,...,im<jm

∑
α1,...,αm

∑
β1,...,βm

C

m∏
k=1

(dik − 1)(djk − 1)E Iik,αk,jk,βk = C
(
E X̂3

)m
.

(5.10)

By (5.6), this too is O(nm), which completes the induction step and proves
(5.5). The result follows by (5.3) and (5.5). �

Lemma 5.2. Assume that d satisfies (1.2) and (2.7). Then

X2

n

p−→ ν

2
, (5.11)

X3

n

p−→ ν2

2µ
. (5.12)

Proof. First, the overcount in (5.3) comes from the loops and multiple edges,
and we have the estimate

0 6
n∑
i=1

(
di
2

)
−X2 6 2dmaxXC1 + 2XC2 = 2dmaxL+ 2M. (5.13)

By (4.5)–(4.6), L,M = Op(1), and thus (5.13) yields, using (2.7),

X2

n
=

1

n

n∑
i=1

(
di
2

)
+ op

(
n−1/2

)
=

1

n

n∑
i=1

(
di
2

)
+ op(1). (5.14)

Hence, (5.11) follows by (4.15).
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For X3, we consider again X̂3 defined in (5.4). This too is defined by
overcounting, and it is easily seen that

0 6 X̂3 −X3 6 2d2maxXC1 + 4dmaxXC2 + 3XC3 . (5.15)

Again, XC1 = L = Op(1) and XC2 = M = Op(1) by (4.5)–(4.6), and a sim-
ilar calculation shows EXC3 = O(1) and thus XC3 = Op(1). Furthermore,

dmax = o(n1/2) by (2.7). Hence, (5.15) implies

X̂3 −X3 = op(n). (5.16)

Consequently, it suffices to consider X̂3. We have, by (5.6),

E X̂3 =
1

2(N − 1)

(( n∑
i=1

di(di − 1)

)2

−
n∑
i=1

d2i (di − 1)2

)
. (5.17)

Furthermore, by (2.7) and (1.1),

n∑
i=1

d2i (di − 1)2 6 d2max

n∑
i=1

d2i = o(n2). (5.18)

Using (5.18) and (4.15) in (5.17) yields

E X̂3

n
→ ν2

2µ
. (5.19)

Finally, we estimate the variance of X̂3. We use again the representation
(5.4). We have the covariances

Cov
(
Ii,α,j,β, Ik,γ,`,δ

)
=


1

N−1 −
(

1
N−1

)2
, {iα, jβ} = {kγ , `δ},

−
(

1
N−1

)2
, |{iα, jβ} ∩ {kγ , `δ}| = 1,

1
(N−1)(N−3) −

(
1

N−1
)2
, |{iα, jβ} ∩ {kγ , `δ}| = 0.

(5.20)

Hence, whenever {iα, jβ} 6= {kγ , `δ},

Cov
(
Ii,α,j,β, Ik,γ,`,δ

)
6

2

(N − 1)2(N − 3)
6
C

n
E Ii,α,j,β E Ik,γ,`,δ, (5.21)

and it follows from (5.4) that, using (5.6) and (2.7),

Var X̂3 6
∑
i<j

di∑
α=1

dj∑
β=1

(di − 1)2(dj − 1)2 E Ii,α,j,β +
C

n

(
E X̂3

)2
6 d2max E X̂3 +

C

n

(
E X̂3

)2
= O

(
nd2max

)
+O

(
n
)

= o
(
n2
)
. (5.22)

Consequently, (X̂3 − E X̂3)/n
p−→ 0, which together with (5.19) implies

X̂3

n

p−→ ν2

2µ
. (5.23)

Finally, this and (5.16) imply (5.12). �
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Remark 5.3. Lemma 5.2 may fail without the assumption (2.7). For an

example, consider again Example 3.7. Then X̂3 = (m − 1)2M12 and by
an estimate similar to (5.15), X3 = (m − 1)2M12 + op(n); hence X3/n =

aM12 + op(1)
d−→ aPo(a). Thus X3/n does not converge in probability to a

constant.

Remark 5.4. Under the stronger assumption
∑

i d
m
i = O(n) for every m <

∞, it is shown in [19, Theorem 3.10] that (for example) X2 and X3 are
asymptotically normal, with variance of order n. We do not know whether
that holds under the weaker assumptions in Lemma 5.2.

Lemma 5.5. Assume that d satisfies (1.2) and (2.7). Then, for any `,m >
0,

n−`−mZ∗`,m
p−→ α`,m :=

1

`!m!

(ν
2

)`( ν2
2µ

)m
. (5.24)

Proof. `!m!Z∗`,m counts ordered sequences of subgraphs F1, . . . , F`, H1, . . . ,Hm

of vertex-disjoint paths in G∗(n,d) such that each Fi ∼= P2 and each Hj
∼=

P3, and (P5) holds. We may overcount and estimate this by X`
2X

m
3 ; we can

also estimate the error by

0 6 X`
2X

m
3 − `!m!Z∗`,m

6

(
`

2

)
A22X

`−2
2 Xm

3 + `mA23X
`−1
2 Xm−1

3 +

(
m

2

)
A33X

`
2X

m−2
3

+ `B2X
`−1
2 Xm

3 +mB3X
`
2X

m−1
3 , (5.25)

where Ajk is that number of pair of paths F ∼= Pj and F ′ ∼= Pk in G∗(n,d)
such that F ∩F ′ 6= ∅, and Bj is the number of paths Pj such that (P5) does
not hold, i.e. paths Pj that are part of a cycle Cj+1.

We estimate Ajk and Bj . First, we have B2 6 3XC3 and B3 6 4XC4 .
Calculations similar to (4.6) show EXCj

= O(1) for any fixed j (as said in
the proof of Lemma 5.2 for j = 3), and thus

B2 = Op(1), B3 = Op(1). (5.26)

Fix j, k ∈ {2, 3}. We make a decomposition

Ajk =
∑
H∈H

Ajk(H), (5.27)

where Ajk(H) is the number of pairs (F, F ′) of paths in G∗(n,d) such that
F ∩ F ′ 6= ∅, F ∼= Pj , F

′ ∼= Pk and F ∪ F ′ ∼= H, and H is the (finite) set
of unlabelled multigraphs that can be written as a union of two paths of
lengths j and k. Given F ∪ F ′, there is O(1) choices of F and F ′, and thus

Aij(H) 6 CXH . (5.28)

For r > 0, let

∆r :=
n∑
i=1

dri . (5.29)
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Let H ∈ H have q vertices with degrees δ1, . . . , δq. Then the number of
possible copies of H in G∗(n,d), counted in the corresponding configuration,
is at most ∑

i1,...,iq

q∏
k=1

dδkik =

q∏
k=1

∆δk , (5.30)

and each such copy occurs with probability O(N−e(H)) = O(n−e(H)). Since
e(H) = 1

2

∑
k δk,

EXH 6 Cn
−e(H)

q∏
k=1

∆δk = C

q∏
k=1

n−δk/2∆δk . (5.31)

By (1.1), ∆1 = O(n) and ∆2 = O(n). Furthermore, for δ > 2, ∆δ 6
dδ−2max∆2 6 Cdδ−2maxn. Hence, using (2.7),

n−δ/2∆δ 6


Cn1/2, δ = 1,

C, δ = 2,

Cdδ−2maxn
1−δ/2 = o(1), δ > 2.

(5.32)

Let h1 be the number of vertices in H with degree 1. Since H is a
connected union of two paths, H has no isolated vertices, and it follows
from (5.31) and (5.32) that EXH = O(nh1/2). Furthermore, h1 6 4, and
if h1 = 4, then there is some vertex with degree > 2. If h1 6 3, then
EXH = O

(
n3/2

)
, and if h1 = 4 and some vertex has degree δ > 2, then

(5.31) and (5.32) imply EXH 6 Cn4/2(dmax/n
1/2)δ−2 = o

(
n2
)
.

Hence, EXH = o
(
n2
)

for every H ∈ H, and thus EAjk(H) = o
(
n2
)

by

(5.28), and finally EAjk = o
(
n2
)

by (5.27), which implies

Ajk = op
(
n2
)
. (5.33)

Since Lemma 5.2 implies X2, X3 6 Cn w.h.p., it follows from (5.26)
that the last two terms in (5.25) are Op

(
n`+m−1

)
, and from (5.33) that the

remaining terms on the right-hand side are op
(
n`+m

)
. Consequently, (5.25)

implies

X`
2X

m
3 − `!m!Z∗`,m = op

(
n`+m

)
(5.34)

and thus

n−`−mZ∗`,m =
1

`!m!

(
X2

n

)`(X3

n

)m
+ op(1) (5.35)

and the result (5.24) follows from Lemma 5.2. �

Lemma 5.6. Assume that d satisfies (1.2) and (2.7). Let `,m > 0. Then,

E |Z∗`,m − α`,mn`+m| = o
(
n`+m

)
. (5.36)

Proof. Let Yn := n−`−mZ∗`,m. We have Yn 6 n−`−mX`
2X

m
3 by (5.25), and

thus by Lemma 5.1,

E[Y 2
n ] 6 n−2`−2m E

[
X2`

2 X
2m
3

]
= O(1). (5.37)
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Hence, the sequence Yn (n > 1) is uniformly integrable (see e.g. [13, Theorem
5.4.2]), and thus (5.24) implies L1-convergence [13, Theorem 5.5.4], i.e.,

E
∣∣Yn − α`,m∣∣→ 0, (5.38)

which is equivalent to (5.36). �

6. Proof of Theorem 2.1

We now transfer the results in Section 5 to the simple random graph
G(n,d).

Lemma 6.1. The results in Lemmas 5.1, 5.2, 5.5, 5.6 hold also conditioned
on the event that G∗(n,d) is simple. In other words, the corresponding
results for G(n,d) hold as well.

Proof. An immediate consequence of (1.3). �

Let Z`,m := ζ`,m(G(n,d)).

Lemma 6.2. Assume that d satisfies (1.2) and (2.7). Let `,m > 0. Then,

EZ`,m =
(
α`,m + o(1)

)
n`+m, (6.1)

E |Z`,m − EZ`,m| = o
(
n`+m

)
. (6.2)

Proof. By Lemmas 5.6 and 6.1,

E
∣∣Z`,m − α`,mn`+m∣∣ = o

(
n`+m

)
. (6.3)

This implies (6.1), and then (6.1) and (6.3) yield (6.2). �

Proof of Theorem 2.1. As said in Section 4.4, we may assume that (1.2)
holds and ν > 0. Fix s > 0. Recalling the notations ZG,s := ζG,s

(
G(n,d)

)
and Z`,m := ζ`,m

(
G(n,d)

)
, we see that (4.22) and (6.2) imply that

E |ZG,s − EZG,s| = o
(
ns
)
. (6.4)

Furthermore, (4.22) and (6.1) imply

EZG,s > EZs,0 =
(
αs,0 + o(1)

)
ns. (6.5)

Hence, using (4.21), noting that αs,0 > 0,

‖λ̂G,s − λ‖M(Gn) =
E |ZG,s − EZG,s|

EZG,s
→ 0. (6.6)

Let ps := P(Gs), and pc := P(Gc). Then pc +
∑

s ps = 1, and, recalling

(4.20) and letting λ̂cG be the distribution of Ĝ(n,d) conditioned on Gc,

λ̂ = pcλ̂cG +

∞∑
s=0

psλ̂G,s. (6.7)

Consequently, for any K > 1, using (4.21),

‖λ̂− λ‖M(Gn) =
∥∥∥pc(λ̂cG − λ) +

∑
s>0

ps(λ̂G,s − λ)
∥∥∥
M(Gn)

6 pc‖λ̂cG − λ‖M(Gn) +
∑
s>0

ps‖λ̂G,s − λ‖M(Gn)
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6 2pc +
K∑
s=0

‖λ̂G,s − λ‖M(Gn) +
∑
s>K

2ps. (6.8)

By Lemma 4.1(ii), pc = o(1), and by (6.6), ‖λ̂G,s−λ‖M(Gn) = o(1) for every
fixed s. Furthermore, recall that Gs implies L + M = S = s, see (4.3).
Hence, for any fixed K, (6.8) implies, using (4.7),

‖λ̂− λ‖M(Gn) 6 o(1) + o(1) +
∑
s>K

2P(L+M = s) = o(1) + 2P(L+M > K)

6 o(1) +
2E(L+M)

K
6 o(1) +

C

K
. (6.9)

Thus lim supn→∞‖λ̂ − λ‖M(Gn) 6 C/K, and then letting K → ∞ yields

‖λ̂ − λ‖M(Gn) → 0. This completes the proof of (2.8) by (2.3). The final
sentence follows by (2.5). �

Proof of Corollary 2.2. Using a coupling such that (2.9) holds, we have

P(Xn 6= X̂n)→ 0, and the conclusion follows. �

Proof of Corollary 2.3. Let X̂n := fn
(
Ĝ(n,d)

)
. Then the assumption (2.10)

says X̂n −X∗n
p−→ 0. We have also assumed X∗n

d−→ Y , and it follows that

X̂
d−→ Y . Hence the result follows by Corollary 2.2. �

7. Proof of Theorem 2.4

Since we do not assume (2.7), the construction is not necessarily golden
w.h.p. (There may be e.g. triple edges in G∗(n,d).) Hence we use in this
section silver constructions. Recall the notation ZS,s := ζS,s(G(n,d)).

We define, cf. (5.1), for a multigraph H,

YH := ψH
(
G(n,d)

)
. (7.1)

Lemma 7.1. Assume that d satisfies (1.2) and ν > 0. Let s > 0. Then,

EZS,s > cns, (7.2)

EZ2
S,s 6 Cn

2s, (7.3)

Proof. (i): By selecting subsequences, see Section 4.4, we may assume that

the limit b := limn→∞ dmax/n
1/2 exists. We consider two cases.

(ia): b = 0. This means dmax = o(n1/2), i.e., (2.7) holds; thus Lemma 6.2
and its consequence (6.5) hold. By definition, ζS,s(G) > ζG,s(G) for all
G ∈ Gn. Hence, ZS,s > ZG,s, and (7.2) follows by (6.5).

(ib): b > 0. We may assume that dmax = d1. Then, for large n, d1 =
dmax > b

2n. Say that a half-edge at vertex 1 is green if it is not part of
a loop or multiple edge, and let W be the number of green edges. Then
W > d1− 2L− 2M > b

2n
1/2−Op(1), and thus w.h.p. W > b

3n
1/2. A pair of

green half-edges defines a path of length 2 in G(n,d), with 1 as midpoint.
Hence, a sequence of 2s distinct green half-edges defines s paths of length
2. This set of paths satisfies (P1)–(P4) and (trivially) (P6). It fails to
satisfy (P5) only if one of the paths is part of a C3, and the number of such



24 SVANTE JANSON

sequences is O(YC3W
2s−2). We have, by the usual conditioning argument

with (1.3), and a simple calculation (used also in the proof of Lemma 5.2),

EYC3 = E
(
XC3 | G∗(n,d) is simple

)
6 C EXC3 = O(1). (7.4)

Hence, w.h.p. YC3 6 n
1/2. Consequently, w.h.p., crudely,

ZS,s >

(
W

2s

)
− CW 2s−2YC3 > cb

2sns −O
(
ns−1/2

)
> cns, (7.5)

which implies (7.2).
(ii): The weights w(R;G) ∈ [0, 1], and thus ζS,s(G) is at most the number

of sets of s paths of lengths 2 or 3 in G. Hence,

ZS,s = ζS,s(G(n,d)) 6
s∑
`=0

Y `
P2
Y s−`
P3

. (7.6)

Thus, for fixed s > 0, recalling Xk = XPk
in Section 5 and Lemma 5.1, and

(1.3),

EZ2
S,s 6 C

2s∑
`=0

E[Y `
P2
Y 2s−`
P3

] = C
2s∑
`=0

E
(
X`

2X
2s−`
3 | G∗(n,d) is simple

)
6

C

P
(
G∗(n,d) is simple

) 2s∑
`=0

E
(
X`

2X
2s−`
3

)
= O

(
n2s
)
. (7.7)

�

Proof of Theorem 2.4. Again, as said in Section 4.4, we may assume that
(1.2) holds and ν > 0.

Recall the definition (2.6), and fix an arbitrary sequence of subsets En ⊆
Gn. (An event for these random graphs may by identified with a subset of
Gn.)

(i): Suppose that

P
(
Ĝ(n,d) ∈ En

)
→ 0. (7.8)

The event that G∗(n,d) is simple is the same as S = 0 (i.e., no switchings

are made), and in this case Ĝ(n,d) = G∗(n,d). Hence,

P
(
G(n,d) ∈ En

)
= P

(
G∗(n,d) ∈ En | S = 0

)
=

P
(
G∗(n,d) ∈ En and S = 0

)
P(S = 0)

=
P
(
Ĝ(n,d) ∈ En and S = 0

)
P(S = 0)

6
P
(
Ĝ(n,d) ∈ En

)
P(S = 0)

→ 0,

(7.9)

by the assumption (7.8) and (1.3).
(ii): Suppose conversely that

P
(
G(n,d) ∈ En

)
→ 0. (7.10)

Fix s > 0 and let now ps := P(Ss). Then (4.17) yields

P
(
Ĝ(n,d) ∈ En and Ss

)
= ps P

(
Ĝ(n,d) ∈ En | Ss

)
= psλ̂S,s(En). (7.11)
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Furthermore, (4.19) implies

λ̂S,s(En) =
∑
G∈En

ζS,s(G)

EZS,s
λ{G} =

E[ZS,s1{G(n,d) ∈ En}]
EZS,s

. (7.12)

The Cauchy–Schwarz inequality and (7.12) yield, using (7.2)–(7.3) and the
assumption (7.10),

λ̂S,s(En) 6

(
E[Z2

S,s]P(G(n,d) ∈ En)
)1/2

EZS,s
6 C P(G(n,d) ∈ En)1/2 → 0.

(7.13)

Hence, for every fixed s > 0, (7.11) and (7.13) imply

P
(
Ĝ(n,d) ∈ En and Ss

)
→ 0. (7.14)

We now argue similarly to the final part of the proof of Theorem 2.1. For
every fixed K > 1, using also Lemma 4.1(i), (4.4) and (4.7),

P
(
Ĝ(n,d) ∈ En

)
6 P(Sc) +

∞∑
s=0

P
(
Ĝ(n,d) ∈ En and Ss

)
6 P(Sc) +

K∑
s=0

P
(
Ĝ(n,d) ∈ En and Ss

)
+
∑
s>K

P
(
Ss
)

= o(1) + o(1) + P(S and S > K).

6 o(1) + P(L+M > K) 6 o(1) +
E(L+M)

K

6 o(1) +
C

K
. (7.15)

Consequently, lim supn→∞ P
(
Ĝ(n,d) ∈ En

)
6 C/K, and then letting K →

∞ yields (7.8). �

8. Applications

Let the random variable Dn be the degree of a uniformly random vertex,
and note that (1.2) can be written EDn → µ and ED2

n → µ2. We will in the
applications below use the standard assumption that there exists a random
variable D such that

Dn
d−→ D. (8.1)

We will also sometimes assume that (1.2) is strengthened to

ED2
n → ED2 <∞. (8.2)

Equivalently, assuming (8.1), the sequence D2
n is uniformly integrable, see

[13, Theorem 5.5.9]. Note that this implies that (1.2) holds with µ = ED.
It is also easy to see that (8.1)–(8.2) imply (2.7).

Example 8.1. Assume (8.1)–(8.2) and P(D = 1) > 0. Assume also that
ν − µ = ED(D − 2) > 0; this is the supercritical case where there is w.h.p.
a giant component of order Θ(n) in both G∗(n,d) and G(n,d), see Molloy
and Reed [27, 28] with refinements in, e.g., [22], [8], [24].
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Let |Ck| = |Ck(G)| be the order of the kth largest component in a multi-
graph G. It was proved by Barbour and Röllin [5] (under somewhat stronger
assumptions), with a different proof in [19] (under the conditions here), that
the size |C1| of the giant component is asymptotically normal for G∗(n,d):

|C1(G∗(n,d))| − E |C1(G∗(n,d))|√
n

d−→ N(0, σ2), (8.3)

where the asymptotic variance σ2 was calculated explicitly by Ball and Neal
[3].

It is shown in [19], by a non-trivial extra argument, that (8.3) holds also
for G(n,d). We can now replace that argument, and give a simpler proof of
asymptotic normality for G(n,d).

Consider the components of a multigraph as sets of vertices (ignoring the
edges). A switching will either leave all components unchanged, or it will
merge two components. Hence, a sequence of S switchings will change the
size |C1| of the largest component by at most S|C2|; consequently,∣∣|C1(Ĝ(n,d))| − |C1(G∗(n,d))|

∣∣ 6 S|C2(G∗(n,d))|. (8.4)

Furthermore, under our assumptions, [8, Theorem 2] and [19, Lemma 9.4]
imply |C2(G∗(n,d))| 6 C log n w.h.p., while Theorem 3.2 yields S = Op(1).

Hence, S|C2(G∗(n,d))| = op(n1/2), and (8.4) shows that (2.10) holds for

fn(G) := n−1/2
(
|C1(G)| − E |C1(G∗(n,d))|

)
. Consequently, Corollary 2.3

applies and shows that (8.3) implies

|C1(G(n,d))| − E |C1(G∗(n,d))|√
n

d−→ N(0, σ2), (8.5)

Furthermore, if Xn denotes the left-hand side of (8.3), then also EX2
n → σ2

[5; 19], and thus X2
n are uniformly integrable [13, Theorem 5.5.9]. Hence,

using (1.3), X2
n are uniformly integrable also conditioned on G∗(n,d) being

simple, and thus the mean and variance converge in (8.5) too. In particular,
E |C1(G(n,d))|−E |C1(G∗(n,d))| = o(

√
n), and thus E |C1(G∗(n,d))| can be

replaced by E |C1(G(n,d))| in (8.5).

Remark 8.2. Ball [2] has proved related results on asymptotic normality
for the size of SIR epidemics on G∗(n,d). As a special case, he obtains
asymptotic normality of the size of the giant component for (bond or site)
percolation in G∗(n,d) (in the supercritical case).

It seems possible that at least some of these results too can be extended
to G(n,d) by our Corollary 2.3, but it remains to verify (2.10) for them.

Example 8.3. Let T be a fixed tree, and let nT (G) be the number of com-
ponents isomorphic to T in a (multi)graph G. Assume (8.1)–(8.2). Then,
by Barbour and Röllin [5] (under somewhat stronger assumptions), and [19]
(with a different proof)

nT (G∗(n,d))− EnT (G∗(n,d))√
n

d−→ N(0, σ2T ), (8.6)

for some σ2T > 0 (with σ2T > 0 except in some rather trivial cases). It was
shown in [19] that (8.6) holds also for G(n,d), again with an extra argument;
we can now replace that by a simpler proof.
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A switching can change at most two components, and thus nT is changed
by at most 2; hence, using Theorem 3.2,∣∣nT (Ĝ(n,d))− nT (G∗(n,d))

∣∣ 6 2S = Op(1). (8.7)

Consequently, Corollary 2.3 applies as in Example 8.1, and shows that (8.6)
holds also for G(n,d).

Example 8.4. Assume (8.1), P
(
D /∈ {0, 2} > 0

)
and (1.1). Assume also

εn :=
EDn(Dn − 2)

EDn
= O

(
n−1/3(ED3

n)2/3
)
, (8.8)

which means that we are in the critical window, and that

dmax = o
(
n1/3(ED3

n)1/3
)
, (8.9)

which easily is seen to imply (2.7). Then, Hatami and Molloy [14, Theorem
1.1] (under somewhat stronger conditions) showed that |C1| is of the order

Υn := n2/3(ED3
n)−1/3. Moreover, see Janson, van der Hofstad and Luczak

[20, Theorem 2.12], |C1|/Υn is bounded in probability, but not bounded by
a constant w.h.p.; in other words:

(i) For any δ > 0 there exists K = K(δ) such that

P(|C1| > KΥn) 6 δ. (8.10)

(ii) For any K <∞,

lim inf
n→∞

P(|C1| > KΥn) > 0. (8.11)

Both parts hold for both G∗(n,d) and G(n,d); however, there is a technical
difference in the proofs. Part (i) is proved, by both [14] and [20] (with
different methods) first for G∗(n,d), and the result for G(n,d) then follows
immediately by the standard conditioning argument and (1.3).

Part (ii) is also proved (by [20]) first for G∗(n,d), but here we cannot
use conditioning directly, and a rather long extra argument is given in [20,
Section 6.3]. We can now replace this extra argument by Theorem 2.4.

Note first that, as said in Example 8.1, switchings can only merge compo-
nents, but never break them; hence, switchings can only increase |C1|, and

thus if (8.11) holds for G∗(n,d), then it holds for Ĝ(n,d) too. Suppose that
(8.11) fails for G(n,d). Then there exists a subsequence where the proba-
bility tends to 0, and the contiguity in Theorem 2.4 shows that the same

holds for Ĝ(n,d); a contradiction.
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[30] Jonas Sjöstrand: Making a multigraph simple by a sequence of double
edge swaps. In preparation.

[31] Nicholas C. Wormald: The asymptotic distribution of short cycles in
random regular graphs. J. Combin. Theory Ser. B 31 (1981), no. 2,
168–182. MR 0630980

[32] Nicholas C. Wormald: Generating random regular graphs. J. Algo-
rithms 5 (1984), no. 2, 247–280. MR 0744493

[33] Nicholas C. Wormald: Models of random regular graphs. Surveys in
Combinatorics 1999 (Canterbury), 239–298, London Math. Soc. Lecture
Note Ser., 267, Cambridge Univ. Press, Cambridge, 1999. MR 1725006

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06
Uppsala, Sweden

E-mail address: svante.janson@math.uu.se

URL: http://www.math.uu.se/svante-janson


	1. Introduction
	2. Notation and main results
	2.1. Some notation
	2.2. Main results

	3. The construction of G"0362G(n,d)
	3.1. The configuration model
	3.2. The switched configuration model
	3.3. Examples

	4. The distribution of G"0362G(n,d)
	4.1. More notation
	4.2. Silver and golden
	4.3. The choice of a bad edge
	4.4. The subsubsequence principle
	4.5. Silver constructions
	4.6. Golden constructions

	5. Some subgraph counts in G*(n,d)
	6. Proof of Theorem 2.1
	7. Proof of Theorem 2.4
	8. Applications
	Acknowledgement
	References

