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Dynamic concentration of the triangle-free process

Tom Bohman * Peter Keevash f

Abstract

The triangle-free process begins with an empty graph on n vertices and iteratively adds edges
chosen uniformly at random subject to the constraint that no triangle is formed. We determine the
asymptotic number of edges in the maximal triangle-free graph at which the triangle-free process
terminates. We also bound the independence number of this graph, which gives an improved
lower bound on the Ramsey numbers R(3,t): we show R(3,t) > (1/4 — o(1))t?/logt, which is
within a 4 + o(1) factor of the best known upper bound. Our improvement on previous analyses
of this process exploits the self-correcting nature of key statistics of the process. Furthermore, we
determine which bounded size subgraphs are likely to appear in the maximal triangle-free graph
produced by the triangle-free process: they are precisely those triangle-free graphs with density
at most 2.

1 Introduction

Constrained random graph processes provide both an interesting class of random graph models and
a natural source for constructions in graph theory. Although the dependencies introduced by the
constraints make such processes difficult to analyse, the evidence to date suggests that they are
particularly useful for producing graphs of interest for certain extremal problems. Here we consider
the triangle-free random graph process, which is defined by sequentially adding edges, starting with
the empty graph, chosen uniformly at random subject to the constraint that no triangle is formed.
Formally, let G(0) be the empty graph on n vertices. At stage i we have a graph G(i); we denote
its edge set by E(i), and let O(i) be the set of pairs xy that are open, in that G(i) U {zy} has no
triangle. We obtain G(i + 1) from G(i) by adding a uniformly random pair from O(7).

This process was introduced by Bollobas and Erd6s (see [9]), and first analysed by Erd8s, Suen
and Winkler [12], using a differential equations method introduced by Rucinski and Wormald [23] for
the analysis of the constrained graph process known as the ‘d-process’. One motivation for their work
was that their analysis of the triangle-free process led to the best lower bound on the Ramsey number
R(3,t) known at that time. The Ramsey number R(s,t) is the least number n such that any graph on
n vertices contains a complete graph with s vertices or an independent set with ¢ vertices. In general,
very little is known about these numbers, even approximately. The upper bound R(3,t) = O(t?/logt)
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was obtained by Ajtai, Komlés and Szemerédi [I], but for many years the best known lower bound,
due to Erdés [I1], was Q(t%/log?t). The order of magnitude was finally determined by Kim [I7], who
showed that R(3,t) = Q(t?/logt). He employed a semi-random construction that is loosely related
to the triangle-free process, thus leaving open the question of whether the triangle-free process itself
achieves this bound; this was conjectured by Spencer [25] and proved by Bohman [5]. There is now
a large literature on the general H-free process, obtained by replacing ‘triangle’ by any fixed graph
H in the definition; see [8, 10, 191 20} 211, 221 28] 29, 30} B1, B2l 33]. However, the theory is still very
much in its early stages: we conjectured that our lower bound for H strictly 2-balanced, given in
[8], gives the correct order of magnitude for the length of the process, but so far this has only been
proved for some special graphs (cycles [211, 22, 29], K4 [30] and the diamond [20]).

In this paper, we specialise to the triangle-free process, where we can now give an asymptotically
optimal analysis. Our improvement on previous analyses of this process exploits the self-correcting
nature of key statistics of the process. For a treatment of self-correction in a simpler context see [6].
The methods that we use to establish self-correction of the triangle-free process build on the ideas
used recently by Bohman, Frieze and Lubetzky [7] for an analysis of the triangle-removal process.
Furthermore, the results of this paper have also been obtained independently and simultaneously by
Fiz Pontiveros, Griffiths and Morris [13]; their proof also exploits self-correction, but is different to
ours in some important ways (particularly in the methodologies for establishing self-correction and
the analysis of the early part of the process, and also including many subtle differences, such as the
definitions of the ensemble of key statistics that can be mutually controlled throughout the process).

Let G be the maximal triangle-free graph at which the triangle-free process terminates.

Theorem 1.1. With high probability, every vertex of G has degree (1 + 0(1))\/%11 logn. Thus the
number of edges in G is (ﬁ + o(l)) (logn)'/2n/2 with high probability.

We also obtain the following bound on the size of any independent set in G.
Theorem 1.2. With high probability, G has independence number at most (1 + o(1))+/2nlogn.

An immediate consequence is the following new lower bound on Ramsey numbers. The best known
upper bound is R(3,t) < (1 + o(1))t?/logt, due to Shearer [24].

Theorem 1.3. R(3,t) > (; —o(1)) t*/log .

These results are predicted by a simple heuristic. The graph G(i) that we get after i steps of the
triangle-free process should closely resemble the Erdds-Rényi random graph Gy, , with i = np/2,
with the exception that G, ;, should have many triangles while G(i) has none.
In addition to Theorems and we show that this heuristic extends to all small subgraph
counts; in particular, we answer the folklore question (brought to our attention‘byﬁoel Spencer) of
_ |En

which subgraphs appear in G. The density of a graph H with Viy # 0 is d(H) = Wil The mazimum

density m(H) of H is the maximum of d(H') over non-empty subgraphs H’' of H.
Theorem 1.4. Let H be a non-empty triangle-free graph.

(i) If m(H) <2 thenP(H CG)=1-0(1).



(i1) If m(H) > 2 then P(H C G) = o(1).

Thus, the small subgraphs that are likely to appear in G are exactly the same as the triangle-free
subgraphs that appear in Gy, , when p = O(n~1/2 log!/? n).

Note that the lower bound on R(3,t) given by the triangle-free process is non-constructive; for
an explicit construction of a triangle-free graph on @(t3/ 2) vertices with independence number less
than ¢ see Alon [2]. Alon, Ben-Shimon and Krivelevich [3] gave a construction that can be applied
to G to produce a regular Ramsey R(3,t) graph, at the cost of a worse constant in the lower bound
on R(3,t).

The bulk of this paper is occupied with the analysis required for the lower bound in Theorem
To prove this, we in fact prove much more generally that we can ‘track’ several ensembles of ‘extension
variables’ for most of the process; this is formalised as Theorem [2.13] The proof of Theorem [2.13
is outlined in the next section, then implemented over the four following sections. In Section (3| we
present some coupling and union bound estimates that are needed throughout the paper, and also
prove Theorem assuming Theorem [2.13] In Sections and [0} we prove Theorem [2.13] via a
self-correcting analysis of three ensembles of random variables. Section [7] is mostly occupied by the
proof of Theorem it also contains the proof of the upper bound in Theorem which is similar
and easier. We conclude with some brief remarks in Section [8l

2 Overview of lower bound

In this section we outline the proof of the lower bound in Theorem We are guided throughout
by the heuristic that G(i) should resemble G,,, with i = n?p/2. Before proceeding with the outline
of the proof we mention a consequence of this heuristic that is central to the entire argument. We

introduce a time parameter ¢ that is a rescaling of the number of steps 4, defined by

t=in"%2.
For intuition, it is helpful to think of ¢ as a continuous parameter, as it takes values less than +/logn,
which is negligible compared with the polynomial scalings of the key statistics of the process.
Note that
p= 2tn~1/2,

We define Q(7) to be the number of open ordered pairs in G(i). (So Q(i) = 2|O(i)|.) This variable
is crucial to our understanding of the process. We have Q(0) = n? — n, and the process ends exactly
when Q(i7) = 0. How do we expect Q(i) to evolve? If G(i) resembles Gy, then for any pair uv we
should have

P(uv € O(i)) =~ (1 —p2)n72 ~e W = e

We set g(t) = e~*°n2 and expect to have

for most of the evolution of the process. This is exactly what we prove.



2.1 Strategy

We use dynamic concentration inequalities for a carefully chosen ensemble of random variables as-
sociated with the process. We aim to show V(i) ~ v(t) for all variables V' in the ensemble, for some
smooth function v(t), which we refer to as the scaling of V. Here V(i) denotes the value of V' after i
steps of the process, and we scale time as t = in~3/2. For each V we define a tracking variable TV (i)
and aim to show that DV (i) = V(i) — TV (3) satisfies |DV (i)| < dv(¢)v(t), for some error functions
Oy (t). We use TV (i) rather than v(t) so that we can isolate variations in V' from variations in other
variables that have an impact on V.

The improvement to earlier analysis of the process comes from ‘self-correction’, i.e. the mean-
reverting properties of the system of variables. We take dy(t) = fv(¢) + 2g9v(t), where we think
of fy(t) as the ‘main error term’ and gy (¢) as the ‘martingale deviation term’. We usually have
gy < fy, but there are some exceptions when ¢ is small and hence fy (¢) is too small. We require
gv(t)u(t) to be ‘approximately non-increasing’ in ¢, in that gy (¢ )v(t') = O(gy (t)v(t)) for all ¢’ > ¢[l]
We define the critical window

Wi (4)

[(fv () + gv()v(t), (fv(t) +2gv(t))v(t)].
We aim to prove the trend hypothesis for V', which is the following statementﬂ
ZV (i) := |DV(3)| — oy (t)v(t) is a supermartingale when |DV (i)| € Wy (q). (1)

The trend hypothesis will follow from the variation equation for dy (t), which balances the changes in
DV (i) and 0y (t)v(t). Since errors can transfer from one variable to another, each variation equation
is a differential inequality that can involve many of the error functions.

We aim to track the process up to the time

tmar = %\/(1/2 —¢)logn,

where € > 0 is a constant, fixed throughout the paper, that can be arbitrarily small. More precisely,
we will define a stopping time I as the first step ¢ at which we have failure of various events (defined
below), which include the event that V satisfies its required bounds. It will suffice to show that
I > imaz = tmazn®/? with high probability.

One way that I < 4,4, can occur is when there exists i* = I < 4,4, and some variable V' where
DV (i*) is too large. In this situation, DV enters Wy, from below at someE| step i’ < ¥, stays in Wy (i)
for i’ <14 < i* then goes above Wy (i*) at step ¢*. During this time ZV (i) is a supermartingale, with
ZV(i' —1) < —gy(t)v(t') and ZV (i*) > 0, so we have an increase of at least gy (t')v(t') against the
drift of the supermartingale. Then we use Freedman’s martingale inequality [I4], which is as follows.

!There will be one exceptional type of variable, the vertex degrees, for which this does not hold.

2 We will only give the analysis for ‘upper critical window’, i.e. we consider DV (i) positive; the case of DV (i)
negative can be treated in exactly the same way with reversed signs. We also remark that we need to ‘freeze’ ZV (7) if
V becomes ‘bad’ (see in Section .

3 We will be able to assume a certain lower bound 3’ > iy via coupling arguments given in Section [3| and also that
V' is ‘good’ (see Section [2.5)).



Lemma 2.1 (Freedman). Suppose (X (i))i>0 is a supermartingale with respect to the filtration F =
(Fi)izo. Suppose that X(i+1) — X (i) < B for alli and define V(j) = Y1, Var(X (i) | Fi—1). Then

for any a,v > 0 we have

2
P (Ji such that X (i) > X(0) +a and V(i) <v) < exp <_2a> _

(v+ Ba)
To apply Freedman’s inequality, we let F = (F;);>0 be the natural filtration for the triangle-free
process, in which each F; consists of all events determined by the choice of the first ¢ edges, and we

estimate

Vary (i) := Var(ZV (i) | Fi—1) and  Ny(i) :=|ZV(i+ 1) — 2V (i)].

Since gy (t)v(t) is approximately non-increasing (unless V' is a vertex degree variable), to obtain the
required estimate |DV (i)| < dy (t)v(t) with subpolynomial failure probability, it suffices to have the
following two bounds, which together we call the boundedness hypothesis:

gv(t)*v(t)? =w (Varv(z')(n log n)3/2> , (2)

gv(t)v(t) = w (Ny(i)logn). (3)

The lower bound of Theoremwill follow from Theorem below, in which we show I > iy,40
with high probability, so every variable in our ensembles satisfies the required estimate for all ¢ < 4,443
in particular Q(i) > 0, so the process persists at least to step i;q,. The proof of Theorem isby a
union bound over a polynomial number of events, each of which has subpolynomial failure probability
(for brevity, we say these events hold ‘whp’, meaning ‘with high probability’). We divide these events
into four groups, which are treated successively over the next four sections: firstly events not analysed
by the critical window method described in this section, and then critical window events for three
types of variables. The above discussion proves that for each variable V' the required critical window
event holds whp under the trend and boundedness hypotheses. For ease of reference we formulate
this as a lemma, in which Iy, denotes the first ¢ > iy (the ‘activation step’ for V', see Definition
at which the required estimate on V fails (we let Iy = oo if there is no such step).

Lemma 2.2. For any variable V' and step iy > 1, if |DV (iy)| < dv(ty)v(ty) and the trend and
boundedness hypotheses for V' hold for all iy < i < I then whp we do not have I = Iy < ipmay-

2.2 Variables

All definitions are with respect to the graph G(i) of edges at step i of the triangle-free process.
Sometimes we use a variable name to also denote the set that it counts, e.g. Q(7) is the number of
ordered open pairs, and also denotes the set of ordered open pairs. We usually omit (¢) and (¢) from
our notation, e.g. @@ means (i) and g means ¢(t). We use capital letters for variable names and the
corresponding lower case letter for the scaling. We express scalings using the (approximate) edge
density and open pair density; these are respectively

p=2in"?= 2tn~'/?  and q= e~ 4t



The next most important variable in our analysis, after the variable ) defined above, is the
variable Y, which, for a fixed pair of vertices uv, is the number of vertices w such that uw is an
open pair and vw is an edge. It is natural that Y, should play an important role in this analysis, as
it directly controls the evolution in the number Q(i) of ordered open pairs: if uv is the edge selected
at step 7 + 1 then

Q(i) — Qi+ 1) =2(1 + Yo + Yau).

Similarly, we have the following expression, used throughout the paper, for the probability (condi-
tional on the history of the process up to step ) that any particular open pair in ((7) is not open in

Qi+ 1):
Bluv ¢ Qi +1) | Fovuw € Q) = 201 + Yim + Y1) /Q. )

From the heuristics (which we will prove) Y ~ y = 2tgn'/? and Q ~ ¢ = ¢n? we can approximate
edge-closure probabilities by

4y(t)/q(t) = 8tn™ = —n=32¢ (1) /4(1), (5)
which agrees with the intuition provided by the mean value approximation
q(t) = 4t +n"?) ~ =g (tyn /2.

To control these variables we need to embed them in some larger ensembles of variables that
mutually control each other. The motivation for introducing each of the ensembles defined below
is as follows: control of the global variables is needed to get good control of @ (better than that
implied by control of all Yy,,), control of the stacking variables is needed to get good control of Y,,,
and controllable variables play a crucial role in our analysis of the stacking variables.

2.2.1 Global variables

We begin with the variable that we are most interested in understanding: the number of open pairs.
We also include two other variables that will allow us to maintain precise control on the number of
open pairs.

e Q = 2|0(i)| is the number of ordered open pairs. The scaling is ¢ = §n>.
e R is the number of ordered triples with 3 open pairs. The scaling is r = ¢3n3.

e S is the number of ordered triples abc where ab is an edge and ac, bc are open pairs. The
scaling is s = p¢2n® = 2t¢%n5/2.

We refer to @, R and S as global variables.

2.2.2 Controllable variables

Next we formulate a very general condition under which we can approximate a variable up to a
proportional error with polynomial decay. Suppose I' is a graph, J is a spanning subgraph of I' and
A C Vp. We refer to (A, J,T') as an extension. Suppose that ¢ : A — [n] is an injective mapping. We
define the extension variables X4 jr (i) to be the number of injective maps f : Vi — [n] such that



(i) f restricts to ¢ on A,
(ii) f(e) € E(i) for every e € E not contained in A, and
(iii) f(e) € O(i) for every e € Er \ E; not contained in A.

We call (J,I") the underlying graph pair of X4 jr. We introduce the abbreviations V = Xy s,
n(V)=I[Vr|—[4], e(V)=e;s— eja), and o(V)=(er —ej) — (er[A} - eJ[A])7

which are respectively the numbers of vertices, edges and open pairsE| not contained in the base of

the extension. The scaling of V is a deterministic function of the time ¢ defined by

v=gz0 =n"VpVgV)

i.e. it predicts the evolution of V according to the heuristic that each of the ~ n™V)

injections
[+ Vb — [n] satisfying (i) should independently satisfy (ii) for each e € E; \ E ;4 with probability
p and (iii) for each e € Er \ Erp4) with probability ¢. This prediction is correct only if there is no
subextension that is ‘dense’, in that it has scaling much smaller than 1.
When considering such subextensions (B, J[B'],I'[B']) with A C B C B’ C Vp, we denote the
scaling by
Sgl - SBl(Ja ) = n|B/‘_‘B‘peJ[B’]_eJ[B]qA(EI‘[B’]_eJ[B’])_(eF[B]_eJ[B])'

1"

For example, S'T — 4. Note that if A C B C B’ C B” C Vi then Sg// = Sg Sgl.
Let ¢’ > 1. We say that V' is controllable at time t' if o(V') > 0 (i.e. at least one pair not contained
in the base is open) and for 1 <t <t and A C B C Vi we have

SE,T) >0, (6)

where ¢ > 0 is a fixed global parameter much smaller than & (see below for the parameter
hierarchy).

We say that V is controllable if it is controllable at time 1. The controllable ensemble is the
collection of controllable variables X, s such that [Vp| < M3, where M = 3/e (see below).

Remark 2.3. The proof that we can track the controllable variables (up to the precision needed
for our purposes) is relatively short. In a certain sense, our results on controllable variables can be
viewed as a triangle-free process analogue of the concentration on subgraph extensions in G, that
follows from Kim-Vu polynomial concentration (see Lemma below). A similar analogue should
hold for the triangle removal process, and the introduction of this idea would simplify the analysis

of the triangle removal process recently given by Bohman, Frieze and Lubetzky [7].

“We hope that this will not be confusable with our use of the ‘little-o’ notation o(1) — 0 as n — co.
® The letter ‘S’ is used for scalings and stacking variables, but we hope that this will not lead to any confusion, as
the use is determined by the form of the superscript.



2.2.3 Stacking variables

In order to understand the evolution of the global variables @), R and S, we now introduce an
ensemble of stacking variables. The name of this ensemble indicates that its members are obtained
by stacking basic building blocks, each of which is a one-vertex extension. We start with two such
extensions which are defined for every ordered pair uwv. We have already met the first, Yy, in our
above discussion of the evolution of @); the second, X,,, is clearly required for understanding the
evolution of Yy, as if w contributes to X, and we select the edge vw then w will instead contribute
to Yuu.

e Y, is the number of vertices w such that uw is an open pair and vw is an edge. The scaling

is y = 2tgnt/2.

e X, is the number of vertices w such that uw and vw are open pairs. The scaling is = = ¢°n.
The other two building blocks are one-vertex ‘degree’ extensions defined for every vertex wu.

e X, is the open degree of u, defined as the number of vertices w such that uw is open. The
scaling is 1 = ngq.

e Y, is the degree of u, defined as the number of vertices w such that uw is an edge. The scaling
is y1 = 2tn!'/2.

We will define stacking variables by composing certain sequences of such one-vertex extensions.
We start by setting up notation for describing an arbitrary such variable, although we will only track
a subset of the collection of the stacking variables, the M-bounded stacking variables, which will be
defined later in the section.

Definition 2.4. We deﬁneﬁ a symbol set ¥ = {0, B, Y9, XO YT X'} and let S be the set of all
non-empty finite sequences 7 in ¥ (i.e. m € Uy,>1X") such that

(i) if E occurs then it only does so as the last symbol of m,

(i) =(1) ¢ {¥7, X'},
(iii) there is no ¢ with 7(i) = O and 7(i + 1) € {Y!, X'}, except possibly in the last two positions.

For any m € S and pair of vertices uv (we will only consider uv ¢ E(i)) we define S}, according
to the following rules. At each step there is an active rung (initially uv) and a last vertex (initially v).
Suppose we have constructed i — 1 steps of our stacking variable and that we have an active rung xy
with last vertex y. If (i) = O (‘open’) then the next step is an X, extension, the single open pair in
this extension is the new active rung, and the new vertex is the new last vertex. If (i) = E (‘edge’)
then the next step is an Y} extension and then there is no active rung: the variable terminates here.

Now suppose 7(i) ¢ {O, E'}; that is, suppose (i) indicates an X or Y extension on the active
rung. The superscript indicates the direction of this extension. For Y it determines whether we add

5 Each symbol represents a certain extension (as described below). We include condition (i) so that the definition
makes sense and (ii), (iii) so as to reduce the number of cases in the analysis of stacking variables.
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Figure 1: The stacking variable ST, corresponding to # = YO X9 XOYP0Y° X OOYPOE. Thick
lines represent edges and thin lines represent open pairs. Open pairs with one vertex in each row of
the diagram are rungs. There are 3 triangular ladders, namely w[—1; 4] = 7[v; 4], 7[4; 7] and =[8; 10],
which respectively have sets of turning points {aq, ag, as}, {as} and {ag}.

Yy or Yy, and the new open pair becomes the active rung. For X it determines which of the two
new open pairs becomes the active rung. In both cases, a superscript of O (for ‘outer’) indicates that
the new active rung is incident with the last vertex, y, while a superscript of I (for ‘inner’) indicates
that the next active rung is not incident with y (i.e. it is incident with x).

We think of S7, as counting injections ¢ from V(S7,) := {aw, ay,a1,..., )} to [n] such that
(o) = u, P(ow) = v and each 1(a;) is a vertex that plays the role in the extension defined by
w(j) for j =1,...,|x|, ie. S7, = Xy jr is the extension variable with V(I') = V(S7,), A = {aw, av},
d(ay) = u, ¢(ay) = v and (J,T') is defined so that edges specified by the extension are mapped to
edges of G(i), and likewise for open pairs.

The above distinction between ‘inner’ and ‘outer’ is crucial for understanding what kind of pro-
portional accuracy one should expect in controlling these variables. For an intuitive explanation of
this phenomenon, and to clarify the meaning of the definition, we introduce a pictorial representation
of stacking variables, in which we think of the vertices of the active rung as the locations of the feet
of someone walking on the graph. An outer extension corresponds to moving the other foot to that
moved in the previous step, whereas an inner extension corresponds to moving the same foot (the
intuition in the latter case is that the variable then ‘sees less’ of the graph and so suffers a less
accurate approximation).

In our pictorial representation (see Figure 1), we visualise 7 as a horizontal strip of two rows
(‘top” and ‘bottom’), with vertex labels arranged sequentially from left to right according to the
corresponding order in w. We start by assigning «, to the top and «, to the bottom. In each
step we assign the new vertex so that any pair of vertices meets both rows if and only if it is a
rung (this uniquely defines the assignment). The direction superscripts indicate whether the new
vertex is added to the same (I) or different (O) row to the last vertex. Conversely, any such drawing
determines a unique order «g, ..., ay of vertices, which we call the stacking order, from which we can
reconstruct .

We note that the vertex set of any rung is a cutset of the graph I' associated with S7, .

The simplest stacking variables are those of length 1, namely the building blocks Sifjo = Xuo,



S};O =Yy, SO = X, and SE =Y,. The last two examples illustrate the general phenomenon that
when (1) € {O, E'} we obtain an extension based at the single vertex v, which does not depend on
u. While we could denote this variable more simply by S7, it is convenient to have a unified notation
for stacking variables that allows the effective base of the extension to have one or two vertices.

We also introduce some further terminology which is suggested by the faint resemblance between
our drawings of stacking variables and ladders. A triangular ladder m[z;y] of 7 is a portion of V(ST,)
cut off by a subsequence = — 2,...,y of consecutive positions in © where z,...,y is a maximal
subsequence such that 7(j) ¢ {O, E} for all z < j < y. (In this definition, we adopt the convention
oy, = a_1 and a, = ap so as to allow x € {1,2}.) If z < i < y we say that «; is a turning point if the
superscript of 7(i + 1) is O. Note that if «; is a turning point then it is in at least two rungs. The
open pairs containing «; are a;-a; and aja; for all i +1 < j < 4T, where i~ is the previous turning
point (or z if there is none) and " is the next turning point (or y if there is none). If a; is in the
top row (for example) then ;- and «; for i +1 < j <™ are consecutive along the bottom row. We
note that any stacking variable is a concatenation of some number of triangular ladders and paths
of open pairs, possibly ending with a pendant edge.

We refer to an edge or open pair that is a not a rung as a stringer.

We do not track all of the stacking variables defined above; instead, we will track a certain
finite family (with size bounded as a function of €). The precise definition of this family is quite
subtle, as we need to take account of both size and direction in order to obtain an ensemble that
can be controlled mutually with the other ensembles of variables. We will impose a bound on
the length of any consecutive subsequence consisting only of symbols with superscript I (which
corresponds to the walker keeping one foot fixed). We will also bound the weight of w € S, defined
by w(m) = wi () + wa(w), where

wi(m) = [{i € r] : 7(6) € {0, EY}| and wa(r) = [{i € |nl s 7(i) € {XO, YO} (7)
Now we define the M-bounded stacking variables that constitute our stacking ensemble.
Definition 2.5. We say that a stacking sequence m € S (see Definition is M -bounded iiﬂ
(i) w(m) <2M, and w(n') < 2M, where 7’ is obtained from 7 by deleting 7(|7]),

(ii) 7 does not contain any consecutive subsequence of length M using only {X’,Y'}.
We let Sys be the set of M-bounded stacking sequences.

The stacking ensemble is the collection of all variables of the form S, where m € Syy.
We conclude this section with a simple observation on M-bounded stacking sequences.

Lemma 2.6. If 7 € Sy is an M-bounded stacking sequence then the length of m is |r| < 2M?2.

Proof. Let w3() be the number of maximal consecutive subsequences of 7 using only {Y!, X'}. By
Definition i we have w3(m) < 2M — 1, as any two such sequences are separated by positions that
contribute to w(m). Furthermore, by Definition ii each such subsequence of has length at most
M — 1. Therefore |7| < w(w) + (M — Dws(r) < 2M + (2M — 1)(M — 1) < 2M?2. O

" The precise form of this definition will be crucial in Sections m (outer destruction) and (fan end destruc-
tion).
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2.3 Tracking variables

Recall that each variable V' has a tracking variable 7V and we track the difference DV =V — TV,
so as to isolate variations in V' from other variations in G(7).

The tracking variables are defined as follows. For the global variables we take
TQ=q, TR=n>(Q/n*)? =@ 3 TS=n 2t 2. (Q/n*? = 2tn"32Q"%

Note that 7R and TS are chosen so that DR and DS isolate the variations in R and S that do not
naturally follow from the variation in Q).

If V is a one-vertex extension with a edges and b open pairs not within its base we take
TV =n-(2tn~ 2. (Q/n?)".

That is, we set T Xyo = Q*n 3, Ty = 2tn=3/2Q, TX, = Qn~!, and TY, = pn = 2tn'/2.

For the stacking variable ST, with |7| > 2 we have two Casesﬁ depending on the form of w. The
first case is that w(|m| —1) # O or 7(|n|) € {O, E'}. We write 1 = 7~ oU, where U is the last element
of 7, and let

TSI, =Sq, TU.
Note that this choice of TS7, isolates variations that are not caused by variations in ST, .

The second case is that 7(|7| — 1) = O and 7(|xn|) ¢ {O, E} (we must have |r| > 2). We write
m =7 OU, where U is the last element of 7, let § = a|;_5 and

> resp Xig @2 if U e {X!, X9}
— -1/2 e — v
TST = Zfesw_Xf()'Qtn / fU=Y
> pesr Xp) Y -@n? ifU=YO,
recalling that X, denotes the open degree of vertex a and Y; denotes the degree of vertex b.
For a controllable variable V' we will only obtain fairly weak approximations, so the precise

definition of the tracking variable is not very important; it is convenient for the calculations to

isolate the variation due to @, so we let

TV = nn(V)pe(V) (Qn72)o(V) '

2.4 FError functions and activation times

With the definitions of our variables in hand, we will now introduce some further notation and define
the error functions dy (recall that we aim to show V = TV £ vdy for each variable V' in each of the
three ensembles). Throughout the paper we fix parameters according to the hierarchy

R (8)

the roles of these parameters may be understood by reference to @D and for €, to @ for ¢, and
to Definition for 6. Our asymptotic notation is respect to n, e.g. o(1) denotes a quantity that

8 Section includes more discussion and motivation of the definition of 757,.
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can be made arbitrarily small for n sufficiently large. We track the process until the time ¢,,,, at

which §(tmaez) = n~Y/?7¢; thus
tmaz = % V (1/2 - 5) log n. (9)

The constant M that bounds the size of the stacking and controllable variables depends on 4,
through e: we let
M =3/e. (10)

We will now define the error functions dy .

Definition 2.7. Writeﬁ
e(t) = q@t)"?n* and L =+/logn.

Our error functions take the form dy = fy + 2¢gv, Wherﬂ
frt) =cvov(t), gv(t)=cyov(t) 9L (1+t“")) and

e if V is a stacking variable,

¢v = q e if V is a global variable,

ed if V is a controllable variable.

The behaviour of the error functions in Definition [2.7] is mainly determined by the functions
¢v, and can be understood without reference to the deferred definitions of ¢y and ¥, as the ¢y are
‘constants’ (i.e. independent of time; they are polylogarithmic in n) and the function ¥(¢) is bounded
by constants (depending on &, but not on n). We introduce 9 and the t=¢") term in gy (¢) to handle
some technicalities that arise for ¢ = o(1) (which is not the most significant regime of the process, but
nevertheless exhibits slightly different behaviour from the later regime, so our proof must account
for this difference). When t = Q(1) we have gy = O(L~'fy) = o(fy), whereas if t = o(1) with
sublogarithmic decay and e(V') > 0 then we have gy > fi,. The point of the t=¢(V) term is that the
dominant term in vgy as t — 0 does not contain a power of ¢.

The intuition for taking ¢y = e for stacking variables is that they include the variables Y,
which have scaling y = 2t¢n'/? = 2te~2, and which one cannot expect to control to proportional
error better than y~/2. Thus e is a natural reference point for discussing approximations. We note

for future reference that
e increases from e(0) = n~% to e(tmaz) = n_E/Q, (11)

so e always has sublogarithmic decay in n. The notation L = /logn will be convenient as we always
have t < tpa: < L. We also note for future reference that the density ¢ of open pairs is always much
large than the density p of edges: we have

q/p=e"2/2t > n°/2L > n°/2. (12)

9 We hope that e will not be confused with the base of natural logarithms; the exponential function is denoted by

exp throughout the paper.
10 We defer the definitions of ¢y and ¥ to Definition
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We take ¢y = €2 for the global variables so that for these variables we can neglect ‘product’ error
terms arising from applications of Lemma [2.14] below. This is well within the theoretical limit on
the accuracy for @, namely ¢~ /2 = e~1n=3/* <« e2; the ‘extra room’ will be helpful in the coupling
arguments in Section [3| for establishing the required estimates for small . For the controllable
variables we only require accuracy that decays sublogarithmically, so we take ¢y = €°, where for &
we recall the parameter hierarchy .

The constants ¢y that appear in Definition [2.7] will be chosen in Definition [2.8] to establish the
trend hypotheses (i.e. to show that each ZV is a supermartingale). We will see that approximation
errors migrate in a complex fashion between the variables and so these choices are quite delicate. As
we treat each ensemble of variables in turn during the next three sections we will derive inequalities
that these constants must (and do) satisfy in order for the trend hypothesis to hold: see the ‘variation
equations’ , , , , , , and .

We think of the ¢y’s as ‘constant’ as they do not depend on time (they are all polylogarithmic
in n). We specify them now in advance of the analysis, but we will keep the notation general so
that it is clear how to choose the constants. We also define the function ¥(¢) used above. Note
that the constants for the stacking variables are chosen very carefully, so that they decrease as the
length of 7 increases (corresponding to more accurate approximations for longer extensions), which
will be important in Section m (simple destruction), and there is a more substantial decrease for
each occurrence of O or E (counted by wi(m)), which will be important in Section (fan end
destruction). There is also an adjustment for the case m = O, as our argument for controlling degree
extensions requires a slightly smaller constant for open degree extensions (see Section .

Definition 2.8. For all controllable variables we take c¢;y = 1. For the global variables we take
CR = L40, Ccg = 2L40, cQ = 4L4D.

For a stacking variable V = S7,, recalling w1 (7) from (7)), we set

uv?

v =cp = L1594M2—|7r|—Mw1(7r)(2'2)—1,\.:0.

Let K = M% = (3/£)% and 9 : [0, 00] — [1,00] be any increasing smooth function such that

I(t) =eXt for 0<t <1, sup|d(t)] < 2K and sup(|¥'(t)] + [0 (1)]) < co.
>0 >0

Recalling from Definition and Lemma that w(r) < 2M and || < 2M?, we see that
LY < ey < L9 for any V = St

Next we define the ‘activation step’ ¢y, at which we start tracking a variable V' using the martingale
arguments in Section (before then we will use the coupling arguments of Section. Our definition
is uniform across all V' bar one technical exception in which the activation step is slightly later than
one might expect.

Definition 2.9. For any variable V, the activation step iy is the smallest i > n®* for which

gv(t) < L1, except that if V is a stacking variable with e(V) = 1 we let iy, = n!-?6.

The activation time is ty = ivn*:)’/z.

13



In the following lemma we give some estimates for the activation steps of various variables; we
also show that all error functions are o(1) after activation, and justify our earlier informal assertion
that the functions vgy are approximately non-increasing (unless V' is a vertex degree variable). The
notation © denotes approximation up to a factor polylogarithmic in n.

Lemma 2.10. Let V be any variable in any ensemble with o(V) > 0 (i.e. not a vertex degree).
(i) Ife(V) =0 or V=8 then ty = n~ /4.

(ii) If V is a stacking variable with e(V) > 1 then ty = ©(n~1/4(V)),

(iii) If V is a controllable variable with e(V) > 0 then ty = ©(n9/4(V)).

(iv) oy = o(1) for allt > ty.
(v) v(t)gyv(t) = O(v(t')gy(t')) whenevert >t

Proof. For (i), we first note that if e(V) = 0 then gy = O(¢y). We have ¢y < ¢ < n=9/2 « [}
by (1)), so by definition iy = n®4 ie. ty =n" Y4 Also, gg(t) = O(e2)(1 +t71) = O(n /2t 1) for
t <1, s0 gs(n~ Y4 = O(n"1/4) <« L1, giving tg = n~/4, as required.

For (ii), we have gy (t) = O(e)(1 + t~¢V)) = O(n~1/4t=¢()) for ¢ < 1, which hits L~! at some
ty = O(n~1/4)); we obtain (iii) similarly from gy (£) = ©(e®)(1 + t~¢V)).

For (iv), we note that fy (ty) = O(Lgy (tv))(1 + t,°")) =1, Tf (V') = 0 then fy (ty) = O(Led) =
o(1). Otherwise, as gy(ty) < L~! by definition of ty, (i-ii) give fy(ty) = O(Lgy(tv))(1 +
t‘_/e(v))_l = O(tf/(v)) = O(n=%*%) = o(1). The estimate for ¢ > ty follows as fi(t) and gy (t)/9(t)
are decreasing in t, and 9J(¢) is bounded by 2e = O(1) by Definition

Finally, to see (v) we write h(t) = v(t)gy (t) = O(n*V)GEVIL"1ey oy (1 4 t°V))), then note that
h(t) = ©(h(0)) for t = O(1), and as o(V') > 0 there is some ty = O(1) such that A'(t) < 0 for ¢t > t.
U

2.5 Stopping times and the main technical result

In this section we formulate our main result regarding the stopping time I (mentioned above) that
provides the lower bound in Theorem [I.I} For convenience in breaking up the proof into sections,
we define

1= min{lexty Igloa Icona Istk}

in terms of 4 other stopping times defined below, which are in turn analysed over the next 4 sections.
Each of these stopping times is defined as the first step at which certain good events fail (or oo if there
is no such step). The stopping time Iy controls various events that we think of as ‘external’ to the
main martingale strategy of critical window events in Section The other stopping times control
critial window events for each of the three ensembles: Iy, controls global variables, I.o, controls
controllable variables and Iy controls stacking variables. We start by defining these critical window
stopping times in terms of stopping times Jy, and Iy associated to each variable V' as follows.
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Definition 2.11. Consider any variable V' in any ensembles, and write V' = Xy jr (see Section
for some extension (A, J,T).

We say that V' is bad (at step i) if there is an edge e = ¢(x)¢(y) of G(i) with z,y in A and some
w € Vp \ A such that I' contains zw and yw, and at least one of them is in J.

If V is not bad we call it good.

We let Jy be the smallesﬂi > iy such that V' is bad (or oo if there is no such time).

We let the stopping time Iy be the smallest i with iy < i < Jy such that |DV (i)| > dy (t)v(t)
(or oo if there is no such time).

We let Iy, Icon and Igy be the respective minima of Iy over all variables V' in the global,
controllable, and stacking ensembles.

We note that the global variables are always good. We also note if some V' is bad then V = 0, as
a copy of V' would require either a triangle in G(7) (which does not exist in the triangle-free process!)
or a triangle containing two edges in G(i) and one open pair (which contradicts the definition of
‘open’). For example, if uv is an edge then Yy, = 0. On the other hand, if uv is closed (not an edge
or open) then we do track Y,,; this will be important e.g. for in the proof of Theorem

As indicated earlier, for the actual definition of the variable ZV (i) appearing in the trend hy-
pothesis of Section we ‘freeze’ it at step Jy, as follows:

DV (i)| = dy(t)v(t) if 1 < J
v < [PV = ov 0 it i <y 1)
ZV(Jy —1) if i > Jy.
While the stopping times Iy, lcon, stk are the main subject of the proof, we will also need some
additional information about the evolution of the process, which will be captured by the ‘external’

stopping time Ioy;. This includes properties of G(i) for i < n5/4

, sharper estimates on ) and Y, for
i < iy, crude estimates for a broad class of extension variables, and control of vertex degrees (which

cannot be treated by the general strategy applied to all other variables).

Definition 2.12. We let the stopping time Iex, be the first step i at which G(i) ¢ G; (or oo if there
is no such step), where G; is the ‘good event’ that the following estimates hold:

(1) Q(i)/q(t), Xu/x1(t) and Xyp/x(t) are 1 4+ O(¢?) for every vertex u and pair uv, whenever
n~049 <t <0.01,

(i) Yuo(i)/y(t) and Yy, (i)/y1(t) are 1 £ O(L32) £ Ot~ %4n=92) for every vertex u and non-edge uv,
whenever n=049 < ¢ < 0.01,

(iii) Zuy(i) < L* for all pairs uv, where the codegree Z,,(i) is the number of vertices adjacent to
both v and v in G(7),

(iv) For every extension (4,J,T') on at most M? vertices and all injections ¢ : A — [n] we have
Xy (i) < LY maxsc pevy Sgr (1),

' See Definition for iy (the ‘activation step’).
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(v) For every extension (A, J,T') on M3 + 1 vertices such that S‘g <y/L" for all AC B C Vp and
all injections ¢ : A — [n] we have Xy (i) < Ll maxscpcvs Sgr (1),

(vi) no good controllable variable V' = X jr has DV (i)| > n=0u(t) for any n=1/4 <t <ty such
that S§ > n® for all A C B C Vr,

(vil) Y (i) = (1 £ dy, (t))y1(¢) for every vertex w.

To aid intuition, we make some remarks on the use of the various properties in the definition
of G;. The error terms from ) and Y, are ubiquitous throughout the calculations, and the tighter
control expressed by (i) and (ii) handles some technical difficulties that arise for small ¢; a similar
motivation applies to (vi). We include (vii) in G; as the vertex degrees cannot be treated by the same
method used for the other variables. Combining (i) and (ii) with the martingale estimates for @ and
Yy, after their activation steps, we obtain the following bounds that hold for all n%/* < i < I. We
emphasise that we will often use without further comment the facts that the approximation errors

¢ and 6y for @ and Yy, have sublogarithmic decay and 43 = O(dy) for all 4 > n®/*,

For n®/* < i < I we have Qi) = (1 £65)q(t) and Yo, (i) = (1 £ 6y )y(t) if uv ¢ E(i), (14)
where 03y < 0q, 0 = O(t?), 6y < 26y for i > iy and & = O(L¥*) + Ot *'n~"?).

The intuition for the codegree variable Z,, in (iii) is that it should scale in expectation like
p?n = 2t < \/logn, so whp will be at most polylogarithmic. An important application is that

For any two open pairs e and ¢’ at most L* open pairs can simultaneously close both. (15)

We think of as ‘destruction fidelity’, as it will allow us to approximate the number of possibilities
for a set of destruction events by a sum over each event. To see that follows from (iii), we can
assume that e and €’ share a vertex (otherwise at most 2 pairs can close both), say e = zu and
¢/ = zv, and then the required bound is immediate from Z,, < L*. The bound on Z,, is similar to
those in (iv) and (v), but we state and prove it separately to emphasise its importance and because
its proof is much simpler than those of the general statements.

Conditions (iv) and (v) in G; both give the same estimate (under different hypotheses) for general
extensions. This estimate is quite crude, in that it exceeds by a polylogarithmic factor LVl the
‘worst-case expectation estimate’ maxacpc; Sgr (7) (our union bounds cannot rule out the event
that ¢ extends to some embedding of (B, J,T'), which we would then expect to have S’? extensions).
This polylogarithmic loss makes it ineffective when verifying trend hypotheses, but it is easily ab-
sorbed when verifying boundedness hypotheses. This will be crucial for the controllable ensemble,
where we recall that we imposed the size restriction [V| < M3, so condition (v) enables us to verify
the boundary case |Vr| = M? (this idea makes our treatment of extensions significantly simpler than
that in [13]).

Now we state our main result on the triangle-free process.
Theorem 2.13. With high probability I > iy, := tmaxn/?.

The lower bound in Theorem follows from Theorem [2.13] To see this, we note that if I > 4,42

then Ig > %4z, so the process persists until time ¢,,4, = %\/(1/2 —¢)logn, and Iext > imaq, SO by
Definition vii all vertex degrees at time t,,q, are (1 £y, (tmaz))Y1 (tmaz) = (1 + 0(1))2tmaxn1/2.
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We will prove Theorem [2.13] over the next four sections, in which we in turn bound the prob-
abilities of the events {I = It < imaz} (Theorem , {I = Ijo < imaz) (Theorem ,
{I = Icon < imaz} (Theorem and {I = Igx < imaz} (Theorem ; in combination these
theorems imply Theorem [2.13

Note that if I < 44y then either G(I) & Gr or there is some V such that I = Iy < ipmgy, 1.€.
|DV (I)] is too large and V' is good at step I. We emphasize that, since we can restrict our attention
to ¢ < I, we may assume G; and |DV (i)| < dy(t)v(t) for all good variables V' when verifying the

trend and boundedness hypotheses.

2.6 Some calculations and further notation

We will employ the following useful lemma extensively to estimate sums of products. The proof
given here is due to Patrick Bennett.

Lemma 2.14 (Product Lemma). Suppose x, y, (x;)icr and (y;)icr are real numbers such that |x; —
x| <0 and |y; —y| < e for alli € I. Then we have

1
Zﬂfiyz’ - m (Z %) (Z yz) < 2|I1de
i€l icl icl
Proof. The triangle inequality gives
> (@i — ) (yi —y)| < [oe.

el

Rearranging this inequality gives

dowyi=xY yi+y) mi—|lzy+|I|oe

i€l el i€l

Sl () (e () e

The following notation and conventions that are used throughout the paper.

e We use compact notation for one-step differences, writing A;(F) = F(i + 1) — F (i) for any
sequence F(i) and A;(f) = f(t +n=3/2) — f(t) for any function f(t).

e The ‘O-tilde’ notation f = O(g) means |f| < (logn)“|g| for some absolute constant A.

e ‘whp’ means ‘with high probability’; all such statements will have subpolynomial failure prob-

ability, which will justify us taking a polynomial number of them in union bounds.

o We reiterate that we denote the vertex set by [n] = {1,...,n}.
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We conclude this section by estimating the one-step differences for variable scalings v and error
terms vdy (recall Definitions 2.7 and . To interpret the latter formula, note that in the main term
we have factored out the scaling vdy and the approximate probability 8tn—3/2 (see ) of closing
any given open pair at step ¢; a crucial feature of the trend hypothesis calculations later will be the
self-correction of open pairs in V' that cancels the o(V') term. We let Py denote the power of e in
oy, i.e. Py equals 2, 1 or ¢ according as V is global, stacking or controllable.

Lemma 2.15. For any variable V in any ensemble and t > n~'/* we have
Ai(v) =v'n32 4+ O(w)n ™52, and
Ai(voy) = (e(V) - O(V)) Syv - 8tn3% 4+ 8,un 73/ 4 O(6yv)n /2, where
8t > 4tPy Sy + (0 /0 — e(V)t 1) 2gy.
Proof. By Taylor’s Theorem, for any smooth function h(t) we have
Ai(h) = W (®)n 32+ On73|W"(t')]), where t <t <t+n"3/2

We apply this first with A = v, which has the form v(t) = a(t)e’®), where a and b are polynomials in ¢
and b has degree at most 2, so satisfies v/ /v = O(t+t~1) = O(n'/4) and v" /v = O(t*4+t72) = O(n'/?)

V)

for t > n~1/4; this gives the first estimate. For the second, we recall that v = nV)peV)goV) g0

' v =e(V)/t —8to(V).

Applying Taylor’s Theorem to h = wvdy, as h'/h = v'/v + §{,/0y the main term in the second
estimate is equal to h/(t)n=%/2, so it remains to show |h”(t')| = O(n'/?)éyv for t < t' <t +n=3/2,
To see this, we recall that &y = fir + 2y, where vfy and vgy /9 both have the form a(t)eb®) as
above, so (vfy)" = Ot + t=2)vfy = O(n'/?)vdy, (vgy /9) = O(t +t~ gy /9 = O(n'/*)véy and
(vgy /)" = O(t? + t=2)vgy /¥ = O(n'/?)véy. Recalling that ¥ and ¢ are bounded (see Definition
we deduce (vgy)" = (vgy /9)"9 + 2(vgy /9) Y + 9" = O(n'/?)vdy, as required. The bound on
8}, follows from f{,/fyy = 4tPy and gi, /gy = 4Py + ' /0 — e(V)t (1 + (V)L O

3 Coupling and union bounds

In this section we gather two types of estimates that can be made without using dynamic concen-
tration, namely coupling and union bounds. The two key applications of these arguments are (i)
showing that whp every variable V' in each of three ensembles obeys its required estimates at its
activation step iy (see Lemma , and (ii) showing that whp the stopping time Iey; of Definition
controlling the good event G; does not occur by step imqz. We state the latter as the main
theorem of this section.

Theorem 3.1. With high probability we do not have I = Iy < tymaq-

Theorem follows by combining various lemmas proved in this section showing that each of
the defining properties of the event G; in Definition hold whp; specifically, properties (i), (ii)

and (vi) are in Lemma[3.9] (iii) in Lemma (iv) in Lemma (v) in Lemma and (vii) in
Lemma 3.14]
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3.1 Extension variables in G,,,

Our coupling arguments will compare extension variables in the triangle-free process G(i) with ex-
tension variables in the Erdds-Rényi random graph G, . In this subsection we briefly review some
well-known theory of the latter. Suppose J is a graph and A C V;. We refer to (A, J) as an extension.
Given an injective map ¢ : A — [n], where [n] is the vertex set of Gy, ,, we let Xfﬁ be the number
of injective maps f : V; — [n] such that f restricts to ¢ on A and f(e) is an edge of G, for every
e€ J\J[A]. Thus X f? is formally defined in the same way as the extension variable Xy ; y on G(i)
(see Section , but we emphasise that X f? is defined on Gy, 5, not on G(37).

The following definition and accompanying lemma describe how a general extension can be nat-
urally decomposed into a series of extensions that are ‘strictly balanced’, in that they do not have
any ‘dense subextension’.

Definition 3.2. Given A C B C B’ C V; we define the scaling
Sg/ = Sg/(J) = n'B/|_|B|p6J[B’]_eJ[B]'

We say that (A, J) is strictly balanced (in G, ;) if SEJ < 1forall AC B C Vj. The extension series
(in Gy p) for (A, J), denoted (By, ..., Bqg), is constructed by the following rule. We let By = A. For
i >0, if (B;, J) is not strictly balanced then we choose B;11 to be a minimal set C' with B; C C C V;
that minimises SCZ,; otherwise we choose B;11 = VJ, set d =i+ 1 and terminate the construction.

Lemma 3.3. Let (A, J) be an extension and (B, ..., Bg) be its extension series in Gy, . Then
(i) if AC BC B' C B" CVj then S§" = SE'SE"

(ii) if AC BCV; and C C Vy\ B then S5 < S%,

(iii) each extension (Bj, J[Bi+1]) is strictly balanced,

(iv) S5+ >1 fori > 0.

Proof. Statements (i) and (ii) are clear. For (iii), we cannot have Sg"*l > 1 for some B; C B C
B;i1, as then SEZ_ = Sg*l/Sg"“ < ng“ contradicts minimality of B;y;. For (iv), suppose for
contradiction that Sg:“ < 1 for some i > 0. If i +1 < d then ngfll < Sg;_l contradicts the
definition of B;. On the other hand, if ¢ + 1 = d we will obtain a contradiction by showing that
(Bi—1,J) is strictly balanced (so the extension series should have terminated with B; = V).

To see this, consider any B; 1 € B C Vj and write BY = BU B;, B" = BN B;. By strict
balance of (B;, J) we have Sy, < 1, with equality only if BY = V; (as ng“ < 1). By (ii) and strict
balance of (B;_1, J[B;]) we have Sgu < Sg% < 1, with equality only if B” = B;. At least one of
these inequalities is strict, so SEJ = S’gu Sg{J < 1. This contradiction completes the proof. O

Next we quote the following general extension estimate of Kim and Vu [I8, Theorem 4.2.4] in a
weakened form that suffices for our purposes.

Lemma 3.4. For any o > 0 there is > 0 so that for any extension (A, J) with Sff > n® for all
AC BCVyin Gy whp Xf? =(1+ n_B)SXJ for all injections ¢ : A — [n].
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We also require a weaker estimate that can be applied to sparse extensions, as given by the
following union bound lemma. We include a brief proof as it illustrates a method we will also use
for similar estimates in the triangle-free process. We recall that L = y/logn.

Lemma 3.5. If (A, J) is strictly balanced in G then whp Xfff < LAVAA max{SX",l} for all
injections ¢ : A — [n].

Proof. First we note that for any fixed f : V; — [n] restricting to ¢ on A we have P(f € Xf’f]%) =
p®/ %Al Next we estimate the probability that there are s extensions in X ff? that are disjoint
outside of ¢(A). An upper bound is s! =1 (n?7 145 (peI—esa1)s < (35‘1SXJ)5, which is subpolynomial
for s = L4 maX{SXJ, 1}.

Now we show the statement of the lemma by induction on |V;\ A|. The base case |V;\ A| = 1 holds
by the bound on disjoint extensions. Now suppose |V \ A| > 1. We consider a maximal collection C
of extensions disjoint outside of A. As shown above, whp |C| < s = L* max{S"%’, 1}. By maximality,
any extension ¢’ € X Qf’:? intersects some extension ¢* € C outside of A. By strict balance and the
induction hypothesis, for any ¢* the number of choices for ¢/ is at most 2!V LAIVAAI=D)  pAIVAAI-L
Therefore ng < LAVAAIEL o) < pAVAA maX{SXJ, 1}. O

We deduce the following estimate on general extensions.
Lemma 3.6. For any extension (A, J) whp Xfff < LAVAA] MaxACBCV, Sg" for all ¢.

Proof. Let (By,...,Bq) be the extension series in G, for (4, J). By Lemma iii we can apply
Lemma bound to each step of the extension series, so whp for each 0 < i < d and injection
¢; + B; — [n] we have X£%[Bi+1] < LABi1\Bil maX{Sng“, 1}. Thus for any injection ¢ : A — [n]
we have ngf < TIg LAB\Bil maX{Sgi"“, 1}. By Lemma iv we have ng“ >1fori>1,so
Xf,f]{ < LAV max{Sg;, 1}5’;{ = LAVl max{Sg‘é, S‘é‘i}.

It remains to show that this bound is identical to that claimed by the lemma. To see this,
consider any A C B C V; and write BY = BU By, B" = BN B; and Sg" = SguSg{J. Then
Sgu < Sg% < max{Sgé, 1} and Sgﬂ < S‘é{ by Lemma as required. O

3.2 Coupling estimates

In this subsection we estimate our variables for small ¢ by coupling the triangle-free process G(7)
inside the Erdés-Rényi random graph process FR(n,j), which is defined in the same way as G(i)
but without the condition of being triangle-free, i.e. we consider a uniform random order of the set
of pairs in [n] and let the edge-set of ER(n,j) consist of the first j pairs in this order. The coupling
is defined by rejecting any pair in FR(n,j) that is closed, in that it forms a triangle with previous
(non-rejected) edges. Thus after j steps the selected edges form the triangle-free process G(i) after
1 steps, where j — i edges were rejected. The number of rejected edges is bounded by the number of
triangles in ER(n, j); call this T'(j).

The intuition (made precise in Lemma below) is that for small ¢ few edges are rejected, so
variables in G(i) are well-approximated by corresponding variables in FR(n,j). This allows us to

side-step technical difficulties that arise for small ¢ when implementing the main martingale strategy
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of Section (i.e. that powers of ¢ in the error functions blow up for small ¢, and in any case we
have to exclude very small ¢ to obtain concentration). We will see in the calculations below that the
coupling gives us the required bounds up to ¢t = n~/4 (and beyond in some cases), which explains
our choice of activation step 7y in Definition above.

A well-known paradigm of Random Graphs is that the random graph ER(n,j) of fixed size is
very similar to the usual binomial model Gy, ;,; where edges are chosen independently with probability
pi =17/ (Z), the following lemma makes this statement precise.

Lemma 3.7 (Lemma 1.2 in [15]). Let P be any graph property and p; = j /() where j = j(n) — oo
and (g) — 7 — 00. Then for n sufficiently large

P(ER(n,j) € P) < 10j/2P(G,,p, € P).

We will view j = j(i) as a random variable on the probability space of the coupling of G(7)
and F'R(n,j), which is equal to the number of steps of the Erdés-Rényi process ER(n,j) that are
revealed in order to obtain i edges in the coupled triangle-free process G(i). We can approximate
j(i) and so estimate variables in G(i) by those in Gy, as follows.

Lemma 3.8. If i = tn®? with t € (n=°%,0.01) then whp i < j(i) < (1 + O(t?))i. Thus for any
extension (A, J,I') and injection ¢ : A — [n| whp Xy jr < ngf in Gpy with p' = (1+ O(t%))p.

Proof. By definition of the coupling we have 0 < j —i < T'(j), where T'(j) is the number of triangles
in ER(n,j). Ast > n %% by Lemmas and whp T'(j) < 2p‘;?n3 < 20(j/n)3. We deduce
j < 2i, as at step 2i we have seen at least 2i — 20(2i/n)? = (1 — 80t2)2i > i edges of the triangle-free
process (using ¢ < 0.01). Thus 7(j) = O(t?)i, which gives the first statement.

To see the second, note that Xy jr is bounded deterministically (via the coupling) by X f? in
ER(n,j(i)), and by Chernoff bounds on the number of edges in G,, ,; we can include G, ,y in the
coupling (‘tripling’?) so that whp ER(n, j(i)) C Gp - O

Having established the coupling, we now turn to its application, which is to show that any good
variable V' is not in or beyond its critical interval at its activation step ¢y, when we begin its martingale
analysis; this is the final statement of the next lemma (we also include some stronger bounds required
for the event G; in Definition and a stronger statement for stacking variables). We require these
bounds as earlier steps are not covered by the martingale analysis: we recall from Definition [2.11
that the stopping time [y is the smallest ¢ with iy < i < Jy such that [DV(i)| > oy (t)v(t) (or oo if
there is no such time). We can assume V' is good by definition of Jy (also in Definition . For
convenience, we recall the estimates on ¢ty = iyn~?/2 given in Lemma ife(V)=0or V=S
then ty = n~1/4, otherwise ty = O(n~1/4()) if V is a stacking variable or ty = ©(n9/4()) if V
is a controllable variable.

Lemma 3.9. With high probability
(i) V(i) = (1 £ O(t?))v(t) for any good variable V with e(V) =0 and n=°49 <t <0.01,

(i3) Yuu (1) /y(t) and Y, (i) /y1(t) are 1+ O(L?) £ Ot~ %4n=92) for every vertex u, non-edge uv and
n~049 <t <0.01,
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141) no good controllable variable V- = X4 jr has |DV (1)| > n=%u(t for any Tt <t < ty such
&,
that Sf > n¥ forall AC B C Vp,

(i) no good stacking variable V' has |DV (i)| > (fv(t) + gv(t))v(t) for any n=/* <t < ty,
(v) no good variable V' has |DV (iv)| > (fv(tv) + gv(tv))v(ty).

Proof. For (i), we first estimate the maximum degree A(7) of G(7). By Lemma we can bound A(7)
whp by the maximum degree in G, ,» with p’ = (1+O(t?))p = O(p), so whp A = O(pn) = O(tn'/?).
Thus any vertex is incident to O(pn) edges and O(pn)? = O(t*)n closed pairs. Now consider any
variable V with e(V) = 0, and recall that v(t) = n"V)§(t)°V), where §(t) = e 4" = 1 — O(t?).
We have n™V) > V(0) > V(i) > v(t) — O@t*)n - n™V)=1 so V(i) = (1 + O(t?))v(t), as required.
This also proves (v) for such variables; indeed, we have ty = n=1/4, so DV (iy) = O(n~"/?)u(t) and
Fr@™N) 4 gy (n=) = fr(n™) + gr(n~*) = ©(Ln12) > DV (iv) /v (t).

For (ii), consider any non-edge uv and n~ %4 < ¢ < 0.01. By Lemma we can bound Y,
whp above by the degree d(v) of v in G, with p’ = (1 + O(t?))p. By Chernoff bounds whp
d(v) = (1 + O(t?))pn % (pn)°8, where d(v)/y(t) = 1 + O(t?) + O(tn'/?)=%% as y(t) = (1 4+ O(t?))pn
and pn = 2tn'/2. We can bound Yy, below whp by d®F(v) — T'(v) — P3(uv), where d®F(v) is the
degree of v in ER(n,j(i)), and T'(v), P2(v) are the numbers of triangles containing v and paths of
length 3 from u to v, both in G,y (a bound on the same quantities in FR(n, j(i))). By Lemma
noting that pn > n%9! we can bound T'(v) and Py(v) by L8 max{p3n? 1} = O(L?#?)y, which gives
the stated estimate for Yy,,. The argument for Y,, is the same, except that there is no Ps(uv) term.

For (iii), we have already shown the required bounds when e(V') = 0, so we can assume e(V) > 0.
By Lemma (which applies as n=1/4 < t <ty = ©(n~9/4(V)) < 0.01) we can bound V(i) whp
above by X, 7 in Gy, with p' = (1 4+ O(t?))p. As SB > n% for all AC B C Vr by Lemma we
have X4 7 = (1 +n20%)y(t), say, as 6 < & < ¢ and e(V) < M2 = 9z~2. For a lower bound on V (i),
we consider for each pair zy in V; not contained in A how it can prevent extensions in Xy ; from
being counted in V' (we do not need to consider zy C A, as such edges either make V' bad or have
no effect on V). We let J + xy be obtained from J by adding xy as an edge and J * xy be obtained
from J by adding a new vertex z adjacent to both z and y. Then we can bound V(i) whp below by
Xog = Dwy XoJray = Doy Xo,Jnay-

We will bound both Xy ;4. and Xy jezy by n=20%y. To see this bound for X4, J+xy, note that
SXJ(J—i—:Ey) = pv and for any A C B C V; that S?(J%—:Uy) < Sg“’ (J) =v/SE <n%v,50 Xy jyuy <
n=2"y by Lemma A similar argument applies to X4 juqy (also using t = O(n=9/4())), so
V(i) = (1 £4n " 27)(t). As TV (i) = v()(Q/q)°V) = (1 + O(#2))u(t) = (1 £ n 2" )u(t), this gives
(iii). As gy (ty) = L~! by definition, this also proves (v) for controllable variables.

For (iv), we may assume e(V) > 0. As dy(t) = Q(6y(ty)) for n=Y/* < t < ty it suffices to
show |DV (i)|/v(t) = o(dy(ty)). Applying (i) and (ii) to each step in the stacking order of V,
noting that only O(1) choices are forbidden at each step due to using a vertex already used by a
previous step, we obtain V (i)/v(t) = 1 & O(L8?) & O(t~%4n=02). Similarly, the tracking variable
TV satisfies the same estimate for TV (i)/v(t), so [DV(i)|/v(t) < O(L3?) + Ot *4n=92). This
satisfies the desired bound, as if e(V) # 1 we have dy(ty) = O(1) and ty = O(n /%)) 5o
1DV ()| /v(t) = O(n1/2¢V) 4 =01y or if ¢(V) = 1 (see Deﬁnition we have 8y (ty) = ©(n00%)
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and ty = n=%% so [DV(i)|/v(t) = O(n=1). This proves (iv) and (v) for stacking variables.

For (v), the only remaining case is V = S, for which we recall tg = n~/%. We have S(n°/4) <
2n®/4 . n = 2n%/%, as each triple counted by S determines an ordered edge and a vertex. We do not
count such triples if the other pairs are closed or edges, so S (n5/ 4 > o2n9/% — 2P, — 2P;, where Py
is the number of paths of length ¢ in G,, ,; with p’ = O(n=3/*) (using Lemma . As G,y whp
has degrees O(n'/*) we have S(n%*) = 2n%* + O(n/*), which is well within the desired bound
(fs(n= ) + gg(n1))s(n /1) = B(n?). O

3.3 Union bounds

In this subsection we adapt the argument of Lemmas and to give a crude bound on general
extension variables that holds throughout the triangle-free process. Along the way, we prove The-
orem assuming Theorem We start with the simplest instance of this argument, which is
bounding the codegree Z,, (i) of any two vertices u and v in G (7).

Lemma 3.10. Whp for every non-edge uv, if i’ — 1 < I then Zy,(i') < L*.

Proof. At any step i < ¢’ the edge added at step ¢ completes a path of length two between u and
v with probability (Yy, + Yuu)@'. We can bound this probability by O(y/q) = O(Ln=3/2) for
t > 1 or by O(y(1)/q(0)) = O(n=3/2) for t < 1. Taking a union bound over all subsets of L*
steps at which we might increment Z,,, the probability that Z,, reaches L* by step i’ is at most
()0 (Ln~3/2)" = 0 (L-2)". 0

We need some further notation and terminology for general extensions in the triangle-free process,
which mirrors that used previously for extensions in the Erdés-Rényi process. We say that (A, J,T')
is strictly balanced at time t if Sgr < 1forall A C B C Vp. The extension series at time t for
(A, J,T), denoted (By,...,Bqg), is constructed by the following rule. We let By = A. For i > 0, if
(B, J,I') is not strictly balanced then we choose B;y; to be a minimal set C' with B; C C' C Vi that
minimises Sgﬁ otherwise we choose B;11 = Vr, set d =i + 1 and terminate the construction.

In Lemma [3.13| we will give a general estimate for extension variables in the triangle-free process.
First we illustrate the argument in the following lemma, which shows that sparse graph pairs do
not appear; this is the main tool needed for the proof of Theorem (1.4 Here we take A = (), write
Vir = Xy s, where ¢ is the unique map from ) to [n], and vyr = S(})/F(J, ).

Lemma 3.11. Suppose vyr(t') < n=¢ for some ¢ > 0 and time t'. Then the probability that G;
holds, i —1 < I and V(') > 0 is at most 2n=°.

Proof. For t' < L™ we appeal to the coupling with the Erdds-Rényi random graph process. By
Lemma it suffices to estimate the probability that J appears in Gy, ;, where j = (1 4 o(1))'.

The expected number of copies of J is at most 2n~¢

, so the required bound follows from Markov’s
inequality. Thus it suffices to consider ¢/ > L1,

To estimate P(Vyr(i') > 0), we take a union bound of events, where we specify the injection
f:Vr — [n], and for e € J we specify the selection step i. at which the process selects the edge f(e).

Fix some choice and let £ be the specified event.
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For each i < ' we estimate the probability that the selected edge is compatible with £. At a
selection step i = i, the selected edge is specified, so the probability is 2/Q(i.) = (1 +o(1))2q(te) "},
where t, = n~3/2i, (the approximation of Q by ¢ holds on Gy and i’ — 1 < I).

For other i, the required probability is 1 — N; /@, where N; is the number of ordered open pairs
that cannot be selected at step 7 on £. If 7 is a selection step we write N; = 0. Therefore

,L‘/

P(EAGH) < [T +o0(0)2q(te)™" - T](1 - Ni/Q). (16)

eeJ i=1

Now we estimate N; when i is not a selection step. For i < L~'n3/2 we use the trivial estimate
N; > 0, so suppose i > L~ n?2. Suppose there are k; choices of e € J with 4. > i. Then there are
IT'\ J| + k; open pairs that must not become closed, namely the open pairs of f(I"\ J) and the k;
pairs of f(J) that have yet to be selected as edges. We recall from that by property (iii) of Gy
only O(L*) = o(y) choices of e; can close more than one such open pair.

As Gy holds and ¢/ — 1 < I, by all Y-variables are (1 + o(1))y, so we obtain N; = (1 +
o(1))(IT'\ J| + k;) - 4y. Thus for i > L™ 'n%/? we can write 1 — N;/Q < 1— (1+0(1))(A; + B;), where

A =T\ J|-8tn 22 = |0\ J|-8in™® and B; =k, - 8in >.

This holds for all 7 if we set A; = B; = 0 for i < L™n3/2.
We estimate each factor by 1 —(1+0(1))(A; + B;) < exp{—(1+0(1))A;} exp{—(140(1))B;} and

bound separately the contributions from all A; and from all B;. The contribution from all A; is

7;/

exp{—Z(l—}—o(l))Ai}:exp —(A 4oL\ D 8in7?

i=1 i=L—1n3/2
= (1+o(1))exp {—|T'\ J| - 4(i")*n""}
= L+ o(1)e IV = (14 o(1)(t) ™,

. —1p3/2 . . . .
since ZiL:ll" in™3 < L=2 = o(1). The contribution from all B; is

exp {— >+ 0(1))Bz} =exp{ —(1+0(1)> Z 8in ™3

=1 e€J j=[—1n3/2

= [T +o()icte).

ecJ

Substituting in we obtain

P(E A Gr) < (14 o(1)d(E)I T 2d(te) /a(te) = (1+ o(1)d(#)" ) (2072)17,
ecJ

Summing over at most n'Tl choices for f and (¢ )|J | choices for the selection steps, we estimate
P{Vyr(i') >0} AGy) < (1+o(1)v(t') < 2n™°. O
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Proof of Theorem Statement (i) is immediate from [8, Theorem 1.6(iii)]. For (ii), fix H' C
H with d(H') > 2. By choosing the global parameter ¢ > 0 sufficiently small we can assume
|Efr|[(1/2 —€) > |Vir| + €. Note that if H C G then Vg (imaz) > 0 for some spanning subgraph
J of H', i.e. there is some potential embedding ¢ of H’ that survives until step 4,4z, in that some
subgraph ¢(J) is selected by the triangle-free process, and the remaining subgraph ¢(H'\ J) remains
open, so that it is available for the remainder of the process (which we do not analyse). We have

0t () = 0Vi BTG ) a1V Bs T — Vs =Bl /20 /2=) (B =1 Bsl) < e,

Thus the result follows from Theorem P13l and Lemma B.111 O

We now turn to a key lemma which includes the union bound arguments that are most significant
for the whole proof: it implies property (v) of Definition and will also be used in the proof of
Lemma which implies property (iv) of Definition m

Lemma 3.12. For any extension (A, J,T') with |Vr| = O(1), if Sgp <y/L" for all AC BC W at
step 7’ then whp we do not have I = I.o = i’ due to some ¢ with X4 jr(i') > LAvr\A| MaXAC BCVy- Sgr.

Proof. As in the proof of Lemma it suffices to consider ¢ > L=1/2, as for smaller ¢’ we can
simply appeal to the coupling with the Erdds-Rényi random graph process (Lemma and apply
the bound from Lemma (3.6} Furthermore, the general case of the lemma follows from the case that
(A, J,T) is strictly balanced, by applying it to each step of the extension series (in the same way
that Lemma followed from Lemma [3.5). We will therefore only consider the case that (A, .J,T)
is strictly balanced.

We argue by induction on |Vp \ A|. Similarly to the proof of Lemma we first estimate the
probability that there is a set of s extensions {fi,...,fs} in V() := X4 sr(i) that are disjoint
outside of ¢(A), where s = max{L* 6 maxacpc; Sgr}.

Our method for estimating this probability is similar to the argument of Lemma [3.11} but now
we consider s embeddings simultaneously. We take a union bound of events in which we specify
fi,..., fs, and for each 1 < j < s and e € J \ J[A] we specify the selection step ij. at which the
process selects the edge f;(e). Fix some choice and let £ be the specified event.

For each i < i’ we estimate the probability that the selected edge e; is compatible with &£.
At a selection step i = ;. the selected edge is specified, so the probability is 2/Q (i) = (1 +
0(1))2q(tj.)", where tj, = n_3/2ij,e. For other 7, the required probability is 1 — N;/Q, where N; is
the number of ordered open pairs that cannot be selected at step 7 on €. If i is a selection step we
write N; = 0. Then we estimate

Z’/

PENG) <[] TI Q+oe)2a(tye)-T](1 - Ni/Q).

j=1leeJ\J[A] i=1

Now we estimate IN; when 7 is not a selection step, assuming that we are in the event G; and i < I.
For i < L™Y2n3/2 we use the trivial estimate N; > 0, so suppose i > L~/2n3/2. Suppose there are
k; choices of (j,e) with ;. > i. Then there are o(V')s + k; open pairs that must not become closed,
namely the o(V') open pairs specified by each fi,..., fs and the k; pairs that have yet to be selected
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as edges (these pairs are distinct by disjointness of fi,..., fs outside ¢(A).) By the number of
choices of the selected edge e; that close more than one such open pair is O(s2L*) = o(syL~?), as by
assumption on maxp Sgp and choice of s we have s < y(¢)L~" < y(t)L=55.

Asi < I, by all Y-variables are (14 o(1))y, so N; = (1 +0(1))(o(V')s + k;) - 4y. Similarly to
the proof of Lemma [3.11] we write

1=N;i/Q <1 —(140(1))(Ai + Bi) < exp{—(1+ o(1))Ai} exp{—(1 + o(1))Bi},

where A; = B; = 0 for i < L™Y2?n3/2 and otherwise A; = o(V)s - 8tn=3/2 and B; = k; - 8tn~3/2. As
before, we estimate separately all A; terms and all B; terms to obtain

exp{—Z(1+o(1))Ai} < [(1 —|—0(1))(j(t’)o(v)]s, and

exp{—Z(l +o(1 } < H H )q(tje), so

Jj=lecJ\J[A

S

PEAGH) <qt)V T | @ +or)) ] 2072

Jj=1 ecJ\J[A]

Summing over at most s!~'n™V)s choices for fi,..., fs and (i’)e(v)s choices for the selection steps,

the probability that such fi,..., fs exist is at most s!™'[(1 4+ o(1))v(#)]* < (3s'v(t'))*, which is
subpolynomial.

The required bound on Xy ;1 (') follows from this estimate by induction as in the proof of Lemma
(The base case |V; \ A| = 1 holds by the bound on disjoint extensions, and for |V \ A] > 1
the bound follows by considering a maximal collection C of extensions disjoint outside of A — we
have just shown whp |C| < s — noting by strict balance and the induction hypothesis that at most
LAVAAI-T embeddings intersect some embedding in C' outside of ¢(A).) This completes the proof
when (A, J,T") is strictly balanced, and as noted above, the general case follows by applying this to
each step of the extension series. O

Lemma 3.13. For any extension (A, J,T) with |Vr| < M3, whp we do not have I = Iy = i due to
some ¢ with X¢7J’1" > LAVE\A] MmMaxAC BCVp Sgr

Proof. By bounding each step of the extension series we can assume that (A, J,T") is strictly balanced.
If SXF (t) < n% then the required bound follows from Lemma On the other hand, if SXF (t) >n?
then Xy jr is controllable at time ¢, so the required bound follows from ¢ < I¢op. O

3.4 Vertex degrees

Recall that we cannot apply our general strategy to vertex degree variables, as gy; (t)y1(t) is not
approximately non-increasing. We conclude this section with a separate (much simpler) argument
for these variables, which establishes property (vii) of G; in Definition [2.12]

Lemma 3.14. whp we do not have 1.,y =i’ due to some wv with |Yy (i) — y1 ()| > 0y, (" )y1 (¢).
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Proof. For each 1 < i <4/, the probability that we choose an edge incident to u is

QXM(Z) . (1:&5)(1)2{[}1 _ o g
o0 = (Lo _(11(1+ (1))5X1)n'

By coupling, we can bound Y, (i) by sums Y% of independent Bernoulli random variables with
probabilities (1 & 20x,)2/n. Now we recall from Definition that ¢y, = 2.2cx,, and note that
fyvi = 2.2fx, and gy, /g9x, = 2.2(1+t71)/2 > 1.1, s0 dy, > 1.16x,. Thus on the event |Y,(i") — y1| >
Sy,y1 one of ¥F deviates from its mean (1 + o(1))2tn'/? by more than dy,y;/100 > L'3nl/4 By
Chernoff bounds, whp this does not occur for any vertex wu. O

4 Global Ensemble

In this section we prove that the global variables have the desired concentration, assuming that this
is the case for all ensembles at earlier times. Recall that the global variables are the number Q(7) of
ordered open pairs in G(7), the number of ordered triples R(i) where all the pairs within the triple
are open, and the number S(i) of ordered triples abe such that ab is an edge while bc and ac are open
pairs. The global variables have scalings ¢ = ¢n?, r = ¢>n® and s = 2t42n®/2. Recall that we track
each variable V relative to a tracking random variable TV to isolate variations in V' from variations
in other variables that might have an impact on V. We use the tracking variables

TQ=q, TR=Qn3, and 7TS=2n32Q.

(Note that the tracking variable for @ is a deterministic function.)

We show that the difference random variables
DV =V-TV

for Ve {Q,R,S} are all small throughout the process. Recall that Iy, is the minimum of the
stopping times Iy, over all variables V' in the global ensemble, i.e. the first time at which some global
variable V' (is good and) fails to satisfy |DV| < dywv. (Global variables are automatically good, so
we can ignore that part of the definition.) The following theorem bounds the probability that we
reach the universal stopping time I before step i,,4, because a global variable V fails to satisfy the
required bounds |DV| < dyv.

Theorem 4.1. With high probability we do not have I = 15, < tymaz-

We prove Theorem [4.1] using the strategy described in Section 2.1} We divide the argument
into three parts, in which we respectively bound the one-step expected changes in the difference
variables, determine variation equations that suffice to establish the trend hypothesis, and verify the
boundedness hypothesis.

4.1 One-step changes in the difference variables

In this subsection, for each variable V in the Global Ensemble, we give an upper bound on the
one-step expected change in the difference variable, conditional on the history of the process, i.e.

E[A;DV | F;] =E[DV(i+1) — DV (i) | Fil,
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under the assumption that V is in its upper critical window, i.e.

(fv + gv)v < DV < (fy + 2gv)v.

Recall that we can assume n®/4 < i < I, so we can apply the estimates from G; in Definition m
and the bounds V' = TV + dyv for any variable V if iy < i < Jy (i.e. if V is good and activated).
To illustrate later calculations, which are often more complicated than those in this section, as we
proceed we will indicate how certain specific calculation are instances of a more general framework.

We will consider the effect of each open pair and edge in the structure counted by V separately;
the final expression is then obtained by linearity of expectation. When an open pair in a copy of
the structure counted by V is chosen or closed, we say that the copy is destroyed. We balance the
change in V' due to destructions with the change in 7V due to the change in Q. (The case V = @
is handled differently as @ is tracked relative to the deterministic function ¢.) Adding the edge e;41
can also create new copies of the structure counted by V in which e;+1 plays the role of one of the
edges in the structure; then we say that a copy of V' is created (for global variables this only applies
to V= 5). The change in V that comes from creations is balanced with the change in ¢ in TV.

We begin with destructions. The main point to note in these calculations is that the assumption
that V is in its critical window gives a self-correction term of —8¢ fy-vn~3/2 for each open pair, which
~3/2

will cancels with a corresponding 8t fyvn term from the change in Jdyv; this arises from the

critical window excess of fyv in V relative to TV, recalling from that in each such ‘excess copy’

of V the corresponding open pair becomes closed with probability about 8tn=3/2.

4.1.1 (@Q: simple destructions
We will show the following estimate for the expected one-step change in Q.
Lemma 4.2. If n®* <i <1 and Q > (1+ fg + go)q then

E[A(DQ) | Fi] < —(fq + 9q — (1+ 0(1))65)8tqn /.

For the variable () there is another variable S in our ensemble that counts situations when some
open pair counted by @ is closed. We call destructions of this form simple destructions. (We will see
examples of this type again in Section |§| where we treat the stacking variables.)

Proof. Each triple in S contains 4 ordered open pairs, each of which would decrease ) by 2 ordered
pairs if selected as the edge at step ¢, and by symmetry in S we count each of these possibilities

twice. The selected edge itself also removes 2 ordered open pairs, so
ElAQ | Fi] = -2 - 45/Q. (17)
Recalling from Lemma that A;(q) = —8tgn /2 + O(qn=>/?), we calculate
E[A:(DQ) | Fi] = E[A(Q) — Ailq) | Fi]
—(2+45/Q) + 8tqn ™2 + O(qn=>/?)
= —8tQn ? + (8 + O(5Q))5Stn1/2cj + 8tqn 32 + O(1)
—(fq + 99 — (14 0(1))65)8tqn /2.

IN
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In the third estimate we used S = (1 + 6)7S = (1 + 65)2tn~3/2Q? and Q = (1 + dg)q, which are
valid as n®/?* = ig = ig < i < I. In the last line we used DQ = Q — q > (fg + 9¢Q)g when Q is
in its upper critical window, and 85 > gs > cgL~'e?t™!, where cg = 2L*0 (see Definition [2.8)), so
tésqn=3/2 > L~ lege2qn=3/2 = L~ 1eg > 1. O

4.1.2 R: product destructions
We will show the following estimate for the expected one-step change in R.

Lemma 4.3. If n®/* <i < I and R> (1+ fr+ gr)TR then
E[Ai(DR) | Fi] < [—(3 +0(1))(fr + gr + O(dydx) + O(t~"€*) + O(L't*n~1/2)| 8trn ="/,

The destructions for R are not simple destructions, as no variable in our ensembles counts ways
in which triples counted by R are destroyed. Instead, we will apply the Product Lemma (Lemma
2.14). For clarity we will write out the calculation separately for R and S (in later sections we will

be more efficient by introducing extra notation that unifies all cases).

Proof. To estimate the expected change, we first recall from that any pair o € Q(i) becomes
closed with probability 2(1 + Y, 5 + Y3,)/Q. Noting that closing af reduces R by 3X,3, we write

E[A(R) | Fil=— Y 2Q ' (14 Yag + Ysa) - 3Xas + E[Fi(R) | i,
afeQ

where F;(R) is a ‘destruction fidelity’ correction term to remove overcounting of triples in R for
which the selected edge closes two open pairs in the triple. Thus E[F;(R) | Fi] = F*/Q, where F™* is
the number of ordered quadruples where two adjacent pairs are edges and the other four pairs are
open. As i < Iy, by property (iv) of G; in Definition we have F™* < Ln%p2¢* = 4L'24r, so

E[F;(R) | Fi] = O(L"*r/n?). (18)

Next, noting that

Y Yag=S and ) Xeog=R,
aBeQ aBeqQ

we estimate the main term using the Product Lemma as

= > 6Q 7M1+ Yap + Ya)Xap = —12SRQ™* + O(dyyéxx) + O(x), (19)
aBeEQ

where as n%/4 < i < I we have the estimates X = (14 O(dx))x and all Y-variables are (1 + %)y =
(14 O(dy))y from (14). The important point to observe regarding the product error term is that dx
and tdy are 6(6), whereas dp is 6(62), so the error term is negligible for appropriate choices of the
polylogarithmic constants cx, cy and cg (see Definition .

Next we consider the expected change in the tracking variable TR = @3n~3. We have

Ay(TR) = Qi+ 1)*>n3 — Q(i)*n 2 = 3A:(Q)Q*n 3 + Hy(R), (20)
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where H;(R) is a ‘higher order’ term correcting for the linear approximation of the difference in Q3,
and as A;(Q) = O(y) we have H;(R) = (3A;(Q)?Q + Ai(Q)*)n~2 = O(t*>rn=3). By we have

E[A:(TR) | Fi] = —12SQ2TR + O(t*rn™3). (21)

Combining , and gives
E[A{(DR) | Fi] = E[Ai(R) — Ay(TR) | Fi
== ) 6Q (14 Yag + Ysa)Xap — 3Q°nE[A(Q) | Fi] + E[F(R) — Hi(R) | Fi)
afBEQ
= —12SQ°R £ O(Syydxx) + O(x) + 125SQ 2T R + O(L'%t*r /n?)
= — (1% (3+ 0(1))85)8tn"3/*DR + O(8y 6x )trn /% + O(r /q) + O(L'%t*r /n?)

< [—(3 +0(1))(fr + gr) + O(6ydx) + Ot te?) + O(L16t2n*1/2)} 8trn /2.

An important point to note in the above calculation is that the same factor 125Q~2 appears with
R and TR, and that we approximate S by (1 4+ dg)7 S only after using the critical window bound
DR =R —TR > (fr + gr)r; thus the fact that our approximation of S is weaker than that of R
does not cause any difficulty in this calculation for R. g

4.1.3 S: product destructions and creations

For S we have both creations and destructions, so we will now elaborate on how we group the
calculations for each edge of a structure (we could gloss over this for R, as it has 3 indistinguishable
edges, but it will be important for most other variables, including S). Recall that S is the number
of ordered triples abc where ab is an edge and ac, bc are open pairs. We write

Ai(S) = Ay(S™2) + Ay(S3) + Ay(S?),

where we think of 123 as labelling each such abe, and each A;(S€) is the change in S due to e, i.e.
A;(S12) is the number of triples abe in S created due to ab being the edge selected at step i, —A;(S13)
is the number of triples abc in S destroyed due to ac being selected or closed at step ¢, and similarly
for —A;(S%).

Usually, we would also include a ‘fidelity’ term F;(S) in this decomposition of changes by edges,
reflecting the fact that the selected edge might affect more than one pair in a triple counted by S,
but in fact this is not possible, so we can set F;(S) = 0. Indeed, if selecting the edge ab creates a
triple abc in S then by definition of S it does not close ac or be, and a triple abc cannot be destroyed
by some edge e; that simultaneously closes ac and bc, as this would require e; = cd such that ad and
bd are edges, but then abd would be a triangle, which is impossible.

We also decompose the change in the tracking variable TS into terms that we assign to the
different parts of the calculation corresponding to each of the edges in S. Recalling that 7S =
2tn=3/2Q2, we have Ay(TS) = 2(t + n=32)n=3/2(Q + Ai(Q))? — 2tn~3/2Q2, which we write as

AJ(TS) = Ay (TS™) + Ay (TS + A{(TS%3) + Hy(S),
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where A;(TS512) = 2n73Q? = TS/tn3/? and A;(TS'3) = Ay(TS?) = 2tn=32A,(Q)Q =
with the higher-order correction term H;(S) = 2n3(2A;(Q)Q+A:(Q)?)+2tn=3/2A4(Q)? =
O(tn=3?y?) = O(sn=3) + O(t>sn=3).

Now we show the calculations for the change A;(DS3) := A;(S'3) — A;(TS'3) (the one with 23
instead of 13 is the same); these are product destructions very similar to those for R.

O(yq 3)+

Lemma 4.4. If n®/* <i < I and S > TS+ (fs + gs)s then
E[A(DS™) | Fi] < [~(1+o(1))(fs + gs) + O(03) + Ot~ 'e?)] 8tsn /2,

Proof. Similarly to the proof of Lemma we calculate

E[A{(DS™) | Fi] =E [Ai(Sl?’) — A"g”?)TS | Fi
== > 2Q "1+ Yag+ Vi) Yas + (2+45Q HQ'TS

aBeQ
— —45Q 725 £ O(6yy)* + O(y) + 4SQ 2T S + O(s/q)
= (1+ (14 0(1))d5)8tn"32>DS + O(6%)tsn /> + O(s/q)
< [~(1+0(1)(fs + gs) + O(3%) + O(t~Le?)] 8tsn~3/2.

Finally, we turn to creations, which among the global variables occur only for S.
Lemma 4.5. If n®/* <i < I then E[A;(DS?) | Fi] < (1 + 0(1))37%8t3n*3/2.

Proof. We have E[A;(S12) | F;] = 2R/Q, as for each triple abc in R, with probability 2/Q the edge
e;+1 selected at step ¢ + 1 falls in position ab and turns abe into a triple in S. Thus

E[A;(DS?) | Fi] = E[A(S™?) — t 'n 32T S | F]
=2Q (TR +6gr) —t 'n32TS
= +20prQ " = £(1 4 o(1))t1ogsn /2.

Note that there is no self-correction in creation, but this term will be negligible as our approximation
of R is better than that of S. ]
4.2 Trend Hypothesis and Variation Equations

For each variable V' in the Global Ensemble we consider the sequence of random variables
ZV (i) = DV — vdy.

The following lemma establishes the trend hypothesis, i.e. that this sequence is a supermartingale
when V is in its upper critical window. During the proof we will derive the Variation Equations,
which give conditions on the constants ¢y under which the trend hypothesis holds; we will see that
these conditions are satisfied by the choices in Definition
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Lemma 4.6. For each V € {Q, R, S}, if n®* <i < I and DV > (fy +gv)v then E[A;ZV | F;] <0.

Proof. We begin by gathering together the relevant creation and destruction calculations from the
previous subsections; these are obtained by combining Lemmas 4.4 and

E[ADQ | Fi] — (fo + 9q — (14 0(1))ds)) 8tqn™™/?,
E[ADR | F] < —(1+0(1) [3(fr +gr) — Oydx) — Ot 'e?)] 8trn=3/2,

EADS | F] < —(1+0(1) [2(fs +g5) — 2 — O(6%) — O "e2)] stsn 2.

IN

For R we have omitted the fidelity term in (I8)); this is valid as F;(R) = O(L*t*rn=2) = o(gr)trn=>/2,
where we recall from Definition 2.8 that

cr = L' > L (say). (22)

Next we consider the change in vdy. From Lemma [2.15| we have

A;(vdy) = (655:2) - o(V)) Syv - 8tn =32 1+ 5,002 + O(6yv)n =2

Recalling that 6y = fiy + 29y, we see that we can cancel the 8750(‘/)!}"\/1171_3/2 term that occurs both
in A;(dyv) and in E[A;DV | F;]; this is the self-correction that is fundamental to the analysis.

Thus we obtain

5/
EAZQ|F] < — (83 +o(f@) — (L4 0(1))(gq + 55)) 8tqn /2,

E[AZR|F] < - (‘Z;f; T o(fr) — (1+0(1))3g + O(dvdx) — o<t—1e2>) Strn=42,

/)
E[AZS | F] < — <8§ + ﬁ +o(fs) — (1 +0(1))(29s + 25) + O(6%) — O(t_162)> 8tsn~3/2.

Recall that our error functions have the form &y = fy + 29y, where
fv=cve® and gy =cydL Y1 +t7V))e? if Ve {Q,R,S}.

We now show that these error functions grow quickly enough for each of these sequences to be
supermartingales (i.e. the 07, term will be dominant in each case). We stress that the ¢t < 1 regime
behaves a bit differently from the rest of the process in the estimates that follow. For each global
variable in turn we apply the bound on 6{, from Lemma ie.

8, > 8toy + ()0 — e(V)t™H)2gy.
For Q we have

E[A:ZQ | Fi

IN

—~(1+0(1) |(fo + (35 +2)90) — (90 + 0s) | 8tqn ™"

~(+0(1)) [(fg — fs) + (H00 + 90 — 205)] Stan ™"/

IN
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Then the sequence Z@Q forms a supermartingale provided
cQ > 2cs. (23)

Indeed, then the dominant terms are — fg for t > 1 and/or —4% gg for t <1 (for t < 1 we recall that
¥ /9 = (3/¢)% and note that the ¢t~! in %gQ matches the t~! in gg).

Next consider R, where we have
EAZR|F] < —(1+o0(1)) [fR + (22 4+2) - gr — 3gr — O(0ydx) — O(f162)] 8trn~5/2
< (4 o() [fr+ (5 = Dgr — Ofr fx) = Olgy fx)| 8trn=*/2,
as t 1e? < t~'gp. Then ZR forms a supermartingale provided
cgr > Leyex, (24)

for this implies that the grt'/(4t¥) term dominates for fr < gr/t and that the fr term dominates
otherwise. As noted earlier, we chose powers of e in the error functions so that g and the product
error tdydy are comparable up to log factors (i.e. e in §x and dy and €2 in Jr); then the choice of
polylogarithmic constants ¢y in Definition was such that holds.

The final global variable is .S, where we have
E[AZS|F] < —(1+0(1)) {(1 + o) fs + (25 +2) -gs] 8tsn /2

+(1+0(1)) [295 + 28 + O(dyby) + Ot 1?)| stsn=/2

< —(Uto(1)) [fs + Lagdn + slmon _ O(f2) — O(g}) + olgs)] Stsn 2.
Then ZS forms a supermartingale provided
cs >2cp  and  cg > L2, (25)

for this implies that the fs/t? term dominates for ¢ < 1 and the fg term dominates otherwise. [J

4.3 Boundedness hypothesis

For the boundedness hypothesis, for each V' in the Global Ensemble we estimate Vary = Var(ZV (i) |
Fi—1) and Ny = |A;ZV|. Recall that it suffices to establish and ; that is, it suffices to show
the following lemma.

Lemma 4.7. For each V € {Q, R, S}, if n®/* <i < I then Vary = o <(gvv)2> and Ny = o (gi’—;’)

L3n3/2

Proof. For convenience we replace ZV by DV in our calculations, as this does not change Vary and
only changes Ny by an additive term which we can bound by O(n_5/ 4udy).

For one-step variances we use the simple estimate Vary < N‘Z, (so for the global variables we do
not need the full power of Freedman’s inequality: it suffices to apply the Hoeffding-Azuma inequality).
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3/2

For @@ we have ggoq > cQL_ln , so it suffices to show Varg = 0(céL‘5n3/2) and Ng =

o(cQL_3n3/ 2). The change in DQ when the process chooses the edge e;11 = uv is
ADQ =2V + You + 1) — Ai(q) = 4(y + ydy) — 4y + O(1) = O(ydy) = O(cy Ln'/*).

Then Ng = O(n'/4%), Varg = O(n'/?), and the required bounds hold easily.

For R we have grr > crL 142152, so it suffices to show Varg = o (C%L*5q“4n7/2) and Ni =
0 (crL™3G?n%?). Recall from that A;(TR) = 3A;(Q)Q*n3+H;(R), where H;(R) = O(t*rn=3) =
O(1). On choosing e;11 = uv we have

AR = Fy(R) — > 6 X ap,
ab€Yuy UYy U{uv}
where, as in the proof of Lemma F;(R) is a ‘destruction fidelity’ correction term to remove
overcounting of triples in R for which the selected edge closes two open pairs in the triple. We
can bound Fj;(R) by the number of triples uab counted by R such that va and vb are edges (and
similarly interchanging u and v). As nd/* < i < I, by property (iv) of G; in Definition we have

F;(R) = O(1 + ng?). Combining these estimates gives
Ai(Q)

ADR = A;R—3 o TR+0(1)
== > 6Xap — 2(Yu + You + 1) - 3Q%n 73 + O(1 4 ng®)
ab€Yyy UYy U{uv}
= —6 Y Xa— Q)| + 0y +nd?)
ab€Yyp UYy U{uv}

= O(yxdx) + O(y + ng’®) = O(¢°*n>/4).

Then Ni = 6((}5/2115/4), Varg = 6(Q5n5/2), and the required bounds hold easily.

For S we have ggs > cgL™'gn?, so it suffices to show Varg = o(c?;L—E’LanS/Q) and Ng =
o(csL=3gn?). We bound the impact of creations and destructions separately, recalling the decom-
positions of the change in S as A;(S) = A;(S1?) + A;(S1?) + Ai(S?), where A;(S1?) counts cre-
ations and A;(S13), A;(S'3) count destructions. We also recall the corresponding decomposition
of the change in the tracking variable as A;(TS) = A;(TS'2) + A(TS) + Ai(TS?) + Hy(S),
where A;(TS12) = 2n73Q% = TS/tn3/2, Ay(TS3) = Ay (TS?) = 2tn=32A(Q)Q = %’rs and
H;(S) = O((1 +t*)sn™?).

On choosing e;;1 = uv, we estimate the destruction terms (e.g. that for S*3) by

ADS = A 81 2AiéQ)TS +O((1 +*)sn™3)

=— Y (Yo + Y —2-2tQn ) + O((1 +1})sn %)
ab€Y oy UYy U{uv}

= O(y - dyy) = O(@"*n**).

For the creation term we have

A;DS™ = NS — T8/(tn/?) = 2Xy, — 2Q°n 3 = O(6xx) = O(G*/*n’/*).
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The required bounds on Ng and Varg hold easily. ]

Having verified the trend and boundedness hypotheses in Lemmas [£.6] and [4.7] Theorem [4.1 now
follows from Lemmas 2.2 and B.9

5 The Controllable Ensemble

In this section we prove that all variables V' = Xy ;r in the controllable ensemble have the desired
concentration, assuming that all variables in all ensembles are well-behaved at earlier times. Recall
that I.on is the minimum of the stopping times Iy, over all variables V' in the controllable ensemble.
The following theorem bounds the probability that we reach the universal stopping time I before
step imas because some controllable variable V' is good (see Definition but fails to satisfy the
required bound |DV| < dyv.

Theorem 5.1. With high probability we do not have I = I.on < tmaz-

5.1 Preliminaries

We start by recalling the definition of the ensemble. We say V' = Xy ;r is controllable at time t' if
o(V) > 0 and for any 1 <t <t we have

SE(JT)>n" foral ACBC V. (26)

The controllable ensemble consists of all such V with |Vp| < M3 that are controllable at time 1.

Next we record some preliminary observations.

Lemma 5.2. Let V be controllable at time t'. Then v(t) >n? for1 <t <t and SF(J,T) >n? for
all AC B CVp and ty <t <t'. Furthermore, if V' is obtained from V by changing some edge to
an open pair then V' is controllable at time t'.

Proof. The first inequality is immediate from the definition with B = Vp. The final statement holds
as for any A C B C Vi we have SE(VT) = SB(V) or S§(VT) = gp~1SE(V) > SE(V), using (12).
For the remaining inequality, consider any A C B C Vp. By at ¢ = 1 we have

n!BI=141 (2 =1/2)TIBI=TIAT > 8"

so |J[B]| — |J[A]| < 2(|B|] —|A|). This gives the much stronger bound

nl B4l (n=1/2) B -VAIl > 12

so for ty < ¢t < 1, recalling from Lemma that ty = O(n~9/4(")), we have SB(IT) =
Q (nlBI= 1A (= 1/2) B AN = Q (n/2=9/4) > pt/4, O

It will be convenient to approximation V by the following modified variable V* which has better
behaviour for the martingale arguments.
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Definition 5.3. Consider a controllable variable V' = Xy ;p. Given an injective map f : Vi — [n],
we say that a pair ab in f(Vr) is f-open if there is no vertex ¢ such that ac, bc are edges and
¢ ¢ f(Vr); note that it is the last condition that distinguishes the definition from that of ‘open’. Let
V=X J}F(i) be defined in the same way as Xy ;r(i), except that pairs that are required to be
open in X sr(i) are only required to be f-open in X7 ;1.(4).

We will apply our usual martingale strategy to show whp V* = (1 4 dy+)v for iy < i < I, where
Sy =0y — gv /2 = fv + 3gv /2; we recall

e=q¢ V207V fy =€ and gy = 9L A+t V)l
This will suffice in combination with the following straightforward approximation of V by V*.

Lemma 5.4. Ifiy <i<1I thenV =V*+gyv/2.

Proof. Fix e € (‘;F) \ ' with e not contained in the base A. Let J¢ = JU{e} and I'* =T U {e}. We
bound |V — V*| by the sum over all such e of X4 je pe. As i < I, by property (iv) of Definition m
we have X je pe < L4|VF|S}4{F(JB7 r¢)/SB(J¢,1¢), where B is chosen to minimise S%(J¢,T'¢). For any
A C B C VW, if B= A then S§(J¢ T°) = 1; otherwise, by controllability S¥(J¢,I'¢) > pST(J,T) >
pnd. As SXF(Je, I'*) = po, it follows that Xy je pe < LAVrlyn=0 < gyv, as € > n=9/4, O

5.2 Decomposition by pairs

We decompose the one-step change in V* as
AV = > A(VE £ F(V),
eel\['[A]

where each A;(V¢) accounts for the change in V' due to e, as follows. If e € J then, letting V™ be
obtained from V' by changing e from an edge to an open pair, A;(V*¢) is the number of embeddings
f € (VT)* such that f(e) is the edge e; 11 selected at step i + 1. If e € '\ J then —A;(V®) is the
number of embeddings f € V* which are destroyed at step i + 1 by f(e) not remaining f-open. The
fidelity term F;(V*) is to correct for embeddings f € V* where f(e) is affected for more than one e
simultaneously. Note that by definition of ‘f-open’ this cannot occur for creation, i.e. if f(e) = e;41
for some e € J\ J[A]; thus F;(V*) accounts for embeddings f € V* where f(e) becomes not f-open
for more than one e € I'\T'[A]. This requires the selected edge e;+1 to be zy for some z € f(Vr) such
that y is a common neighbour of some pair u,v in f(Vr). As i < I, by property (iii) of Definition

all codegrees are O(L*), so
E[F;(V*) | Fi] = O(L")v/q. (27)

We also decompose the one step change in the tracking variable as

ATV = > A(TVE) = Hy(V),
eeT\I'[4]

where A;(TV®) is TV/(tn%/?) if € is an edge or —%TV if e € '\ J if e is open, and the higher-order

correction term is

H;y(V*) = O((tn**) ™ + Q7T AQ)’TV = O(t* + t*)n . (28)
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Our calculations for the trend and boundedness hypotheses will consider separately each A;(DV®) :=

A (V) = A(TVE).

5.3 One-step expected changes

Here we estimate the one-step expected change in V* when it is in its upper critical window.

Lemma 5.5. Ifiy <i <1 and DV* > (fy + gv)v then

e(V)
8t2

ElA:(V7) | Fi] < (1+0(1)) Sy —o(V)(fv + gv — 2gy) Ston /2,

Proof. We estimate the one-step expected changes E[A;(V€) | F;] for each e € '\ T'[A].

We start with creation, i.e. the case that e € J is an edge. As for the global variables, we do not
use the critical window assumption or obtain any self-correction term in this calculation. Writing
VTt = X} p\er» we have

E[Ai(DV) | Fi] = E[A:i(VE) = Ai(TV) | Fil
=2Q (V) — TV/(tn%/?)
=2Q 'D(VH)*
< (1+o(1))t 5gy+yevn 32,
In the third equality we used 7V/(2tn*?) = TV*/Q and in the last inequality we estimated D(V*)*
using iy < i < I and iy+ < iy (see Lemma .
Now we consider destruction, i.e. the case that ab=e € T'\ J is open. We have E[A;(V®) | Fi] =
2Q1 > reve(Yr@yrw) + Yiw s = O(1)), where the O(1) term corrects for the difference between

‘open’ and ‘ f-open’ and also for the possibility that f(ab) may become selected rather than closed.
Then, recalling , we have

A; TV
IE[AZ-(DVE) ‘ ]'-z] — _QQ_l Z(l + Yf(a)f(b) + Yf(b)f(a) + O(l)) —-E [%
fev

= —4Q W(TY £ 0yy) £ O(¢" ) + Q71TV (2 +45/Q)

= —(1£ (14 0(1))dy)8tn =32V + O(¢~ ") + (1 £ O(85))8tn >/>TV
= —8tn 32DV + (1 + 0(1))8tn~3/26y V + O(658tn~3/?v) + O(¢~ ')
< —[(1+ o) (fv + gv) — 2gv] 8tun~*/2.

7]

In the above calculation we note that we can afford to approximate the multipliers of V and TV
independently as our approximations for controllable variables are weaker than those in the other
ensembles. The approximations of Y and S hold for all n®/* < i < I; we also used fy + fs = o(fv)

and gs = O(1 +t~1)e? = o(gy), which holds as
(1+t"Ye? = O(e) for t > n~ 4, (29)

The lemma follows by summing the creation estimate over e(V') edges and the destruction estimate
over o(V') open pairs. The o(1) terms absorb the corrections of O(L*)v/q for fidelity (see (27)) and
O(t? + t=?)n=3v for higher-order terms (see (28)), O
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5.4 Trend Hypothesis and Variation Equation

The following lemma establishes the trend hypothesis, i.e. that ZV* = DV* — (fyy + 3gy/2)v is a
supermartingale when V* is in its upper critical window; we will see that this is valid under the
choice ¢y = 1 made in Definition

Lemma 5.6. Ifiy <i <1 and DV* > (fy + gv)v then E[AZV* | F] <0

Proof. By Lemma (replacing 2gy by % gy to adjust for V*) we have
A;(voy=) = (% - O(V)) Syev - 8tn 3% + 81, on 3% + O(6yv)n~>/2, where

8o > 48toy+ + (9 )0 — e(VIE ) dgv.
Since
" (30)

for all V in the Controllable Ensemble, we have fi +« = fy=, 80 dy++« — dy= = (3/2)(gy+ — gv)-

There is no V' term if e(V) = 0, and otherwise g;” = ttzf“//))ﬁ < 2t, so by Lemma

E[A;(ZV) | Fi]
Ston—3/2

< (1+ o<1>>;<;>(sv+* ~ <1 +0(1))o(V)(fv + gv — 2gv)

- [

<4n. %(gw —gv) + (2 )gv —30fv

+ O(by-t"tn™h)

V))oy~

-~ (- S+ B+ 0(g9) + o/ + ofdv)
< W (o(V) -8 4 2D 89 4 5(1)) — L5 fy + O(gy) + o(Sy+ /t2).

For the last inequality, we have cancellation of two terms e(\g% with opposite signs, and we used

gy+ < 2tgy. Finally, E[A;(ZV) | Fi] <0, as the dominant terms are —%gv and/or —36fy. O

5.5 Boundedness hypothesis

For the boundedness hypothesis, we fix any V = X, ;1 in the Controllable Ensemble and estimate
Vary» = Var(ZV*(i) | Fi—1) and Ny» = |A;ZV*|. Recall that it suffices to establish (2)) and (3)), as
in the following lemma. We remark that the proof of the ‘boundary case’ [Vp| = M3 is qulte delicate,
and it is here that the details of property (v) in Definition are important.

Lemma 5.7. Ifiy <i <1 andV is good then Vary = o (%) and Ny = o (%)

Proof. Recalling that we restrict our attention to ¢ > ty, we can bound the one-step change in
TV* + (fv + 3gv/2)v by O((t + t~Hon=3/2) = O(vn=%/4), which is negligible in comparison with
the required estimates. It therefore suffices to consider changes in V* rather than ZV*. As in
the trend hypothesis, we can obtain these estimates as a sum over all e € I' \ I'[4]. (Here we use
[Vr| < M3 = O(1) and the simple observation that if random variables A and B each have variance
at most o then A + B has variance at most 402.)
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Thus for each e = aff € I' \ I'[4] we estimate N, = |A;V¢| and Var, = Var(A; Ve | Fi_1).

We start with the creation calculation, i.e. the case e € J. All scalings here will be with respect
to the extension (¢,J \ e,I') obtained by changing e to an open pair: e.g. SXF = vgp~!. Let A’ =
AU{a, B}, where A C Vr is the base of the extension. We note that if A;V¢ # 0 then for any B
with A’ C B C Vi the edge e;41 selected at step 7 + 1 must fall in some extension in X, (1\e)[B],T[B]-
We consider the ‘hardest’ such extension: let Sy, = minacpcy; SE.

Let By, be some set B achieving the minimum in this definition. We note that

(B1) Sh» <1,
(B2) v/Sim = maxp,,cocvi S,
(B3) Swm >n”(4/p),

(B4) Sy = maxacccB., Sg“‘,

Indeed, (B1) and (B2) follow from the definition of By,, and (B3) and (B4) from controllability of
V. By property (iv) of Definition applied to the extension from A to By, and (B4) we estimate

pe :=P[AVE £ 0] < LTS, /q.

Also, applying property (iv) of Definition to the extensions from A’ to By, (using (B1)) and
from By, to Vi (using (B2)), we estimate

N, < LAl -L4|VF|SXF/Sm < LSIVF\pg*ln*%7
using (B3) for the second inequality. Then
Vare < peNZ < L2V (S0 /q) (ST /Sm)? = LPVEl(G/p) 202 /(gSm) < L*OV7 (2603/2) L=,

Noting that creation only occurs when e(V') > 1, these estimates are well within the required bounds,
as e® >n =% and § < §'.

It remains to consider destruction, i.e. the case e = a8 € '\ J. Let (A’,J',T’) be obtained
from (A, J,T') by ‘gluing a Y-variable on af’ as follows. Let v be a new vertex, V' = Vp U {~v},
A= AUu{a,v}, J = JU{By} and I" =T U {a~, v} (so this definition depends on the order of
a and (). To analyse destruction of extensions f € V* due to closures of e by selecting the edge
corresponding to ary, we consider extensions in Xy y p where ¢’ : A’ — [n] restricts to ¢ on A and
¢'(ay) is the edge e;11 added at step i + 1. In only considering the case that 7 is a new vertex we
make crucial use of the distinction between V* and V.

As in the creation calculation we have
pe :=P[AVE £ 0] < LTS, /g,
where S, = Sfm = mingrcpcy’ Sff, and all scalings are with respect to (J',I"). We claim that

Sm > yn‘s/. (31)
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To see this, note that if By, = AU{y} then Sy, = gn > yn® . Otherwise, we write Sy = ng\vSfm\v.

We have SE:\W > y by construction of (J',T") and Sfm\7 > 9, since V is controllable. This proves
the claim.

Now we claim that the magnitude of the change due to e is bounded as
N, < 208V H 70y /S, (32)
The lemma follows from this bound; indeed, substituting gives N, = O(n~%v) and
Vare < peNZ = O(Sw/q)(yv/Sm)* = O(y*v*/qSm) = O(n~" v’n~3/%)).

Thus it remains to prove (32)).

First we note that the same argument as for creation applies if we are not at the boundary of
the ensemble, i.e. if |Vp| < M3, so |[V/| < M3. Indeed, applying property (iv) of Definition m to
the extensions from A’ to By, and from By, to VI, we estimate

N, < LWV LAVISY 18 < L8V In =0y,

using and SX’ = ySX = Y.

It remains to consider the boundary case |Vr| = M?3. We start with those subcases in which we
can still implement the preceding calculation. We still have at most LAVl extensions from A’ to B,
using property (v) of Definition if By, = V'. Next we consider the extension series from By, to
V' and let C' C V' be the set preceding V’. We claim that if 8 € C' then we can still implement the
above bound using extensions on at most M3 vertices, so that property (iv) of Definition still
applies. Indeed, writing C~ = C'\ {7} we have

SY /Sm = S, =S5 SL =55 ST,

so considering extensions from C'~ to Vr we still have at most L4‘V/|SXI /Sm extensions from By, to
V', as claimed.

Now we may assume 3 ¢ C. We can also assume Sg/ > y/L7, otherwise we can still implement
the previous calculation using property (v) of Definition On the other hand, by definition of
the extension series we have Sg’ < Sgu,@ <y, as the extension from C to C'U 8 contains the edge
7 and the open pair o3. Thus we give up a factor of at most L7 in bounding extensions from C to
C U by aY variable, and we can estimate extensions from C' U 3 to V' using extensions from C' to

Vr, since S’gﬁj 5= S‘C/F. This gives
Ne < L4|V/| . L4‘C|Sg . 2y . L4|V’\C‘Sg(,|6 < L8|V’H—7SX//Sm S 2L8‘V/|+7n_6/v,
which completes the proof of the claim , and so of the lemma. O

Now that we have verified the trend and boundedness hypotheses for V*, Lemmas and
show whp V* = (14 dy+)v for iy <i < I. In combination with Lemma this proves Theorem [5.1
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6 Stacking ensemble

In this section we prove that all variables in the stacking ensemble have the desired concentration,
assuming that all variables in all ensembles are well-behaved at earlier times. Recall that Iy is
the minimum of the stopping times Iy, over all variables V' in the stacking ensemble. The following
theorem bounds the probability that we reach the universal stopping time I before step 4,4, because
some stacking variable V' is good (see Definition but fails to satisfy the required bound |DV| <
oyv.

Theorem 6.1. With high probability we do not have I = Iy, < imaz-

As for the other ensembles, we will prove this theorem by verifying the trend and boundedness
hypotheses. Throughout the section we consider some stacking variable V = S7, = Xy ;r, for some
non-edge uv, where we recall that V(I') = V(S7,,) = {awu, av, a1,..., qq}, A = {au, v}, ¢law) = u,
¢(ay) = v and (J,I") is defined so that edges specified by the extension are mapped to edges of G(7),
and likewise for open pairs. Recalling that we gave a separate argument for vertex degree variables
in Lemma we can assume V is not such a variable. Similarly to the analysis of controllable
variables (except that here we do not approximate V' by V*), we decompose the one-step change in
V as

A(V) = Z A (V) £ Fy(V),
e€l\T'[A]

where each A;(V¢) accounts for the change in V' due to e, as follows. If e € J then, letting VT be
obtained from V' by changing e from an edge to an open pair, A;(V*¢) is the number of embeddings
f € (VT)* such that f(e) is the edge e; 11 selected at step i + 1. If e € '\ J then —A;(V®) is the
number of embeddings f € V which are destroyed at step i + 1 by f(e) being selected or closed.
The fidelity term F;(V') corrects for embeddings f € V* where f(e) is affected for more than one e
simultaneously (see Section [6.4).

6.1 Subextensions of stacking variables

This subsection concerns certain subextensions of stacking variables that will be particularly im-
portant throughout this section. For the following two special structures we will appeal to the
Controllable Ensemble for our estimates, and so we need to show that these extensions are indeed
controllable.

e Let (uv, J,T') be the extension corresponding to some stacking sequence m € Sy at the boundary
of the ensemble, i.e. with w(m) = 2M. The backward extension By is the extension (A’, J', 1)
with A" = {ay, o, 0z, ay}, J = J and IV =T\ a0y,

e An h-fan at the triple A = abc is any extension of the form (A, J, '), where the base is A = abc,
there are h additional vertices vy, ..., v in Vp, the sequence bu; ... v,c is a path of length h+1
in I', and av; € T'\ J is open for i € [h]. We emphasize that the pairs in the path bv; ... vxc

can be either edges or open pairs.
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Both of these extensions arise from the boundary conditions in our choice to restrict the stacking
ensemble to M-bounded variables. Recalling Definition we need to consider backward extensions
due to condition (i) that w(mw) < 2M and fans due to condition (ii) forbidding a subsequence of length
M using only {X?,Y7}: in both cases there is at least one direction in which we cannot stack Y on
the last rung.

Now we show that these two extensions are controllable. We recall that M = 3/e and §(tymqez) =
—1/24¢
n .

Lemma 6.2. All M-fans and backward extension variables are controllable at time tpqz-

Proof. We start by considering an M-fan (A, J,T'). Among all such extensions, the minimum scaling
is (gn)MpM+1 > neM=1/2 — 15/2 which is achieved when the path bu; . ..vare belongs entirely to
J. Fix B with A € B C V that minimises S§ = SF(J,T). We need to show that S§ > n%. As
SXF > n%?2 we can assume that B # V1, so we can find v; in B such that not both v;—; and v;41
are in B. (Here vp = ¢ and vpr41 = b.) Now removing v; from B reduces the scaling by at least
y > ¢n'/? = nf, so by minimality we have |B| = |A| +1, so Sff >y>n>nd (recalling )

Now consider (with notation as above) a backward extension B, = (4’, J',I") with w(w) = 2M.
We fix B with A’ C B C V and estimate S5, as a sequence of single-vertex extensions. First we
consider the case that there is some 7" C V disjoint from B such that some component C of I\ T'
contains {ay, oy}, but not o, or a,,. Then we consider vertices of B\ C' in stacking order and vertices
of BN C in reverse stacking order. Each step contributes a factor of at least y > n® to the scaling,
so 8B >mns >n?.

Now we can assume there is no such 7', which implies that B intersects every rung and contains
all a; such that w(i + 1) = O. We claim that |B| > M + 2. We note that this will imply the lemma,

as estimating S5 by a sequence of single-vertex extensions gives
S8 =SB /(n2g) > (n*)IP172/n? > (n®)M/n? = n > 0.

It remains to show the claim. We bound the intersection of B with the set of 2M vertices that
contribute to w(m). Suppose 7 has ¢ occurrences of the symbol O in the sequence 7(2),...,7(|7|—1)
and j occurrences of O or E in {m(1),n(|w|)}. Then there are at most ¢ + 1 triangular ladders and
7 has 2M — i — j turning points (recall that the positions with the symbols X© or Y© give turning
points), of which at most 2 — j are in A" (namely o, and a|—1). Let T be the set of turning points
not in A’ so that |T| > 2M — i — 2. For each triangular ladder there is a path of rungs spanned by
TNL,sowemust have [ BNTNL| > [|[TNL|/2]. We deduce |B\ A’| > i—l—%— 21> M -2,
which proves the claim, and so the lemma. ]

Remark 6.3. The proof of Lemma shows moreover that a fan of any size is controllable at any
time at which it has scaling at least n® .

6.2 Boundedness hypothesis

Here we verify the boundedness hypothesis, for which the arguments are somewhat similar to those
given above for the controllable ensemble, and are relatively short (the bulk of the section will then
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be occupied with verifying the trend hypothesis). Recalling and , and that ¢y, > L5 for all V
in the stacking ensemble (see Definition , it suffices to prove the following lemma.

Lemma 6.4. Ifiy < i <min{l, Jy} then
Ny < (1 4+t"Nev and Vary < n=32((1 +t7V))ew)?.

Proof. As in the proof of Lemma it suffices to establish the stated bounds for each e € I' \ T'[4]
on N, = |A;V¢| and Var, = Var(A;V¢ | Fi_1) (we do not need to take advantage of better bounds
available on the change in the difference between these variables and their tracking variables). There
are two cases, according to whether e is an open pair or an edge.

We start by considering the case that e € J is an edge. Let e = aga, where z < y. Let
A" = AU{ay, ay} and Sy, = mingcpcy ST = S7™, where all scalings are with respect to (J \ e,T).
Noting that SXF = gp~ v, as in the proof of Lemma [5.7, as i < I we have

pe :=PIAVE £ 0] < LIS, /g and N, < L¥"lgp~tv /S,

so  Var, < peN2 < L2VPl(Gp=10)2/(¢Sm).

We calculate the scaling Sy, one vertex at a time. Each vertex contributes a factor of at least pgn = v,
and «a, contributes at least G*n = x, since the edge agay was switched to an open pair in (J \ e, I).
If |Bm \ A| > 2 we have Sy, > zy, so

No < LW'lop=1q/(zy) =t 'ev - L3V I(48)1e® < t~'ev and
20[V'| (50 —1,\2 _ —3/2 1,2 ., —1720[V| —3/20;—1, 12
& - i
Var, < L (gp~—v)*/(qry) =n">"=((2t) ev)* -y~ 'L L n (" ev)

which are sufficient, as e € J implies (V') > 1. On the other hand, if |By, \ A| = 1, then By, = 4,
so this corresponds to the edge e;11 = u/v’ added at step 7 + 1 playing the role of an edge e that
creates the first Y-extension of 7 (as V is not a vertex degree variable). Writing 7’ for the stacking
sequence obtained from 7 by removing 7(1), and V' = ;’,/U, for the corresponding stacking variable
based at w'v' (which is open before we add e;11), we can improve the above bounds to p. < 2z/q
and N, <V’ < 2v/y, so Var, < 8¢~ (t~!v)?, which again suffices.

It remains to consider the changes due to closing some open pair aza, = e € I'\ J (which may
be a rung or a stringer). This is described by a structure where for some vertex v we already have
the edge oy and then we add the edge a,7y. There are two subcases according to whether v belongs
to Vr or is a new vertex. In both subcases, we consider J' = J U {ayy} and IV = T'U {au, ayv}
on the vertex set V' = Vp U {v} (which is Vp if v € V1), we let A = {ay, ap}, A’ = AU{agz,v} and
Sm = mingcpcyr S’E = Sfm, where all scalings are with respect to (J/,T"). As above, we estimate

pe =PAV £ 0] < LIS, /g and  N. < LAV'ISY' /S,

so  Vare < peN2 < LPV'I(SY')2 /(qSm).

Now consider the subcase v € V. We note that SK’ <w. As Sy, > y we deduce

N, < L3l jy = ev - L8VPI(26) e and
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Var, < LQO‘V”UQ/qy = n*3/2(ev)2 . L20|VF|(2t)7162.
These bounds suffice unless (V') = 0, in which case we obtain the required bounds using the better
bound SX, < pv, where the factor of p is due to the edge oy € J'\ J.

It remains to consider the subcase v ¢ V. Then I is obtained from I' by adding a Y extension on
0z Cly, SO SX/ = oy. If Sy > LA0IVEly2 (say) then the above bounds are easily sufficient. Estimating
Sm vertex by vertex in the stacking order we see that this holds if | By, \ A| > 3 (when Sy, > y3 > 4?)
or if |By \ A| = 2 and not both steps from A to By, are Y extensions (this gives Sy, > zy > y?).

The remaining cases need more precise estimates on N, and Var, that avoid the polylogarithmic
loss in the crude estimates above. Consider the case that |By, \ A] = 2 and By, is obtained by two
Y extensions, so S, = y%. Here we can use stacking variables to estimate p. and N, as (A, By,)
induces the extension qugl)yl, and N, < Sg;az, where m = 7(1)n’. We have the better bounds
Pe < 25m/q = 2y?/q and N, < 28Y' /Sy, = 2v/y, so Var, < 8v?/q = 8n~3/%(ev)?, which suffices.

Now consider |By, \ A| = 1, so oy € {ay,a,} and By, = {aw, aw,v}. The extension from A to
By, is an open degree, with scaling Sy, = x1 = ¢n, so we estimate p. < 2x1/q¢ = 2/n. To estimate
N, we consider the extension (A’,J',T”) in two steps, where in the first step we add all vertices in
the stacking order up to «ay, and in the second step we add the remaining vertices. Thus we bound
N <> Fevt Vf2, where V1 is a fan extension with base A’, and Vf2 is a stacking variable with base
f(azoy). The scalings vq and vy satisfy vivy = SX,, =vy/r.

If V! is controllable at time ¢ we obtain the required bounds from N, < 2v; - 2uy = doy/x1 =
8tn~Y2v and Var, < 2n~'(4vy/x1)? = 32t>n~2v>. Now suppose V! is not controllable at time ¢,
so v; < n® by Remark If the fan has any non-base vertex besides a,, then vy > (Gn)?p® =
(2t)3(j2n1/2, giving § < t73/2n% /2714 50 Sy, = gn > L*MVly2 and we have already completed the
proof when this holds. It remains to consider the case that the fan is a single vertex extension from
A’ to ay. Note that v; > 1 by definition of B, so Vi< L (as i < I), giving N, < LYvy - 20y =
2L%y/z1; this suffices by the same calculation as when V! is controllable. g

6.3 Tracking variables

Here we will recall and explain in more detail the definition of the tracking variables 7V in Section
We also describe the pair decomposition of their one step changes. There will be two cases for
V = S7, depending on the form of 7.

6.3.1 Standard tracking variables

The first case, which we call standard, is that =(|7|—1) # O or 7w(|7|) € {O, E}. We write 7 = 7~ oU,
where U is the last element of m, and let

TV =V~TU, where V- =87 .

Note that this choice of TV isolates variations that are not caused by variations in V.
We say that a pair e is terminal if it belongs to U, i.e. it contains the final vertex of V; otherwise
we say that e is internal. We write

A(TV)=M(VI)TU+V A(TU) = Y A(TVE) + Hy(V), (33)
e€l\I'[4]
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where similarly to the higher-order correction term is
H;(V) = O(t* + t~2)n "3, (34)
and A;(7TV¢) is defined as follows.
(i) If e is a terminal edge then A;(TV¢) = LV

T tn3/27

(ii) If e is a terminal open pair then A;(7TV¢) = Aigg) TV,

(iii) If e is internal then A;(TV®) = A;((V7)¢)TU.

Note that (iii) uses the definition of A;(V¢) above with V'~ in place of V.

6.3.2 Partner tracking variables

The other case, which we call partner, is that 7(|7| — 1) = O and =(|7|) ¢ {O, E}. We must have

7| > 2, and the vertices {||_2, Q|z|_1, Q|| } form a triangle in V = ST
|7 || |7

s i which at most one pair is

an edge and the other pairs are open. We say that the open pair a|;|_sc;|—1 and the pair o oy
(which can be an edge or an open pair) are partner pairs; it is natural to treat them together because
of the ‘symmetry” interchanging o, _; and o, (although it can be that one is an edge and the other
is open). The pair a|;|_j; is still called terminal; its treatment is exactly as in (i) and (ii) above.
We emphasise that we do not consider partner pairs to be terminal, even though one of them
uses the last vertex of V. We also do not consider partner pairs to be internal.
We write 7 = 7-OU, V™ = S, , B = ajz|— and let TV = dfev- Xf(ﬁ)f]f, where

uv
Xy -@n2 iU e {X!, X0}
Up = Xpp - 2tn™ V2 iU =Y!

Yy - Qn? if U =Y0.
To interpret this formula, note that for each f € V'~ we are approximating the number of choices
for the three remaining edges as if they were independent events: for the partner pairs we include a
degree or open degree factor Yy g) for an edge or Xy(g) for an open pair, and for the terminal pair
we include a probability factor of Qn =2 for an open pair or 2tn~/2 for an edge.

We unify the two definitions of 7V by writing
TV = > T;V, where T}V =TU if 7 =7 U or TV = Xy Uy if 7 =7 OU. (35)
fev—
We keep the same definition as in points (i) and (ii) above of A;(7V¢) for terminal pairs, and extend
it to internal pairs (consistently with (iii) above) and partner pairs as follows.
(iii) If e is an internal edge then A;(TV®) = 3" -+ I§T;V, where V™ is obtained from V™~ by
changing e to an open pair and I]‘i is the indicator of the event that e;11 = f(e).

If e is an internal open pair then A;(TV®) = >,y I§TfV, where I§ is the indicator of the
event that e; 1 closes f(e).

(iv) If e is a partner edge then A;(TV®) =3 rcy- Ai(Yyg) - Xy - Qn—2.
If e is a partner open pair then A;(TV¢) =3,y - Ai(Xf(ﬁ))Uf.
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6.3.3 Classification of pairs

As in the controllable ensemble, we will verify the trend and boundedness hypotheses by considering
separately A;(DV®) := A;(V€)—A;(TV®) for each e € I'\T'[4]. We will organise the trend hypothesis
by grouping together terms that use the same method of calculation, so here we introduce some
terminology to classify these terms. We have met special cases of some of these terms earlier when
we considered the global variables: again ‘simple’ terms are those described by another variable in
our ensemble, and the ‘product’ terms in the global variables are analogous to the ‘internal’ terms
here. We use the following notation:

e For any y < |r| we let 7|, denote the prefix of m of length y.

e If the final symbol 7(|7|) € {X!, X, Y1 YO} we let 7° (the ‘opposite’ variable) be obtained
from 7 by interchanging superscripts I and O in 7(|rx|).

For our classification we use the same terms internal, terminal and partner as above, but we must
pay special attention to the terminal open pairs, which we divide into the following three subtypes
(recall that if a pair is not a rung we call it a stringer):

(a) If e is a rung and 7Y’ and 7Y© are both M-bounded we say that e is simple.
If e is a stringer and 7Y and 7°Y© are both M-bounded we say that e is simple.

(b) If w(w) = 2M and e is the terminal rung we say that e is outer.
If w(r) = 2M — 1, n(|n|) = X! and e is the terminal stringer then we say that e is outer.

(c) If e is not simple or outer we say that e is a fan end pair.
To explain this classification, we note the following:

e Outer pairs are not simple, as adding Y© to any 7/ with w(n’) = 2M gives a variable not in
Sy (consider " = 7 if e is the terminal rung or 7/ = 7° if e is the terminal stringer).

e Fan end pairs are aptly named, as if there is a fan end pair it follows from the definition of the
M-bounded stacking ensemble Sys (see Definition that 7 must end with an (M — 1)-fan.
6.4 Correction terms

Before starting on the main calculations for the trend hypothesis, here we will summarise various
correction terms which are negligible by comparison with the terms appearing in the variation equa-
tions. Besides the higher-order corrections to changes in the tracking variable mentioned above,
we also have the following ‘injectivity’ and ‘fidelity’ corrections.

Lemma 6.5 (Injectivity). Suppose i < I andV = X4 jr is a stacking variable or fan extension with
v >vy. Then for any vertex x ¢ A (the base) there are O(t~1e?)v choices of f € V with x € Im(f).

Proof. Fix a € Vr \ A, let A’ = AU {a} and extend ¢ to ¢' on A by ¢'(a) = x. It suffices to show
that the stated bound holds for Xy jr. Fix A’ C B C Vi minimising S§. If V is a stacking variable,
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then considering vertices one by one in the stacking order we have SE >y. If V is a fan then either
B = Vp, when Sff =v >y, or B= A" (as in the proof of Lemma , so again Sf >y Asi< 1,
by property (iv) of Definition the number of choices for f is at most L4‘Vf|v/ Sff . The lemma
follows as y = 2te™2. O

Lemma 6.6 (Fidelity). Suppose i < I and V = S, is good.

(i) There are O(L*) pairs (f,xy) where f € V such that if xy were the edge e; 11 selected at step
1+ 1 then at least two open pairs in f would become closed,

(i1) Let V't be a stacking variable obtained from V by changing some edge e to an open pair. There
are O(e?v™") choices of f € V' such that if f(e) were the edge e;y1 selected at step i + 1 then
some open pair in f would become closed.

Proof. Let (uv, J,T') be the extension corresponding to V.

For (i), we first note that for each f € V there are only O(1) choices of xy C Im(f). Any other
xy with the stated property must have one of its vertices in Im(f), say vy, and the open pairs in f
closed by zy are of the form ya, yb with a,b in Im(f) where za, xb are edges. As i < I, by property
(iii) of Definition the number of choices for x given f is at most Z,, < L*. This proves (i).

For (ii), note first that for such a configuration to exist we must have || > 2, so V has scaling v >
y%. We consider the extension (uv, J\e, ') corresponding to V*+ and any variable V* corresponding to
an extension (uv, J*,I') with J* = (J\e)Ue’ for some ¢’ € (*T)\T. It suffices to show V* = O(e2v™).

Note that v = gp~1v = (2te?) 1o, so vt = (2t)"'v > 1, and v* = pv* = Gv. Fixuv € B C V¢
minimising S2 | taking scalings with respect to (uv,.J*,T). If ¢/ € B or B = uv then S5 > 1, as the
scaling is the same as in V', so by property (iv) of Definition we have V* = O(v*) = O(e2vt).
If |B| > 4 we have SB > 42, so V* = O(v" /y?) = O(e*v™).

The remaining case is that |[B| = 3 and B = uwv U ¢’. Write B = {u,v,a;}. We cannot have
j=1,as ¢ ¢ T would then imply 7(1) € {O, E}, so the assumption of the lemma could not hold:
selecting f(€’) as an edge for such €’ cannot close any other pair in f. Thus «; is adjacent in T' to at
most one of u,v, so SB > pn, giving V* = O(v* /pn) = O(c2v™). O

6.5 Creation

Now we will estimate the one-step expected changes E[A;(V¢) | F;] for each e € J \ J[A4], according
to the classification of pairs described above. As for the other ensembles, the error terms for creation
are not as significant as those for destruction, and the calculations do not require self-correction or
use the fact that V is in its critical window. We do use iy, < 7 < I. Note that we do not include in
these calculations the fidelity corrections (see Lemma [6.6]ii).

6.5.1 Terminal creation

Suppose that e is the terminal edge of . Then 7(|7|) is £, Y! or Y©, and if n(|7]) = Y© then
7(|w] — 1) # O (otherwise e would be partner). Let VT be the variable obtained by changing e
to an open pair, i.e. replacing Y by X in U = n(|n|). Then E[A;(V®) | F] = 2Q 'V *. For the
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tracking variable, we note that A;(TV¢) = -LV. = 2Q~'TV+ (whether V is standard or partner).

37
Asvt =v- q";f and @ = (14 o(e))q for iy < i < I we have

E[A(DVE) | Fi] = E[A((VE) — Ay(TV®) | Fi] = 2Q7 1DV = (1 + ofe))t Loy on /2.

6.5.2 Partner creation

Suppose that e = agoy with o < y = |r| is the partner edge of 7. We must have x = |r| —
2,y = |n| —1 and 7 = 7~OY?. In this case, we recall that the tracking variable is TV =
> fev- Xf(ax)Yf(ax)Qn_z, where V™~ = ST . We let VT be obtained from V by changing e to an
open pair. Then E[A;(V®) | Fi] = 2Q7'V*t. We also recall that TV =3 - XJ%(%)QTFQ and
ATV =2 rev- DiYi(an) Xf(an) -Qn~2 50 E[A{(TV®) | Fi] = 2Q 1TV ™'. Thus we obtain the
same estimate as in terminal creation for E[A;(DV®) | Fi].

Note that the definition of the tracking variables isolates variations in V' from those in V=, which
is crucial in this calculation: we cannot afford the larger error term dy .

6.5.3 Internal creation

Suppose that e = agzay, with < y < |7 is an internal edge of 7 (which must be a stringer). Let
VT be obtained from V by changing e to an open pair. Then E[A;(V¢) | F] = 2Q 'V *. For the
tracking variable, we recall from that TV =3 ey TrV and Ai(TV®) = 3 pcy—+ 1§75V, where
V~T is obtained from V™~ by changing e to an open pair and I;} is the indicator of the event that
eir1 = f(e). Thus E[A((TVE) | F] =3 jey—+ TfV = 2Q~1TV*, so we obtain the same estimate
for E[A;(DV*®) | ;] as in terminal and partner creation.

As for partner creation, it is crucial that 7V isolates variations in V'~ from this calculation.

6.6 Destruction

Now we will estimate the one-step expected changes E[A;(V€) | F;] for each e € I' \ T'[4], according
to the classification of pairs described above, assuming that V' = S, is in its upper critical window,
so that DV > (fy + gv)v. As usual, the key point is that every open pair yields a self-correcting

—3/2

term of the form (fy + gy )8tvn~>/2. We remark that the calculations for terminal open pairs will

be the source of the most significant error terms in the variation equations.

6.6.1 Simple destruction

Let e = a;ay be a simple rung, i.e. the last rung of 7 such that 7Y and 7Y© both belong to Sy;.
Write VI = 553/1 and VO = SZB/O. We have

EA(V) [ Fil =2Q@7" > Vitasay) + Yitayar) £ O0(1) =2Q7 (VI + VO £ 0(v)).
fev
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Note that TV! = TVO = 2tQn=3/2V and v! = v = 2t¢n'/?v. Since A;(TV®) = %TV, recalling
we have

E[A;(DVF) | Fil = E[A{(VE) = Ai(TVE) | Fi]

= 2 '(VI+ VO +0(V))+ (24+45Q HQ 1TV

= 2Q YTV +TVO 06,1 £ 09%0) + (8tn3/% £ 4655~ 2)TV + O(v/q)

= —8tn 32DV + (14 0(1))8t(8y1 /2 + dy0 /2 + d5)vn ™2 £ O(v/q)
—(1+ o)) (fv + gv — 6y1/2 — 60 /2 — b5 — O(t " e?))8tun~3/2,

IN

The same calculation applies if e is a simple stringer (using 7° in place of 7). Note that the estimates
for V! and VO are valid even before their activation steps by Lemma iv. The appearance of their
approximation errors dys and dy-o in this calculation indicates why we need these errors to decrease
as we increase the length of the stacking extensions (see Definition .

6.6.2 Internal destruction

Suppose that e = aza, with 2 < y < || is an internal open pair (note that we do not include
partners here). We let W = ST,

W » where ' = 7|, if e is a rung or ' = 7|} if e is a stringer.

For each f € W let Fy, count forward extensions from f to copies of V', i.e. Ffr = Xy jr with
f:A—[n], where A = {ay, ay, ..., 0y}

We note that F, is closely approximated, up to the injectivity correction from Lemma
by another variable vi = S}r(le,) in the stacking variable, where ¢’ is the active rung at step y and

7|y om = m: we have Fy, = Vlf + O(t te?)uy, so

V= Z Fir= Z (Vlf + 6(t_162)v1) )

few few

For the tracking variable, we recall from that TV = prev- TpV. Similarly to above, we
define the forward extension Fy - from f € W to copies of V™~ and approximate it by Fy - =

VQf + O(t'e?)vy, where V2f = S}r(Qe,) and 7|, omy = 7~. Then

TV = Z Z TpV = Z (TVlf +6(t_162)1)1>, so
FEW fIEF, few

DV=V-TV=>3 (DVlf + 6(75_162)01) . (36)
few

Similarly, writing If for the indicator of the event that e;1 closes f(e), noting that A;(V¢) =
Zf’EV I;/ - ZfGW I;Ff’ﬂ— and AZ(TVG) = Zf’GV’ 7}/‘/1‘?/ - ZfGW I; Zfleny,rf 7}‘/‘/, we have
Ai(DVE) = DA(VE) = A(TVE) == (DVIf + 5(t_1€2)v1) Is. (37)
few

We also note from iy < i < I and that

W* =" (Viay) + Yia)) = (14 0y)2Wy. (38)
few
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Taking expectations of and applying Lemma (the Product Lemma) we have

E[Al(Dve) | ]::L] = _QQ_I Z (Yf(a:y) =+ Yf(yx) + O(l))(DVlf + 6(t_1€2)1)1)
few

2W*D ~
= —M + O(Q_IW -ydy - v1dy,) £ O(t_162)vtn_3/2
QW
< —(1+o(1)(fv + gv — O(8y,8y) — O(tLe?))8twon=>/2

< —(1+ o) (fv +gv — O(t™'e?))8tun =32,

We used the scaling identities v = wvy and v~ = wvs. In the application of the Product Lemma on
the third line we used and .
The last line exhibits the same crucial feature that we saw earlier in product destruction for

—e(V)

global variables: the O(dy;dy’) term is negligible, as for small ¢ the ¢ factor in gy dominates the

t—¢(V1) factor in dy;, and the dy factor compensates for the larger polylogarithmic factor in dy;.

6.6.3 Partner destruction

Here we consider a partner open pair e = agza, with 2 < y. Recall that this means 7(|7| — 1) = O,
w(|7|) ¢ {O,E}, x = |n| —2 and y € {|x| — 1,|x|}. Let # = 7~ OU and V— = ST, . Recall from
Section that TV =3 ey - Xf(am)f]f, where

Xy - Qn2 if U € {XT, X9}
Up =4 Xy - 2tn 1?2 ifU=Y!

Yy - Qn =2 if U =YO.
Note that if both partner pairs are open then the definitions of V and 7V are symmetric under
swapping the labels of a|;_; and a|, so we can assume y = |7| — 1. This would not have been true
with our usual practice of using the tracking variable 7U instead of Uy; the point is that we want
the self-correction in this section to apply to both partner pairs. (This property of TV for partners

is also essential for our treatment of fan extensions in Section [6.6.5]) On the other hand, we can
think of Uf as a proxy for TU as it is a reasonable approximation to U: as i < I we have

DUf(ar)z = Ustan)z = Uy = O((0 + d5)u),
where 6, = dy; if U = YO, otherwise 0y = 0x,. Writing u for the scaling of U, we have
V=2, > Wpen:+0(1), so
fEV_ ZEXf(az)\Im(f)

DV=V-TV=>3 (0(u INSEEDY ﬁUf(az)z). (39)

fevi zeXf(az)

Recalling A;(TV®) = > ey~ Ai(Xf(ax))Uf and writing /¢, for the indicator of the event that e;4;
closes f(ay)z, we have

@V == (Y (DU, DIy~ > OWly.). (40)

feEV—  2€Xp(ay) z€Im(f)
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Also, writing W = ZfeV* Xf(ag), from i < I and we have

W* =" (Viay) + Vi) = (1£0y)2Wy. (41)
few

Taking expectations of and applying Lemma (the Product Lemma) we have
E[A((DVE) | Fi] = E[Ai(VE) = A(TV) | Fil

— —2Q—1[ S Y Viaw: + Yaptan) £ O0(1)DUpq,)| £ Ol1 +u)v y/q
fGV ZeXf(az)
= _Zngle + O(wq™" - ydy - u(dpy + dp)) £ O(e?)un =3/
—(1+0(1))DV - 8tn~%/% + (0O(3y dyr) + O(yd;;) + Ot~ e?))tun3/2

—(14 o)) (fv + gv — Ot~ Le?))8ton /2.

In the application of the Product Lemma on the third line we used (| and . The last line is
valid because the product errors dydy and Jydy; are o(dy); this holds as 5y has sublogarithmic decay
and the power of t~1 in gy is at least those in each of gy and 9ir-

6.6.4 Outer destruction

Let e = o,y be an outer rung, i.e. e is terminal and w(w) = 2M. We cannot apply the same
analysis as for simple destructions, as 7Y? ¢ S, so instead we use backward extensions, which are
controllable by Lemma [6.2]

We let Q' be the set of ab € @ such that {a,b} N{u,v} = 0, and for each ab € Q' let Byyqp count
backward extensions that map the last rung of S7, to the open pair ab; thus V =3 abeQ’ Buvab-

Let b and dp be the scaling and error function for the backward extension. Then b = v/q and
op = O(1 +t=¢))ed. Note also that Q@ — Q' = O(z;) and S = > abeq Yab = O(a:ly) + 2 abeqr Yab-
Recalling and A (TV®) = & QTV by the Product Lemma (Lemma [2.14]) we have

E[A;(DVE) | Fi] = E[A;(VE) — Ay(TVE) | Fi]

45 +2
= —QQ_l Z Xuvab(Yab + YEJa = O(l)) + C—;QTV
abeq)’

v 4Q/ 45 +2Q
=~ o0 (25 - Oyan) ) + G v bn g
= éSDV + O((;y(SB +t 1 2)tvn_3/2

TV +0(v/q)

—(1+ o)) (fv + gv — O(Lery—odye’) — O(t"e?))8tun /2.

The last line used dydp = o(gy) when e(V)) > 1, which holds as dp has sublogarithmic decay (using
i < I) and the power of ¢t~ in V is at least that in Y. Thus this term is negligible unless e(V) = 0,
in which case we can substitute ég = O(e%).

Note that the same estimate applies if e is an outer stringer (using 7° in place of 7).
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6.6.5 Fan end destruction

For destruction, it remains to consider the case when e = a oy, is a fan end, i.e. 7 ends with an
(M — 1)-fan and e is the terminal rung. We cannot apply the analysis from simple destructions, as
Y1 ¢ Sy, so instead we use controllability of fan extensions (see Lemma .

Let V* = ST

first pair ay—10, and last pair e = ayay. Then V =) Fev Fy ., where Fy . denotes the forward

where 7* = 7|,0, i.e. V* is obtained from V by deleting all of the fan except its

extension, which is closely approximated by the (M — 1)-fan extension Vj from f(c,_ 1ozxozy) by
Lemma we have Fyr = V| + O(tile2)v1. We recall that V; is controllable by Lemma

In the calculation below for E[A;(DV€) | F;] we require the following estimate for the expected
closures of the terminal open pair o, in copies of V*, which are described by

close =2Q" ! Z Yf(axay) + Yf(axay))
fevr

Lemma 6.7. Let 7° = 7|, B, V® = So, V* = §™ v = STV qnd VO = §7Y° Thep,

o = 8tn3/? [V* (14 0(1))(8v+ + v + Syper + dye0 + O(6x, + 5y1)(5X1)v*/2].

Proof. First we emphasize that all variables defined in the statement of the lemma are in the stacking
ensemble, and this fact makes crucial use of Definitions[2.4 and 2.5 The point is that as non-terminal
OX! and OY? are forbidden, the fan must start with 7T($—|— 1) € {X©, Y9}, and also w(r) < 2M —1
as we do not allow a strict subsequence of weight 2M, so w(w|;) < w(w) — 1 < 2M — 2. Now

Z (Yf(alay) + Yf(axay) 4 0(1)) — V*] + V*O + O(v*)
fev=

=TV + TV*O £ (Sy1ey + 1y + O(1))0*
where, as V*! and V*© are both partner variables, by Lemma we have

TV = 3" X3 2tV = 2tn 72 VIV VT £ O (tn V0% (210, )?) and

feve
TVO =" Xpa)Yi(ae)  @n 2 =Qn - V'V /V" £ O(qv"(216x,)(410y,)).
feve
The lemma now follows from V* = TV* + §y«v* and V® = TV® £ dyev®, where TV* = Qn='V?
and TV® = 2tn'/2V® so V* cancels (this is crucial to avoid a larger dy= error term). O

Now recalling Fy = Vi + O(t*e?)vy, using A;(TV¢) = %TV and (17), by Lemma [2.14

e - 48 +2Q

E[A(DV) | Fil = =207 ), (Vy(asay) + Yitoray) O Fpan + =55 TV
feV*

== CTOSGV/V* + O(t_162)’[)*1}1y/q + O(U*q_l . y(SY . 1}15\/1) TV + O(U/q)

QQ
= —8tn 32V + (14 (1 4 0(1))d5)8tn 32TV
+(1+0(1 ))%(5{/* + dye + Oyer + Oyeo + O(Oy by, + 1~ Lo 4 (0x, + 5y1)5X1))8t1)n 3/2

—(1+0(1)) (fv + gy — 1Oy + Oy + Byr + 0ye0) — b5 — O(t'e2) — O(Sye )) ston~3/2,
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In the third line we applied Lemmal6.7] In the last line, similarly to the case of outer destruction, we

note that (dx, +9dy;)dx, = o(dy), as dx, = O(dy) and dx, + dy, has sublogarithmic decay. Similarly,

if e(V)) > 1 then dy = O(dy) and dy, has sublogarithmic decay, so dydy, = o(dy). Thus the only
product error is O(dydy;) = O(6ye®) when e(V) = 0.

6.7 Trend hypothesis and variation equations

Now we combine all the estimates in this section to verify the trend hypothesis, i.e. that if V' is in its
upper critical window then ZV = DV — dyv forms a supermartingale, given the choice of constants
cy made in Definition 2.8

Lemma 6.8. Ifiy <i < I and DV > (fv + gv)v then E[A;ZV | F;] < 0.

Proof. Throughout the proof we will measure expected changes using the ‘yard stick’ 8tvn—3/2, which
is an approximation for the expected change in V' due to destruction by some fixed open pair. Recall
that we decompose the one-step change in V' = Xy ;r by its pairs e as

A(V)= Y AV EF(V),
e€T\I[[A]
where F;(V) is a fidelity correction, which by Lemma [6.6] satisfies
E[F,(V) | Fi] = O(L*v/q) + O(e*v™ [q) = (17" + 1t 1o(1)50)O(e?) - ton ™%/,
Recall also that we decompose the one-step change in the tracking variable as
A(TV)= D ATV + H(V),
eel\I[A]
where the higher-order correction term is
Hy(V) = O(t? +t™H)n 30 = O(n ™) - ton™%/2 for n=1/* <t = O(L).

Besides the fidelity and higher-order terms, the remaining contributions to E[A;(DV) | F;] =
E[A;(V)—A;(TV) | Fi] are obtained by summing E[A;(DV®) | Fi] = E[A;(V€) —A;(TV®) | Fi] over
all e e '\ T'[A].

There are e(V') edges each giving a creation term of

+(1 4 o(e))t 18y +on ™32 = (1 4 o)) 2t - 8ton=3/2,

There are o(V') open pairs each giving a destruction term in which the main term is a self-
correction term of
—(L+o(1)(fv + gv)8ton=3/2,
For open pairs that are partner or internal the only other error term is 5(t_162) -tun=3/2_ which we
can absorb into the fidelity term. The terminal open pairs (of which there are one or two) contribute
an additional error term, depending on the form of 7, which we denote by daqq - 8tvn=3/2.

We claim the following bound:
|0ada| < 0.496y + O(dye®).

To see this, we first suppose m # O and consider each of the three types of terminal open pair.
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e The only contribution to d,4q from an outer open pair is O(5ye5).

e The contribution to d,qq from a simple open pair is (1 4 o(1))(dy1/2 + dy0/2 + ds). We can
absorb dg into the O(dye?) term. From Definition [2.8| we have
cyo = cyr = cy /9, (42)
S0 0y1/2 + 80 /2 < 61 /9, and we can bound this contribution to §aqq by dy/8 + O(dy€?).
e The contribution to d,qq from a fan end open pair is
(1+0(1))(2(6vs + Sye + 8yt + Sye0) + 85) + O(dye?).

Again §5 = O(dye®). The sequences defining V* and V* each have M — 1 fewer symbols than
7, but this is compensated for by an additional ‘O’ or ‘E’. Thus Definition [2.8] gives

cyx = cye = cy /9, and (43)
cy=1 = cy=0 = cy /8L (44)

Thus %(5‘/* + 0ye + Oyer + Oyvo0) < 0y /9 + 0y /81, so we can bound this contribution to d,qq

by v /8 + O(dye).
As V can have at most two terminal open pairs, this proves the claim when 7 # O. If # = O then
the only contribution is from the simple open pair; recalling the adjustment in Definition 2.8 we have
cyo = cyr = 2.2¢y /9, so the claim also holds in this case.
Combining all the estimates so far gives
E[Ai(DV) | Fi]
Stun3/2

< —(1+0(1)o(V)(fv +gv) + (1 + 0(6))6(‘/)(2/15;

+0.490y + O(3y€®) + (71 +t721,(1)20) O(?).

By Lemma [2.15| we have

Ai U(S e — - -
&1571372) > ( 0 —o(V)+0(t™'n 1)> Sy + (4tby + (' /9 — e(V)t~)2gv) /8t

By Definition 2.8] as V' is not a vertex degree we have ¢y = cy+, so as in the proof of Lemma [5.6

we have 01+ — dy = 2(gy+ — gv) and gy+ < 2tgy (with no V' term if e(V) = 0). Thus
E[A(ZV) | F]  E[ADV) | F]  Ai(vdy)

Ston—3/2 8ton3/2 Ston3/2
< G - 2Aave —gv) +o(V)gy +049(fv +20v) — fr/2 — (% — G + ) -20v
+O0(0ye) + (7 +t7211)20)0(e?) + o(y+et %) + o(dv)

<gv|o(V)+ 4 20 %] — L OBy e®) + (17 + 172 1y20)O(€2) + 0(Sy+ et2) + o(dv).

To conclude the proof, it remains to check that this final expression is negative. This holds as
—gy? /(4t9) dominates when gy /t > fy and —f, /100 dominates otherwise. Here we recall that
¥ /9 = K > MY for t < 1, and also use the later activation step (see Definition [2.9) for the case
e(V) =1 to see that the t_216(v)>05(62) term is negligible. O

Having verified the trend and boundedness hypotheses, Theorem now follows from Lemmas
2.2l and

o4



7 Independence number and upper bound

In this section we prove Theorem [1.2| on the independence number and establish the upper bound
that completes the proof of Theorem on the size of the final graph in the process. We will use
union bound arguments that take advantage of our tight control of the evolution of key parameters
until the process is very near its end.

We start by giving an intuitive overview of these arguments as applied to the independence
number. Suppose we wish to estimate the probability that some set K of ©(y/nlogn) vertices is

—3/2 we would expect that K contains

independent. At any step ¢, with corresponding time ¢t = in
~ (t)|K|? open ordered pairs. The total number of open pairs at step i is Q(i) ~ q(t) = §(t)n?,
so the probability that K remains independent throughout the period in which we track the process

should be roughly (1 — |K|?/n?)imaz_ If this were true, we could estimate Pr(a(G) > k) by
(0) (1— kz/nQ)im” < exp(klog ¢ — imask®/n?),

which is o(1) for k > (1 + 0(1))y/2nlogn, as required to prove Theorem

However, it is not true that every such K has =~ ¢|K|? open ordered pairs; indeed, if K has a
large intersection with the neighbourhood of some vertex then K contains significantly fewer open
pairs. Thus we require a much more delicate union bound calculation that takes into account the
way in which vertex neighbourhoods intersect K.

We stress that throughout this section we assume I > i,,4,. Under this assumption, if i < ip,4s
the good event G; holds and every good V in the three ensembles satifies |V — TV| < dyv. This
assumption is valid as the events in the union we define are all intersected with the event I > i,,4:.
Formally speaking, in Section we bound the probability of the event that I > 4,4, and the
independence number of G (iyq.) is large, and in Section we bound the probability that I > 4z
and the maximum degree has the potential to become large in the steps that follow i,,4;-

We also stress that throughout the section ‘neighbour’ means ‘neighbour in G(i4z)" and ‘N(z)’
means ‘Ng(i,,..) (T) -

To lighten notation in our calculations, we introduce the following notation for the number of
steps in which we track the process and the deterministic prediction for the vertex degrees:

m:imaz:%\/1/2—6n3/2(logn)1/2 and sztmaw\/ﬁ:2m/n:\/(1/2—5)nlogn. (45)

In the course of the proof, we will control various polylogarithmic factors using absolute constants
I<a<y<p.

To clarify the role of these constants we will not substitute actual values, but for concreteness we
note that we could let a = 25,7 = 50,8 = 600. When these polylog factors are unimportant
we will use ‘tilde’ notation as before: recall that f(n) = O(g(n)) and g(n) = Q(f(n)) mean that
f(n) < (logn)4g(n) for some absolute constant A.

Our proofs require some preliminary facts established in Section (these are mostly density
estimates for edges and open pairs). We prove Theorem in Section and then apply a similar
(and easier) argument in Section to prove Theorem
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7.1 Preliminaries

This subsection contains some density estimates for edges and open pairs, and also some more
intricate configurations that will play a crucial role in the argument in Section These estimates
will be obtained from the critical interval method as described in Section 2.1l We start with an
observation that will be used many times in this section to estimate the one-step variances in some
extension variable V' = Xy ;1 due to destruction. This will be applied as in Section to bound the
one-step conditional variance Vary (i) = Var(ZV (i) | F;—1) via a sum over pairs e in the configuration
of the change in ZV due to the change of status of f(e). Thus if e = uv is an open pair in this
configuration we want to estimate the one-step variance Var. due to closing f(e).

Lemma 7.1. Consider any extension variable V = Xy ;r and open pair e € I'\ J of I'. Suppose at
step i that the number NY (i) of injections f counted by V destroyed by closing f(e) is bounded as
NY (i) < N, for some constant N. Then

Vare := Var(NY (i) | Fie1) < (14 0(1))8tn 32NV

Proof. Consider the bipartite graph H with parts (A, B), where A is the set of injections counted by
V, B = (@ is the set of ordered open pairs, and f € A is adjacent to b € B if selecting b as an edge
closes f(e). By assumption dy(b) < N for allb € B. We also have e(H) =23 1y (Yi(uw) + Y(u) =
(1+0(1))4yV. Then Var, < Q713 pdu(h)? < (1+0(1))g te(H)N = (1 +o(1))8tn~3/2NV. O

With this observation in hand, we turn next to some lemmas on counting open pairs.

Definition 7.2. For any set S let Q5(i) be the number of ordered open pairs in S at step i. For
any sets A, B let Q4p(7) be the number of open pairs ab with a € A, b € B at step .

Lemma 7.3. Whp for any set S of size s, step i < ipmas and ¢ > n~</5,

(i) if s > n'/* and any vertexr x has |N(z) N S| < L™19%2Gs then Qg = (1 +1)§s?,
(ii) if s > LU~2/m then Qg = (14 v)ds?,
(i) if s < 2L'2\/n then Qs < L3sg4/n.

Proof. First consider statements (i) and (ii). We use critical window analysis for ¢ > n=%4 to prove
the bound Qg = (14 60)gs?, where dp = (1+1t/L)1/2. This suffices as §o < 7). We use the window
[(1+ 30 — go)ds®, (1 + 80)¢s®], where go = 1/ (40L?).

First we use coupling to the Erdds-Rényi process to show that whp QQs does not enter the critical

04 This follows from the trivial upper bound Qg < s2, and the lower bound

window at t = n
Qs > s> — 5n%2s, obtained by subtracting the number of paths of length 2 starting in S in the
random graph.

Next we establish the trend hypothesis that ZQg = Qg — s> — do§s? is a supermartingale while
Qs is in its critical window. (Note that our tracking variable in this case is the deterministic function

Gs%.) The expected change in Qg is

E[AiQs | Fil = =2Q7" Y (Yap+ Yoo +1) = =8tn~%2(1 4 O(dy))Qs.
abeQs
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We also note that A;(Gs?) = (—8tn=3/2 + O(L?*n=3))¢s? and A;(d0Gs?) = (1 + o(1))((L +t)~" —
8t)n~3/250Gs%. When Qg is in the critical interval we have

E[AZQs | Fi] < —8tn~3/24s*(1+ 6o — go — O(6y))
+ s (8tn_3/2 —O(L*n™3) — (1 + o(1)) (L + )~ — 8t)n_3/25o) .

< —8tn~*?4s* - (60 — 90 — O(dy) + (grrtsy — 1)d0)

Using % > 2go and dy < n~/* = o(go) by (14), when Qg is in the critical interval we have
E[A;ZQs | Fi] <0, so the trend hypothesis holds.

To complete the proof of statements (i) and (ii) we will apply Freedman’s inequality and take a
union bound over S. To account for the number (Z) of events in the union, it suffices to establish the
following strengthened form of the bounded hypothesis and , where we write No and Varp

for the maximum one-step change and conditional variance of Qg.

90(1)2(a(1)s*)? = w (Varo(i)(nlogn)*/2s) | (46)

go(1)q(t)s* = w (No(i)(logn)s). (47)
Since go = 1/(40L?), it suffices to show Np < 2L '%¢%js, as by Lemma this also implies
Varp < L~*n3/2571(2L~24)§s?)2. To see this bound on Np we use Np = O(y) for statement (ii),
or No < |N(z)N S|+ |N(y) N S| and our assumption on neighbourhoods in S for statement (i).

It remains to prove (iii), which is a one-sided bound rather than a dynamic concentration
statement, but we can still apply a modified form of the critical interval method. Writing Fp =
(1 4+ t/L)L's4\/n/2, it suffices to show Qg < Fo for all S with high probability. Note that the
bound is trivial for ¢t < 1, as s < 2L12\/ﬁ implies Qg < s? < Fp. For t > 1 we use critical window
analysis with the window [Fp — Go, Fp), where Go = Fp/(40L?). (Here we use capital letters F, G
to distinguish our notation for absolute errors from our usual notation f, g for relative errors.)

When Qg is in the critical window we estimate E[A;Qs | F;] < —(1 + 0(1))8tn=3/2(Fp — Go).
We write ZQg = Qs — Fo and note that F}, = (L +¢)~! — 8t)Fp. Again using &L > 2Go, we

(L+t)
obtain the trend hypothesis

E[AiZQs | Fi] < —(1+0(1))8tn "% - (Fo — Go + (g — VFo) < 0.

For the boundedness hypothesis, accounting for the union bound as in (i) and (ii), and noting that
ZQs(i) < —Go(t) at the step before this variable enters the critical interval, it suffices to show

Go(t)? = w (Varo(i)(n log n)3/23> and  Go(t) = w (No(i)(logn)s). (48)
We use the bound Np < 2y < L™ 257 'Go. By Lemma this implies
Varp = O (tn_3/2 -Fo - L_gs_lGo) =0 <L_6s_16%n_3/2> ,
and the desired inequalities follow. d

Lemma 7.4. Suppose r,s > n'/*, ¢ > n=¢/5 and h < L=092Gmin{r,s}. Then whp we have
Qrs = (1£)grs for any sets R, S of respective sizes r, s such that any vertex that has a neighbour

in one of these sets has at most h neighbours in the other.
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Note that Lemma is simply a bipartite version of Lemma (1) The proof is essentially the
same, so we omit it, noting that the condition on A is needed for the boundedness hypothesis.

Next we establish some density estimates.
Definition 7.5. For a set S, let g denote the number of edges of G(iyqs) in S.
Lemma 7.6. Whp for any set S of size s
(i) if s > L'2\/n then ng < L*n~1/2s2,
(ii) if s < 2L'2\/n then ng < L'®s.

—1/242

Proof. For (i), we estimate the probability that some such S spans M := L?n edges, taking a

union bound over S and the steps at which the edges are chosen, for which there are (Z) (A";‘[) choices.

For a specified step at time ¢, the probability of choosing an edge in S is Q5(t)/Q(t) = (1+0(1))s?/n?,
using Lemma (ii) with ¢ = L=1/2. Thus the failure probability po satisfies

= (1) (5 @+ ompsimy.

Noting that M > L'%s, the required estimate pg = o(1) follows from
log py < O(slogn)+M log <% + M log((1+0(1))s*/n?) = O(slogn)+M(O(1)—log L) < —sL'%.

For (ii), we estimate the probability of choosing an edge in S as Qg(t)/Q(t) < 2L'3sn=3/2 by
Lemma (iii). Then the failure probability py satisfies

n m 13 ., —3/2\L%s
<
Do < <5> (L15s> (2L*sn e

so s 1logpo < O(logn) + L% log -2¢m— < —L'°, giving py = o(1). O

L2n3/2 =

Next we deduce a bound on the number of vertices of large degree in a given set. For the following
definition we emphasize that vertices in S can belong to Dg4(5).

Definition 7.7. Let Dy(S) be the set of vertices that have degree at least d in S.
Lemma 7.8. Whp for any set S of size s

(i) if s > L'2\/n and d > 8L*n~'/2s then |Dy(S)| < 8L*n=1/2s2/d,

(i) if s < L'2\/n and d > 4L' then |Dy(S)| < 4L's/d.

Proof. For (i), suppose on the contrary that there is T C Dy(S) of size 8L?n~'/2s2/d. Then SUT is
a set of size at most 2s that spans at least d|T|/2 > L?n~'/2(2s)? edges, which contradicts Lemma
7.6(i). Similarly, for (i), if there is T C Dg4(S) of size 4L'%s/d then |S UT| < 2s < 2L'2\/n and
nsur > d|T|/2 > 2L's > L'5|S U T|, which contradicts Lemma [7.6](ii). O
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We conclude this preliminary subsection with an estimate for a more involved configuration
required for the proof of Lemma using the constants 0 < @ < v < 8 declared in . To motivate
the following definition, we remark that it will be applied with H C N(x), i.e. the neighbourhood of
2 in G(imaz), which will justify the assumed bounds on degrees and open degrees into H for a # x,
and also that H contains no edges. Furthermore, it will be applied at a step ¢ < #;,4, at which H
only contains vertices y such that zy is open and yet to be chosen as an edge, so there will be no
edges between x and H.

Definition 7.9. Let H CV and x € V \ H. We say (z, H) is neighbourly at step i < imqs if G(7)
has no edges within H U {x} and for any vertex a # z at most L* edges ab with b € H and at most
22 = 23°n open pairs ab with b € H. We let W, denote the number of ordered triples (a, b, c) of
vertices such that az is open, {b,c} C H and ab, ac are edges.

Lemma 7.10. Whyp for every neighbourly (z, H) with |H| = h where L® < h < L™%\/n we have
Worr < AL~ hir/n.

Proof. We will apply the critical interval method, although we cannot do so directly for W,z as the
boundedness hypothesis may fail due to vertices with large open degree into H; thus we will make
some subtle alterations to the structures that we count.

We start with some definitions. We say that a vertex a is obese with respect to H at time t if
at least §y/nL? pairs ab with b € H are open. (Our extravagant nomenclature here is explained by
reference to the definition of ‘heavy’ below.) For any obese vertex a we declare some subset of the
open pairs ab with b € H inactive so that the active open degree into H is |g\/nL"].

We stress that the status of an open pair as active or inactive can change back and forth in the
course of the process, but once a pair is chosen as an edge its status as active or inactive remains
the same for the rest of the process.

For j € {0,1,2} let Wi ;7 denote the number of ordered triples (a, b, c¢) of vertices such that ax is
open, {b,c} C H, the pairs ab and ac are both active, and their status depends on j: if j = 0 then
both are open, if 7 = 2 then both are edges, and if j = 1 then ab is open and ac is an edge. Thus
W;?H has the same definition as W, g, with the additional condition that ab and ac are active at the
steps they are chosen as edges.

First we show that there is a negligible difference between W, and WZ2H, and so it will suffice
to bound the latter. Let O be the set of vertices that are obese with respect to H at time t. We
claim that whp for any H we have

0] < 2hLY3™7 = o(h). (49)

To see this, suppose on the contrary there is O’ C O of size 2hL'3~7. Then |H U O’| < 2h and
Quuor > L'3hgy/n. However, this contradicts Lemma (iii), SO holds.

Applying Lemma [7.3[(iii) again, we bound the number of open pairs in H U O by Quuo <
L'3G\/n - 3h/2. Thus the probability at any given step that we choose an edge between an obese
vertex and H is at most 2hL3n3/2. For each set H let Oy be the event that the process chooses at
least hL'® edges between H and obese vertices (recalling that the set of obese vertices may change
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as the process evolves). By the union bound, the probability that any Oy holds is at most

nt/21—8 nl/21,—8 0(1) K15

n m _ 15 n
2 (h)(th)(?hngn EEAEpY (h) (L) = ot
h=L« h=Lo

Thus we can assume that no event Oy holds. Then the degree bound for neighbourly (z, H) implies
Wem — WfH < hL', which is negligible by comparison with the desired bound on W, .
For the remainder of the proof, we will show W; < Fj := (1 +t/L)w;/2 for j =0,1,2, where

wo := L™ hagy/n, wi := L™ ?hygy/n and wy := 4L~ “hj\/n.

This will suffice to prove the lemma, as we will have W,z < WQ?H + hLY < Fy + hL'Y < wsy. Simi-
larly to the proof of Lemma (iii), these are one-sided bounds rather than dynamic concentration
statements, but we can still use a modified form of the critical interval method. For Wg g we use the
critical windows [F; — G, F}], where G; = w;/(40L?).

First we claim that our variables do not enter their critical windows for n—1/4 <t <1 (assuming
I > imaz). For j = 0 this follows from the trivial bound WQ?H < nh? < wo(1), recalling that 3 is
large compared with «. For j = 1 we can bound leH by picking {b,c} C H then a vertex counted by
Yy (i), so by we obtain W', < O(y)h? < w;. For j = 2 we bound W2 by picking {b,c} C H
then a common neighbour, for which there are at most O(L*) choices by Definition M(iii), S0
W2, = O(L*h?) < ws. Thus the claim holds.

Next we will prove the trend hypothesis, i.e. that ZWQZ = Wi g — F}j is a supermartingale while
Wi g 1s in its critical window. Below we will analyse the contributions to E[A; Z Wi i | Fil separately
according to each of the pairs ax, ab, ac. When we calculate the expected change due to closing of ab
or ac we will ignore correction terms due to changes that do not actually occur when a is obese and
these closures simply change the status of some other open pair from inactive to active. To justify
this, we first give upper bounds on these correction terms, which we will later see are negligible
compared with the main terms.

For a € O let A, denote the set of b € H such that ab is open and active. By , the contribution
to E[A;W2] due to closing a pair ab or ac where a is obese is at most

2071 Y (Yap + Vo) Aa| < 5yg ™' - 20L13 77 - (gn'/2L7)? < 8tn 3P FyL 2. (50)
a€O beA,

Similarly, the contributions to E[A;Wl,] due to closing a pair ac where a is obese is at most

2071 (Yap + Yio)L* < Byg 'L* - 20L'7 - gn! LT < 8tn 3P L2, (51)
acO beA,

In the calculation of the expected change in ZW; = Wi g — Fj we write
Ai(Fj) = (1+0(1)Fn™? and F, > ((L+t)"" — (3 - j)8)F}.
For each open pair a8 we have a destruction term of

207" > (Yitap) + Yi(ga) + 1) = (14 0(1))8tn 32(F; — Gy),
feWiH

60



when Wg g 1s in the critical interval. This gives self-correction against a corresponding 8tn =3/ 2Fj
term in A;(Fj). For each edge we have a creation term of

2Q' Wi < (14 0(1))2¢ ' Fya,

where 271 Fy = L‘2t_1n_3/2F1 and 2¢ ' F) = tL_Qn_3/2F2.

Next we account for fidelity corrections. As there are no edges within H U {x} there is no
creation fidelity term (it is not possible to add an edge and simultaneously close an open pair in
the configuration). For destruction fidelity, we first consider configurations for 7 = 0,1 in which
selecting an edge az simultaneously closes the open pairs ab and ax. There are at most h choices
for ¢, then 2v choices for a where v = x for j = 0 or v = y for j = 1, then L* choices for z in
the common neighbourhood of b and x, then 2y choices for b € Y,,. This gives a correction term
O(g thwL*y) <« 8tn =3/ 2FjL_z. For 7 = 0 we also need to consider configurations in which selecting
az simultaneously closes ab and ac. There are at most h choices of b, then 2y choices of z in Yy,
then 2z choices of a in X5, then L* choices of a neighbour ¢ of z in H (as (x, H) is neighbourly).

This gives a correction term O(hyzL*) < 8tn=3/2FyL=2. Using % > 4G, we obtain

E[AZWy | Fi) < —(1 4 0(1))8tn™/? - (3(Fy — Go) + (g5t — 3)Fo) < 0.

8t(L+1)
E[AZWay | Fi] < —(1 4 0(1)8tn 32 (2(Fy — G1) — gpsm F1 + (sizry — 2)F1) <0
E[AZWoy | Fi) < —(140(1))8tn /% - (Fy = G2 — 51z Fo + (g5 — VF2) <0

Note that the correction terms and for inactive edges and the fidelity terms are indeed
negligible in this calculation, so the trend hypothesis holds.

It remains to establish the boundedness hypothesis. Note that since we can restrict our attention
to t > 1, the functions G; are approximately non-increasing. As we are proving one-sided bounds
with a union bound over the choice of z and H, it suffices to establish the boundedness hypothesis
as set forth in with h playing the role of s. We add an additional wrinkle here. Recall that
Freedman’s inequality (Lemma only requires a bound on the positive change in the random
variable in question. For each pair e in the collection az,ab,ac let N bound the positive one-step
change in ZWg g due to the change in the status of e and let Var, denote the one-step variance of
ZWi y that can be attributed to the change in status of e. To apply Freedman’s inequality, since
G;j = w;/(40L?), it suffices to show

N <wj/(hL?) and Var, < w?/(hL*n®?). (52)
In some cases we will show the stronger statement
N, < w;/(RL'Y), (53)

where N, is the absolute value of the one-step change in ZWg - Note that clearly implies 1)
the bound on N is immediate and the bound for Var, follows by Lemma

First we note that the required bounds for creation are straightforward. Indeed, for W;H the
bound on active open degrees gives Ne < gy/nL? < wy/(hL'), and for W2, the assumption that
(x, H) is neighbourly gives N, < L* < wo/(hL').
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For destruction we obtain negative changes in ZWi 77> 50 we only need to bound Var.. First we
introduce some additional definitions. We say that a vertex a is heavy with respect to H at time ¢
if at least §y/nL~" pairs ab with b € H are open. Let T = T, be the set of heavy vertices a such
that za is open. As |T'|G\/nL™Y <3 g Xuz < 2xh, we have

IT| < 2ha/(Gv/nL~") = 2hL7Gy/n.

Let U be the set of vertices z such that zz is open and z has at least §/nL ™3 neighbours in 7. By
Lemma [7.8 we have
ShLAF15 if |T| < L*2y/n,

U] <
32h%2L%7 23  otherwise.

Here we used §/nL~=3" > 4L and §/nL=3" > 8L?n~/2 . 2hL"§\/n, which follows from our choice
of B to be large relative to v, to get the lower bounds on d required for Lemma [7.8]

Now consider destruction for the variables Wi g for 7 =0,1. We write Ain g = AV 4+ AjVs,
where A;V] accounts for the change in V = Wi y that comes from the choice of an edge xz where
z € U, and A;Vy accounts for the rest. For A;Vo we will obtain the required bound on Var,
by establishing the bound on N.. The contribution to N, from closing ab or ac is bounded by
2ygn'/2 LY < wo/(hL®) for W0, (using the bound on active open degrees) and by 2yL* < wy /(RL'?)
for W}, (as (z, H) is neighbourly). Next we consider the contribution from closing za where a is not
heavy. For j = 0 this is at most (2y)(G/nL~7)? < 24/nL=27z < L= 224\/n = wo/(hL'?), as v is
large relative to a.. For j = 1, as (x, H) is neighbourly, the contribution is at most (2y)(G/nL~7)L* <
L= 12yG4\/n = w1 /(RL'Y), again as v is large relative to a. Now we consider the contribution from
closing of pairs xa where a is heavy. Note that we do not select xz with z € U, as this case will be
analysed in A;V4, so this contribution is at most ¢/nL=37(4/nL")? = L™ z4\/n < wo/(hL'Y) for
j = 0 (by the bound on active open degrees), or §v/nL ™ (¢/nLY)L* < wy/(hL?) for j = 1 (as
(z, H) is neighbourly and ¢ > 1). Thus we have the required bound on N, for A;V5s.

For 7 = 0,1 it remains to bound Var, for A;V;. The probability that an edge xz with z € U
is chosen is at most 2|U|/q, and the resulting change in Wi 5 is at most (2y)(Gy/nL?)? for j = 0,
or (2y)(Gy/nLY)L* for j = 1. Suppose first that |T| < L'2\/n, so that |U| < 8hL*'*'5. Then for
j = 0 we have Var, < 16hL*+5¢71(29)2(Gy/nL?)* = O(hg®n), which suffices to establish as
wg/(hLBn??) = Q(h¢®n3/2). Also, for j = 1 we have Var, < 16hL*115¢~1(2y)2(Gy/nL")?L8 =
O(hg®), which suffices as w2/(hL¥n?/?) = Q(h¢*n!/?), recalling that ¢t > 1. Now suppose |T)| >
L'2,/n, so that |U| < 32h2L>*24. Then for j = 0 we have Var, < 64h2L>72n=2(2y)%(g/nL7)* <
256R%2L27*4¢5n, and for j = 1 we have Var, < 64h2L>+2n=2(2y)2(G/nLY)?L8 < 256h2L7 1241, As
h < L7P\/n and B is large relative to a,~ these bounds suffice to establish .

It remains to bound Var, for destruction of WfH Let W be the set of vertices that are open to z
and have at least two neighbours in H. Then |W| < 3" 5 Yz, < 2yh. Let U’ be the set of vertices
that are open to = and have at least yL~7 neighbours in W. By Lemma we have

8hL+15 if |W|< L2/n

\U'| <
32h2yn~1/2L7*2  otherwise.
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Here we used yL ™" > 4L and yL™ > 8L2n~1/2. 2yh (as [ is large relative to 7) to get the lower
bound on d required for Lemma We write the destruction of WfH at step 7 as AV + A Vs,
where A; V7 accounts for the change in szH that comes from the choice of an edge zz where z € U,
and A;V5 accounts for the rest.

For A;V5 we can obtain the required bound on Var. from the bound on N.; indeed, by
definition of U’ and as (x, H) is neighbourly, N, < yL™ - L* < wa/(hL'?). For A;V;, suppose first
that |W| < L'2\/n, so that |U’| < 8hL "5, We choose an edge xz with z € U’ with probability
at most 2|U|/q, and as (z, H) is neighbourly the resulting change in W2, is at most 2y - L, so
Var, < 8hLVT15¢=1(2y)2L6 = O(hyn—>/2), which suffices as w2/(hL3n3/2) = Q(hy?n~3/2). On the
other hand, if [W| > L'2\/n then Var, < 32h2yn~1/2L7+2¢=1(2y)2 L0 < 128h2n~1/2[7H+19y2=3/2,
which also suffices to establish as B is large relative to a, 7. O

7.2 Proof of Theorem 1.2l

We will show whp

a(G) <k := (1+3¢)y/2nlogn.
As a(G) < a(G(imagz)), it suffices to bound a(G(imaez)). We need to estimate the probability that
there is an independent set K of size k. As discussed above, we will take a union bound over all such
sets K together with certain information about how neighbourhoods in G(inna,) intersect K.

Let K be a potential independent set of size k. We define a sequence of vertices x1, ..., x,, where
each xy is chosen to maximise the number of neighbours in K that are not also neighbours of some
xj for j < £. More precisely, the ¢th hole is Hy = (N(z¢) \ Up<¢N(x¢)) N K, where x; is chosen to
maximise hy = |Hy|, and we recall our convention that all neighbourhoods are defined with respect
to G(imaz). We stop the sequence if there are no vertices that give more than L2 new neighbours
in K. Note that zy ¢ K for ¢ € [z], as K is independent. We say that a hole is large if it has size
more than L‘B\/ﬁ. We let Z 4 be the set of £ such that Hy is large,

Zp=[2]\Za, A=Uwz,Hi, B=Uwzz,Hy;, C=K)\(AUDB).
For ¢ € Zp we specify the steps of the process at which the edges between x, and H, appear. We
write Hy = {vg : j € [hy]}, where zpvy; is selected at step ig;, and iz; is increasing in j. For £ € Z4 we
specify the entire neighbourhood of ¢ in G(ipmae): we write dp = [N (z¢)| and N(x¢) = {ve; 1 j € [de]},
where xyvy; is selected at step iyp;, and iy is increasing in j. We will estimate P(£), where € is the
event that there is an independent set K with some fixed choices of z; xy and hy for £ € [z]; and dy

for £ € Z4. We will refer to these choices of hole sizes, vertices with large neighbourhoods in K and
vertex degrees as the initial data that defines £. Note that by Lemma (ii) we can assume

|Za| < 8LYFF and 2 < 4L, (54)
For ¢ € Zy, j € [dg] we claim that

iy = jn/2+£n** 3 and  dy = d+nt/?"E3, (55)

where we recall d = 2t0./n = 2m/n = \/(1/2 — e)nlogn. To see , note that if e.g. we had
i =g < jn/2 —n3?7¢/3 then we would have Yy, (i) > j > 2n~' (i + n3/27/3) = y(t) + 2n'/275/3,
which contradicts the degree bounds Y, (1) = (1 £ dy; (¢))y1(t) in the event G; (see Definition [2.12]).
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Now, in addition to the initial data, we fix the independent set K, the specific edges z,vy; and
appearance times ig; for £ € Z4,j € [dy], and likewise for £ € Zpg, j € [hy]. We let Ex be the event
that K is independent and all the specified edges appear at the specified steps of the process. Thus
£ is a union of events of the form E.

To estimate the probability of any given event £k, for each step i we need to estimate the
probability that the selected edge is compatible with £k, conditional on the history of the process.
We say i is a selection step if i is one of ig; for £ € Zy4, j € [dy] or £ € Zp, j € [hy]; then the selected
edge is specified by €k, so the required probability is simply 2/Q = (1 & 259)2¢~!. For other i,
the required probability is 1 — N; /@, where N; is the number of ordered open pairs that cannot be
selected at step ¢ when £ occurs. If ¢ = iy; is a selection step write IN; = 0. Then we estimate

dy m

P(Ex) < [ T +260)2a(te;)~" - [] H 14260)2q(ty) " - JJ(1 = Ni/Q). (56)

teZ, j=1 LeZp j=1 i=1

To estimate N;, we classify open pairs that cannot be selected at step i as follows.
e Let N;4; be the number of ordered open pairs of the form vgve; for some ¢ € Zy, 7,5 € [dy].

o Let N;4, be the number of ordered open pairs of the form zyy or yx, where { € Z4 and
y & N(zg) UK U{xy,..., 2.}

e Let N;p; be the number of ordered open pairs ab such that B Nab # () and selecting e; = ab
would close an open pair of the form x,vy; for £ € Zp, j € [hy].

e Let N;p, be the number of ordered open pairs ab such that B N ab = () and selecting e; = ab
would close an open pair of the form xvy; for £ € Zp, j € [hy].

e Let N;x be the number of ordered open pairs in K that are not contained within any hole.

We refer to pairs counted by N;4, or N;p, as outer and those counted by N;a; or N;p; as inner
(which is indicated by one of the #’s in the notation; the other refers to the step i, which we hope
will not cause confusion). For ¢ € Z4 we stress that by naming the wvy;’s we have specified all
neighbours of z; (not only those in K), so we cannot select a pair yxy with y ¢ N(xy); we also
exclude y € K U{x1,...,2.} in the definition of N;4, to facilitate the estimate for overcounting in
Lemma For N,k we note that all open pairs within K are forbidden (as K is independent) but

again to avoid overcounting we only include those not contained within any hole. We write
Ni > Niai + Niao + Nip + Nik — Nio,

where N;p = N;p; + N;p, and N, corrects for any open pairs that appear in more than one of the
above collections. (We will see that the most significant source of overcounting comes from pairs
counted by both N;x and N;p;.) We substitute

1-N;/Q < exp{—(1—250)qg " (Niai + Niao + Nig + Nixx — Nio) } (57)
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in , recalling that dg = O(n™%/%), to obtain
—logP(Ex) > Sai —Ta+ S — T+ Sao+ Sk — So (58)
2

—i—log% Z dg + |B| | — O(n'/?7%/%), where
LEZ 5

S, = Zqu_l for p € {Ai, Ao, B, K,0},
i=1

d h
Ta= > 24@ and  Tp= ) i4t§j.

teZy j=1 teZp j=1
To estimate the terms in , we start by showing in the next two lemmas that S4; — T4 and
Sp — Tp are negligible. (The remaining terms will be used to balance the number of events in our
union bound calculation.)

Lemma 7.11. Ty — Sy4; < O(n1/2_5/5).

Proof. We start by giving a lower bound on N;4; for any ¢ that is not a selection step. For £ € Z4
let jo = j(i) be the value of j € [d] such that iy;_;) < i < iy, where iy := 0, i.e. j; — 1 edges have
been selected at x,. Let Sy = {vgj};l[:jﬁl and sy = |Sy| = dy + 1 — jy; thus {zv : v € Sy} is the set
of open pairs at x; that will later be selected as edges. As we consider the whole neighbourhood of
x¢ (not just the neighbourhood in K'), the number of ordered open pairs vgjvg; with j > jg, j' < jo
is ZUES{ 2}/1}95[ = (1 + 5y)2y85.

We also note that any vertex has at most L* neighbours in Sy by the codegree bound in G(imaz),
which is valid as we assume I < i,,4;. Then by Lemma i) whp Qs, = (1+£ n*5/5)q29§ if s > nl/4
and gs; > n2/°L. Since § > n~1/2%¢ this holds for s; > n'/27¢/2 g0 we can write Qs, >
(1 — n=¢/%)gsy(sy — n'/?7¢/2), as this bound is trivial for s, < n'/27¢/2, The bound on codegrees
also implies that the number of open pairs that can be counted by more than one ¢ € Z 4 is at most
(1Z4|L*)? = O(1) by (54), which is negligible. Thus

Niai = (1= n7%) 3~ (2yse + dselse = n'>7/%)) = O(gn' =)
LEZ 5
=Y (2yse + ds7) — O(gn'~/%). (59)
LEZ 4

To estimate Sy; = Z?; Niaiqg™!, it is convenient to use the bound for all 7, even selection steps
(where N; = 0); this is valid as the resulting correction is O(n~1/2), which is negligible. We write
Sai = Sai1 + Saio+ O(nl/ 2—¢/ 5) according to the contributions of the first and second terms in .
Then

m dy g1 dp ey
Sain = Z Z 2useq L = Z Z Z 4tn73/2(dg +1—-j)= Z 2242’7173
i=10cZ (€74 j=1 i=iy;_1) €74 j=1 i=1
= 2 = —3/2 Tqp =, 1
= Z Zthj— Z Zthjn :7—0(11 ).

beZy j=1 eZy j=1
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Recalling , we note that

T dy d+n1/27€/3 9
SoY Y uh<izl X ()
(€24 j=1 j=1
d ~
<|Zal)_ 722n) 7" + O(n!/2~/7). (60)
j=1
We also have ‘
m de Lej
Sap=2 ) dsja =2 ), > nd—i)
i=140e74 leZ 4 =1 Z'Zig(j_l)

which is minimized when each d is as small as possible, and then each i,; occurs as early as possible,
s0 Saiz > |Za| 301 (2n) 7% — O(n2/?75/3) > Ty /2 — O(n}/?=%/3) by (60). The lemma follows. O

Lemma 7.12. Tg — S < O(L’2n1/2).

Proof. Similarly to the proof of Lemma [7.11} we start by giving a lower bound on N;p for any i
that is not a selection step. For £ € Zp let Sy = Sy(i) be the set of vy; with j € [h] such that
wyvy; is still open. We write sy = |Sy|. Each vy in S contributes 2V, ., = (1 & dy)2y to N;p; and
2Yxm,]. = (14 dy)2y to N;p,; however, we need to account for open pairs that may be counted by
more than one pair zyvy;.

We claim that there is no overcounting for inner pairs. To see this, note that if vy;vpj is counted
for xpvp; and for xpvp; then xpvpj and xpvg; are both edges, but this cannot occur by the hole
construction procedure. Furthermore, there is no overcounting between N;p; and N;p,, as inner
pairs intersect K but outer pairs do not (as K is independent).

Thus the claim holds, and it remains to consider overcounting for outer pairs. This may occur
for xyvs; and xpvey with £ € Zp and j,7° € Sp. The number of such overcounted pairs is at
most Wy, s,, which we will estimate by Lemma To see that this lemma applies, we note that
sp < hy < L*B\/ﬁ as holes Hy with ¢ € Zp are not large. We also note that (xy, S¢) is neighbourly, as
Sy C N(x¢) and all pairs z,y with y € Sy are open, so G(7) has no edges within H,U{z,} and for any
vertex a # x, at most L? edges ab with b € Hy and at most 2z open pairs ab with b € Hy. If sp > L*
then Lemmagives We,s, < L™%s¢Gy/n. Summing over £ € Zp, using |Zp| < z < 4L1%72%k from
and ) e 7. 50 < k we obtain

Nipo > (1=0y)2y Y (se—L*) = > L™%seqy/n >2y Y se— L' “kGv/n.

leZp leZp leZp

Including N;p;, we deduce

Nig > (1=06y)dy Y se— L' kgy/n =4y Y se— O(L ?qn), (61)
leZp leZp
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as « is large. As Sp =) 1", N;pq~ "', we have

Zg]

SB—l—OLin/2 Zz4y5gq >ZZ Z 8tn 3

i=1/¢eZp leZp j=11i= 7‘@(] 1)

he iej

= Z Zz&'n*g =T —O(n).

(eZp j=1 i=1

Similarly to Lemma there is a negligible correction due to using the bound at selection
steps. The lemma follows. O

Lemmas and reduce (58) to

2
—logP(&x) > SAO-FSK—S()—i-lOg% Z dz+’B| _O(n1/2L72), (62)
LeZ 4
We continue to estimate the terms in over the next three lemmas.
Lemma 7.13. Sy, > 2|Z4lm/n — ( 1/2-¢/5),

Proof. If i is not a selection step then by control of open degrees

Niao =23 (Xg, —dg — k — 2) > 2| Zalgn — O(gn' /).
leZ y

As Sao =", Niaoq! the lemma follows. O

For N,k we will require more precise estimates for the contribution from open pairs with one
vertex in the smaller holes, and so we need to account for this contribution further into the process.
Accordingly, we define the following thresholds for hole sizes. We write

h* = h*(i) = min{n®®, L=Gy/n},

and let £* = ¢*(i) € [z + 1] be such that hy > h* for 1 < ¢ < ¢* and hy < h* for £* < (< 2.
We also let 2/ be such that h, > n?/5 for ¢ < 72 and hy < n2/5 otherwise. Thus ¢* > 2/ and
equality holds at the beginning of the process. By Lemma ii) we have

2 < ALY™k/n*5 = O(n/1Y). (63)

We let J; = J1(i) = Ug<g*Hg and Jo = Jo(i) = Ups g+ Hy; thus (Jp, J2) is a partition of AU B.
We write N;x > Ze 1 Nikn, + Nikj, + Nikc, where each N;xx counts ordered open pairs
counted by N;x with first vertex in X.

Lemma 7.14. Ifi is not a selection step then N;x > Z@ 1 Nikn, + Nikj, + Nikc, where
(i) Nikx > §k|X| for X € {J2,C}, and

(ii) Nircp, > (1 — L7°)Ghek/2 if £ < 2 and G > n~ /5.
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Proof. We write N,k ., = be + QJ, 0, + QJ,c, Where be counts ordered open pairs in Jy that are
not contained within any hole. To estimate @) 7, we note that any vertex has degree at most ~A* in Jo
by the hole construction procedure. By Lemma i) whp Qj, = (1 £ L75)§|J2|? if 4|J2| > L*h*,
so we can write Q, > (1 — L™°)q|J2|(|J2| — L73%/n). Then

Q2 Q= 1| Ja = (1= L0)ql 1ol (2] — 227%0V/m).

For the second term we consider Q s, 7, > @, 5; where J; = Jo\N(T') and T is the set of vertices with
at least L2°h* neighbours in J;. We can assume |T| < 4L7%|J;|/h* < 6L~*\/n/h* by Lemma
so |[N(T) N Ja| < 6L=%/n. We apply Lemma with R = J; and S = J} = Jy \ N(T), noting
that if a vertex x has a neighbour in S then x ¢ T, so x has at most L?°h* neighbours in J;. If
Gmin{|J1|, |J3|} > L*h* this gives whp Q= (1% L=)4|J1]| 3], so as h* < L™0G\/n we have

QJlJé > (1 - L_5)(f(’J1‘ — L_4\/ﬁ)(|J2’ _ 7L_4\/ﬁ).

We can apply the same argument to estimate Qj,c > Qj,cv where C' = C \ N(T') and T" is
the set of vertices with at least L2072% neighbours in Jo. We can assume |T'| < 4L7572%J,| <
6L~4722/n by Lemma so [IN(T")NC| < 6L~*/n as any vertex has at most L?** neighbours in
C. Applying Lemma [7.4] with R = Jo and S = C' = C'\ N(T"), whp Q,cr = (1 £ L™%)g|.Jo||C"| if
Gmin{|Ja, |C'|} > L9250 we can write Q s, > (1 — L7°)¢(|J2| — L=*/n)(|C| — TL=*y/n). In
total, as |J1| + |J2| + |C| = k and GkL~*\/n = O(L3Gn) we obtain

Nik, 2 Q' + Quyyy + Quyor = Gkl Jo] — O(L™3gn).

We now turn to N;xc > Qc + Qaup,c. As any vertex has at most L?® neighbours in C, by
Lemma (1) whp Q¢ > (1 — L7°)g|C|(|C| — L™*/n). Next we estimate Qaup,c > Qaup,cv Where
C" = C\ N(T") and T" is the set of vertices with at least L2°T2% neighbours in AU B. As in the
argument for Q j,cr, we have Qaup,cr = (1 4+ L75)4|AU B||C"| if gmin{|AU B|,|C"|} > L2 5o

Nikc > Qaup.or + Qc > Gk|C| — O(L3¢n).

This completes the proof of (i). For (ii) we need to estimate N;x g, when ¢ > n~'/6 and ¢ < 2/
(i.e. hy > n2/5). We write X = {¢/ # £ : hpy > 2n1/4} and N;xp, = Ef’eX QHZHe/ + Qu,x,
where K' = K\ Upcx Hy. We first apply Lemma for each ¢ € X to R = Hy \ N(zy) and
S = Hy \ N(xy). This is valid by the codegree bound, which implies |R|,|S| > n'/* and also that any
vertex with a neighbour in one of R or S has at most L* < L=20G(2n!/*) neighbours in the other, as
q> n~1/6. Thus QH@H[/ = (1 + L_S)(jhghg/.

Now we estimate Qp, k' > Qrr’ where R = Hy\ N(U) and U is the set of z # z, with at least
n!/5 neighbours in K. We have |U| < 8L'n%/19 by Lemma (ii), so |[N(U) N Hy| < L*'n3/10 by
the codegree bound. Next we note that if a vertex x has a neighbour in K’ then x # xz, by the hole
construction procedure, so by the codegree bound z has at most L* < n!/5 neighbours in R C H;.

On the other hand, if z has a neighbour in R then = ¢ U, so x has at most n'/® neighbours in

K'C K. By Lemma as ¢ > n~'/% we have Qi > (1 — L™°)G(hy — L*'n?/10)(|K'| — n?/?). As
he < dp < (1 —€)k/2 we have k — hy —n?/® > k/2, and (ii) follows. O

Lemma 7.15. The overcount at step i is Nio = O(L™3¢n), so So = >, Niog™ ! = O(L2n=1/?).
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Proof. Let us consider the possible pairwise overcounting between N; a0, Nijai, NiBo, Nip; and N;x.
Note that by excluding y € K U {z1,...,x,} in the definition of N;4, we ensured that it does not
intersect any of the other collections. There is no overcounting between N;p, and N;p; + N;k, as
pairs counted by the former do not intersect K while pairs counted by the latter do intersect K.
There is no overcounting between N;p; and N; 4;, as the hole construction procedure ensures that no
vertex in a hole H, with £ € Zp is also a neighbour of some vertex xy such that ¢/ € Z 4. It remains
to consider the following possible overcounting of pairs:

(i) N; 4; with Nk, (ii) N; 4; with N;p,, (iii) N; with N;p;.

For (i), we note that a pair counted by N;4; and N;x has the form yy’ where y,3' are both
neighbours of some x; with ¢ € Z4, and are both in K but not in the same hole. By the hole
construction procedure at least one is also adjacent to some other x,, so by the codegree bound
there are O(k) = O(n'/2) such pairs. For (ii), the overcount between Nj4; and Njp, is determined
by naming a vertex b € B, a vertex z; such that ¢ € Z4, and a vertex ¢ that is in the (final) common
neighbourhood of z; and b; this overcount is at most k|Z4|L* = O(n1/2).

To bound the most significant overcount (iii), namely that between N;x and N;p;, we introduce
the following definition. We say that a hole H, with ¢ € Zp is black if z; has more than L30h,
neighbours in K. We let X H be the set of such xy and BH be the set of vertices that belong to black
holes. By Lemma (ii) applied to S = KU X H we have L'5|S| > ng > ngeXH L3%h, = L*°|BH|,
so |BH| < L=k, The contribution to N;g; of pairs that would close pairs xpvg; with vg; € BH is
at most 3y|BH| < 3L "yk < 3L~ 3¢kn'/2,

Now consider overcounted pairs that would close pairs that are not incident to black holes. Such
a pair has the form vgjvp ;s where zyvp ;s is an edge, so ¢ < ¢ by the hole construction procedure.
It suffices to show for any fixed x, that at most L~1%h,G\/n such pairs are also counted by N;p;.
Suppose first that hy > n?/®, so that £/ < { < 2/ = 6(n1/10) by . By the codegree bound there are
at most 2/ - L* < n'/? such edges xyvp;, which are only counted in our estimate for N;x in Lemma
while § > n~1/%, so the overcount for such a hole is at most hyn'/5 < hygn?/®>. Now suppose
hy < n?/5. We recall that open pairs between Hy and Hy are only counted in our estimate for IV;
in Lemma if Hy C Jo, i.e. if hy < h* < L7°°¢\/n. Since Hy is not black, the number of choices
for vy is at most L3, < L719G/n, so such pairs contribute at most L~'%h,4\/n. Summing over
all holes gives the desired bound. O

We are now ready for the union bound bound calculation that bounds P(£). Recall that we have
fixed the initial data that defines the event &; that is, we have specified z, the vertices 1, x2, ..., 2,
the hole sizes hq, ..., h, and the degrees d; of vertices xy for £ € Z,. We then partition £ into events
&k as analysed above, defined by choices of neighbourhoods of x4 for £ € Z4, vertices in AUB (which
are named by specifying the vertices in holes), selection steps i,;, and vertices in C'. The number of
choices for the data that defines £ is at most

1) (1) ()

To estimate P(€) we apply to each such choice of £k, substituting So = O(L~2n~'/2) from
Lemma m and S4, > 2|Zalm/n — O(n'/?7¢/%) from Lemma (the latter acounts for the
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exp(—2m/n) term in the calculation below). Recalling [B| =3, he and d¢ = 2m/n £ nl/2=¢/3,
using (Zi) < exp{O(loglogn)h,} for £ € Z4 and log (‘&) < |C|logn/2 + O(loglogn)k, we have

) < H [("627?) exp{—2m/n + O(loglogn)hs}

LEZ 4
he n _ —2.1/2
ne . 2m Sic+O(L~2n1/2)
H (hz n2> <‘C|)e
leZp
< exp Z helog(v/n/he) + |Cllogn/2 — Sk + O(loglogn)k (64)
leZp

It remains to show that Sk is sufficiently large to make the above probability expression small
enough for the union bound over the initial data defining £. We first note for Z4 that the count-

dg
ing terms (Z—f . %) = (e £ O(n=¢/5))% are cancelled to highest order by the probability term
exp(—2m/n) from Lemma so we require Sk to dominate the counting terms from the choice of
B and C. For B we consider the contributions from each hole as follows.

The contributions corresponding to the hole Hy depends on time when the hole moves out of the

set J; defined before Lemma If hy > n?/5 (i.e. £ < 2’) we obtain a term {khy/2 in the bound
1/6

from Lemma |7.14] while ¢ > n~

, i.e. up to time 5\/ Liogn. If hy < n?/5 we obtain a term Gkhy

from Lemma [7.14| while ¢ > L°h,/+/n, i.e. up to time t, = 5\/10g Lg{);w if this time is less than i,,q,

and up to time iy, otherwise. Let z” be the smallest index ¢ such that t; < t;,4, (this corresponds
to a threshold for hole sizes that is about L™°n). As Sk =", Nixq ™', we have

SKZ|C!TZ§:+<Zh"> : \/110gn (Z hy - n3 @):2

l=z"+1

+ (ZZ: hz) TZ—f — O(L2n*/?). (65)

£=2"

Finally we substitute in , grouping terms according to the contribution of each hy,
organised into the same summation ranges as in . For each hole Hy with £ € Zp included in one

he
of these ranges we have a counting term log ("e 1—73) = hy(log ‘hf + O(loglogn)) from which

we pair with a probability term from (65} . In the calculations below we also use (i) log \hf < 1—10 logn

for £ < 2/, (ii) \/(%logn)-log(LT‘/ﬁhZ) > logi for 2/ < £ < 2", and (iii) mk/n® > (1 +¢)ilogn,
which holds (for small €) as k = (1 + 3¢)y/2nlogn and m = /(1/2 — €) logn - n3/2/2. We have

/ //

logIF’(é’)g—Zhg (4\[ 10)logn— Z 35h410g[
l=z"+1

z

— ) chzlogn —e[C|logn + O(loglog n)k
l=z"+1

< —Zklogn + O(loglog n)k.
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As the number of choices of the initial data that defines £ is O(n??*) and z < 4kLY2% where « is
large, the probability that any such event £ holds is o(1), which completes the proof. O

7.3 Proof of the upper bound in Theorem

This proof is very similar to that of Theorem but much simpler. The lower bound on degrees in
G follows from Theorem [2.13] so it remains to show the upper bound. We take a union bound over
every vertex x, potential neighbourhood A, and set C such that

|C| = 5ey/nlogn
of the event that
1. A is the neighbourhood of = in G(imaz),
2. AUC spans no edge in G(imaz), and
3. vz is open in G(imq,) for all v € C.

We view C' as vertices that might be added to the neighbourhood of v between time t,,,, and the
end of the process. We show that whp there is no triple (x, A, C') with these properties.

We fix z, A, C, write A = {v1,...,vg} for some d’ and specify the appearance time i; for every
edge xvj, where j < j' implies i; < i;. Asin (55)), I < i;mae implies

i = jn/2+ 03?73 and & =d+n'/?7E3,

where we recall d = 2t,,0,1/1 = 2m/n = 1/(1/2 — )nlogn.

Let F be the event that AU C is an independent set in G (ipqz), all pairs joining 2 and C' are
open in G(imez), and all the specified edges appear at the specified steps of the process. To estimate
the probability of the event F, for each step ¢ we need to estimate the probability that the selected
edge is compatible with this event, conditional on the history of the process. We say i is a selection
step if i is one of i; for j € [d']; then the selected edge is specified by F, so the required probability
is simply 2/Q = (1 4 265)2¢~!. For other i, the required probability is 1 — N;/Q, where N; is the
number of ordered open pairs that cannot be selected at step ¢ when F occurs. If i = ; is a selection
step write IN; = 0. Then we estimate

d’ m
H 1+ 259)2q(t;) " - [[(1 = N:/@Q),
7j=1 =1

3/2

where t; = i;/n°/*. We write N; = Nja + N;c, where N;4 counts the ordered open pairs within A

and ;o counts those in A U C' with at least one vertex in C. We have
n2
—1ogP(F) > Sa — T + Sc + d' log - — O 12y (66)

_ &
where S, = > Niug ! for p€ {A,C} and Ty = > =1 4t§.
Following the argument in the previous section for estimating S4; — T4, we have the following
estimate on S4 — T4. We include a proof here in the interest of presenting a complete and self-
contained proof of the upper bound in Theorem
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Lemma 7.16. Sy — Ty = O(n!/27¢/3),

Proof. We first estimate N;4 when i is not a selection step. Let S = S(i) = {v; € A :4; > i} and
s = |S]; thus S(7) is the set of vertices y in A such that yz is open and is yet to be joined to z. The
2Y,. = (1 £ dy)2ys. Next note that
any vertex has at most L* neighbours in S, by the bound on codegrees in G (imaz), which applies as
I > imaz- Then by Lemma (1) whp Q, = (1 £n/%)§s? if s > n'/* and §s > n?*/°L'. Since
G > n~ Y27 this holds for s > n'/27%/2, s0 we can write Q, > (1 — n~5/5)gs(s — n'/>=¢/2). Thus

number of ordered open pairs vjv;s with j > 4, j/ < i is Y ves

Nig > (1 —n~/%) <2y3 + gs(s — n1/2*5/2)) = 2ys + §s° — O(Gn*~%/°).

Now we estimate S4 = Y%, N;jaq ', which we write as S4 = Sa1+ Sa2+ 6(121/2*5/5) according
to the contributions of the first and second terms in the estimate for N;4, and as before we incur a
negligible error by using this bound even at selection steps. Thus

d  ii—1 21

SA1:i2ysq Z Z Atn—3/? (d+1- Zzéun
=1 7j=11i=1

Jj=li=1;_

d’ d’ T _
=Y 26 = 22 = L~ O(n7), and
j=1 j=1

d -1

Saz = G5’ Z Yoo d +1-j)
=1 J=li=1;_
d
Z : ( 1/2— 5/3) > TA/2 ( 1/2— 5/3)
7=1
The lemma follows. 0

To estimate S¢ we require the crucial claim that
IN(u) N C| < L*nf (67)

for any vertex u. Indeed, if this failed for some u then at time ¢4, we have Y, > 2y. However, this
would contradict our estimate on Y-variables. (We can assume xu is a non-edge as x is open to C,
and we recall that we track Y, whether zu is open or closed.) Thus the claim holds.

While §|C| > L'¥¥n¢, which as |C| = ©(y/n) holds up to time (1+0(1))tmaz, We can apply Lemmas
(i) andto obtain Q¢ > (1—L71)4|C|? and Qac > (1— L7 1)§|A||C|. When i is not a selection
step this gives N = 2Qac + Qc > (1 — L7Y)§(2|A||C| + |C|?), so

Sc = ZNicq_l > (1—o0(1))(2|A4] +|C)|C|m/n* = (1 - o(1)) (1 — 2+ 55\/% — 6) IC|% logn.

=1

Now we substitute Lemma in , and take the union over all possible choices of the data that
specifies an event F, namely the choices of z, d’, A, C and the collection of times at which the edges
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joining x to A appear. Thus we bound the probability py that any triple (z, A, C) as above exists by

po < n; <Z> <‘g’>md/ ()% exp {—(1 —o(1)) (1 %4 55\/;> €3 logn + O(nl/Q)} :

Here we note that the counting term (g,)md/ (%)d = exp[(1 + o(1))d] is of lower order than the
main counting term (|g|) = exp[(1 + 0(1))|C|3 log n], and this is more than compensated for by the

probability term: assuming ¢ < 1/4, we obtain

po < nZexp {—¢|C|tlogn} .
d/

Thus the required bound on degrees holds with high probability. ([l

8 Concluding remarks

We have determined R(3,¢) to within a factor of 4 + o(1), so we should perhaps hazard a guess
for its asymptotics: we are tempted to believe the construction rather than the bound, i.e. that
R(3,t) ~ t?/4logt. We only proved an upper bound on the independence number of the graph G
produced by the triangle-free process, so in principle it might give a better lower bound on R(3,t).
However, we believe that this is not the case: we conjecture that the bound on the independence
number in Theorem is asymptotically best possible.

Another natural direction for future research is to provide an asymptotically optimal analysis in
greater generality for the H-free process. No doubt the technical challenges will be formidable, given
the difficulties that arise in the case of triangles. But on an optimistic note, it is encouraging that
one can build on two different proofs of this case.
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