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Abstract. We consider the Random-Cluster model on (Z/nZ)d with parameters p ∈ (0, 1) and
q ≥ 1. This is a generalization of the standard bond percolation (with edges open independently
with probability p) which is biased by a factor q raised to the number of connected components.
We study the well known FK-dynamics on this model where the update at an edge depends on the
global geometry of the system unlike the Glauber Heat-Bath dynamics for spin systems, and prove
that for all small enough p (depending on the dimension) and any q > 1, the FK-dynamics exhibits
the cutoff phenomenon at λ−1

∞ logn with a window size O(log logn), where λ∞ is the large n limit
of the spectral gap of the process. Our proof extends the Information Percolation framework of
Lubetzky and Sly [23] to the Random-Cluster model and also relies on the arguments of Blanca and
Sinclair [5] who proved a sharp O(logn) mixing time bound for the planar version. A key aspect of
our proof is the analysis of the effect of a sequence of dependent (across time) Bernoulli percolations
extracted from the graphfical construction of the dynamics, on how information propagates.
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1. Introduction and main result

The random-cluster (Fortuin-Kasteleyn/FK) model is an extensively studied model in statistical
physics, generalizing electrical networks, percolation, and spin systems like the Ising and Potts
models, under a single framework. In this work, we study the so called heat-bath Glauber dynamics
or FK-dynamics for the model on the d-dimensional torus. The main result of this paper establishes
a sharp convergence to equilibrium for this Markov chain also known as the cutoff phenomenon.

1.1. Random-cluster model (RCM). For d ≥ 2, denote by Λn = Zdn, the d-dimensional discrete
torus and by En = E(Λn), the set of edges in Λn. We will fix the dimension to be d throughout the
entire paper. The random-cluster measure µnp, q on the graph (Λn, En) with parameters p ∈ (0, 1)
and q > 0 is a probability measure on the space of subsets of En defined by

µnp, q(S) =
1

Znp, q
p|S|(1− p)|En\S|qc(S) ; S ⊂ En ,

where Znp, q is the partition function turning µnp, q into a probability measure, and c(S) is the number
of connected components of the graph (Λn, S). Clearly the measure µnp, q can be regarded as a

1

ar
X

iv
:1

81
2.

01
53

8v
2 

 [
m

at
h.

PR
] 

 1
9 

A
ug

 2
02

0



CUTOFF FOR RCM 2

probability measure on Ωn = {0, 1}En , i.e., we will identify X = (X(e))e∈EN
∈ Ωn with a subset A

of En where e ∈ A if and only if X(e) = 1. Hence, by slight abuse of notation, we can always regard
X ∈ Ωn as a subset of En. The random-cluster model was introduced by Fortuin and Kasteleyn (see
[12, 13]) and unifies the study of various objects in statistical mechanics such as random graphs,
spin systems and electrical networks (see [17]). When q = 1, this model corresponds to the standard
bond percolation but when q > 1 (resp., q < 1), the probability measure biases subgraphs with more
(resp., fewer) connected components. For the special case of integer q ≥ 2 the random-cluster model
is a dual to the classical ferromagnetic q-state Potts model, via the so called Edward-Sokal coupling
of the models (see, e.g., [11]). However, note that unlike spin systems, the probability that an edge
e belongs to A does not depend only on the dispositions of its neighboring edges but on the entire
configuration A, since connectivity is a global property (see Figure 1.1 for an illustration).

1.2. FK-dynamics (Glauber/Heat-bath dynamics). The FK-dynamics is a reversible Markov
process Xt = {Xt(e)}e∈En on Ωn, whose invariant measure is given by µnp, q. Informally, at rate one,
the state of every edge X(e) is resampled conditionally on the state of the remaining edges i.e.,

X(e) =


1 w.p. p if e is not a cut-edge,
1 w.p. p

p+(1−p)q if e is a cut-edge,
0 otherwise,

where we use the standard terminology cut-edge to denote an edge whose removal increases the
number of connected components by one. A more formal treatment appears in Definition 2.1.

Note that unlike Glauber dynamics on spin systems like Ising or Potts models, the FK-dynamics
has long range dependencies (see Figure 1.1). The FK-dynamics has been an object of significant
interest and has played a key role in several recent works. A by no means complete, but nonetheless
representative list includes [].

The key statistic we will consider is the time taken by the above dynamics to converge to equi-
librium.

Figure 1.1. Illustrating long range dependencies in FK-dynamics. Consider a con-
figuration where the red edges are open while everything else is closed. The proba-
bility of the edge AB to be open then depends on whether the edge CD is open or
not.
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1.3. Mixing of Markov chains and cutoff phenomenon. We review in brief the set up of
interest for us from the theory of reversible Markov chains with finite state spaces. For an extensive
account of all the details and recent progress in various directions see [19]. For two probability
measures µ1 and µ2 on S we will be interested in the L1-distance or the so-called total variation
distance between them denoted by ‖µ1 − µ2‖TV

1:

sup
A⊂S

(µ1(A)− µ2(A)) =
1

2

∑
x∈S
|µ1(x)− µ2(x)| = 1

2

∑
x∈S

∣∣∣∣µ1(x)

µ2(x)
− 1

∣∣∣∣µ2(x) . (1.1)

For concreteness consider a continuous time reversible Markov chain Yt with a finite state space S
and equilibrium measure π.

Denote by Px, x ∈ S, the law of Markov chain starting from x.
We will be primarily interested in the total variation mixing time defined by

tmix(ε) = inf
{
t : sup

y∈S
‖Py[Yt ∈ ·]− π‖TV ≤ ε

}
; ε ∈ (0, 1) .

For notational brevity, we will denote by d(t), the worst case total variation distance to stationarity
for the FK-dynamics, i.e.,

d(t) = dn(t) := sup
x∈Ωn

‖Px[Xt ∈ · ]− µnp, q‖TV (1.2)

from now on. Many naturally occurring Markov chains are expected to exhibit a sharp transition
in convergence, in the sense that the total variation distance to equilibrium drops from one to zero
in a rather short time window. This is formalized by the notion of cutoff formulated by Aldous and
Diaconis [1] (see also [6]). Formally a sequence of Markov chain Y

(1)
t , Y

(2)
t , . . . with mixing times

given by t(1)
mix(ε), t

(2)
mix(ε), . . . is said to exhibit the Cutoff Phenomenon if for any ε ≤ 1/2,

lim
i→∞

t
(i)
mix(ε)

t
(i)
mix(1− ε)

= 1 .

Moreover cutoff is said to occur with window size wi if for any ε ≤ 1/2 one has

t
(i)
mix(ε)− t(i)mix(1− ε) = Oε(wi) ,

where wi = o(t
(i)
mix(1

4)).

1.4. Main result. Given the above definitions, our main result establishes cutoff for the FK-
dynamics for a range of sub-critical values of the parameters p, q.

Theorem 1.1. For any d ≥ 2, there exists p0 = p0(d) > 0 such that, for all p ∈ (0, p0) and q > 1,
there exists a constant λ∞ = λ∞(p, q) such that the FK-dynamics on Ωn exhibits cutoff at d

2λ∞
log n

with order O(log log n) window size.

Some remarks are in order. Note that the case q = 1 is the well known example of random walk
on a hypercube where cutoff occurs for all values of p see [19, Theorem 18.3]. Similarly in the case
d = 1, one notices that each edge is a cut edge unless the configuration is completely full. Thus the
process in this case can also be coupled with a random walk on a hypercube, implying cutoff for all
values of p and q.

The value of the threshold p0 in the statement above, only depends on the dimension through
the value of the critical bond percolation probability and does not depend on q. We shall assume

1‖µ1 − µ2‖2 will be used to denote the L2-distance where the 1-norm in (1.1) is replaced by the 2-norm, i.e.,

‖µ1 − µ2‖2 =
∑
x∈S

∣∣∣∣µ1(x)

µ2(x)
− 1

∣∣∣∣2 µ2(x) .
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that q > 1 is fixed from now on. Notice that by a duality argument as in [5, Section 7], in the
planar case (i.e., d = 2) it follows that Theorem 1.1 holds also when p is close enough to 1. We will
also elaborate on a description of λ∞ in terms of the spectral gap of the Glauber dynamics for the
infinite volume RCM in Section 7.2.

1.5. Background and related work. There has been much activity over the past two decades
in analyzing Glauber dynamics for spin systems in both statistical physics and computer science
leading to deep connections between the mixing time and the phase structure of the physical model.
In contrast, the Glauber dynamics for the RCM remains less understood. The main reason for
this is that connectivity is a global property. Ullrich in a series of important papers [32, 31, 33]
established comparison estimates between the FK-dynamics and the well known non-local Swendsen-
Wang (SW) dynamics ([30]) using functional analytic arguments. Although initially the arguments
appeared only for integer values of q exploring connections with the Ising/Potts models, the analysis
extends to all q > 1, which appeared in [4]. Until recently, all existing bounds on the FK-dynamics
were via transferring results for the SW or related dynamics [30] using comparison estimates as
above. However these methods typically yield highly sub-optimal bounds and does not provide any
insight into the behavior of RCM. Recently the authors of [5] established a fast mixing time of order
O(n2 log n) bound for the discrete time FK-dynamics on RCM in a box of size n in Z2 with a special
class of boundary conditions. The proof works for all q ≥ 1 and p 6= pc(q). Furthermore, although
not explicitly mentioned, the arguments extend to periodic boundary conditions as well. The key
ingredients used were planar duality, tools developed for mixing of spin systems in [26] and most
importantly the exponential decay of connectivity below pc(q) established in the breakthrough work
[2]. More recently [3] extends the results to a more general class of boundary conditions with weaker
bounds. Among various things, the latter work in particular also shows that boundary conditions
can have a drastic effect on the mixing time.

A general conjecture of Peres [28] indicates that one should expect cutoff to occur in the regime
of fast mixing for many natural chains as above. In the breakthrough papers, [20, 21], Lubetzky
and Sly verified the above conjecture for Glauber dynamics for Ising and Potts models, putting
forward a host of new methods using ideas similar to the Propp-Wilson coupling from the past [29]
as well as relating L1-mixing to L2-mixing using powerful log-Sobolev inequalities [7]. Subsequently
in [23, 24], the results of the above papers were refined by inventing the general Information
percolation machinery. Furthermore in very recent work, [27] extended the above framework to
prove cutoff results for the non-local SW dynamics for Potts models on the torus in any dimension
for suitably high temperatures.

However as indicated above, the FK-dynamics has significant differences with the above described
spin models and whether cutoff occurs in the fast mixing regime in this case was left open. The main
theorem of this paper answers this question in the affirmative as long as p is small enough and q > 1.
In the process, we extend the Information Percolation framework to the RCM setting as well. An
elaborate description of the various geometric difficulties and how to encounter them is presented
in the next section. We end this section by also mentioning the recent work of Lubetzky and
Gheissari on proving quasi-polynomial bounds for the mixing time at criticality for FK-dynamics
in two dimensions and related bounds for critical spin systems in [14, 15, 16] based on recent
breakthroughs in [9, 10] .

2. Idea of the proof and organization of the article

We first develop a graphical construction (grand coupling of FK-dynamics) which will be quite
useful in constructing coupling arguments. We then discuss the key issues that one faces towards
proving the main result and what new ideas one needs beyond the existing literature to address
them.
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2.1. Graphical construction/Monotone coupling. We will define the FK-dynamics formally
through the following graphical construction by creating what is now popularly called in the liter-
ature as the Update sequence (see [20, 27]). For e ∈ En, define the sequence of updates as

Upd(e) = {(t1, U1), (t2, U2), · · · } , (2.1)

where t1 < t2 < · · · is a sequence of update times obtained from an independent Poisson process
with rate 1 attached at e, and for each i, Ui is a uniform random variable in [0, 1] independent of
all other randomness. The sequence Upd(e) is the update sequence corresponding to e. Then, we
define the full update sequence as

Upd =
⋃
e∈En

Upd(e) . (2.2)

Note that ti(e) 6= tj(e
′) for all i, j ∈ N and e, e′ ∈ En almost surely. It would also be useful to

define for 0 < t1 < t2, the update sequence of e in the time interval (t1, t2] as

Upd[t1, t2](e) = {(s, U) : (s, U) ∈ Upd(e), s ∈ (t1, t2]} , (2.3)

and
Upd[t1, t2] =

⋃
e∈En

Upd[t1, t2](e) .

For X ∈ Ωn, we say that e ∈ En is a cut-edge if c(X \ {e}) 6= c(X ∪ {e}), (recall that c(·) denotes
the number of connected components). Furthermore, from now on, we shall assume q > 1 and write

p∗ =
p

q(1− p) + p
< p

for convenience.
We now introduce a construction of the FK-dynamics suitable for our purposes. This is the

standard grand coupling for the FK-dynamics (see [18])

Definition 2.1 (FK-dynamics/Monotone Coupling). For each (t, U) ∈ Upd(e) for some e ∈ En,
(1) (a) If U < 1− p+ p∗, we let

Xt(e) =

{
0 if U ∈ [0, 1− p),
1 if U ∈ [1− p, 1− p+ p∗).

(b) If U ≥ 1− p + p∗, we let Xt(e) = 0 if e is a cut-edge in (Λn, Xt−), and Xt(e) = 1 if e
is not a cut-edge in (Λn, Xt−).

(2) We set Xt(e
′) = Xt−(e′) for all e′ 6= e.

We will denote by Px0 = Pp, q, nx0 the law of the FK-dynamics starting from x0 ∈ Ωn. Similarly,
for a probability measure ν on Ωn, denote by Pν the law of FK-dynamics starting from the initial
distribution ν. Note that the FK-dynamics is reversible with respect to its invariant measure
µnp, q. Naturally the update sequence allows a grand coupling of (Xt) started from all possible
configurations x0. A well known fact is the monotonicity of FK-dynamics i.e., if (Xt) and (Yt) are
two copies of the Markov chain started from x0 and y0 with x0 ≤ y0 in the usual partial order on
Ωn, then under the grand coupling for all later times t one has Xt ≤ Yt. Thus often this coupling
is called the monotone coupling and the corresponding law is denoted by Px0, y0 . Note that another
perhaps more canonical way to define the dynamics would be to first check if e is a cut-edge (resp.
not) and then accordingly set it to 0 or 1 depending on whether U < 1− p∗ or not (resp. U < 1− p
or not). However the above alternative formulation has the nice property that if U < 1 − p + p∗,
we do not need to check whether e is a cut-edge or not, and the randomness at e only depends on
U , not the entire configuration of Xt. This will be used throughout the paper in various coupling
arguments.
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2.2. The key ideas of the proof. In the work of Lubetzky and Sly [20] on the Ising model, the
key idea was to break the dependencies in the Markov chain to reduce the analysis to the study of
a product chain of Glauber dynamics on small boxes. The proof then relied on the relation between
the L1-mixing time of the product chain to L2-mixing time of the individual coordinates and sharp
estimates on the latter obtained via Log-Sobolev inequalities (LSI). Unfortunately such functional
analytic tools are not available for the RCM. Although it is perhaps natural to predict that such
estimates hold at least in some part of the parameter space, it is important to point out that the
standard arguments which work for nearest neighbor spin systems fail owing to long range effects.
Whether the LSI indeed holds for the RCM thus remains an important open problem.

Furthermore, to improve the size of the cutoff window to O(1), in [23, 24], the powerful machinery
of information percolation was invented to bypass the use of log-Sobolev inequalities to estimate
the L2-mixing time. The proof however still relied heavily on the local nature of Glauber dynamics
for spin systems. On the other hand a non-local Markov chain admitting global changes is the well
known Swendsen-Wang (SW) dynamics for Potts model. In SW dynamics for the Potts model, one
proceeds by sampling an independent bond percolation on each of the mono-chromatic components
(connected component of vertices with the same spins) and then for each connected component
of the percolation sampled, a uniformly random spin is assigned. This is done at every time step
independently of the past and hence the interaction of the spin at every vertex at every time step
in only limited to spins within its percolation cluster.

Very recently in [27] the strategy was extended to SW dynamics. The latter work is based
on the observation made above that while in Glauber dynamics, in one step the spin at a vertex
can only depend on its immediate neighbors, the state of a vertex in SW by definition depends
on all the vertices inside an independent percolation cluster sampled at each time step. Thus in
the subcritical regime, since the cluster diameters have exponential tails, one can expect the same
approach to go through and indeed this is what is made rigorous in [27]. The arguments in this
article draw inspiration mostly from this last article.

As indicated before, at a very high level, one of the main contributions of our approach is extending
the Information Percolation framework to the setting of FK-dynamics. However in RCM, in one
step the update of an edge can depend on the status of an arbitrarily far located edge (see Figure
1.1). To bypass this, we first run the process for an O(1) burn-in time which allows the process to
be dominated by a subcritical Bernoulli percolation.

At this point we try to analyze the information percolation clusters. Very informally (see Section
5 for precise definitions) this approach involves keeping track of the interactions between various
edges as they are updated, backwards in time. For e.g.,: if an edge e is updated using an element
(t, U) ∈ Upd(e) one of two things could happen (recall Definition 2.1):

• U < 1−p+p∗, in which case the updated value of the edge is a Bernoulli variable independent
of the state of the system. In this case we call the edge to become Oblivious.
• However if U > 1 − p + p∗ one needs to check whether e is a cut-edge or not and in the
process interacts (shares information) with several edges.

Formally one considers a space-time slab (see Figure 5.1) and evolves backward in time by branch-
ing out to all possible edges an update shares information with, or gets killed in case of an oblivious
update. The key usefulness of this approach as exploited in [20, 21, 23, 24, 27] is that if the back-
ward branching process (called the History diagram) is subcritical then, the process will be killed
before reaching the initial configuration in this backward evolution causing the final configuration to
be independent of the initial one implying coupling of all starting states under the grand coupling.
However this is an overkill since for cutoff to occur one can tolerate some mild dependence on the
initial condition as long as that is hidden inside the natural fluctuation of the system.

To bound the growth rate of the history diagram we first discretize time with interval length
∆ = 1√

p (as the reader will notice, this choice of ∆ is not special and a host of other choices will
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work too) and consider the interval [τi, τi+1] where τi = i∆ and define the history diagram only at
times τi. We first extract several auxiliary percolation models based on the update sequence (see
Table 1), and one of which denoted by Ξi(·) captures the following: For every i, Ξi(e) is 1 iff e
has not been updated in the interval [τi, τi+1] or e is open at least once in [τi, τi+1] for the Glauber
dynamics for the standard Bernoulli percolation with parameter p, (random walk on the hypercube)
using the same update sequence and starting from the empty configuration. Now given the history
diagram up to time τi+1 for any edge we first check if it has been updated or not in an interval
[τi, τi+1] (recall the history diagram flows backwards). If not, the edge continues to be a part of the
history diagram, if it is updated using an oblivious update it gets killed, otherwise we bound the
spreading of information by the connected component of e in the percolation Ξi ∪ Ξi−1.

Note that to ensure that the state of the edge e throughout the interval [τi, τi+1] does not depend
on any edge not included in the history diagram we need the boundary of the latter to be closed
throughout the entire interval i.e., we must consider its connected component ‘forward in time’
which a priori depends on the entire time interval [0, τi]. However this is the point at which we
use the smallness of p crucially, which creates an environment which is subcritical and hence the
connected component can be bounded by the connected component of Ξi ∪Ξi−1, i.e., instead of the
entire interval [0, τi+1] we can get by, just using the information on [τi−1, τi+1].

Given the above, the situation is similar to the definition of the SW dynamics considered in [27],
except that the percolation sampled at every discrete time step is now 1-dependent across time.
This creates the need for a refined and delicate analysis of the information percolation clusters to
yield L2-mixing bounds. This is stated as Theorem 5.1 and Proposition 5.2. The proof of the
latter is the core of this work. The above approach adopted in the paper of extracting dependent
percolation models that can be analyzed could be of independent interest and useful in other general
contexts in bounding how passage of information occurs in such dynamical settings.

Assuming these results, the arguments used to show cutoff are quite similar to the ones already
appearing in [27] based on the methods in [20]. An additional ingredient needed to prove Theorem
5.1 from Proposition 5.2 is that the spectral gap of the FK-dynamics is positive uniformly in the
system size. In SW the lower bound on the spectral gap follows by path coupling by establishing
a one step contraction which unfortunately is absent in our setting; instead we rely on the a priori
mixing time bounds obtained in [5]. c.

Finally, we mention that for the Ising model, [23] exploited monotonicity of the system, to prove
an O(1) bound on the cutoff window without resorting to the methods of [20]. Such sharp bounds
are missing in [27] which deals with the general Potts model. However the RCM is monotone and
whether this can be used to prove a similar improvement of Theorem 1.1 is not pursued in this paper
and is left for further research. Furthermore, another possible direction to investigate is the effect
of boundary conditions. While the current paper only deals with periodic boundary conditions, for
local dynamics on Ising and Potts models [21] proved sharp mixing time results for general boundary
conditions. Recall that typically in addressing such questions, there are two goals. One is to control
the cutoff window size and the other is to pin down the location. Under certain special cases, in
[21], the location of mixing was related to infinite volume objects. Moreover, to bound the window
size, [21] relied on certain worst case Log-Sobolev constants. Since these are not available in our
setting and boundary conditions can lead to delicate global dependencies, the current arguments in
the paper do not directly go through. Nonetheless, this is an important project to be taken up in
the future.

2.3. Organization of the article. We prove and collect results about a priori bounds on the
mixing time and the spectral gap in Section 3 to be used throughout the rest of the article. As men-
tioned above, we need to define several auxiliary percolation models based on the update sequence.
This is done in Section 4. Section 5 is the core of this work and the main contribution in
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this paper which bounds the L2-mixing time by defining suitable information percola-
tion clusters. This section is rather long and has several new constructions and delicate geometric
arguments. However assuming the main result of this section, the proof of Theorem 1.1 is quite
similar to the arguments appearing in [20, 23, 27]. The reader not familiar with the latter papers can
choose to first assume the results of Section 5 to see how they are used in the subsequent sections
to then come back to the proofs of Section 5.

The proof of the main result Theorem 1.1 spans Section 6 where certain modifications of argu-
ments of [20] and Section 7 where the final proof appears. The outstanding proofs of some of the
stated claims are collected in the Appendix (Section 8).

Acknowledgements. The authors thank Antonio Blanca, Fabio Martinelli and Alistair Sinclair for
several useful discussions. They also thank the anonymous referees for the various useful comments
and suggestions that helped improve the paper. IS was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1C1B6006896 and
No. 2017R1A5A1015626) and Research Resettlement Fund for the new faculty of Seoul National
University.

3. A priori bounds on mixing time and spectral gap

We start by recalling the following standard result.

Proposition 3.1. [19, Theorems 12.3 and 12.4] Let (Zt) be a discrete time ergodic reversible Markov
chain on a finite state space S with the equilibrium measure π, let Qz be the law of Markov chain
(Zt) starting from z ∈ S, and let γ be the spectral gap of the Markov chain (Zt). Then,

(1− γ)t ≤ 2 sup
z∈S
‖Qz(Zt ∈ ·)− π‖TV ≤

1

πmin
(1− γ)t ,

where πmin = minx∈S π(x).

In [5], a discrete version of FK-dynamics is considered where at every discrete time step, an
uniformly chosen edge is updated. Denote by (X̂k)k≥0 the discrete FK-dynamics in Ωn, and by
P̂x0, y0 , the law of the monotone coupling (Definition 2.1) of two copies of discrete FK-dynamics X̂k

and Ŷk starting from two initial conditions x0, y0 ∈ Ωn respectively. Moreover, let λ̂(n) = λ̂(n, p, q)

denote the spectral gap of the above process. Furthermore let t̂mix = t̂mix(1/4) and d̂(t) be the
mixing time and the worst-case distance to stationarity respectively in the sense of (1.2) for the
discrete time dynamics. Then, the following sharp mixing time results were either obtained or are
consequences of the results in [5]. In the latter, only the two dimensional case was treated but
one can easily verify that the arguments extend to general dimensions under exponential decay of
connectivity. We provide brief sketches of the proofs of these results with pinpoint references to the
relevant literature for the remaining details.

Theorem 3.2. For any dimension d, there exists p0 = p0(d) such that for all q ≥ 1 and p < p0,
there exists C = C(p) > 0 and λ = λ(p) > 0 such that:

(1) For all x0, y0 ∈ Ωn, k ≤ o(n1/(d+2)) and e ∈ En, it holds that

P̂x0, y0

[
X̂knd(e) 6= Ŷknd(e)

]
≤ e−Ck .

(2) The mixing time t̂mix of discrete process X̂k is Θ(nd log n).
(3) For all n ∈ N, λ̂(n) ≥ λn−d.

Remark 3.3. Indeed, one can take p0 to be the critical Bernoulli bond percolation probability on
Zd. For d = 2, thanks to the complete knowledge about exponential decay of connectivity up to the
critical point established in [2], the results of Theorem 3.2 were shown to hold for all subcritical p,
for each q ≥ 1 in [5].
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Proof. (1) and (2) appear as [5, Display (13)], and [5, Theorem 6.1] respectively. Note that (1)
proves the upper bound in (2) by taking k = C log n. The proof of the lower bound of mixing time
appears in [5, Theorem 6.1]. Although (3) does not quite appear in [5] it is a consequence of (1). To
see this, we will use the well known lower bound of total variation distance in terms of spectral gap
recalled in Proposition 3.1. Namely, using the above and union bounding over all elements in En,
we get that d̂(knd), the worst-case total variation distance at time knd is e−Ω(k)+d logn, and hence

(1− λ̂)kn
d ≤ e−Ω(k)+d logn

for all k ≤ o(n1/(d+2)). Now taking logs we get −kndλ̂ ≤ −Ω(k) + d log n, and therefore for some
C > 0,

1

nd

(
C − log n

k

)
≤ λ̂ .

Thus by choosing a large enough k = o(n1/(d+2)) the result follows. �

However for our purposes, we will need a translation of the result for the continuous time setting.
Denote by λ(n) = λ(n, p, q), the spectral gap of the continuous time FK-dynamics defined in
Definition 2.1.

Corollary 3.4. For any dimension d, there exists p0 = p0(d) such that for all q ≥ 1 and p < p0,
there exists C = C(p) > 0 and λ = λ(p) > 0 such that:

(1) For all x0, y0 ∈ Ωn and k ≤ o(n1/(d+2)), it holds that,

Px0, y0 [Xt(e) 6= Yt(e)] ≤ e−Ct .

(2) The FK-dynamics in Λ has mixing time of order Ω(log n).
(3) For all n ∈ N, it holds that λ(n) ≥ λ.

Proof. All these results are immediate from Theorem 3.2 since the continuous dynamics is nd times
faster than the discrete counterpart. In particular, to show part (3), see [19, Lemmas 20.5 and
20.11]. �

4. Auxiliary percolation models, and disagreement propagation bounds

Given the randomness defined by the update sequence in (2.1), we will need to define several
auxiliary percolation models extracted from the graphical construction, which though simple will
be useful in various comparison arguments appearing throughout the paper. We will also state
useful bounds on the speed of propagation of disagreements. We start with the percolation models.
Before providing precise definitions, for the reader’s benefit we give short descriptions off what
each of these models capture. Furthermore, for ease of reference throughout the article, all the
definitions are collected in Table 1 at the end of this section and the reader can choose to skip the
precise definitions at first read referring to the table whenever needed.

(1) Standard Percolation dynamics (q = 1)/Random walk on the hypercube, i.e., edges are ran-
domly refreshed at rate one with a Bernoulli(p) variable independently. This will dominate
the FK-dynamics in the regime of our interest.

(2) Enlarged percolation: An edge is said to be open if it was open at least once in the Standard
Percolation dynamics in a given (to be specified) time interval.

(3) Update/Non-update percolation: An edge is open if it has not been updated at least once
in a given interval of time.
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4.1. Standard percolation dynamics (SPD). It will be useful to discretize time as we will see
in later applications. Throughout the article we will fix ∆ := ∆(p) = p−1/2, to be the basic unit of
discretization and let τi := i∆. (The choice of ∆ is not special as long as it satisfies the properties
discussed in this section.) Also let Z+ be the set of non-negative integers.

Definition 4.1 (SPD associated to the update sequence Upd). For each i ∈ Z+, we construct a
SPD (F i

t )t≥τi in Ωn as follows:
(1) F i

τi = En.
(2) For each t > τi and e ∈ En,

(a) If Upd[τi, t](e) = ∅, we let F i
t (e) = F i

τi(e)(= 1).
(b) Otherwise, let (t∗, U∗) be the last update in Upd[τi, t](e).

(i) We let F i
t (e) = 1 if U∗ > 1− p,

(ii) else let F i
t (e) = 0 if U∗ ≤ 1− p.

We define the dynamics (E i
t )t≥τi in an identical manner by replacing step (1) with E i

τi = ∅. In other
words, (F i

t ) and (E i
t ) are the Glauber dynamics of the percolation measure with open probability

p on Ωn starting at t = τi from the full and empty configurations, respectively.

Since (F i
t ) and (E i

t ), for i ∈ Z+, and the FK-dynamics (Xt), share the same update sequence, we
can couple all of them in the time window [τi, ∞) in a natural manner calling this as the canonical
coupling. We record some simple but useful lemmas below.

Lemma 4.2. Under the canonical coupling, for all i ∈ Z+, it holds that

Xt ≤ F i
t for all t ≥ τi .

Proof. Denote by X full
t the FK-dynamics on Ωn with X0 = En, the full configuration. Via the

monotone coupling, we have Xt ≤ X full
t for all t ≥ 0. Now the inclusion X full

t ≤ F 0
t for all

t ≥ 0 comes directly from the definitions of FK-dynamics and percolation dynamics. Since we have
F 0
t ≤ F i

t for all t ≥ τi for all i ∈ Z+ under the canonical coupling, we are done. �

For s ∈ [0, 1], denote by Percn(s) the standard bond percolation on En where an edge e is open
with probability s. Denote by � the usual stochastic domination.

Lemma 4.3. For all i ∈ Z+ and t ≥ 0, the law of F i
t+τi is given by Percn(e−t + p[1 − e−t]).

Therefore, for all x0 ∈ Ωn, it holds that

Px0 [Xt ∈ · ] � Percn(e−t + p[1− e−t]) .

Proof. By definition, F i
t+τi(e) = 1 if Upd[τi, τi + t](e) = ∅. Otherwise, i.e., if Upd[τi, τi + t](e) 6= ∅,

F i
t+τi(e) =

{
1 with probability p,
0 with probability 1− p

since the status of F i
t+τi(e) depends only on the last update for this edge before t+ τi. Since

P[Upd[τi, τi + t](e) = ∅] = e−t ,

it follows that
P[F i

t+τi(e) = 1] = e−t + p[1− e−t] .
The proof of the first assertion is completed since the status of edges are independent under SPD.
The second assertion follows from Lemma 4.2 and choosing i = 0. �

As indicated in Section 2, we will allow ourselves an O(1) burn-in time which will be enough by the
above domination results for the configuration to look like a sample of a subcritical percolation. This
then creates a situation where no connected component is large and hence the interactions between
various edges are still rather local. To make this formal, denote by pperc(d) ∈ (0, 1) the critical
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probability of the edge percolation in Zd. From now on we will assume that p ∈ (0, pperc(d))
and further arguments would put additional smallness conditions on p. Define

pinit = pinit(p) :=
1

2
(p+ pperc(d)) ∈ (p, pperc(d)) ,

and let tinit = tinit(p) be the solution of the following equation:

p(1− e−tinit) + e−tinit = pinit . (4.1)

As the next lemma will show, we can restrict our initial conditions to the class of measures ν
satisfying ν � Percn(pinit). More precisely, define

d̂(t) = sup
ν:ν�Percn(pinit)

∥∥Pν [Xt ∈ · ]− µnp, q
∥∥

TV ,

and
t̂mix(ε) = inf

{
t : d̂(t) < ε

}
.

Then, we obtain the following comparison result between tmix(ε) and t̂mix(ε).

Lemma 4.4. For all p < pperc(d) and t > tinit, we have

sup
x0∈Ωn

∥∥Px0 [Xt ∈ · ]− µnp, q
∥∥
TV ≤ sup

ν:ν�Percn(pinit)

∥∥Pν [Xt−tinit ∈ · ]− µnp, q
∥∥
TV . (4.2)

Therefore, we have
t̂mix(ε) ≤ tmix(ε) ≤ t̂mix(ε) + tinit . (4.3)

Proof. By Lemma 4.3 and definition of tinit and pinit, we have that the distribution of Xtinit given
any initial configuration is stochastically bounded by Percn(pinit). Hence, the first assertion of
proposition follows. The inequalities in (4.3) follow since d̂(t) ≤ d(t) ≤ d̂(t− tinit) by (4.2). �

Thus we will take tinit to be our burn-in time.

4.2. Enlarged and non-update percolations. In this section we define the second and the third
models indicated at the beginning of the section.

Definition 4.5. We define two sequences of random configurations (F i)i∈N and (E i)i∈N in Ωn

based on the definitions (F i
t )i∈N and (E i

t )i∈N as follows:

(1) For i ∈ N, define F i ∈ Ωn as

F i(e) = 1 iff F i−1
t (e) = 1 for some t ∈ [τi, τi+1] .

Note that here we consider F i−1
t instead of F i

t since otherwise F i(e) would be determinis-
tically 1.

(2) For i ∈ Z+, define E i ∈ Ωn as

E i(e) = 1 iff E i
t (e) = 1 for some t ∈ [τi, τi+1] .

The following result is a static version of Lemma 4.2.

Lemma 4.6. Under the canonical coupling, for all i ∈ N, we have

Xt ≤ F i for all t ∈ [τi, τi+1] .

Proof. Since Xt ≤ F i−1
t for all t ∈ [τi, τi+1] by Lemma 4.2, the proof is immediate from the

definition of F i. �
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Now we investigate the distributions of E i and F i. To this end we introduce the non-update
percolation Ni ∈ Ωn, for i ∈ Z+, as the following:

Ni(e) =

{
1 if Upd[τi, τi+1](e) = ∅ ,
0 if Upd[τi, τi+1](e) 6= ∅ .

(4.4)

In order words, Ni(e) = 0 if and only if there is an update (t1, U1) ∈ Upd(e) such that t1 ∈ (τi, τi+1].
Given the above definitions, we have the following comparison results.

Lemma 4.7. The following holds:
(1) For all i ∈ Z+, we have E i � Percn(p1/2).
(2) For all i ∈ Z+, we have Ni � Percn(p1/2).
(3) For all i ∈ N, we have F i � Percn(3p1/2).

Proof. We start by observing that E i(e) = 1 if and only if

{U > 1− p for some (t, U) ∈ Upd[τi, τi+1](e)} . (4.5)

To compute the probability of the latter notice that given the event |Upd[τi, τi+1](e)| = k, the event
(4.5) happens with probability 1− (1−p)k. Hence, the probability of the event (4.5) can be written
as

∞∑
k=0

e−∆ ∆k

k!
(1− (1− p)k) = 1− e−p∆ ≤ p∆ = p1/2 .

This finishes the proof of (1). Part (2) can be readily obtained from the observation that

Ni ∼ Percn(e−∆) � Percn(p1/2) .

For part (3), we claim that
F i ≤ Ni−1 ∪ E i−1 ∪ E i . (4.6)

This claim along with parts (1) and (2) will finish the proof. To prove the claim, first suppose
that F i(e) = 1 and Ni−1(e) = 0. Then, Upd[τi−1, τi](e) 6= ∅ and hence we can take the last
update (t1, U1) in Upd[τi−1, τi](e). Since F i(e) = 1, at least one update (t, U) in {(t1, U1)} ∪
Upd[τi, τi+1](e) satisfies U > 1 − p. It implies either E i−1(e) = 1 or E i(e) = 1. This finishes the
proof. �

We end this section with a final definition. For i ∈ Z+, let

Ξi := E i ∪Ni ∈ Ωn . (4.7)

We record a key fact in the next lemma. In short the lemma says that the FK-dynamics across time
can be dominated by a sequence of Bernoulli percolations which are one dependent across time.
This will be crucially used in the analysis of how information spreads in the FK-dynamics.

Proposition 4.8. The following hold:
(1) For all i ∈ Z+, the distribution of Ξi is stochastically dominated by Percn(2p1/2).
(2) For all i ∈ N, under the canonical coupling, we have that

Xt ≤ Ξi−1 ∪ Ξi for all t ∈ [τi, τi+1] .

Proof. The proof of part (1) is immediate from (1) and (2) of Lemma 4.7, while the proof of part
(2) is an immediate consequence of Lemma 4.6 and (4.6). �

For purpose of easy reference throughout the article we record all the percolation models defined
so far in Table 1.
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Percolation Description Defined in

E i
t Percolation on [τi,∞), starting at τi from empty Def. 4.1

F i
t Percolation on [τi,∞), starting at τi from full Def. 4.1

E i Open some time in [τi, τi+1] starting with empty at τi Def. 4.5

F i Open some time in [τi, τi+1] starting with full at τi−1 Def. 4.5

Ni Non-update in [τi, τi+1] implies open (4.4)

Ξi E i ∪Ni (4.7)

Table 1. Different kinds of percolation.

4.3. Decay of connectivity. We now record some useful exponential decay of connectivity results
for a non-equilibrium RCM. It is well-known that for a sub-critical bond percolation or RCM, one
observes an exponential decay of connectivity, i.e., the probability that two sites u and v belong to
the same cluster decays exponentially in the graph distance d(u, v), (cf. [2, Theorem 2]). We would
need a dynamical version for our purposes and start with some definitions. Note that F i had so
far been defined for i ≥ 1 only. We now define F 0 as

F 0 = X0 ∪ E 0 .

Then, by definition

Xt ≤ F 0 for all t ∈ [0, τ1] . (4.8)

Proposition 4.9. For all small enough p, there exists γ = γ(p) > 0 such that,

sup
ν:ν�Percn(pinit)

Pν
[
u

F i←→ v

]
≤ e−γd(u, v)

for all i ∈ Z+, n ∈ N, and u, v ∈ Λn.

Proof. By Lemma 4.7, the distribution of F i is dominated by Percn(3p1/2) for i ≥ 1. For i = 0, we
notice from the definition of F 0 that the distribution of the latter is dominated by Percn(pinit+p

1/2).
In conclusion, for all small enough p, the distribution of F i, i ≥ 0, is dominated by Percn(s)

for some s < pperc(d) and hence we are done by decay of connectivity for subcritical percolation [8,
Theorem 3.7]. �

From now on, all the statements are asymptotic in n, so that they hold only when n is large
enough. In addition, we write C or c for positive constants whose different occurrences might
denote different values. We shall not repeat stating these explicitly.

The next result follows from similar arguments as in the proof of the previous proposition.

Lemma 4.10. Suppose that two disjoint subsets A and B of En satisfy d(A, B) ≥ c log2 n for
some c > 0. Denote by µ+

Bc the random-cluster measure on Bc = En \ B under the full boundary
condition on B. Denote by X ∈ {0, 1}Bc a random-cluster configuration sampled according to µ+

Bc ,
and denote by Conn(B;X) the set of edges in Bc connected to an edge of B via an open path in X.
Then, for all small enough p, we have

µ+
Bc [Conn(B;X) ∩A = ∅] ≥ 1− 1

n2d
.
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Proof. One can readily observe that the decay of connectivity established in the previous result
holds for any connected domain with any boundary condition. Hence, we get

µ+
Bc [Conn(B;X) ∩A 6= ∅] ≤ µ+

Bc

[
u

X←→ v for some u, v ∈ Bc such that d(u, v) ≥ c log2 n
]

≤ e−c log2 n

(
nd

2

)
<

1

n2d
,

where the second inequality follows by the union bound. �

The final result of this section records a statement about how fast disagreement percolates in
FK-dynamics.

4.4. Estimates on the propagation of disagreements. We fix a subset A ⊂ En this section.
Define an enlargement A+ of A as

A+ = {e ∈ En : d(e, A) ≤ log4 n} . (4.9)

The main objective in this section is to show that, under monotone coupling, FK-dynamics started
from two configurations that agree on A+ and are reasonably sparse, continue to agree on A for all
t ∈ [0, tmax] where

tmax = log2 n . (4.10)

Consider two censored dynamics (Z+
t ) (resp. (Z−t )) as FK-dynamics on {0, 1}A+ conditioned on

full (resp. empty) configuration on En \ A+. Let PercA
+

n (pinit) denote the percolation measure on
A+ with open probability pinit.

Lemma 4.11. Consider two copies of FK-dynamics (Z+
t ) and (Z−t ) on {0, 1}A+ coupled via the

monotone coupling. Suppose that the law of the initial condition Z−0 follows a law ν on {0, 1}A+

satisfying ν � PercA
+

n (pinit), and suppose further that Z+
0 = Z−0 . Then, for all sufficiently small p,

we have that

P
[
Z+
t (A) = Z−t (A) for all t ∈ [0, tmax]

]
≥ 1− 1

n3d
. (4.11)

Remark 4.12. Note that the probability in (4.11) is with respect to both the FK-dynamics and also
the initial measure ν. In other words, this is an annealed probability.

Remark 4.13. Even though we considered the two worst boundary conditions, namely, full and
empty, a simple monotonicity consideration allows us to conclude that

P
[
Z+
t (A) = Z−t (A) = Zt(A) for all t ∈ [0, tmax]

]
≥ 1− 1

n3d
,

where Zt is one of the following processes on {0, 1}A+ :
• Censored FK-dynamics on A+ conditioned on any configuration on En \ A+, i.e., one that
only updates sites in A+.

• If A, and hence A+, are square boxes, the FK-dynamics on {0, 1}A+ with periodic boundary
conditions.
• The FK-dynamics on En projected to A+ ⊂ En, i.e., Xt(A

+).

Remark 4.14. In the above theorem, the size of the ambient space Λn (which is n) is not important.
Taking the ambient space to be Λm which contains A+ suffices. Moreover, we can replace log4 n in
the statement of lemma with log3+δ for any δ > 0 with tmax = log1+δ n.

The proof follows the arguments in [5, 26] and is postponed to the Appendix (Section 8).
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Figure 4.1. Figure illustrating the weak spatial mixing property of the subcritical
RCM. Here we consider the equilibrium measures with free (LHS) and wired bound-
ary conditions (RHS). By monotonicity of the equilibrium measures with respect to
their boundary conditions, there exists a coupling such that the LHS is dominated by
the RHS. However under this coupling by the exponential decay of connectivity the
RHS (and hence the LHS) has a closed surface (contour in the planar case) within
O(log n) distance from the boundary and they agree in the interior of the surface in
particular on the green region.

5. Information percolation clusters and time dependent Bernoulli percolations

As emphasized before, this is the section which contains all the new ideas in the paper. The main
result is the following bound on L2-mixing. Recall the spectral gap λ(n) from Corollary 3.4.

Theorem 5.1. For all small enough p > 0, there exists C = C(p) > 0 such that the following
L2-bound holds for all large enough n:

max
x0∈Ωn

∥∥Px0 [Xt ∈ · ]− µnp, q
∥∥
L2(µnp, q)

≤ 2 exp {−λ(n)(t− C log n)}

for all t ≥ C log n.

Recall that the spectral gap governs the rate of decay of L2 norm. More precisely for any s ≤ t
and any starting state x0 ∈ Ωn we have (see for example, [19, Lemma 20.5]),∥∥Px0 [Xt ∈ · ]− µnp, q

∥∥
L2(µnp, q)

≤ e−λ(n)(t−s) ∥∥Px0 [Xs ∈ · ]− µnp, q
∥∥
L2(µnp, q)

. (5.1)

By Corollary 3.4, it suffices to prove the following proposition.

Proposition 5.2. For all small enough p > 0, there exists C = C(p) > 0 such that for t? = C log n,

max
x0∈Ωn

∥∥Px0 [Xt? ∈ · ]− µnp, q
∥∥
L2(µnp, q)

≤ 2 . (5.2)

The proof of Proposition 5.2 is the heart of this work and is rather long, intricate and involves
several percolation arguments based on the models introduced in Section 4. As mentioned earlier,
using the results of this section as inputs, the arguments of the following sections are quite similar
to the ones appearing in [20, 27]. Readers not familiar with these papers, at first read, to get a
sense of the overall flow of arguments, could choose to assume Theorem 5.1 and read the subsequent
easier sections first, before coming back to this section.
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We provide a roadmap for this section for the ease of reading.
• The construction of information percolation is done in Section 5.1 relying on the definitions
in Section 4, particularly the percolation models listed in Table 1. At a very high level it
amounts to classifying vertices into green, red and blue where the state of the red vertices
depend on the initial configuration, the blue vertices are independent Bernoulli variables
independent of everything else, whereas the green vertices have a complicated dependency
on each other but are still independent of the initial configuration (Theorem 5.5).
• Using the above, the proof of Proposition 5.2 occupies Sections 5.2 and 5.3. The key steps
are the following:
(1) To bound the L2-distance it suffices to condition on the green clusters. Then the

strategy is to compute the L2-distance of the conditional distribution to a product
Bernoulli Measure instead of the equilibrium measure (Lemma 5.13). The Bernoulli
measure is exactly the one which describes the law of the blue vertices. Thus this
distance would be zero if there does not exist any red cluster.

(2) We then establish the key estimate showing exponential unlikeliness of red vertices
with time in Proposition 5.11 which makes the above step sufficient. The proof of this
proposition uses a comparison with a subcritical branching process and is presented in
Section 5.3. In particular, the proof involves delicate geometric arguments relying on
several properties of the auxiliary percolation models defined in Table 1.

5.1. Information percolation (IP). As mentioned before (Section 4.1), we will discretize time
using τi and will define IP on the space-time slab En × [τ1, τm] for some m ∈ N. We shall take
m = Ω(log n) later, but for the moment we think of m as a fixed integer. We also recall the various
percolations defined in Table 1.

For Ξ ∈ Ωn, and e = (u, v) ∈ En where u, v ∈ Λn, if Ξ(e) = 1, define Conn(e; Ξ) as the connected
component of Ξ containing (u, v). On the other hand, we define Conn(e; Ξ) = ∅ if Ξ(e) = 0.

Furthermore define ∂Conn(e; Ξ) as the edge boundary of Conn(e; Ξ) i.e., as the set of edges in
En \ Conn(e; Ξ), which are adjacent to an edge in Conn(e; Ξ) and define

Conn(e; Ξ) = Conn(e; Ξ) ∪ ∂Conn(e; Ξ) . (5.3)

We set Conn(e; Ξ) = ∅ if Ξ(e) = 0. Given the above notations, we now define IP for the FK-
dynamics. It would be notationally convenient to define τi+1/2 = (i+1/2)∆, for i ∈ N. Furthermore
to distinguish between edges (elements of En) and connections across time, we will call the former
‘space edges’ as just edges and the latter as ‘time edges’ (see Figure 5.1 for an illustration).

Definition 5.3 (Information percolation). The information percolation cluster is defined on the
space-time slab En × [τ1, τm] for some fixed m ≥ 2. For an edge e ∈ En, we define the history
He = (He(t))t∈[τ1, τm] associated to the edge e backward in time recursively as follows: Start by
setting He(τm) = {e}.

(1) For each t = τi+1 with i ∈ J1, m − 1K, suppose that He(τi+1) is given by a subset of En.
Then we let He(τi+1/2) be the same as He(τi+1), as well as for any w ∈He(τi+1) we connect
the two edges (w, τi+1) and (w, τi+1/2), by a ‘time edge’ in the time direction (see Figure
5.1.)

(2) For each w ∈ He(τi+1/2), we check if it has been updated in the time interval (τi, τi+1)
(recall the various notations from Table 1).
(a) If Ni(e) = 1, then introduce the ‘space edge’ (w, τi) and connect (w, τi+1/2) and (w, τi)

by a time edge.
(b) If Ni(e) = 0, we take the last update (t0, Ue) for e in (τi, τi+1].

(i) If Ue < 1− p+ p∗, this update is called oblivious and we do not take any action
on the edge (w, τi+1/2).
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(ii) If Ue > 1 − p + p∗, then w is open in E i, and hence is open in Ξi as well (cf.
(4.7)). In this case, we include all the edges in Conn(w; Ξi−1 ∪ Ξi) in He(τi+1/2)
and He(τi). Finally we connect the space edges (w′, τi+1/2) and (w′, τi) for all
the edges w′ in Conn(w; Ξi−1 ∪ Ξi) using time edges.

(3) Steps (1) and (2) above define He(τi) as a subset of En. Now return to the first step if i ≥ 2
to use the above construction recursively.

For A ⊂ En, define HA = (HA(t))t∈[τ1, τm] as HA =
⋃
e∈A He. Two histories He and He′ are

connected if they share an edge.

Some remarks are in order. First, we emphasize that two histories He and He′ are regarded
as two disconnected pieces if they share vertices only. Second, by the construction rule, one can
observe that:

He(τi+1/2) = He(τi+1) ∪He(τi) . (5.4)
Using terminology from existing literature we will often refer to the collection H := {He}e∈En

as the history diagram. This induces a new graph structure on En. i.e. e and e′ are connected if
He and He′ are connected. Note that the vertex set for this graph is En.

With the above conventions, each connected component of this new graph is called an informa-
tion percolation cluster. We shall simply refer to them as clusters. Let them be indexed by the
set C.

Definition 5.4 (IP clusters and their colors). Each cluster C ∈ C is colored red, blue or green
according to the following rule:

• Colored red if HC(τ1) 6= ∅.
• Colored blue if HC(τ1) = ∅ and |C| = 1.
• Colored green if HC(τ1) = ∅ and |C| ≥ 2.

Denote by CR, CB and CG the collection of red, blue and green clusters, respectively. Define

ER = {e : e ∈ C for some C ∈ CR} (5.5)

and define EB and EG similarly. We use the following simplified notations to denote the history
diagrams emanating from the various colored edges:

HR := HER , HB := HEB , and HG := HEG .

The following theorem justifies the above definitions. In short, it says that to reconstruct the
state of the edges in HA(τi+1), all one needs is the update sequence and the state of the edges
HA(τi) at time τi provided that A is a cluster.

Theorem 5.5. Given a history diagram H , suppose that a set A ⊂ En is a cluster. Then, for each
i ∈ J1, m− 1K, the configuration Xτi+1(HA(τi+1)) is a deterministic function of

Xτi(HA(τi)) and
⋃

e∈HA(τi+1/2)

Upd[τi, τi+1](e) . (5.6)

In particular, if HA(τi) = ∅, for some i ≥ 1, then Xτi+1 is independent of Xτi and therefore of Xτ1.

Remark 5.6. Note that not all update sequences are compatible with the diagram H . In particular,
the inner boundary of Green cluster is always closed and hence any update sequence for which the
diagram occurs with positive probability must respect such constraints.

The proof of the above theorem is provided below after introducing some notations and observing
some consequences of the already stated definitions. We momentarily fix A ⊂ En and suppressing
the dependence on A, define

Wj = HA(τj) ; j ∈ J1, mK . (5.7)
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Figure 5.1. (Up) The various colors indicate the values of the uniform variables
for each update: gray ↔ {U < 1 − p}, purple ↔ {1 − p ≤ U ≤ 1 − p + p∗}, black
↔ {U > 1 − p + p∗}. The purple region denotes E i(e) = 1, while the yellow region
implies that Ni(e) = 1. (Down) In the two graphs, the gray region indicates whether
Ξi∪Ξi−1(e) is 1 or 0 with gray indicating the former. (Down-left) History diagrams
for e1, e2, e3, e4. We can assert that He1 is red, but not able to say anything about
the remaining ones; (Down-right) History diagram for e0 is combined with that of
e1. e4 belongs to green cluster although its last update is oblivious. The vertical
edges acting as connections across time are referred to as ‘time edges’ in the article.

In the proof of the main result of this section (i.e., Theorem 5.1), the key ingredient is the analysis
of the evolution of |Wj | backwards in time. This is formulated in Proposition 5.19. A crucial role
is played by the following two decompositions of Wj . The first decomposition is according to the
type of evolution that occurs in the time interval [τj−1, τj ]:

Wj = WNU
j ∪WOb

j ∪WNOb
j , (5.8)
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where,

WNU
j = {e ∈Wj : Nj−1(e) = 1} i.e., the edges that have not been updated in [τj−1, τj ] ,

WOb
j = {e ∈Wj : Nj−1(e) = 0 and the last update for e in [τj−1, τj ] is oblivious} ,

WNOb
j = {e ∈Wj : Nj−1(e) = 0 and the last update for e in [τj−1, τj ] is non-oblivious} .

Now, we consider the second decomposition of Wj . For this, we classify each edge according to
the origin of its evolution in [τj , τj+1]. For each j ∈ J1, m− 1K, we write

Cj =
⋃

e∈WNOb
j+1

Conn(e; Ξj−1 ∪ Ξj) . (5.9)

Hence, the set Cj represents the collection of edges in Wj that arise from non-oblivious expansions
(i.e., step (2)-(b)-(ii) of Definition 5.3). Since each edge in Wj is either due to such an expansion or
is inherited from Wj+1 owing to no update at the corresponding edge in the time interval [τj , τj+1],
we obtain that

Wj = Cj ∪WNU
j+1 . (5.10)

Therefore, by writing
Nj = Wj \ Cj , (5.11)

we obtain another decomposition of Wj given by

Wj = Cj ∪Nj . (5.12)

We next record some basic properties of these decompositions.

Lemma 5.7. For all j ∈ J1, m− 1K, it holds that

WNOb
j+1 ⊂ Cj and Nj ⊂WNU

j+1 .

Proof. For the first inclusion, we note that e ∈ WNOb
j+1 implies that E j(e) = 1 and thus Ξj(e) = 1.

Hence, the definition (5.9) indicates that e ∈ Cj as well and thus the first inclusion trivially holds.
For the latter one, it suffices to recall (5.10) and the definition (5.11) of Nj . �

For S ⊂ En, define ∂−S as the set of edges in S which are adjacent to at least one edge in Sc,
i.e., ∂−S = ∂(E \ S). We record the following simple fact.

Lemma 5.8. For all j ∈ J1, m− 1K, all the edges in ∂−Cj are closed in Ξj−1 ∪ Ξj. In particular,
there is no open path in Ξj−1 ∪ Ξj connecting an open edge in Cj and an edge in Nj.

Proof. The proof is direct from the definition of Cj where we included the closed (outer) boundary
of Conn(e; Ξj−1 ∪ Ξj) . �

Lemma 5.9. For all j ∈ J1, m− 1K, for each e ∈ Cj, and for all t ∈ [τj , τj+1], the process Xt(e) is
a deterministic function of

Xτj (HCj (τj)) and
⋃
e′∈Cj

Upd[τj , t](e
′) .

Proof. Let
Ut =

⋃
e′∈Cj

Upd[τj , t](e
′) ; t ∈ [τj , τj+1] .

We fix e ∈ Cj and t ∈ [τj , τj+1] and denote by (t0, U0) the last update for e in [τj , t]. If U0 < 1−p+p∗

then, in view of Definition 2.1, the configuration Xt(e) is 1 if U0 < 1− p, and 0 if U0 ≥ 1− p. Thus,
we can determine Xt(e) solely in terms of (t0, U0) ∈ Upd[τj , t](e) ⊂ Ut. Now we consider the case
U0 > 1− p+ p∗. In this case, the configuration Xt(e) = Xt0(e) is determined by checking whether
e is a cut-edge or not in the configuration Xt0−. In order to check this, one has to investigate
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Conn(e;Xt0−∪{e}) to determine whether removing e disconnects some component of Xt0−∪{e} or
not. Note that e is open in E i (and hence in Ξi) since U0 > 1−p+p∗ > 1−p. Thus, by Proposition
4.8, we have

Conn(e;Xt0− ∪ {e}) ⊂ Conn(e; Ξj ∪ Ξj+1) ⊂ Cj \ ∂−Cj . (5.13)
Therefore, we can determine Xt(e) in terms of Xt0−(Cj) and (t0, U0) ∈ Ut.

If Ut0 = {(t0, U0)}, we have Xt0−(Cj) = Xτj (Cj), so we can conclude the proof. Otherwise, we
take the last update (t1, U1) in Ut0 other than (t0, U0). Then, we have,

Xt0−(Cj) = Xt1(Cj) .

Since there are finitely many updates in [τj , τj+1] almost surely, we can repeat this procedure to
finish the proof. An important fact implicitly used above is that in repeating the argument all the
edges ẽ that we encounter with an update time t̃ ∈ [τj , t0] has the property that the connected
component of

Xt̃−(ẽ) ⊂ Conn(e; Ξj−1 ∪ Ξj) ⊂ Cj .
since the edge boundary of Conn(e; Ξj−1∪Ξj) remains closed throughout the interval [τj , τj+1]. �

The proof of Theorem 5.5 now follows.

Proof of Theorem 5.5. In view of (5.8) and the first inclusion of Lemma 5.7, it suffices to consider
the following three cases separately.

• Case 1: e ∈ WNU
i+1 . By (2)-(a) of Definition 5.3, we have Xτi+1(e) = Xτi(e) and thus

configuration of Xτi+1(e) is determined by Xτi(W
NU
i+1). Since WNU

i+1 ⊂ Wi (cf. (5.10)), the
proposition holds for this case.
• Case 2: e ∈ WOb

i+1 \ Ci. By (2)-(b)-(i) of Definition 5.3, the configuration Xτi+1(e) is solely
determined by the last update for e in (τi, τi+1] and therefore the proposition holds as well.
• Case 3: e ∈Wi+1 ∩ Ci. This case is immediate from Lemma 5.9.

�

The following corollary is an immediate consequence of the previous theorem.

Corollary 5.10. Given a history diagram H , the following holds.
(1) The configurations Xτm(EG) and Xτm(En \ EG) are independent.
(2) The configuration Xτm(EG) is independent of Xτ1.
(3) For e ∈ EB, the distribution of Xτm(e) is a Bernoulli random variable with parameter

p∗

1−p+p∗ , and is independent of all other randomness.

Proof. Parts (1) and (2) are direct consequences of Theorem 5.5 and the definition of a green cluster.
We now consider part (3). For e ∈ EB, the configuration Xτm(e) is determined by the last update
(t, U) for e in [τ1, τm]. Furthermore, since e ∈ EB, this last update is oblivious and therefore we
know that U < 1− p+ p∗. Given this condition, we have Xτm(e) = 1 if U < 1− p and Xτm(e) = 0
if U ∈ [1− p, 1− p+ p∗] otherwise. This finishes the proof of part (3). �

For each A ⊂ En, define
H −
A = HEn\A .

As in [27, 24], it would be crucial to estimate the probability of A being a red cluster or a collection
of singleton blue clusters i.e.,

{A ∈ CR} ∪ {A ⊂ EB} . (5.14)
Furthermore, technical aspects make it important to estimate the above probabilities conditioned
on the history diagram of the complement of A. For this conditional probability to be non-zero a
necessary condition is that,

H −
A ∩

{
A× {t = τm−1/2}

}
= ∅; , (5.15)
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for the following reason. Suppose that e ∈ A satisfies (e, τm−1/2) ∈He′ for some e′ ∈ En \A. Then,
by the definition of the information percolation cluster, the cluster containing e must contain e′ as
well.

Thus this is a compatibility condition to guarantee that {A ∈ CR} ∪ {A ⊂ EB} is a non-empty
event which we denote by H −

A ∈Hcom(A). Given this, we define

PA = sup
H −

A ∈Hcom(A)

P
[
A ∈ CR |H −

A , {A ∈ CR} ∪ {A ⊂ EB}
]
, (5.16)

i.e., the maximum probability of A being a red cluster conditioned on a compatible H −
A . Given

the above preparation, the following proposition is the main estimate (similar to [27, Lemma 4.8])
needed. For A ⊂ En, we denote by |Conn(A)|, the smallest number of edges in any connected
subgraph of (Λn, En) containing A.

Proposition 5.11. For any θ > 0, we can find two constants C = C(θ) > 0 and p0 = p0(θ) > 0
such that, for any p ∈ (0, p0), there exists a constant α = α(p) > 0 satisfying

PA ≤ Ce−(θ|Conn(A)|+ατm) for all A ⊂ En .

A notable feature of this proposition is the fact that α is independent of θ. In the remaining
part of the current section, α always refers to the constant above. The proof of this proposition is
postponed to Section 5.3. A corollary of this proposition is the following lemma which lower bounds
the probability that there are no red clusters.

Lemma 5.12. For all small enough p, there exists a constant C = C(p) > 0 satisfying

sup
HG

P [HR = ∅|HG ] ≥ 1− Cn2e−ατm .

Proof. By the union bound and the definition of PA,

1− P [HR = ∅|HG ] ≤
∑

A⊂En, A 6=∅

P [A ∈ CR|HG ] ≤
∑

A⊂En, A 6=∅

PA .

Now, by Proposition 5.11 and the translation invariance of the periodic lattice,

∑
A⊂En, A 6=∅

PA ≤
∑
e∈En

∑
A:A3e

PA ≤ Cn2e−ατm
∞∑
k=1

∑
A:A3e, |Conn(A)|=k

e−θk . (5.17)

For a fixed e ∈ En, we have that

|{A ⊂ En : A 3 e, |Conn(A)| = k}| ≤ (k + 1)(8d2)k .

The verification is elementary and we leave the proof to the reader. Finally, we can combine the
last two displays to deduce

P [HR = ∅|HG ] ≥ 1− Cn2e−ατm
∞∑
k=1

(k + 1)(8d2e−θ)k . (5.18)

Now by taking θ large enough so that 8d2e−θ < 1/2, the proof of the lemma is complete. �

The remainder of the section is now devoted to proving (5.2).
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5.2. Proof of Proposition 5.2. For A ⊂ En, define νA as a Bernoulli percolation measure on A
with open probability p where

p =
p∗

1− p+ p∗
. (5.19)

In the remaining part of the section, we will simply write µ := µnp, q, E := En and denote by µA,
A ⊂ E, the projection of µ on A. We first prove the following lemma which shows that the L2-
distance to µ can be controlled by the L2-distance of the measure on the complement of the green
clusters to the measure ν.

Lemma 5.13. For all small enough p, we can find C = C(p) > 0 such that for m ≥ C log n we
have

‖Px0 [Xt ∈ · ]− µ‖L2(µ) ≤ 2 sup
HG

∥∥Px0 [Xt(E \ EG) ∈ · |HG ]− νE\EG
∥∥
L2(νE\EG )

+ 1

for all x0 ∈ Ωn,

Proof. Consider two copies of FK-dynamics (Xt) and (Yt) where X0 = x0 and Y0 is distributed
according to µ. We couple them via the monotone coupling introduced in Definition 2.1. Now by
Jensen’s inequality (for details see [27, Lemma 4.13]) we obtain

‖Px0 [Xt ∈ · ]− µ‖2L2(µ) = ‖Px0 [Xt ∈ · ]− Pµ [Yt ∈ · ]‖2L2(µ)

≤
∫
‖Px0 [Xt ∈ · |HG ]− Pµ [Yt ∈ · |HG ]‖2L2(µnp, q(· |HG)) dP(HG)

≤ sup
HG

‖Px0 [Xt ∈ · |HG ]− Pµ [Yt ∈ · |HG ]‖2L2(µnp, q(· |HG)) . (5.20)

Given HG , the diagram HE\EG is disjoint from HG = HEG , and as we noticed in Corollary 5.10
configurations Xt(EG) (resp. Yt(EG)) and Xt(E\EG) (resp. Yt(E\EG)) are independent. Moreover,
Yt(EG) and Xt(EG) are identical by Theorem 5.5. Thus, the projection onto E \EG does not change
the L2-norm. Combining this observation with (5.20), we obtain

‖Px0 [Xτm ∈ · ]− µ‖L2(µ)

≤ sup
HG

‖Px0 [Xτm(E \ EG) ∈ · |HG ]− Pµ [Yτm(E \ EG) ∈ · |HG ]‖L2(µE\EG (· |HG)) . (5.21)

Now by Lemma 5.12, for m ≥ C log n where C = C(p) is large enough,

P [HR = ∅ |HG ] ≥ 1

2
.

Then, for all Z ⊂ {0, 1}E\EG , we can deduce that,

Pµ [Yτm(E \ EG) = Z |HG ] ≥ P [HR = ∅ |HG ] νE\EG (Z) ≥ 1

2
νE\EG (Z) . (5.22)

Note that the first inequality follows from the fact that the distribution on EB is νEB , and that
under HR = ∅, we have E \ EG = EB. We are now able to complete the proof of the lemma by
combining (5.21), (5.22), and the definition of L2-norm. �

Thus the task has now been reduced to measuring the L2-distance of certain measures to the
product measure ν. The Miller-Peres inequality establishes a simple yet extremely useful bound for
such cases. It first appeared in [25] where the product measure was given by independent Ber(1/2)
variables. This was extended later in [23, Lemma 4.3] which is the version we will use.

Lemma 5.14. Let Ω = {0, 1}S for a finite set S, and let η be a probability measure on the space
of subsets of S. For each R ⊂ S, suppose that a probability measure ϕR on {0, 1}R is given.
For p ∈ (0, 1/2), denote by νp the measure on {0, 1}S given by the product of independent Ber(p)
variables. Let µp be a measure on Ω obtained first by sampling a subset R of S according to η,
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and then sampling an element of {0, 1}R according to ϕR, and sampling an element of {0, 1}S\R
according to the restriction of νp on {0, 1}S\R. Then, we have

‖µp − νp‖2L2(νp) ≤ E
[
p−|R∩R

′|
]
− 1 ,

where R, R′ ⊂ S are two independent samples of η.

In view of Lemmas 5.13 and 5.14, we obtain that

‖Px0 [Xτm ∈ · ]− µ‖L2(µ) ≤ 2 sup
HG

E
[

1

p|ER∩ER′ |

∣∣HG]+ 1 , (5.23)

provided that p is small enough so that p < 1/2, for all m > C1 log n where C1 is the constant in
Lemma 5.13 and ER and ER′ , are two independent samples of the set ER of red clusters (see (5.5))
conditioned on HG . To analyze the right-hand side of (5.23), we recall the following domination
results from [22, 23]. Let {JA : A ⊂ E} be a family of independent indicators such that P(JA =
1) = PA for all A ⊂ E and similarly let {JA,A′ : A,A′ ⊂ E} be a family of independent indicators
such that P(JA,A′ = 1) = PAPA′ for all A, A′ ⊂ E.

Lemma 5.15 ([22], Lemma 2.3, Corollary 2.4). Then following coupling results hold.
(1) The conditional distribution of red clusters given HG can be coupled to JA such that

{A : A ∈ CR} ⊂ {A : JA = 1} .

(2) Similarly, the conditional distribution of (ER, E
′
R) given HG can be coupled such that

|ER ∩ ER′ | ≤
∑

A∩A′ 6=∅

|A ∪A′|JA,A′ .

We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. It suffices to prove that the right-hand side of (5.23) is bounded by 2 for
m = C log n with large enough C. Write κ := log(1/p) > 0. By part (2) of Lemma 5.15, we have

sup
HG

E
[
p−|ER∩ER′ |

∣∣HG ] ≤ E exp
{
κ
∑

A∩A′ 6=∅

|A ∪A′|JA,A′
}

=
∏

A∩A′ 6=∅

E exp
{
κ|A ∪A′|JA,A′

}
≤
∏
e∈En

∏
(A,A′):e∈A ,e∈A′

[
(eκ(|A|+|A′|) − 1)PAPA′ + 1

]
≤ exp

{
|E|
[ ∑
A:e∈A

eκ|A|PA
]2
}
,

where e in the last line is an arbitrary edge in E. The last inequality follows from x + 1 ≤ ex and
the translation invariance of the underlying graph. Hence, it suffice to show that∑

A:e∈A
eκ|A|PA ≤

1

n3

for m = C log n with sufficiently large C. To this end, we recall Proposition 5.11 so that∑
A:e∈A

eκ|A|PA ≤ Ce−ατm
∑
A:e∈A

eκ|A|−θ|Conn(A)| ≤ Ce−ατm
∑
A:e∈A

e(κ−θ)|Conn(A)| .

Thus, we can proceed as in (5.17) and (5.18) to deduce that the last summation bounded by is
bounded by 1, provided that θ is large enough. This finishes the proof. �
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5.3. Proof of Proposition 5.11: domination by subcritical branching processes. We now
prove Proposition 5.11 to complete our discussion on Theorem 5.1. For S ⊂ E, define C∗R(S) to be
the collection of red clusters that arises when exposing the joint histories of elements of S i.e., HS

only. Similarly define C∗B(S) for blue clusters.

Lemma 5.16. There exists c = c(p) > 0 such that, for all A ⊂ E we have

PA ≤ ec|Conn(A)| P
[
A ∈ C∗R(A)

]
. (5.24)

To prove the above we will first attempt to understand the effect of conditioning on the event
H −
A = X ∈ Hcom(A). We will determine a subset of Upd[0, τm] that is enough to determine the

event {H −
A = X}. We write Xi = X ∩ {t = τi} for i ∈ {n/2 : n ∈ Z}. Recall from (5.4) that the

event {H −
A = X} is non-empty only when X satisfies the consistency condition

Xi+1/2 = Xi ∪ Xi+1 for all i ∈ J0, m− 1K . (5.25)

For each i ∈ J1, m− 1K and e ∈ En, we define

Ui(e) =


Upd[τi−1, τi+1](e) if e ∈ Xi ,
Upd[τi, τi+1](e) if e ∈ Xi+1 \ Xi ,
∅ otherwise.

(5.26)

Then, we define

Ui =
⋃
e∈En

Ui(e) and U =

m−1⋃
i=1

Ui .

Note that U depends on X .

Lemma 5.17. The event {H −
A = X} is independent of the update variables not in U .

Proof. Write Yi = H −
A ∩ {t = τi} and define the event Ei by

Ei = {Yi = Xi} .

If X satisfies the condition (5.25), we can write

{H −
A = X} =

m⋂
i=1

Ei .

We claim that given Ei+1, the event Ei depends only on the events in Ui. Given Ei+1, we decompose
Yi+1 = Xi+1 as following (similar to those in Theorem 5.5):

YNU
i+1 = {e ∈ Yi+1 : Ni(e) = 1} ,
YOb
i+1 = {e ∈ Yi+1 : Ni(e) = 0 and the last update for e in [τi, τi+1] is oblivious} ,
YNOb
i+1 = {e ∈ Yi+1 : Ni(e) = 1 and the last update for e in [τi, τi+1] is non-oblivious} .

This classification can be carried out if we only know⋃
e∈Yi+1

Upd[τi, τi+1](e) ⊂ Ui .

Now we suppose that this classification is given. Then, we have

Yi = YNU
i+1 ∪

⋃
e∈YNOb

i+1

Conn(e; Ξi−1 ∪ Ξi) ,
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and therefore Xi = Yi holds if

Xi \ YNU
i+1 ⊂

⋃
e∈YNOb

i+1

Conn(e; Ξi−1 ∪ Ξi) ⊂ Xi .

This event can be determined by knowing
⋃
e∈Xi
Ui(e). This finishes the proof. �

Lemma 5.18. For all X satisfying (5.25), it holds that

P
[
A ∈ C∗R(A), HA ∩ X = ∅

∣∣H −
A = X

]
= P

[
A ∈ C∗R(A), HA ∩ X = ∅

]
.

Proof. We keep the notation from the previous lemma. In view of the previous lemma, it suffices
to demonstrate that the event

E = {A ∈ C∗R(A)} ∩ {HA ∩ X = ∅}

does not depend on the updates in U . Note that this event is the same as saying HA reaches
t = τ1 without touching X . We prove this by induction (see Figure 5.2 for an illustration). Write
Wi(A) = HA ∩ {t = τi} and for each i ∈ J2, mK, define the event Ei as

Ei = {Wi−1(A) 6= ∅ and Wi−1(A) ∩ (Xi−3/2 ∪ Xi−1/2) = ∅} .

Figure 5.2. Illustrating the proofs of Lemmas 5.17 and 5.18. The purple graph is
X and U is the set of updates in the purple region. The red graph is the history
diagram HA. At time t = τk, the occurrence of the event Ek does not depend on the
updates in the purple region. Note that for the latter event to occur e3, e4, e5 cannot
hit the purple region and hence the last updates for each of them in (τk−1, τk] should
be oblivious. This depends on the updates in the red box. For e1 and e2, they can
be expanded and one of them must be to ensure that they all together form a red
cluster. However this expansion should be confined to B. This can be determined by
the updates in yellow region and therefore also independent of updates in the purple
region.

We suppose that X satisfies Xm ∩ A = ∅ and Xm−1/2 ∩ A = ∅ since otherwise the event {HA ∩
X = ∅} (and hence E) cannot happen. Under this minimal consistency assumption, we can write
E =

⋂m
i=2 Ei.

We now claim that, for each k ∈ J2, m − 1K, given
⋂m
i=k+1 Ei, the event Ek does not depend on

updates in U . For each e ∈Wk(A), we consider two cases:
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(1) e ∈ Xk−3/2: The last update in (τk−1, τk] must be oblivious to have Wk−1(A) disjoint from
Xk−3/2. This update belongs to U only if e ∈ Xk−1 or e ∈ Xk, which cannot happen under
Ek+1, since under Ek+1 the set Wk(A) is disjoint to Xk−1/2 = Xk−1 ∪ Xk (cf. (5.25)).

(2) e /∈ Xk−3/2: We still have two cases: either there is no update in (τk−1, τk] for the edge e,
or the last update in (τk−1, τk] for the edge e is oblivious and

Conn(e; Ξk−1 ∪ Ξk)
⋂

(Xk−3/2 ∪ Xk−1/2) = ∅ .

Determining whether this holds or not can be performed by looking only at⋃
e′ /∈Xk−3/2∪Xk−1/2

Upd[τk−2, τk](e
′) .

These updates are disjoint to U since e′ /∈ Xk−3/2∪Xk−1/2 implies Upd[τk−2, τk](e
′)∩U = ∅

Furthermore, the non-emptiness of Wk−1(A) implies that at least one of the last updates of e ∈Wk

is non-oblivious or there is an edge e ∈Wk such that there is no update in (τk−1, τk]. By the same
reasoning as (1), this is independent of the updates in U . Summing up, for the event Ei to occur,
all the events described above must occur simultaneously and the probability of this is independent
of the conditioning on the randomness in U . �

Proof of Lemma 5.16. Given the above preparation, the remaining steps of the proof already ap-
pears in [21, 27]. Note first that, conditioned on H −

A = X ∈ Hcom(A), one has {A ∈ CR} = {A ∈
C∗R(A)} ∩ {HA ∩ X = ∅} and similarly {A ⊂ CB} = {A ⊂ C∗B(A)} ∩ {HA ∩ X = ∅}. Therefore, we
can deduce

P
[
A ∈ CR

∣∣H −
A = X , {A ∈ CR} ∪ {A ⊂ EB}

]
= P

[
A ∈ C∗R(A), HA ∩ X = ∅

∣∣H −
A = X , {A ∈ CR} ∪ {A ⊂ EB}

]
=

P
[
A ∈ C∗R(A), HA ∩ X = ∅

∣∣H −
A = X

]
P
[
{A ∈ C∗R(A)} ∪ {A ⊂ C

∗
B(A)}, HA ∩ X = ∅

∣∣H −
A = X

]
≤

P
[
A ∈ C∗R(A), HA ∩ X = ∅

]
P
[
A ⊂ C∗B(A),HA ∩ X = ∅

∣∣H −
A = X

] (by Lemma 5.18)

≤
P
[
A ∈ C∗R(A)

]
P
[
A ⊂ C∗B(A), HA ∩ X = ∅

∣∣H −
A = X

] . (5.27)

Now we bound the denominator of (5.27) from below. Since X satisfies the compatibility condition
(5.15) by hypothesis, an event which implies the event in the denominator is the following: all the
edges in A are updated in the time interval [τm−1/2, τm] with oblivious updates. Note that this
implies that HA, the history diagram of A, will only intersect E × {τm−1/2, τm} and hence will
not intersect X . Now the probability of an edge being updated in [τm−1/2, τm] is 1 − e−

∆
2 where

∆ appeared in the definition of the τi’s. Moreover the probability of an update being oblivious is
1− p+ p∗. Putting the above together, we get that the denominator of (5.27) is bounded below by
e−c(p)|A| for some c(p) > 0. This completes the proof of (5.24). �

Thereby, it only remains to prove the following proposition.

Proposition 5.19. For any θ > 0, we can find two constants C = C(θ) > 0 and p0 = p0(θ) > 0
such that, for any p ∈ (0, p0) there exists a constant α = α(p) > 0 satisfying

P
[
A ∈ C∗R(A)

]
≤ Ce−(θ|Conn(A)|+ατm) for all A ⊂ E.
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5.3.1. Domination by sub-critical branching process. To estimate the probability P[A ∈ C∗R(A)], we
fix A and m in the remaining part of the current section. Recall the notation Wi from (5.7). The
main idea of the proof is that for sufficiently small p, the sequenceWm, Wm−1, . . . , W1 is dominated
by a subcritical branching process in a suitable sense that will be explained below. Note that the
event {A ∈ C∗R(A)} requires that

(1) He for some e ∈ A starting at time t = τm survives to time t = τ1.
(2) All the history diagrams He, e ∈ A, are connected together before arriving at t = τ1.

Comparing them with sub-critical branching processes will allow us to bound the probabilities of the
above events. As Lemma 5.21 and the discussion following that will show, the analysis has to take
into account that the 1-dependence across time of the Bernoulli percolation clusters used to define
the information percolation history diagrams prevents a contraction every time step. Nonetheless
this is sufficient to yield subcritical behavior once every two steps which is enough for our purposes.

We start with a general lemma. For r ∈ (0, pperc(d)), let ωr be an i.i.d. standard bond percolation
configuration on the lattice (Zd, E(Zd)) where each edge is open with probability r. Denote by
Conn(e;ωr) the closure of the open cluster containing an edge e as in (5.3), and let mr be the
distribution of |Conn(e;ωr)|, i.e.,

mr(k) = P
[
|Conn(e;ωr)| = k

]
; k ∈ Z+ . (5.28)

It is well-known (see [8, 17]) that there exists a constant ρ(r) > 0 such that, for all e ∈ E(Zd),

mr(k) ≤ e−ρ(r)k for all k ≥ 1 . (5.29)

Lemma 5.20. Fix a non-empty set A ⊂ E and consider a random configuration X ∈ Ωn whose
distribution is stochastically dominated by Percn(r) for some r ∈ (0, pperc(d)).

Given X, we define
A(X) =

⋃
e∈A

Conn(e;X) .

Let (yi)
∞
i=1 be a sequence of i.i.d. random variables in Z+ distributed according to mr. Then, |A(X)|

is stochastically dominated by y1 + y2 + · · ·+ y|A|.

Proof. Take an arbitrary enumerationA = {e1, e2, . . . , e|A|} and define disjoint setsG1, G2, . . . , G|A|
as G1 = Conn(e1;X) and

Gk = Conn(ek;X) \
[ k−1⋃
i=1

Conn(ei;X)),

]
; k ∈ J2, |A|K .

Then, the set A(X) can be represented as the disjoint union of G1, G2, . . . , G|A| and thus

|A(X)| =
|A|∑
i=1

|Gi| .

We now claim that
k∑
i=1

|Gi| �
k∑
i=1

yi for all k ∈ J1, |A|K .

Clearly this is true for k = 1. To finish the proof by the induction, it suffices to prove that the
distribution of |Gi+1| given G1, . . . , Gi, is stochastically dominated by yi+1. This follows by the
spatial independence of bond percolation. More precisely, given G1, . . . , Gi, the edge configuration
on (G1 ∪ · · · ∪ Gi)c is a Bernoulli percolation with the same parameter, and thus the distribution
of Gi+1 is dominated by that of Conn(ei+1;X). By (5.28) and the fact that X is dominated by
Percn(r), the size of the latter is dominated by the distributionmr(·) and the proof is completed. �
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Recalling (5.7), let
ai := |Wi| ; i ∈ J0, m− 1K ,

and let
p1 := 2p1/2 . (5.30)

A direct application of Lemma 5.20 is the following bound on am−1 which along with the fact that
P(yi = 0) = 1− op(1) (by (5.29)), shows that the information percolation history diagram exhibits
a contraction from Wm = A to Wm−1 similar to a subcritical branching process.

Lemma 5.21. Suppose that p1 < pperc(d) and let (yi)
∞
i=1 be a sequence of i.i.d. random variables

with distribution m2p1. Then, we have

am−1 � y1 + · · ·+ y|A| .

Proof. We apply Lemma 5.20 with X = Ξm−1 ∪ Ξm−2. By Proposition 4.7 and union bound, the
distribution of X is stochastically dominated by Percn(2p1). We now claim that in the construction
of the evolution of the history diagram of an edge e over the time interval [τm−1, τm], e gets expanded
to a subset of Conn(e;X). To see this, we first note that there are only three possible cases: the
oblivious update, the non-oblivious update, and the non-update and the corresponding expansions
being the empty set, Conn(e;X), and e, respectively. Thus, to prove the claim, it suffices to just
check the non-update case for which the expansion set is merely e. However in this case, the claim is
verified by observing that e is open in Nm−1 � Ξm−1 � X where all the inclusions are by definition.
Hence, we can conclude that Wm−1 ⊂ A(X). The assertion of the lemma is now immediate from
Lemma 5.20.

�

We now state the main result regarding the domination by branching process. For i ∈ J1, mK,
denote by Fi the σ-algebra on Ωn generated by update sequence Upd[τi, τm] (Hence Fm = {∅, Ωn}).

Proposition 5.22. Suppose that p is small enough so that 3p1 < pperc(d). Let (yi)
∞
i=1 be a sequence

of i.i.d. random variables with distribution m3p1 defined in (5.28). For all i ∈ J1, m − 2K, the
distribution of ai given (Fi+2, Wi+2) is stochastically dominated by

y1 + y2 + · · ·+ yai+2 .

One might expect that the proof of Proposition 5.22 can be carried out similarly as that of Lemma
5.21. However this does not work, roughly because of the following: Assume that we condition on
Wi+1 and try to control ai = |Wi|. Then,Wi is determined byWi+1, the environment Ξi∪Ξi−1, and
the update sequence in [τi, τi+1]. However, by the same reasoning, Wi+1 is determined from Wi+2,
Ξi+1∪Ξi and the update sequence in [τi+1, τi+2], and thus Wi+1 already contains some information
on Ξi. Therefore, the distribution of Ξi given Wi is hard to analyze. In particular, in the worst
case, if all the edges in Wi+1 belong to Ξi, one cannot expect a contraction estimate of ai in terms
of ai+1 described in the previous lemma. However, at this point one notices that Ξi−1 and Ξi−2

are still independent of Wi+1 and hence one can possibly obtain a bound for ai−1 instead. In other
words, if we conditioned on Wi+2 and all the relevant information prior to it, the distribution of ai,
instead of ai+1, can be dominated in an appropriate manner.

This is done through the next result whose proof crucially uses the definitions listed in Table 1.
Recall the notations Cj and Nj from (5.9).

Proposition 5.23. For i ∈ J1, m− 2K, define θi ∈ Ωn as following:

θi(e) =

{
(Ξi−1 ∪ Ξi)(e) if e ∈ Ci+2 ,

(Ξi−1 ∪ Ξi ∪ Ξi+1)(e) if e ∈ E \ Ci+2 .
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Define
Zi =

⋃
e∈Wi+2

Conn(e; θi) . (5.31)

Then, it holds that Wi ⊂ Zi.

The proof of this proposition is based on two geometric lemmas (Lemmas 5.24 and 5.25). We refer
to Figure 5.3 for the illustration of the proofs of these two lemmas and Proposition 5.23. However
before proving the latter we first finish the proof of Proposition 5.22.

Figure 5.3. Figure illustrating the proof of Lemmas 5.24, 5.25, and Proposition
5.23. The crucial fact is that e′ ∈ Conn(e0; θi) (without bar).

Note that Wi is determined by Upd[τi−1, τm], and hence ai is a random variable measurable with
respect to Fi−1.

Proof of Proposition 5.22. We consider the following configuration

Ξoi+1(e) =

{
0 if e ∈ Ci+2 ,

Ξi+1(e) if e ∈ E \ Ci+2 .

We first make the following claim.
Claim. Given (Fi+2, Wi+2), the distribution of Ξoi+1 is dominated by Percn(p1).

Assuming this claim, since θi = Ξi−1∪Ξi∪Ξoi+1, by Proposition 4.8, it follows that the distribution
of θi given (Fi+2, Wi+2) is stochastically dominated by Percn(3p1). Hence, by Lemma 5.20 and the
definition (5.31) of Zi, we can conclude that |Zi| is stochastically bounded above by y1 + · · ·+yai+2 .
Thus we are done by Proposition 5.23.

It remains to prove the claim. We start by noting that Ci+2 is not a deterministic function of Fi+2

and Wi+2. However, by (5.10), WNU
i+3 and WNOb

i+3 which are subsets of Wi+2 are indeed measurable
with respect to Fi+2. Next recalling how Ci+2 is constructed from (5.9), note that given Fi+2 and
Wi+2, by standard exploration of Conn(e; Ξi+1 ∪Ξi+2) for e ∈WNOb

i+3 , further conditioning on Ci+2,
does not affect the distribution of the updates in⋃

e∈E\Ci+2

Upd[τi+1, τi+2](e), (5.32)

(note that here we are crucially using the fact that Conn(e; Ξj−1∪Ξj) includes the closed boundary
edges since otherwise conditioning on Ci+2 would yield information about its boundary edges which
would then have been members of E \ Ci+2). Thus, from now we assume that Ci+2 is given, and
suppose that e /∈ Ci+2. Since the configuration Ξi+1(E\Ci+2) is determined by the updates in (5.32),
we can conclude that the distribution of Ξi+1(E \ Ci+2) given (Fi+2, Wi+2, Ci+2) is stochastically
bounded by percolation on E \Ci+2 with open probability p1, by Proposition 4.7 and the definition
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of p1 in (5.30). Since Ξoi+1(e) = 0 for e ∈ Ci+2, the claim holds conditionally on (Fi+2, Wi+2, Ci+2)
and hence by averaging over Ci+2, conditionally on (Fi+2, Wi+2). �

Lemma 5.24. For i ∈ J1, m− 1K, we have that

Wi ⊂
⋃

e∈Wi+1

Conn(e; Ξi−1 ∪ Ξi) . (5.33)

Proof. In view of the definition (5.9), the decomposition (5.12), and the fact that WNU
i+1 ⊂Wi+1, it

suffice to check that
Ni ⊂

⋃
e∈WNU

i+1

Conn(e; Ξi−1 ∪ Ξi) . (5.34)

If e ∈WNU
i+1 , we have Ni(e) = 1 by the definition of Ni, and thus (Ξi ∪ Ξi−1)(e) = 1 since Ni ≤ Ξi.

Therefore, we have e ∈ Conn(e; Ξi ∪Ξi−1). Hence, the right-hand side of (5.34) contains WNU
i+1 , and

hence contains Ni by the second inclusion of Lemma 5.7. �

Lemma 5.25. For i ∈ J1, m− 2K, define ξi ∈ Ωn as follows:

ξi(e) =

{
Ξi(e) if e ∈ Ci+2 ,

(Ξi ∪ Ξi+1)(e) if e ∈ E \ Ci+2 .

Then, we have

Wi+1 \Wi+2 ⊂
⋃

e∈Wi+2

Conn(e; ξi) .

Proof. For e′ ∈Wi+1 \Wi+2, we know from Lemma 5.24 that there exists e0 ∈Wi+2 and a path

e0, e1, · · · , ek(= e′)

in E such that (Ξi ∪ Ξi+1)(el) = 1 for all l ∈ J0, k − 1K. If none of e0, e1, · · · , ek belongs to Ci+2

then the assertion of lemma is immediate since Ξi ∪ Ξi+1 = ξi along this path. Otherwise, let

K = max{h : eh ∈ Ci+2} .

Since e′ /∈ Wi+2, we have K < k. Then, since eK+1 /∈ Ci+2, we have eK ∈ ∂−Ci+2 and thus
(Ξi+1 ∪Ξi+2)(eK) = 0 by Lemma 5.8. Since (Ξi ∪Ξi+1)(eK) = 1, we can conclude that Ξi(eK) = 1.
This implies that e′ = ek ∈ Conn(eK ; ξi), where eK ∈ Ci+2 ⊂Wi+2. This completes the proof. �

Now we are ready to prove Proposition 5.23.

Proof of Proposition 5.23. Fix arbitrary e′′ ∈Wi. It suffices to verify that e′′ ∈ Zi. Since Ξi−1∪Ξi ≤
θi, by Lemma 5.24, there exists e′ ∈Wi+1 such that

e′′ ∈ Conn(e′; Ξi−1 ∪ Ξi) ⊂ Conn(e′; θi) . (5.35)

If e′ ∈Wi+2, we can immediately assert that e′ ∈ Zi by the definition of Zi.
On the other hand, if e′ ∈Wi+1 \Wi+2, then by Lemma 5.25 and by the fact that ξi ≤ θi, there

exists e0 ∈Wi+2 such that
e′ ∈ Conn(e0; ξi) ⊂ Conn(e0; θi) . (5.36)

We remark that (5.35) implies that θi(e′) = 1 since otherwise Conn(e′; θi) = ∅. Therefore we can
replace e′ ∈ Conn(e0; θi) in (5.36) with e′ ∈ Conn(e0; θi). Combining this with (5.35) ensures that
e′′ ∈ Conn(e0, θi) ⊂ Zi. This completes the proof. �
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5.3.2. Bounds on ai based on domination by branching processes. Now we present two consequences
of the previous branching process type estimate. These will play a fundamental role in the proof of
Proposition 5.19.

For a random variable y in Z+ following the law m3p1 defined in (5.28), we define M = M(p) as
the solution of

e−2M = E(y) .

It readily follows that

lim
p→0

M =∞ . (5.37)

Lemma 5.26. For k ∈ J1, mK, select r ∈ {1, 2} so that (k− r) mod 2 = 0. Then, for some constant
C = C(p) > 0, it holds that

E [ar|ak] ≤ Ce−Mkak .

Proof. It follows from Proposition 5.22 that, for all k ∈ J3, mK,

E [ak−2|ak, Fk] ≤ e−2Mak . (5.38)

Then, the proof of lemma is completed by the induction. �

Lemma 5.27. For all sufficiently small p, there exists c0 = c0(p) > 0 such that,

E exp

{
c0

m−1∑
i=1

ai

}
≤ e|A| .

Furthermore, limp→0 c0(p) = +∞.

Proof. By the Cauchy-Schwarz inequality,

E
[

exp

{
c

m−1∑
i=1

ai

}]2

≤ E exp

{
2c

∑
i:2i∈J1,m−1K

a2i

}
· E exp

{
2c

∑
i:2i+1∈J1,m−1K

a2i+1

}
. (5.39)

Denote by y the random variable with distributionm3p1 defined in (5.28). Note that the following
equation on c

Ee(2c+1)y = e (5.40)

has a positive solution c0 = c0(p) and we can readily check that limp→0 c0 = +∞. Now it suffices
to prove that, for all `,

E exp

{
2c0

∑̀
i=1

am−2i

}
≤ e|A| and E exp

{
2c0

∑̀
i=0

am−2i−1

}
≤ e|A| . (5.41)

By Proposition 5.22 and (5.40), for all i ∈ J3, mK, we have

E
[
e(2c0+1)ai−2

∣∣∣ ai, Fi] ≤ E
[
e(2c0+1)y

]ai
≤ eai .

Consequently, for all ` ≥ 1,

E
[
eam−2` · exp

{
2c0

∑̀
i=1

am−2i

}∣∣∣∣am−2`+2, Fm−2`+2

]
≤ eam−2`+2 exp

{
2c0

`−1∑
i=1

am−2i

}
.
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Repeating this procedure, we obtain

E exp

{
2c0

∑̀
i=1

am−2i

}
≤ E

[
ea2` exp

{
2c0

∑̀
i=1

am−2i

}]

≤ E
[
ea2`+2 exp

{
2c0

`−1∑
i=1

am−2i

}]
(5.42)

≤ · · · ≤ E
[
e(2c0+1)am−2

]
≤ eam = e|A| .

This proves the first inequality in (5.41). By a similar argument as above, one can show that

E exp

{
2c0

∑̀
i=0

am−2i−1

}
≤ Ee(2c0+1)am−1 . (5.43)

By Lemma 5.21 and the fact that m2p1 is dominated by m3p1 , we have

Ee(2c0+1)am−1 ≤ E
[
e(2c0+1)y

]|A| ≤ e|A| , (5.44)

where the last inequality follows from (5.40). Now, (5.41) is proven by combining (5.42), (5.43),
and (5.44). �

We now proceed to proving Proposition 5.19.

5.3.3. Proof of Proposition 5.19. Recall that we want to bound P
[
A ∈ C∗R(A)

]
.

We start by defining

σ :=

{
max {i : ai = 1} if ai = 1 for some i ∈ J1, mK,
0 otherwise.

We further define events A and B as

A =
(
{σ > 0} ∩ {HA merges to one point in [τσ, τm]}

)⋃(
{σ = 0} ∩ {A ∈ C∗R(A)

)
,

B =
(
{σ > 0} ∩ {The history diagram starting from Wσ at t = τσ survives until t = τ1}

)
⋃
{σ = 0}.

Note that in the definition of A, on the event {σ > 0}, we put the additional constraint that all
the history diagrams in HA merge to a point in [τσ, τm]. Note that this is not guaranteed just by
assuming σ > 0, since it may happen that all the history diagrams have been killed except for one
edge which survives on its own up to τσ. Clearly, the event {A ∈ C∗R(A)} is a subset of A∩ B since
if σ > 0, the only way {A ∈ C∗R(A)} can occur is if A∩ B occurs since otherwise CR(A) has multiple
connected components. Thus we have

P
[
A ∈ C∗R(A)

]
≤ P [A ∩ B] . (5.45)

We next make and prove the following claim.

Claim. Conditioned on the event {σ = k} with k ≥ 0, two events A and B are independent.

Proof. For k = 0, the claim is immediate from the definitions of A and B. For k ≥ 1, let us
write Wk = {e}. Then, conditioned on the event {σ = k}, it suffices prove that the event A is
independent of Upd[0, τk] since B depends only on Upd[0, τk]. Clearly the behavior of the history
diagram starting from e in (τk+1, τm] is independent of Upd[0, τk]. Hence, it only suffices to check
the interval (τk, τk+1]. The event A imposes that all the edges in Wk+1 \ {e} exhibit the oblivious
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update in (τk, τk+1], while e ∈Wk+1 survives to τk without expanding to Conn(e; Ξk−1 ∪Ξk) which
by definition includes e as well as its adjacent edges. The first event is determined by Upd[τk, τk+1]
and hence is independent of Upd[0, τk]. The second event occurs only when there is no update at
e in Upd[τk, τk+1], and hence this event is also independent of Upd[0, τk] as well. This completes
the proof. �

By this claim and (5.45), we deduce that

P
[
A ∈ C∗R(A)

]
≤ E

[
P [A |σ] P [B |σ]

]
. (5.46)

We now claim that there exists C, M > 0 such that for all k ≥ 0,

P [B |σ = k] ≤ Ce−Mk . (5.47)

Since this bound trivially holds for k = 0 if we take C > 1, it suffice to consider the case k ≥ 1.
Select r ∈ {1, 2} so that (σ − r) mod 2 = 0. Then, by Lemma 5.26, we get

P [B |σ = k] ≤ P [ ar > 0 | ak = 1 ] ≤ E [ ar | ak = 1 ] ≤ Ce−Mk .

This proves the bound (5.47). Now by (5.46) and (5.47), we have

P
[
A ∈ C∗R(A)

]
≤ E

[
Ce−Mσ1A

]
. (5.48)

If |A| = 1 so that σ = m, this inequality proves the assertion of the proposition. Now we assume
that |A| ≥ 2, so that σ ≤ m − 2. Note that σ cannot be m − 1 since Wm−1 ⊃ A under A since
otherwise for e ∈ A\Wm−1, the set He is a singleton and hence He∩HA\{e} = ∅. Thus conditioned
on the event {σ = k} with k ≥ 1, the event A implies that

{ak+1 + · · ·+ am−1 ≥ |Conn(A)| − 1} ,

where, recall that |Conn(A)| is the smallest possible number of edges of the connected subgraph of
(Λn, En) containing A. We can neglect am since Wm = A ⊂ Wm−1 under A, and we used the fact
that ak = 1. On the other hand, for k = 0, the event A implies that

{a1 + · · ·+ am−1 ≥ |Conn(A)|} .

Recall from Definition 5.3, that our definition of the information percolation clusters only extended
up to τ1 and not τ0. This is reflected in the fact that the above sum starts from a1 instead of a0.
Therefore, we can bound the right-hand side of (5.48) from above by

m−2∑
k=1

Ce−Mk E
[
1 {ak+1 + · · ·+ am−1 ≥ |Conn(A)| − 1}1{σ = k}

]
+ C E

[
1 {a1 + · · ·+ am−1 ≥ |Conn(A)|} 1{σ = 0}

]
.

By applying 1{σ = k} ≤ 1 {ak+1, · · · , am−1 ≥ 2} here, we obtain

E
[
Ce−Mσ1A

]
≤ C

m+1∑
k=0

Hk , (5.49)

where

Hk = e−Mk E
[
1 {ak+1 + · · ·+ am−1 ≥ |Conn(A)| − 1} 1 {ak+1, · · · , am−1 ≥ 2}

]
.

For any C1, C2 > 0, by the Chebyshev inequality,

Hk ≤ e−Mke−C1(|Conn(A)|−1)e−2C2(m−k) Ee(C1+C2)(ak+1+···+am−1) .
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Now we take C1 and C2 such that C1 +C2 < c0 where the constant c0 is the one appeared in Lemma
5.27. Then, by Lemma 5.27 and the fact that |A| ≤ |Conn(A)|, we can further obtain

Hk ≤ e−Mke−C1(|Conn(A)|−1)e−2C2(m−k)e|Conn(A)| . (5.50)

For given θ > 0, we first take p small enough so that c0 > θ + 2 and M > 1. This is possible since

lim
p→0

c0 = lim
p→0

M = +∞

by (5.37) and Lemma 5.27. Take C1 = θ + 1 and C2 = 1/2. With this selection, the bound (5.50)
becomes

Hk ≤ eθ+1e−(m+θ|Conn(A)|)e−(M−1)k .

Combining this with (5.49) yields

E
[
Ce−Mσ1A

]
≤ C(θ)e−(m+θ|Conn(A)|) .

Thus the statement of the proposition follows by recalling that τm = m∆. �

6. Reduction to a product chain

From now on, we define
r = r(n) = 3 log5 n .

Moreover recall tmax from (4.10). Denote by (X†t )t≥0 the FK-dynamics defined on the periodic
lattice Zdr . Let Ωr = {0, 1}Er where Er = E(Zdr), and denote by π† := µrp,q the random-cluster
measure on Ωr = {0, 1}Er . Let Λ ⊂ Er be a box of size 2 log5 n. Then, define

dt = dt,n = max
x†0∈Ωr

∥∥∥Px0

[
X†t (Λ) ∈ ·

]
− π†Λ

∥∥∥
L2(π†Λ)

, (6.1)

where X†t (Λ) represents the configuration of X†t on Λ, and π†Λ stands for the projection of π† onto
the set Λ. The main result of this section is the following theorem.

Theorem 6.1. For all sufficiently small p, there exists a constant C1 = C1(p) such that the following
hold.

(1) For s ∈ [C1 log log n, tmax] and t ∈ [0, tmax], it holds that

max
ν:ν�Percn(tinit)

∥∥Pν [Xt+s ∈ · ]− µnp, q
∥∥
TV ≤

1

2

[
exp

{
nd

log12d n
d2
t

}
− 1

]1/2

+
4

n2d
.

(2) If t ≥ C1 log log n and

lim
n→∞

(
n

log10 n

)d
d2
t = +∞ ,

then we have

lim inf
n→∞

max
ν:ν�Percn(tinit)

∥∥Pν [Xt ∈ · ]− µnp, q
∥∥
TV = 1 .

Remark 6.2. As the proof will reveal, part (1) of the theorem holds even whenXt is the FK-dynamics
on Zdm, instead of Zdn, where m ∈ Jlog5 n, nK. The inequality in this case is

max
ν:ν�Percm(tinit)

∥∥Pν [Xt+s ∈ · ]− µmp, q
∥∥

TV ≤
1

2

[
exp

{
mdd2

t

}
− 1
]1/2

+
4

n2d
,

where dt is as in (6.1).
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Henceforth, the constant C1 > 0 will always refer to the constant appeared in this theorem. The
proof of this theorem will be presented in the remaining part of the current section. We shall assume
that p is small enough so that all the results established in Sections 4 (including 4.4) and 5 are valid.
As indicated in Section 2, following the strategy in [20] where a similar statement as Theorem 6.1
appears, we will reduce the chain to an approximate product chain. The only major difference in
the statement of Theorem 6.1, as compared to statements appearing in previous articles is that
owing to the non-locality of the dynamics, we initialize from a sparse initial condition dominated by
a sub-critical percolation which can be obtained by evolving the initial configuration for a burning
time (see Lemma 4.4).

We start by giving a short roadmap of what the various subsections achieve.
• The first part (Section 6.1) constructs the so called Barrier dynamics where the FK-dynamics
on (Z/nZ)d gets compared to FK-dynamics on a disjoint collection of (Z/rZ)d where r =
log5 n.
• We define the notion of Update support in Section 6.2. To get an upper bound on the
mixing time, we bound the total variation distance at d(t + s) where t = tmix = O(log n)
and s = log log(n). The natural strategy is to couple the configurations at time t+s starting
from any two arbitrary initial configurations. At this point the key observation is that
irrespective of the configuration at time t, all but a sparse set of small boxes couple at time
t + s. The remainder is called the ‘Update support’ for reasons which will be clear later
and hence the remaining task is to ensure that the time interval [0, t] is sufficient for the
FK-dynamics starting from two arbitrary configurations to couple on the ‘Update support’.
• We prove Theorem 6.1 in Section 6.3.

6.1. Coupling with barrier-dynamics. Divide En into disjoint squares of size log5 n as follows.
Let us write K = n/ log5 n and assume that K and log5 n are integers for the simplification of
notation. Define

Vn = {0, log5 n, 2 log5 n, . . . , (K − 1) log5 n}d ⊂ Λn .

For each v ∈ Vn, we define an edge box Bv by

Bv =
{

(u, u+ ej) : u ∈ v + J0, log5 n− 1Kd and j ∈ J1, dK
}
, (6.2)

where ej represents the jth standard normal vector in Rd. One can think of Bv as a box of size log5 n
with some boundary edges are removed. Note that (Bv)v∈Vn is a decomposition of En. Furthermore,
we mention that all the boxes below of various sizes, are edge boxes and hence for brevity we will
refer to them as boxes.

Figure 6.1. Figure illustrating the maps Pv.

Then, for each v ∈ Vn, consider the expanded box B+
v ⊂ Λn of Bv in the sense of (4.9). Then,

B+
v is a box of size log5 n+ 2 log4 n which is concentric with Bv. Let C+

v be another square lattice
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of size log5 n+ 2 log4 n and define a natural identification map Pv : B+
v → C+

v . Define Cv = Pv(Bv)
so that (Cv, C

+
v ) is a copy of (Bv, B

+
v ) (see Figure 6.1). We define

Ên =
⊔
v∈Vn

C+
v and Ω̂n = {0, 1}Ên .

Note that the last union is a disjoint union.

Definition 6.3 (Barrier-dynamics). For each v ∈ Vn, the barrier-dynamics is a FK-dynamics Xv
t

on C+
v coupled with Xt by sharing the same update sequence via the following rules:

(1) (Initial condition) The initial edge configuration on C+
v is identical to that of B+

v through
Pv. In other words, Xv

0 (Pv(e)) = X0(e) for all e ∈ Bv.
(2) (Dynamics) We define the FK-dynamics (Xv

t )t≥0 on C+
v with periodic boundary condition

by using the update sequence of B+
v . Formally stating, we perform updates for each e ∈ C+

v

by using the update sequence Upd(P−1
v (e)) of the edge P−1

v (e) ∈ B+
v .

For t ≥ 0, we define a random map Gt : Ωn → Ωn such that, for all X0 ∈ Ωn,

[Gt(X0)](e) = Xv
t (Pv(e)) ,

where v ∈ Vn is the unique index such that e ∈ Bv. The next lemma now says that the actual
dynamics and the barrier dynamics stay coupled for a significant amount of time provided the initial
condition is sparse enough (note that for a spin system the latter condition is not needed since each
update only depends on its immediate neighbors).

Lemma 6.4. Suppose that p is small enough and the law of the initial condition X0 follows the law
ν such that ν � Percn(pinit). Then, we have

P
[
Xt = Gt(X0) for all t ∈ [0, tmax]

]
≥ 1− n−2d .

Proof. By Lemma 4.11 (cf. Remark 4.13), it holds that

P
[
Xt(Bi) = Xv

t (Ci) for all t ∈ [0, tmax]
]
≥ 1− n−3d .

Thus, the conclusion of the lemma follows from the union bound since |Vn| < nd. �

6.2. Sparsity of update support.

Definition 6.5 (Update support). For each s > 0, denote by Us = Upd[0, s] the update sequence
between time [0, s]. Then, the random map Gs is completely determined by Us and hence we can
write Gs = gUs for some function gUs : Ωn → Ωn. The update support of Us is the minimum subset
ΓUs ⊂ En such that Gs is a function of X(ΓUs) for all X ∈ Ωn, i.e.,

gUs(X) = fUs(X(ΓUs))

for some fUs : {0, 1}ΓUs → Ωn.

Lemma 6.6. [20, Lemma 3.8] Fix t ≥ 0 and let Us represent the update sequence for the time
interval [t, t+ s] for s ≤ tmax where tmax was defined in (4.10). Suppose that p is small enough and
a probability measure ν in Ωn satisfies ν � Percn(tinit). Then, we have∥∥Pν [Xt+s ∈ · ]− µnp, q

∥∥
TV ≤

∫ ∥∥Pν [Xt(ΓUs) ∈ · ]− µΓUs

∥∥
TV dP(Us) + 2n−3d ,

where µΓUs
represents the projection of µnp, q on ΓUs.

Proof. The proof in the above reference relies only on the coupling of Xt and Gt(X0) for t ∈
[0, tmax]. For our model this has been established in Lemma 6.4 based on the bound on disagreement
percolation using the sparse initial conditions. �

Now we establish the sparsity of the update support ΓUs .
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Definition 6.7 (Sparse set). A S ∈ Ωn is called sparse if for some K ≤ nd(log n)−12d, the graph
induced by S can be decomposed into disjoint components A1, A2, · · · , AK such that

(1) For all distinct i, j ∈ J1, KK, there is no open path in S connecting Ai and Aj .
(2) Every Ai, i ∈ J1, KK, has diameter at most log5 n. In particular, there is a box of size

2 log5 n containing Ai.
(3) The distance between any distinct Ai and Aj is at least 4 log4 n.

We write Span to denote the set of sparse configurations in Ωn.

Figure 6.2. The figure illustrates the sparse update support. The purple regions
(including the orange buffer around them) denote the sets Ai (and A+

i ) as in Defi-
nitions 6.7 and 6.10.

Lemma 6.8. [20, Lemma 3.9] There exists C2 = C2(p) > 0 such that, for all s ≥ C2 log logn,

P[ΓUs ∈ Span] ≥ 1− n−3d . (6.3)

Proof. The only model-dependent part is the proof of the following fact: For t ≥ C2 log log n with
a large enough C2, ∑

e∈C+
v

P
[
Xv,full
t (e) 6= Xv,empty

t (e)
]
≤ log−10d n , (6.4)

where (Xv,full
t )t≥0 (resp. (Xv,empty

t )t≥0) is the FK-dynamics on periodic lattice C+
v with full (resp.

empty) initial condition. The proof of this fact in our setting follows from Corollary 3.4 which
indicates that, for some C > 0,∑

e∈C+
v

P
[
Xv,full
t (e) 6= Xv,empty

t (e)
]
≤ |C+

v |e−C log logn .

Hence, the bound (6.4) follows if we take C large enough. The remaining part is identical to cited
proofs and will not be repeated here. �

By Lemmas 6.6 and 6.8, we obtain the following result.

Proposition 6.9. Suppose that p is small enough and ν is a probability distribution on Ωn satisfying
ν � Percn(pinit). Then, for all s ∈ [C0 log logn, tmax] where C0 is the constant appearing in Lemma
6.8, there exists a measure Q on Span such that,∥∥Pν(Xt+s ∈ ·)− µnp, q

∥∥
TV ≤

∫
Span
‖Pν(Xt(Γ ∈ ·)− µΓ‖TV dQ(Γ) + 3n−3d .
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6.3. Proof of Theorem 6.1. Before jumping into the proof we will need some technical prepara-
tion. The next few results use coupling arguments to compare the actual chain to a product chain.
We start by defining a notion of good sets, and then introduce a generalized version of barrier
dynamics.

Definition 6.10. A collection of disjoint subsets A1, A2, · · · , AK of Ωn are m-good for some
m ∈

[
log4 n, (1/2) log5 n

]
if, each Ai is contained in a box of size 2 log5 n, and the expanded sets

A+
i , i ∈ J1, KK, are disjoint where

A+
i = {e ∈ En : d(e, Ai) ≤ m} .

As a consequence of Lemma 6.8, the sets Ai in the update support are log4 n−good (see Figure 6.2).
Let us take a box of size r = 3 log5 n containing A+

i and denote this box by Â+
i (this is possible

since m ≤ (1/2) log5 n). Take K copies L1, L2, · · · ,LK of the periodic lattice Zdr , and embed each
Â+
i to Li by a identification map Pi : Â+

i → Li.
For i ∈ J1, KK, denote by (Y

(i)
t )t≥0, the FK-dynamics on Li, whose update sequence and initial

condition are inherited from that of Â+
i = P−1

i (Li) of (Xt(Â
+
i ))t≥0. Let π(i) be the random-cluster

measure on Li so that π(i) is the invariant measure of Y (i)
t . Define the product spaces:

L =
K∏
i=1

Li , π =
K∏
i=1

π(i), and Y ∗t =
K∏
i=1

Y
(i)
t ,

and let

Γ =
K⋃
i=1

Ai ⊂ Ωn and Γ∗ =
K⋃
i=1

P(Ai) ⊂ L .

By slight abuse of notations, we identify Ai and P(Ai), for i ∈ J1, KK or Γ and Γ∗ and simply write
P(Ai) = Ai and Γ∗ = Γ. With this identification, we can regard Xt(Ai) and Y ∗t (Ai) or Xt(Γ) and
Y ∗t (Γ) as processes defined on the same space.

We first recall from Remark 4.13, that we can couple (Xt) and (Y ∗t ). In the lemmas below where
we record various coupling statements, we assume that the collection A1, A2, · · · , AK of subsets of
Ωn is m-good for some m ∈

[
log4 n, (1/2) log5 n

]
.

Lemma 6.11. Suppose that p is small enough and the law of the initial condition X0 follows the
law ν such that ν � Percn(pinit). Then, we have

P [Xt(Γ) = Y ∗t (Γ) for all t ∈ [0, tmax] ] ≥ 1− 1

n2d
.

Proof. Since K ≤ nd, it suffices to show that, for all i ∈ J1, KK,

P [Xt(Ai) = Y ∗t (Ai) for all t ∈ [0, tmax] ] ≥ 1− 1

n3d
.

This follows directly from Lemma 4.11. �

Now we obtain upper and lower bounds for the total-variation distance of (Y ∗t ) in the two lemmas
below. Combined with the previous coupling result, they yield bounds on the total-variation distance
for (Xt).

Lemma 6.12. For all sufficiently small p, we have that

sup
x0∈Ωn

‖Px0 [Y ∗t (Γ) ∈ · ]− πΓ‖TV ≤
1

2

[
eKd2

t − 1
] 1

2
,

where πΓ represents the projection of π onto Γ.
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Notation 6.13. In the statement of lemma, Px0 [Y ∗t (Γ) ∈ · ] means that the starting configuration
of Y ∗t is inherited from x0 ∈ Ωn by the collection map

∏K
i=1 P(i) :

∏K
i=1 Â

+
i →

∏K
i=1 Li. We define

Pν [Y ∗t (Γ) ∈ · ] for a probability distribution ν on Ωn in the same manner.

Proof. By the L1-L2 inequality we have

‖Px0 [Y ∗t (Γ) ∈ · ]− πΓ‖TV ≤
1

2
‖Px0 [Y ∗t (Γ) ∈ · ]− πΓ‖L2(πΓ) . (6.5)

Denote by π(i)
Ai

the projection of π(i) onto Ai. Then, since πΓ =
∏K
i=1 π

(i)
Ai
, by the bound of L2-norm

for product space (cf. [20, Section 3.2]), we obtain that

‖Px0 [Y ∗t (Γ) ∈ · ]− πΓ‖L2(πΓ) ≤

[
exp

{
K∑
i=1

∥∥∥Px0 [Y
(i)
t (Ai) ∈ · ]− π(i)

Ai

∥∥∥2

L2(π∗i )

}
− 1

]1/2

. (6.6)

By the definition of dt (see (6.1)) and by the fact that Ai is a subset of box of size 2 log5 n, we can
deduce from the definition of dt that∥∥∥Px0 [Y

(i)
t (Ai) ∈ · ]− π(i)

Ai

∥∥∥
L2(π∗i )

≤ dt . (6.7)

We now conclude using (6.5), (6.6) and (6.7). �

Recall that µΓ represents the projection of µnp, q to Γ. Using spatial mixing properties, we conclude
now that µΓ is close to πΓ. This follows from Lemma 4.10 which implies that the effect of the
boundary condition does not reach beyond the buffer region A+

i \ Ai for each i (see Figure 6.2).
Using this we prove that the total-variation distance between µΓ and πΓ is small.

Lemma 6.14. It holds that
‖µΓ − πΓ‖TV ≤

1

n2d
.

Proof. We apply Lemma 4.10 with A = Γ and B = En \
⋃K
i=1A

+
i . Recall the measure µ+

Bc and the
configuration X from Lemma 4.10. The latter implies that, with probability more than 1 − n−2d,
there exists a closed surface in X(A+

i \Ai) enclosing Ai for all i ∈ J1, KK. This implies the Lemma
by the domain Markov property of random cluster measure. For details about this argument, see
[5, Proof of Claim 4.2]. �

Lemma 6.15. Suppose that p is small enough, t ∈ [0, tmax] and the collection A1, A2, · · · , AK of
subsets of Ωn is m-good for some m ∈

[
log4 n, (1/2) log5 n

]
. Then under the notations of Definition

6.10, we have

d(t) +
2

n2d
≥ sup

x0∈Ωn

‖Px0 [Y ∗t (Γ) ∈ · ]− πΓ‖TV ,

where d(t) the total-variation distance at time t was defined in Section 1.3.

Proof. Since projection does not increase total-variation norm, we have

d(t) ≥ sup
x0∈Ωn

‖Px0 [Xt(Γ) ∈ · ]− µΓ‖TV . (6.8)

By Lemma 6.11, we have

sup
x0∈Ωn

‖Px0 [Xt(Γ) ∈ · ]− Px0 [Y ∗t (Γ) ∈ · ] ‖TV ≤
1

n2d
. (6.9)

By combining (6.8), (6.9), and Lemma 6.14, the proof is completed. �

We are finally ready to finish the proof of Theorem 6.1



CUTOFF FOR RCM 40

6.3.1. Proof of part (1): upper bound. In view of Proposition 6.9, it suffices to prove the following
proposition.

Proposition 6.16. Suppose that p is sufficiently small, Γ ∈ Span, and t ∈ [0, tmax]. Then, we have

‖Pν [Xt(Γ) ∈ · ]− µΓ‖TV ≤
1

2

[
exp

{
nd

log12d n
d2
t

}
− 1

]1/2

+
2

n2d
. (6.10)

Proof. Denote by A1, A2, . . . , AK the connected components of Γ in the sense of Definition 6.7.
Then, then A1, A2, . . . , AK are m-good with m = log4 n. Now we recall the notations from Def-
inition 6.10 and Lemma 6.12. We bound the total-variation norm at the left-hand side of (6.10)
by

‖Pν [Xt(Γ) ∈ · ]− Pν [Y ∗t (Γ) ∈ · ] ‖TV + ‖Pν [Y ∗t (Γ) ∈ · ]− πΓ‖TV + ‖πΓ − µΓ‖TV . (6.11)

We recall Notation 6.13 for the notation Pν [Y ∗t (Γ) ∈ · ]. We now bound these three terms separately
to complete the proof. For the first term, by Lemma 6.11 we have

‖Pν [Xt(Γ) ∈ · ]− Pν [Y ∗t (Γ) ∈ · ] ‖TV ≤
1

n2d
. (6.12)

By the Lemma 6.12, and the fact K ≤ nd/ log12d n, the second term is bounded by

‖Pν [Y ∗t (Γ) ∈ · ]− πΓ‖TV ≤
1

2

[
exp

{
nd

log12d n
d2
t

}
− 1

]1/2

. (6.13)

Finally, the last term at (6.11) is at most 1/n2d by Lemma 6.14. Combining this with (6.11), (6.12),
and (6.13), we can finish the proof. �

6.3.2. Proof of Part (2): lower bound. Given the above ingredients the proof of the lower bound
is almost verbatim from [20, Section 3.3] but nonetheless we include the proof in the appendix for
completeness.

In the following section we finish the proof of Theorem 1.1.

7. Proof of main result

We keep the notation r = 3 log5 n. The following lemma provides a sharp bound on dt.

Lemma 7.1. [20, Lemma 4.1] For all small enough p, there exists a constant C3 = C3(p) > 0 such
that

e−λ(r)(t+C3 log logn) − n−2d ≤ dt ≤ e−λ(r)(t−C3 log logn) (7.1)
for all t ∈ [C3 log logn, tmax].

Proof. Since
dt ≤ max

x†0∈Ωr

∥∥∥Px†0 [X†t ∈ · ]− π†
∥∥∥
L2(π†)

,

the upper bound part of (7.1) is immediate from Theorem 5.1. We note from this bound that

rd/2dt = o(1) for t = C log log n (7.2)

with sufficiently large C. Here we implicitly used Corollary 3.4. For the lower bound part, we first
recall the bound

e−λ(r)t ≤ 2 max
x†0∈Ωr

∥∥∥Px†0 [X†t ∈ · ]− π†
∥∥∥

TV
for all t ≥ 0 ,

which is the continuous time version of Proposition 3.1 (see [19, Lemma 20.11]). By Lemma 4.4 (in
particular, (4.2)), we have that

e−λ(r)(t+tinit) ≤ 2 max
ν:ν∈Percr

∥∥∥Px†0 [X†t ∈ · ]− π†
∥∥∥

TV
for all t ≥ 0 .
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We now take s = C1 log logn and t ∈ [C log log n, tmax], where C1 and C are the constants appeared
in Theorem 6.1 and in (7.2), respectively. Then, by the previous inequality and part (1) of Theorem
6.1 for the lattice Zdr (cf. Remark 6.2 with m = r = 3 log5 n), we have that

e−λ(r)(t+tinit+C1 log logn) ≤ 2 max
ν:ν∈Percr

∥∥∥Px†0 [X†t+s ∈ · ]− π†
∥∥∥

TV

≤
[
exp{rdd2

t } − 1
] 1

2
+ 8n−2d ≤ 2rd/2dt + 8n−2d ,

where the last inequality follows from (7.2) and the elementary inequality ex−1 ≤ 4x for x ∈ [0, 1].
We can deduce the lower bound from this computation. �

Given the above, the proof of Theorem 1.1 involves two steps:
• Prove a version (Proposition 7.2) with λ∞ replaced by λ(r) where r was chosen above.
• Show that λ(r) converges to λ∞ and have bounds on the convergence rate (Proposition 7.3).

Define
t(n) =

d

2λ(r)
log n and w(n) = log log n .

Proposition 7.2. For all small enough p, there exist two constants c1 = c1(p), c2 = c2(p) such that

lim
n→∞

max
x0∈Ωn

∥∥Px0

[
Xt(n)−c1w(n) ∈ ·

]
− µnp, q

∥∥
TV = 1 , (7.3)

lim
n→∞

max
x0∈Ωn

∥∥Px0

[
Xt(n)+c2w(n) ∈ ·

]
− µnp, q

∥∥
TV = 0 . (7.4)

Proof. By Lemma 4.4, it suffices to consider the initial condition ν satisfying ν � Percn(pinit). We
recall the constant C3 from the statement of Lemma 7.1. First, by the lower bound in Lemma 7.1
and by part (3) of Corollary 3.4,(

n

log10 n

)d
d2
t(n)−c1w(n) ≥

(
n

log10 n

)d
e−2λ(r)(t(n)−c1w(n)+C3 log logn) − n−d

≥ (log n)2λ(c1−C3)−10d − n−d .

Therefore, for c1 > C3 + 11d
2λ , we have

lim
n→∞

(
n

log10 n

)d
d2
t(n)−c1w(n) = +∞ ,

and thus by part (2) of Theorem 6.1 we obtain (7.3). Now we turn to (7.4). For c ∈ (0, C3), by the
upper bound of Lemma 7.1,

nd

log12d n
d2
t(n)+cw(n) ≤

nd

log12d n
e−2λ(r)(t(n)+cw(n)−C2 log logn) ≤ (log n)λ(C2−c)−12d .

By taking c close enough to C2 we obtain
nd

log12d n
d2
t(n)+cw(n) ≤

1

log11d n
. (7.5)

Let c2 = C1 + c where C1 is the constant appeared in Theorem 6.1. Then, by part (1) of Theorem
6.1 (note that this is where the sparsity assumption on ν is used) and (7.5),

max
ν:ν�Percn(tinit)

∥∥Pν [Xt(n)+c2w(n) ∈ ·
]
− µnp, q

∥∥
TV ≤

1

2

[
exp

{
nd

log12d n
d2
t(n)+cw(n)

}
− 1

] 1
2

+
4

n2d

≤ 1

2

[
exp

1

log11d n
− 1

] 1
2

+
4

n2d
.

This completes the proof of (7.4). �
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Notice that since λ(r) = Θ(1) (Corollary 3.4), we have w(n) � t(n), and therefore the previous
proposition already demonstrates the cutoff phenomenon provided that p is small enough. The next
result shows that the sequence (λ(r))r≥1 is a convergent sequence.

Proposition 7.3. [20, Lemma 4.3] There exists λ∞ = λ∞(p) > 0 such that

|λ(r)− λ∞| ≤ r−1/4+o(1) .

Proof. We only provide the modified choice of parameters needed for our purpose. A careful reading
of the proof shows that entire arguments presented above are still in force if we replace r = 3 log5 n
with r = log4+δ for any δ. Of course the constants that we obtained above must be modified to
depend on δ, and the time tmax should be defined as log1+δ n (cf. Remark 4.14). Taking r1 = log4+δ

and r2 ∈ [r1, r
2
1] and applying Proposition 7.2 with r = r1 and r = r2, respectively, yields

d

2λ(r1)
log n− Cw(n) ≤ d

2λ(r2)
log n+ Cw(n)

for some constant C = C(p, δ). Since λ(·) is bounded below, we obtain

λ(r1)− λ(r2) ≤ C log log n

log n
≤ r−1/4+δ

1

for all sufficiently large n. The rest of the arguments are exactly the same as [20, Lemma 4.3] and
are omitted.

�

7.1. Proof of Theorem 1.1. As mentioned before we can combine Propositions 7.2 and 7.3 to
deduce Theorem 1.1. Define

t∗(n) =
d

2λ∞
log n .

Thus we need to show that for all small enough p, there exist two constants c1 = c1(p), c2 = c2(p)
such that

lim
n→∞

max
x0∈Ωn

∥∥Px0

[
Xt∗(n)−c1w(n) ∈ ·

]
− µnp, q

∥∥
TV = 1 , (7.6)

lim
n→∞

max
x0∈Ωn

∥∥Px0

[
Xt∗(n)+c2w(n) ∈ ·

]
− µnp, q

∥∥
TV = 0 . (7.7)

The proof is now immediate from

|t∗(n)− t(n)| ≤ C|λ(r)− λ∞| log n ≤ C log−1/4 n .

�

7.2. Comparison to infinite volume dynamics. It is quite natural to predict that λ∞ is in fact
the spectral gap of the infinite volume FK-dynamics with the same parameters p and q. Defining
the latter is not trivial but this has been carried out in [17, Chapter 8]. For the Ising model a similar
result was shown in [20] using the monotonicity of the underlying dynamics as well as Log-Sobolev
inequalities. Even though the lack of monotonicity of the Potts model prevented the authors in [21]
to prove a similar conclusion, this was settled in [27, Section 6.2] using the Information Percolation
machinery which also implies the same for SW dynamics. Furthermore in [27], the authors remark
that the argument relies on bounds on disagreement propagation and an infinite version of the
exponential L2-mixing rate and hence holds in more generality for spin systems.

Thus in our context of the FK-dynamics to prove a similar result, given the disagreement propa-
gation bounds, stated in Section 4.4, the only remaining step is to establish an analog of Theorem
5.1 for the infinite system by proving an analog of Proposition 5.2 in the same setting. The ar-
gument in [27] proceeds by defining Information Percolation clusters for the infinite process. We
believe that this can be carried out in our setting as well, by suitable extensions of the arguments
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for finite systems presented in Section 5. However, we do not pursue verifying the precise details in
the paper.

8. Appendix

We provide the proofs that were omitted from the main article.

Proof of Lemma 4.11. We recall notations from Section 4.1 and in particular tmax from (4.10) and
write tmax = L∆ so that

0 = τ0 < τ1 < · · · < τL = log2 n .

We regard (Z−t )t≥0 as a Markov chain on Ωn such that the configuration outside of A+ is empty.
Also consider (Xt)t≥0, the FK-dynamics on Ωn starting from an initial condition which agrees with
(Z−t ) on A+. One can observe that under the monotone coupling,

Z−t ≤ Xt ≤ Z+
t for all t ≥ 0 . (8.1)

We recall the enlarged percolation F i from Table 1, and denote by Ei the event that there is no
open path of length β log n in F i for some β = β(p) > 0. Then, by Proposition 4.9 and the union
bound,

P[Ei] ≤
(
|En|

2

)
exp {−γβ log n} < 1

n4d

provided that β is large enough. Define E =
⋃L
i=1 Ei. Since L = tmax/∆ = Ω(log2 n), the union

bound implies that

P[E ] ≤ L 1

n4d
<

1

n3d
. (8.2)

We now claim that Ec implies that Z+
t (A) = Z−t (A) for all t ∈ [0, tmax]. Thus the claim along

with (8.2), finishes the proof of the lemma. To prove the claim, define Ai, i ∈ J0, LK, inductively as
AL = A and

Ai−1 = {e ∈ En : d(e, Ai) ≤ tmax∆} ,
so that

A+ = A0 ⊃ A1 ⊃ · · · ⊃ AL = A .

For all i ∈ J0, L − 1K, we shall prove that Z+
τi (Ai) = Z−τi (Ai) implies Z+

t (Ai+1) = Z−t (Ai+1) for all
t ∈ (τi, τi+1]. since then the proof of the claim is completed by the induction. Now it suffices to
observe that there exists a closed surface of F i in Ai\Ai+1 under Ei since the set

⋃
e∈∂Ai

Conn(e; F i)

is disjoint toAi+1 as there is no connected path of length Ω(log2 n) in F i (call this surface as Vi). The
proof now follows by noticing that the FK-dynamics for both Z+

t and Z−t agree on the component
of En \ Vi (say Ãi) containing Ai+1 (and hence on Ai+1) throughout [τi, τi+1], since the starting
configurations for both the chains agree on Ãi by induction and the dynamics has zero boundary
condition throughout [τi, τi+1]. �

Proof of Theorem 6.1, Part (2): lower bound. Recall r = 3 log5 n, and let us divide Zdn by K =

bn/rcd square boxes A+
1 , A

+
2 , · · · , A

+
K of size r as we did in Section 6.1. Then, let Ai be the box

of size 2r/3 which is concentric with A+
i . Then, the collection A1, A2, · · · , AK is m-good with

m = (1/2) log5 n. We recall the notations from Definition 6.10. By definition (6.1) of dt, we can
find x∗0 = x∗0(t) ∈ Ωr satisfying dt = ‖Px∗0 [X†t (Λ) ∈ · ] − π†Λ‖L2(π†Λ)

. Let Ui be a configurations on

Bi distributed according to π(i)
Ai
, where {Ui, 1 ≤ i ≤ K} is a collection of independent random

variables. Define a sequence of i.i.d. random variable ui as

ui =
P[Y

(i)
t (Ai) = Ui |Y (i)

0 = x∗0]

π
(i)
Bi

(Ui)
; i ∈ J1, KK .
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The condition Y (i)
0 = x∗0 means X0(Â+

i ) = x∗0. By the definition of ui and x∗0, one can readily check
that

Eui = 1 and Varui = d2
t . (8.3)

By the L∞-L2 reduction for reversible Markov chains, we have

‖ui − 1‖∞ =
∥∥∥P [Y (i)

t (Ai) ∈ · |Y (i)
0 = x∗0

]
− π(i)

Ai

∥∥∥
L∞(π

(i)
Ai

)

≤
∥∥∥P [Y (i)

t/2(Ai) ∈ · |Y (i)
0 = x∗0

]
− π(i)

Ai

∥∥∥
L2(π

(i)
Ai

)
≤ dt/2 .

Hence, by Theorem 5.1 we obtain

‖ui − 1‖∞ ≤ e−c log logn (8.4)

for some c > 0. Then, by (8.3) and (8.4), we have

E|ui − 1|3 ≤ e−c log logn d2
t = o(1)d2

t . (8.5)

Given the above inputs, the rest of the proof follows by arguments identical to [20, Section 3.3] and
is omitted. �
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