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ON THE UPPER TAIL PROBLEM FOR RANDOM HYPERGRAPHS

YANG P. LIU AND YUFEI ZHAO

Abstract. The upper tail problem in a random graph asks to estimate the probability that the
number of copies of some fixed subgraph in an Erdős–Rényi random graph exceeds its expectation
by some constant factor. There has been much exciting recent progress on this problem.

We study the corresponding problem for hypergraphs, for which less is known about the large
deviation rate. We present new phenomena in upper tail large deviations for sparse random hyper-
graphs that are not seen in random graphs. We conjecture a formula for the large deviation rate,
i.e., the first order asymptotics of the log-probability that the number of copies of fixed subgraph
H in a sparse Erdős–Rényi random k-uniform hypergraph exceeds its expectation by a constant
factor. This conjecture turns out to be significantly more intricate compared to the case for graphs.
We verify our conjecture when the fixed subgraph H being counted is a clique, as well as when H

is the 3-uniform 6-vertex 4-edge hypergraph consisting of alternating faces of an octahedron, where
new techniques are required.

1. Introduction

1.1. The upper tail problem in random graphs. Given a fixed graph H, the “infamous upper
tail” problem, a name given by Janson and Rucinski [16], asks to estimate the probability that the
number of copies of H in an Erdős–Rényi random graph exceeds its mean by some given constant
factor. This problem has played a central role in the development of probabilistic combinatorics,
and had led to the development of a host of useful concentration inequalities. There were a number
of significant advances on this problem in the past decade or so. We begin by summarizing some
of the recent developments.

Let XH denote the number of copies of H in an Erdős–Rényi random graph Gn,p. A problem
of great interest is to estimate the probability that XH ≥ (1 + δ)EXH , where δ > 0 is fixed but
p = p(n) is allowed to vary with n.

Even the order of the log-probability had resisted much attack, until it was determined inde-
pendently by Chatterjee [8] and DeMarco and Kahn [12]. Once the order of log-probability had
been determined, the attention turns to pinning down the leading constant, i.e., the first order
asymptotics of the log-probability of upper tails.

As is commonly the case with large deviation problems, there are two complementary steps:

(1) Developing a large deviation principle/framework that reduces the rate problem to a natural
variational problem over edge-weighted graphs or graphons;

(2) Solving the variational problem.

For random graphs, neither step is easy. There were a number of recent breakthroughs that have
lead to a satisfying understanding in many interesting cases, though there is still much mystery in
general as well as in natural variations of the problem.

For clarity, let us focus on the case H = K3. Progress towards Step (1), the development of the
large deviation principle, began with the seminal paper of Chatterjee and Varadhan [10], which
proves a large deviation principle for dense random graphs using Szemerédi’s graph regularity
lemma. Due to the poor quantitative dependencies in the graph regularity lemma, Chatterjee and
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Varadhan’s method is applicable to random graphs Gn,p with constant p (i.e., dense graphs) or
extremely slowly decreasing p, e.g., p ≥ (log n)−c (see [18, Section 5] for an explanation how to
apply the weak regularity lemma to derive this result). Subsequently, Chatterjee and Dembo [9],
using ideas from Stein’s method for exchangeable pairs, derived the first nonlinear large deviation
principle that allows p to decay as a power of n. For triangles, their theorem holds when p ≥
n−1/42 log n. Eldan later used a different method, namely, using stochastic differential equations
to analyze a certain modified Brownian motion, improved the range of validity to p ≥ n−1/18 log n
in the case of triangles. Independent results by Cook–Dembo [11] and Augeri [1] further improved

the range of validity for H = K3 to p ≫ n−1/3 and p ≫ n−1/2 respectively. Very recently, Harel,
Mousset, and Samotij [15], using a novel combinatorial approach, resolved the problem for all ranges
of p in the case of triangle upper tails, though for general H there remain gaps to be closed. A
separate solution to the lower tail problem has been announced in a forthcoming work of Kozma
and Samotij.

For Step (2), in the setting of dense random graphs (p constant), one can ask whether the
variational problem is optimized by a constant graphon (we say that “replica symmetry” occurs
when this happens), and this question was answered by Lubetzky and Zhao [17] for every regular
graphH. From now on, let us consider the sparse setting p → 0. The variational problem was solved
by Lubetzky and Zhao [18] in the case of H = K3, and more generally, when H is a clique. For
general graphs H, although the case H = C4 already presented a significant hurdle, the variational
problem was solved for all H by Bhattacharya, Ganguly, Lubetzky, and Zhao [3]. In contrast, the
lower tail variational problem, studied in [19], has a completely different behavior, for which some
basic questions are still open. Recently, the corresponding problem for random regular graphs was
also studied [5].

Combining these developments, in particular [15, 18], our knowledge of the upper tail rate for
cliques H = Kr is summarized below. See Section 2.1 for asymptotic notation.

Theorem 1.1. Fix integer k ≥ 3 and real δ > 0. Let X = XKk
be the number of k-cliques in the

random graph Gn,p, where p = p(n). Then

lim
n→∞

− logP(X ≥ (1 + δ)EX)

n2pk−1 log(1/p)
=

{
1
2δ

2/k if n−2/(r−1)(log n)
2

(r−2)(r−1) ≪ p ≪ n−1/(k−1),

min{1
2δ

2/k, δ
k} if n−1/(k−1) ≪ p ≪ 1.

The lower bounds to the upper tail probability come from constructions where we plant either a
clique on δ1/knp(k−1)/2 vertices or a hub on δnpk−1/k vertices (a hub is a set of vertices each adjacent
to all vertices of the graph). As shown recently in [15], these two constructions approximately
describe the typical structure of the random graph conditioned on the upper tail event. We refer
the readers to [15] for precise descriptions of these results as well as much more general statements
covering other settings.

1.2. Random hypergraphs. The aim of this paper is to initiate the study of the variational prob-
lem, i.e., Step (2) above, for the corresponding upper tail problem for random hypergraphs. Here

we write G
(r)
n,p for the random r-uniform hypergraph (or simply r-graph) where every possible edge

appears independently with probability p. We are interested in estimating upper tail probabilities
of the number XH of copies of some fixed r-graph H in this random hypergraph.

Some, but not all, of the developments of large deviation principles for random graphs (i.e., Step
(1) above) transfer nicely over to the setting of hypergraphs. Proofs that involve the spectral data of
a graph tend to encounter some difficulty as hypergraphs lack a useful spectral decomposition. On
the other hand, Eldan’s non-linear large deviation principle [13], which uses the Gaussian width
as a measure of complexity, transfer over nicely to hypergraphs, as we explain in the appendix
(calculations of a similar spirit were done in [4, 7]).

It seems likely that other recent breakthroughs on large deviations in random graphs, including
[11, 15], might be adapted to the setting of hypergraphs, perhaps allowing the entire range of p,
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Figure 1. A 3-graph where dots denote vertices and each line denotes an edge (a
triple of vertices).

but this has yet to be worked out. In any case, even with an improved large deviation principle,
one still needs to solve a variational problem to determine the large deviation rate for the upper
tail theorem for random hypergraphs, and even the form of the rate function appears to be highly
non-trivial.

Thus we now turn our focus to the variational problem. It turns out, as we explain in this paper,
the situation appears to be much more intricate than graphs, and it takes some effort to even state a
reasonable conjecture. Our conjecture is essentially that the rate is obtained by planting a certain
“‘compatible” and “stable” collection of boxes (which we call “mixed hubs”) onto the random
hypergraph. We shall motivate the formulation of the conjecture in several steps by explaining why
some näıve versions of the statement must be incorrect. In addition, we verify our conjecture in
two different cases:

(1) H is a clique: this case is similar to clique counts in a random graph, which was solved in
[18]

(2) H is the 3-uniform hypergraph in Figure 1: this case already requires new techniques
(multiscale thresholding) not present in earlier works.

We study the 3-graph from Figure 1 since it is the first interesting example of a hypergraph
whose proof requires new methods, and its analysis already requires substantial work. Combining
our knowledge of the large deviation principle and the solution of the variational problem, we state
the following results.

Theorem 1.2. Let r ≥ 2 and fix an r-graph H. Fix a real δ > 0. Let XH denote the number of

copies of H in the random r-graph G
(r)
n,p, where p = p(n) satisfies p = o(1) and p > n

− 1
6|E(H)| log n.

(a) If H = K
(r)
k (clique on k vertices), then

P(XH ≥ (1 + δ)EXH) = exp

(
−(1 + o(1))min

{
δr/k

r!
,

δ

(r − 1)!k

}
nrp(

k−1
r−1) log(1/p)

)
.

(b) If H is the 3-graph in Figure 1, then

P(XH ≥ (1 + δ)EXH) = exp

(
−
(
1

6
+ o(1)

)
min

{√
9 + 3δ − 3,

√
δ
}
n3p2 log(1/p)

)
.

1.3. Paper Organization. The remainder of the paper is organized as follows. In Section 2 we
introduce the variational problem, state the solution to the variational problem for the setting of
complete hypergraphs and the 3-graph from Figure 1, and discuss the solution to the variational
problem in the case of graphs. In Section 3 we motivate and introduce a conjectural solution to
the variational problem in hypergraphs. In Section 4 we solve the variational problem for complete
hypergraphs. In Section 5 we determine the order of the rate function for general hypergraphs.
In Section 6 we solve the variational problem for the 3-graph from Figure 1, and discuss potential
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future directions. Finally, in Appendix A we show the reduction of the upper tail problem in
hypergraphs to the variational problem.

2. The variational problem

2.1. Notation. It will be convenient to use integral notation. Given a subset S ⊂ [k] := {1, . . . , k},
write dxS :=

∏
i∈S dxi. Given a finite set V and a function f : V k → R, we write
∫

f(x1, x2, . . . , xk)dx[k] :=
1

|V |k
∑

(x1,x2,...,xk)∈V k

f(x1, x2, . . . , xk).

In other words, we are endowing V with the averaging measure. For a subset S ⊆ V k, we write
∫

S
f(x1, x2, . . . , xk)dx[k] :=

1

|V |k
∑

(x1,x2,...,xk)∈S

f(x1, x2, . . . , xk).

For a vector (x1, x2, . . . , xk) ∈ V k and a subset S ⊆ [k], let xS := (xi : i ∈ S). For example,
x{1,3,4} denotes the 3-tuple (x1, x3, x4).

For an r-graph H with V (H) = [k], a set S, and a symmetric function W : Sr → R (here
symmetric means W (x1, . . . , xr) = W (xσ(1), . . . , xσ(r)) for every permutation σ of [r]), define the
H-density in W by

t(H,W ) =

∫ ∏

S∈E(H)

W (xS) dx[k]. (1)

For example, for H = K
(3)
4 , the complete 3-graph on 4 vertices,

t(K
(3)
4 ,W ) =

∫
W (x1, x2, x3)W (x1, x2, x4)W (x1, x3, x4)W (x2, x3, x4)dx1dx2dx3dx4.

We use the following asymptotic notation. Let f and g be nonnegative-valued functions of n. As
n → ∞, we write f ≪ g and f = o(g) to mean f/g → 0; we write f . g, f = O(g), and g = Ω(f)
to mean f ≤ Cg for some constant C; we write f ≍ g and f = Θ(g) to mean f . g . f ; finally, we
write f ∼ g to mean f = (1 + o(1))g.

The degree of a vertex of a hypergraph is the number of edges containing the vertex. We write
∆(H) (or ∆ if H is clear from context) for the maximum degree of H.

2.2. The variational problem. Let us state the entropic variational problem associated to the
large deviation problem for random hypergraphs.

An edge-weighted r-graph on n vertices with edge-weights in [0, 1] is given by the data A(G) =
(ai1,i2,...,ir)1≤i1,i2,...,ir≤n with entries in [0, 1] and is invariant under permuting the order of the
indices, i.e., ai1,i2,...,ir = aiσ(1),iσ(2),...,iσ(r)

for all permutations σ of [r], and also ai1,i2,...,ir = 0 unless
all i1, . . . , ir are distinct. Such an edge-weighted r-graph G can be viewed as a symmetric function
G : V (G)r → [0, 1]. Also we can define t(H,G), the H-density in G, as in (1).

Denote the relative entropy of G (relative to the random hypergraph G
(k)
n,p) by

Ip(G) :=
∑

1≤i1<i2<···<ir≤n

Ip(ai1,...,ir) where Ip(x) := x log
x

p
+ (1− x) log

1− x

1− p
.

The variational problem asks to determine the minimum relative entropy of an edge-weighted r-
graphs among all those with H-density at least (1 + δ)p|E(H)|, and we denote its value by

φ(H,n, p, δ) = inf
{
Ip(G) : G an edge-weighted r-graph with edge-weights in [0, 1]

and t(H,G) ≥ (1 + δ)p|E(H)|
}
, (2)
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It follows from existing theorems on nonlinear large deviations, in particular the work of Eldan
[13] (it can also be derived from [9] with some work) that the upper tail problem for random
hypergraphs reduces to the above variational problem. See the Appendix for details. This theorem
is the “Step (1)” mentioned in the introduction, and it remains open to improve the range of validity
of p.

Theorem 2.1 (Reduction to variational problem). Let H be an r-graph and let XH denote the

number of copies of H in the random hypergraph G
(r)
n,p, where p = p(n) satisfies p > n

− 1
6|E(H)| log n

and p = o(1). Then

P (XH ≥ (1 + δ)EXH) = exp (−(1 + o(1))φ(H,n, p, δ)) .

In our theorem below, we determine the order of the rate function φ(H,n, p, δ).

Theorem 2.2 (Order of the solution to the variational problem). Let H be an r-graph with maxi-

mum degree ∆ ≥ 2. If n−1/∆ ≪ p ≪ 1, then

φ(H,n, p, δ) ≍ nrp∆ log(1/p).

In Section 3, we formulate a conjecture on the missing constant in Theorem 2.2. We can pin
down the leading constant for the hypergraphs described in Theorem 1.2: cliques and the 3-graph
in Figure 1.

Theorem 2.3 (Solution to the variational problem). Fix a hypergraph H and a real δ > 0.

(a) If H = K
(r)
k (clique on k vertices) for r ≥ 3, then for any n−1/(k−1

r−1) ≪ p ≪ 1 we have that

lim
n→∞

φ(H,n, p, δ)

nrp(
k−1
r−1) log(1/p)

= min

{
δr/k

r!
,

δ

(r − 1)!k

}
.

(b) If H is the 3-graph in Figure 1, then for any n−1/2 ≪ p ≪ 1 we have that

lim
n→∞

φ(H,n, p, δ)

n3p2 log(1/p)
=

1

6
min

{√
9 + 3δ − 3,

√
δ
}
.

Remark. The recent development of [15] (further extended in [2]), using combinatorial techniques,
reduces the upper tail problem for graphs (i.e., r = 2), for certain H (but not yet available for all H
at the time of this writing), to a combinatorial variational problem, which is (2) with edge-weights
of G restricted to take values in {p, 1}. For the variational problem for graphs, the asymptotic
solutions for the upper tail problem are indeed of this form, and as such, the solution to the
restricted variational problem is implied by that of the more general version (2). In other words,
one has asymptotically optimal solutions to the variational problem (2) coming from planting some
subgraph. We conjecture that the same behavior occurs for hypergraphs as well. Nonetheless, it
seems that much of the difficulties of solving the combinatorial variational problem remain the same
as that of the entropic variational problem (2). In this paper, we study the entropic version (2)
since it is more general and also because a general (though suboptimal) large deviation principle
for random hypergraphs is already available.

2.3. Random graphs: solution to the variational problem. We start by recalling the solution
to the large deviation problem for random graphs, which was solved in [18, 3]. Fix a graph H
with maximum degree ∆. The variational problem (2) for graphs amounts to minimizing Ip(G) =∑

i<j Ip(aij) over all n-vertex edge-weighted graphs G (always with edge-weights in [0, 1]) satisfying

t(H,G) ≥ (1 + δ)p|E(H)|. We are interested in the regime when p → 0 (see [17] for discussions in
the case of constant p), which was solved for H a clique in [18] and for every H in [3].

For connected H, the relative entropy Ip(G) is asymptotically minimized by the construction
where we plant either a clique or a hub onto the constant p (the constant p corresponds to Gn,p).
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Specifically, planting a clique means choosing a parameter s and setting aij = 1 if both i ≤ s and
j ≤ s, and setting aij = p otherwise. This weighted graph corresponds adding a clique on s vertices

onto Gn,p. Take s ∼ cp∆/2n with some constant c > 0, where we assume 1 ≪ s ≪ n. Then by
considering which vertices of H get mapped to [s] we compute that

t(H,G) ∼
∑

S⊆V (H)

( s
n

)|S| (
1− s

n

)|V (H)|−|S|
p|E(H)|−|E(H[S])|

∼
∑

S⊆V (H)

(cp∆/2)|S|p|E(H)|−|E(H[S])| ∼
{
(1 + c|V (H)|)p|E(H)| if H is ∆-regular,

p|E(H)| otherwise.
(3)

The last step follows from the fact that for proper non-empty subsets S of V (H), the term in the

sum is o(p|E(H)|). Indeed, |E(H[S])| < ∆|S|/2 for any proper nonempty subset S of V (H) as H is
connected.

On the other hand, planting a hub means choosing a parameter s and setting aij = 1 if either
i ≤ s or j ≤ s, and setting aij = p otherwise. This weighted graph corresponds to taking Gn,p and

making some fixed s vertices adjacent to all vertices. Take s = θp∆n with some constant θ > 0,
where we assume 1 ≪ s ≪ n. Let H⋆ denote the subgraph of H induced by its degree ∆ vertices.
We compute that

t(H,G) ∼
∑

S⊆V (H)

( s
n

)|S| (
1− s

n

)|V (H)|−|S|
p|E[V (H)\S]|

∼
∑

S⊆V (H)

(θp∆)|S|p|E[V (H)\S]| ∼ PH⋆(θ)p|E(H)|, (4)

where

PH⋆(θ) =
∑

S independent set of H⋆

θ|S| (5)

is the independence polynomial of H⋆. In (4) we have used that |S|∆+ |E[V (H)\S]| ≥ |E(H)| with
equality if and only if S is an independent set and all vertices in S have degree ∆.

The main result of [3] (shown earlier in [18] when H is a clique) is that, depending on the range of
the parameter δ, either planting a clique or planting a hub is asymptotically optimal for connected
H.

Theorem 2.4 ([3]). Let H be a connected graph with maximum degree ∆ ≥ 2. Let δ > 0. Suppose
p = p(n) satisfies n−1/∆ ≪ p ≪ 1. Then the variational problem (2) satisfies

lim
n→∞

φ(H,n, p, δ)

n2p∆ log(1/p)
=

{
min

{
θ, 12δ

2/|V (H)|
}
, if H is regular,

θ, if H is irregular,

where θ = θ(H, δ) is the unique positive solution to PH⋆(θ) = 1 + δ.

For disconnected H, the asymptotically optimal solution comes from simultaneously planting a
clique and a hub [3, Section 7].

3. The conjectural solution to the hypergraph variational problem

3.1. Extending the graph solution: cliques and hubs. Let us attempt to formulate a conjec-
tural solution to the variational problem (2) for a general hypergraph H, similar to Theorem 2.4
for graphs.

Similar to the graph case described in Section 2.3, a natural guess would be that the variational
problem is asymptotically solved by planting cliques and hubs.
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Given an r-graph G0 with vertex set [n], we say that an edge-weighted r-graph G on vertex set
[n] arises from planting G0 if the edge-weights (ae)e∈E(G) of G satisfy ae = 1 whenever e is an edge
of G0 and ae = p otherwise.

Let us attempt to state the asymptotic solution to the variational problem. We will describe a
parameterized family of edge-weighted graphs that could serve as the asymptotic optimizer. We
always assume a fixed hypergraph H and n−cH ≪ p ≪ 1.

Motivated by the graph case, where the solution comes from planting a union of a clique and
a hub (when H is connected, one plants either a clique or a hub), one could conjecture that the
same happens in the hypergraph setting as well. For hypergraphs, a clique consists of all r-tuples
contained in a given set S of vertices, whereas a hub consists of all r-tuples that intersect a given set
S of vertices. In particular, we shall only consider planting cliques and hubs where the corresponding
set S is a prefix of the vertex set [n] (though the size of S could be different for the clique and the
hub even if both are simultaneously planted).

Näıve Conjecture 3.1. The variational problem (2) is asymptotically optimized by planting a
clique and a hub.

The above näıve conjecture is true for graphs. For hypergraphs, we will also show that it is true
when H is a clique. However, the näıve conjecture fails in general.

One attempt to rectify the conjecture is to extend the notion of cliques and hubs for hypergraphs.
In an r-graph, define a k-hub to be all r-tuples of vertices that contains at least k vertices from
some specified prefix of the vertex set [n].

For example, in an r-graph, 1-hubs are hubs and r-hubs are cliques.

Näıve Conjecture 3.2. The variational problem (2) for r-graphs is asymptotically optimized by
planting a union of a 1-hub, a 2-hub, . . . , and a r-hub.

Unfortunately, Näıve Conjecture 3.2 remains false, as we now give a counterexample. The
counterexample 3-graph H has 13 vertices and 15 edges. Its edges are given as follows (also see
Figure 2), where whenever we write a pair, we extend it to a triple by adding a new dummy vertex
(all the dummy vertices are distinct):

(A,B), (B,C), (A,C), (A,D,F ), (B,D,E), (C,E,F ),

(A′, B′), (B′, C ′), (A′, C ′), (A′,D′, F ′), (B′,D′, E′), (C ′, E′, F ′),

(D,D′, G), (E,E′ , G), (F,F ′, G).

Note that all the labeled vertices (i.e., other than the omitted dummy vertices) have degree equal
to the maximum degree ∆ = 3.

Consider the 3-graph G0 on vertex set [n] whose edges are all {i1, i2, i3} ∈
([n]
3

)
with i1 < i2 < i3

with i1 ≤ cp3/2n and i2, i3 ≤ c′p3/4n for some appropriately chosen constants c, c′ > 0. This
construction is not a union of k-hubs. However, as we shall verify in Section 3.5, this construction
performs better than a union of k-hubs.

3.2. Mixed hubs. The above counterexample construction motivates the following generalization
of a k-hub. In an r-graph, we define a mixed hub to be the subgraph consisting of all edges
{i1, . . . , ir} with i1 ≤ n1, . . . , ir ≤ nr for some specified n1, . . . , nr. Note that this set of edges is
almost but not quite the same as the cartesian box [n1]× · · · × [nr] since edges consist of r-tuples
of distinct vertices. Note that all k-hubs can be described in this form, by setting k of the ni to be
equal, and setting the rest to n.

Naturally, one could conjecture that the optimal solution consists of a union of mixed hubs.
Though such a statement would not make a particularly useful conjecture since the space of pos-
sibilities for a union of mixed hubs is not finitely parametrizable. In order to make a more useful
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G

A

B C

F

D

E

A′

B′C′

F ′

D′

E′

Figure 2. Counterexample graph to Naive Conjecture 3.2. Only vertices of degree
3 are drawn – we can view the structure as a 3-graph by completing each edge drawn
with only two vertices with a new dummy vertex (a distinct dummy vertex for each
such edge).

conjecture, let us look at what kind of widths ni’s we should take in the construction of the mixed
hubs in order to contribute meaningfully to the variational problem.

Going forward, we consider constructions with a given sequence p = p(n) ≫ n−1/∆ and p = o(1).
Let t1, . . . , tr ≥ 0 with t1 + · · ·+ tr = 1. In an r-graph, a (t1, t2, . . . , tr)-mixed hub consists of all

edges that can be written as an element of [n1]× · · · × [nr] with ni ∼ cip
ti∆n, where c1, . . . , cr > 0

are constants, and ni = n whenever ti = 0.
The requirement t1 + · · · + tr = 1 in a mixed hub is so that the construction achieves the

correct order of magnitude in the variational problem (2), namely so that an edge-weighted r-
graph obtained by planting a mixed hub has Ip(G) = Θ(nkp∆ log(1/p)); c.f. Theorem 2.2.

Our construction will consist of taking a union of mixed hubs, possibly with different (t1, . . . , tr)
parameters. We say that a finite collection of mixed hubs is compatible if there exists some function
c : [0, 1] → R≥0 with c(0) = 1 such that for each (t1, . . . , tr)-mixed hub in the collection, the
corresponding constants (c1, . . . , cr) satisfy ci = c(ti) for all i (the same function c is used for all
mixed hubs in the collection). Compatibility is necessary to ensure that various mixed hubs can be
planted and contribute towards the same labeling of H (defined in Definition 3.3).

In other words, a compatible collection of mixed hubs is indexed by a finite set S (called the
indexing set) along with a function c : [0, 1] → R≥0. The elements of the indexing set S are
ordered tuples (t1, . . . , tr) each satisfying t1, . . . , tr ≥ 0 and t1 + · · · + tr = 1, and S is invariant
under permutations of coordinates, i.e., (tσ(1), . . . , tσ(r)) ∈ S whenever (t1, . . . , tr) ∈ S and σ is a
permutation of [r]. Here the only relevant values of c(·) are c(ti) for some ti appearing in as a
coordinate in some element of S. We may as well set c(t) = 0 unless t appears as a coordinate in
some element of S.

For example, in a 3-graph, a (1, 0, 0)-mixed hub is a 1-hub, a (1/2, 1/2, 0)-mixed is a 2-hub, and
a (1/3, 1/3, 1/3)-mixed hub is a 3-hub. The counterexample given above to Näıve Conjecture 3.2
involves a (1/4, 1/4, 1/2)-hub.

We define the volume of a compatible collection of mixed hubs indexed by (S, c) to be

Vol(S, c) =
∑

(t1,...,tr)∈S

r∏

i=1

c(ti). (6)

The number of edges in the union of these mixed hubs is (1 + o(1))Vol(S, c)p∆nr/r!.
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Let us now compute t(H,G) where G is obtained by planting a compatible collection of mixed
hubs indexed by (S, c). Let V (G) = [n].

Now we describe how to estimate t(H,G) by extending the calculations (3) and (4). We can
partition the vertex set V (G) = [n] based on the largest value of t that appears as a coordinate
of S (also allowing t = 0) such that the vertex i ∈ V (G) has i ≤ c(t)pt∆, where we are crucially
using the assumption of compatibility. And then we partition the set of all copies of H in G based
on which part in the partition each vertex of H gets mapped to. We can enumerate the partition
induced on the set of copies of H using a function f : V (H) → [0, 1], where f takes on values that
are either 0 or some number that appears as a coordinate in S.

DefineEf to be the set of edges {i1, i2, . . . , ir} in E(H) such that there is a (f(i1), f(i2), . . . , f(ir))-
mixed hub in the construction of G. The contributions to t(H,G) indexed by f (i.e., correspond-
ing to homomorphisms from H to G where each v ∈ V (H) is mapped to some i ∈ V (G) with

i ≤ c(f(v))pf(v)∆) is then

∼ p|E(H)|−|Ef |
∏

v∈V (H)

c(f(v))pf(v)∆, (7)

where the first factor comes from the fact that all edges in Ef are mapped to edges in G with
weight 1, while the other edges in E(H) are mapped to edges in G with weight p, and the second
factor comes from the number of choices for the image of each v ∈ V (H). We can check that the

contribution (7) is o(p|E(H)|) unless:

• for every edge e ∈ E(H), we have
∑

v∈e f(v) = 0 or 1, and
• for all vertices v ∈ V (H) with deg(v) < ∆, we have f(v) = 0.

Indeed, note that because t1 + · · · + tr = 1 for every (t1, . . . , tr) ∈ S, we have that

|Ef | =
∑

e∈Ef

∑

v∈e

f(v) =
∑

v∈V (H)

f(v)|{e ∈ Ef : v ∈ e}| ≤
∑

v∈V (H)

f(v)∆.

We need equality to hold so that (7) is on the order of p|V (H)|, and equality above is equivalent to∑
v∈e f(v) = 1 for all e ∈ Ef , and that f(v) = 0 if deg v < ∆.
Let us introduce some notation to make precise the set of vertex-labelings f of H that can come

up in (7). We first define a set Γ̃H below but we will need to further restrict them later.

Definition 3.3 (Labelings Γ̃H). Let H be an r-graph. Define Γ̃H to be the set of functions
f : V (H) → [0, 1] satisfying

• f(v) = 0 for all v ∈ V (H) with deg(v) < ∆, and
• ∑v∈e f(v) ∈ {0, 1} for each e ∈ E(H).

Define Γ̃H(S) to be the set of functions f ∈ Γ̃H such that (f(v))v∈e ∈ S ∪ {(0, 0, . . . , 0)} for all
e ∈ E(H).

3.3. Stable labelings. An issue with the above computation is the set of labelings Γ̃H may be
infinite, so that looking at this class of constructions would not produce a conjectured value of the
variational that is given by a finitely parametrizable optimizable problem. For example, consider

the set Γ̃H where H is a regular bipartite graph with bipartition H = A ∪ B. Then, for each

t ∈ [0, 1], the labeling f(v) = t for all v ∈ A, f(v) = 1− t for all v ∈ B is in Γ̃H . To limit the set of
vertex labelings, we define a set of stable labelings.

Definition 3.4 (Stable labelings ΓH). Let H be an r-graph. We call f ∈ Γ̃H stable if there does

not exist a different f ′ ∈ Γ̃H such that

• ∑v∈e f(v) =
∑

v∈e f
′(v) for all e ∈ E(H), and

• for all distinct v1, v2 ∈ V (H), one has f(v1) = f(v2) if and only if f ′(v1) = f ′(v2), and
• for all v ∈ V (H), one has f(v) = 0 if and only if f ′(v) = 0.
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Denote the set of stable labelings by ΓH . Define ΓH(S) to be the set of functions f ∈ ΓH such that
(f(v))v∈e ∈ S ∪ {(0, 0, . . . , 0)} for all e ∈ E(H).

In other words, f ∈ Γ̃H if it arises as a solution to a system of linear equations given in Defi-
nition 3.3 (where we make a choice of {0, 1} for each e ∈ E(H)). However, this system may have
more than one solution, in which case we continue to add constraints of the form f(v1) = f(v2)
for some pair of distinct v1, v2 ∈ V (H) or f(v) = 0 for some v ∈ V (H) until the system is forced
to have a unique solution. Since there are a finite number of such systems of linear equations for
each H, the set ΓH of stable labelings is finite. Examples of computation with stable labelings are
given below in Section 3.4.

The intuition for why stability may be required is that if some construction gives rise to a labeling
f that is not stable, then perhaps, due to some convexity-like reasons, one can can perturb the
construction so that some labels become equal.

It suffices to restrict to S that respects stable labelings, meaning that every (t1, . . . , tr) ∈ S
appears as the labels of some edge in some f ∈ ΓH . Then there are only finitely many possibilities
for S for each H.

Our conjecture, stated informally, is that the asymptotically optimal solutions to the variational
problem (2) arise from planting a compatible collection of mixed hubs that respect stable labelings.

A more formal version is stated below. Given a compatible collection of mixed hubs indexed by
set S and function c : [0, 1] → R≥0, define

PH(S, c) =
∑

f∈ΓH (S)

∏

v∈V (H)

c(f(v)).

We write

ρH(δ) := inf{Vol(S, c) : compatible collection of mixed hubs that respect stable labelings

indexed by (S, c) with PH(S, c) ≥ 1 + δ}. (8)

Conjecture 3.5. Fix an r-graph H with maximum degree ∆. For n → ∞ and p := p(n) satisfying

n−1/∆ ≪ p ≪ 1, we have that

min{Ip(Gn) : Gn ∈ Gn, t(H,Gn) ≥ (1 + δ)p|E(H)|} ∼ 1

r!
nrp∆ρH(δ) log(1/p).

A routine computation similar to (3) and (4) shows that, with G being the edge-weighted r-
graph obtained by planting the compatible collection of mixed hubs indexed by (S, c) on top of the

constant p, as long as n−1/∆ ≪ p ≪ 1,

t(H,G) ≥ (1− o(1))PH (S, c)p|E(H)|,

where we have crucially used the assumption of compatibility. Also,

Ip(G) ∼ 1

r!
nrp∆Vol(S, c) log(1/p).

This shows the upper bound to Conjecture 3.5.

Lemma 3.6 (Upper bound to Conjecture 3.5). Fix an r-graph H with maximum degree ∆. For
n → ∞ and p := p(n) satisfying n−1/∆ ≪ p ≪ 1, we have that

min{Ip(Gn) : Gn ∈ Gn, t(H,Gn) ≥ (1 + δ)p|E(H)|} ≤ (1 + o(1))
1

r!
nrp∆ρH(δ) log(1/p).

3.4. Examples. We now give a number of examples for Conjecture 3.5. We write cx := c(x) to
make the formulas more readable.

Example 3.7. We start by explaining how the conjecture as stated above applies to the case where

H = K
(r)
k . A direct calculation shows that for k > r, the only labelings f ∈ Γ̃H (Definition 3.3) are
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• f(v) = 1/r for all v ∈ V (H)
• f(v) = 1 for some v, and f(w) = 0 for all w ∈ V (H) with w 6= v.

Therefore, the set of stable labelings ΓH is the same as Γ̃H . Here, we assume that the indexing
set S contains the tuples (1, 0, · · · , 0), (1/r, 1/r, · · · , 1/r) and their permutations, corresponding to
1-hubs and r-hubs. We can assume this because we can set c1 = 0 or c1/r = 0 to handle the other
cases.

For a choice of function c, we can compute that PH(S, c) = 1+ck1/r+kc1 and Vol(S, c) = cr1/r+rc1.

Therefore, we get that

ρH(δ) = inf
{
cr1/r + rc1 : c

k
1/r + kc1 ≥ δ, c1/r, c1 ∈ R≥0

}
= min

{
δr/k,

rδ

k

}
,

which matches the result in Theorem 1.2(a).

Example 3.8. We now explain how the conjecture applies to 2-graphs (Theorem 2.4). Let S be
any symmetric combination of mixed hubs compatible with c. For simplicity, let H be a connected
2-graph. Let V (H) denote the vertex set of H. One can check that the stable labelings f ∈ ΓH are
all of the following forms:

• f(v) = 1 for all v in some independent set I of H such that deg(v) = ∆ for all v ∈ I and
f(v) = 0 for v ∈ V (H)\I, or

• If H is regular, f(v) = 1
2 for all v ∈ V (H).

Note that there are many labelings f ∈ Γ̃H which are not stable in the case where H is regular
with bipartition V (H) = A ∪B, namely labelings f with f(v) = x for v ∈ A and f(v) = 1− x for
v ∈ B.

Here, we assume that the indexing set S = {(1, 0), (0, 1), (1/2, 1/2)}, corresponding to 1-hubs
and 2-hubs. We can assume that S contains all these triples because we can set c1 = 0 or c1/2 = 0
to handle the other cases.

For a function c : [0, 1] → R≥0, if H is irregular, it is easy to check that PH(S, c) = PH⋆(c1),
where the latter PH⋆ is the independence polynomial as in (5). If H is regular, then we can compute

that PH(S, c) = PH⋆(c1) + c
|V (H)|
1/2 . In all cases, we have that Vol(S, c) = 2c1 + c21/2. It follows that

ρH(δ) =

{
min{2θ, δ2/|V (H)|} if H is regular,

2θ if H is irregular.

This matches the result in Theorem 2.4.

Example 3.9. Let H be the 3-graph from Figure 1, reproduced below.

Then Γ̃H (see Definition 3.3) consists of the following assignments, where the label of a vertex v
denotes f(v). We have omitted 0 labels, and we have denoted the number of automorphisms each
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labeling has.

× 1

1

× 6

1/2 1/2

1/2

× 4

x y

y

x

z

z

× 1

for x+ y + z = 1

The first three labelings all correspond to stable labelings. For the last set of labels in Γ̃H , note
that the ways to make it stable are to

• x = y = 0 and z = 1 (and symmetric versions), or
• x = 0, y = z (and symmetric versions), or
• x = y = z.

This gives rise to the following stable labelings.

1

1

× 3

1/2

1/2

1/2

1/2

× 3

1/3 1/3

1/3

1/3

1/3

1/3

× 1

We can assume that the indexing set S contains all the tuples (1, 0, 0), (1/2, 1/2, 0), (1/3, 1/3, 1/3)
and their permutations, corresponding to 1-hubs, 2-hubs, and 3-hubs, since we can set c1 = 0,
c1/2 = 0, or c1/3 = 0 to handle the other cases. We also assume that c is zero outside {0, 1/3, 1/2, 1}.

By the above construction, we have that

PH(S, c) ≥ 1 + 6c1 + 3c21 + 4c31/2 + 3c41/2 + c61/3 (9)

and

Vol(S, c) = 3c1 + 3c21/2 + c31/3.

Therefore, we get that

ρH(δ) = inf{3c1 + 3c21/2 + c31/3 : 6c1 + 3c21 + 4c31/2 + 3c41/2 + c61/3 ≥ δ, c1/2, c1/3, c1 ∈ R≥0}

= min
(√

9 + 3δ − 3,
√
δ
)
,

achieved by the triples

(c1, c1/2, c1/3) =

(√
9 + 3δ − 3

3
, 0, 0

)
and (c1, c1/2, c1/3) =

(
0, 0, δ

1
6

)

respectively. By Lemma 3.6, we have obtained the upper bound in Theorem 2.3(b).
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1/2

1/2

1/2 1/2

1/4

1/4

1/4

1/2

1/21/2

1/4

1/4

1/4

Figure 3. The unique labeling f satisfying
∑

v∈e f(v) = 1 for all edges e in 3-graph
H in Figure 2.

3.5. Proof that Näıve Conjecture 3.2 is false. In this section we show that Näıve Conjec-
ture 3.2 is false for the example 3-graph H given in Figure 2. Note that in our depiction of H in
Figure 2, some of the edges only have 2 vertices. This 3-graph was chosen so that each vertex that
was drawn has degree equal to ∆ = 3 and that there is a unique stable labeling f : V (H) → [0, 1]
satisfying

∑
v∈e f(v) = 1 for all edges e in the 3-graph. This labeling is shown in Figure 3. Addition-

ally, this labeling f does not have image in the set
{
0, 13 ,

1
2 , 1
}
, which are the labels corresponding

to k-hubs for 1 ≤ k ≤ 3.

Proposition 3.10. Let H be the 3-graph in Figure 2. We have ρH(δ) ≤ 6δ1/5.

Proof. Consider the labeling f ∈ ΓH in Figure 3. Let S consist of the 3-tuples (1, 0, 0), (1/2, 1/2, 0),
(1/4, 1/4, 1/2) and their permutations. The triple (1/4, 1/4, 1/2) does not correspond to any k-hub.

Set c0 = 1, c1/2 = δ1/10, and c1/4 = δ1/20. Let f be the labeling in Figure 3. This gives us that for

PH(S, c) ≥ 1 +
∏

v∈V (H)

cf(v) ≥ 1 + c71/2c
6
1/4 = 1 + δ.

Also, we have that

Vol(S, c) = 3c21/2 + 3c1/2c
2
1/4 = 6δ1/5.

Thus ρH(δ) ≤ 6δ1/5 as claimed. �

We now show that compatible collections of 1-hubs, 2-hubs, and 3-hubs cannot achieve the bound
in Proposition 3.10.

Proposition 3.11. For the 3-graph H in Figure 2 and sufficiently large constant δ, we have that
for every compatible collection of k-hubs indexed by S and c with PH(S, c) ≥ 1 + δ, we have that

Vol(S, c) = Ω(δ3/14).

Proof. We can assume that the indexing set S contains all the tuples (1, 0, 0), (1/2, 1/2, 0),
(1/3, 1/3, 1/3) and their permutations, corresponding to 1-hubs, 2-hubs, and 3-hubs, since we can
handle the other cases by setting some of c1, c1/2, c1/3 to equal zero.

Since PH(S, c) ≥ 1 + δ, there exists some nonzero f ∈ ΓH(S) such that
∏

v∈V (H) cf(v) ≥
δ/|ΓH (S)|. Every f ∈ ΓH(S) has

∑

v∈V (H)

f(v) =
1

3

∑

e

(
∑

v∈e

f(v)

)
≤ 14

3
, (10)
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since
∑

v∈e f(v) ∈ {0, 1} for every e ∈ E(H), but if
∑

v∈e f(v) = 1 for all 15 edges e in H, then f
would have to be the labeling in Figure 3, and hence not in ΓH(S).

Combining (10) with
∏

v∈V (H) cf(v) & δ from earlier, we deduce that ct & δ3t/14 for at least one

of t ∈ {1/3, 1/2, 1}. Thus Vol(S, c) = 3(c1 + c21/2 + c31/3) & δ3/14. �

4. Solution to the variational problem for cliques

To show Theorem 2.3(a), we must give a construction to upper bound φ(H,n, p, δ) and prove
a lower bound. The upper bound follows directly from the calculation in Section 3, specifically
Example 3.7. In this section we show the lower bound.

4.1. Preliminaries. We recall some tools from [18]. The following inequality can be viewed as a
generalized version of Hölder’s inequality [14]. It is also related to the Brascamp–Lieb inequali-
ties [6].

Theorem 4.1 (Generalized Hölder’s inequality). For each i ∈ [n], let Ωi be a probability space with
measure µi. Let µ =

∏n
i=1 µi. Let A1, A2, . . . , An be nonempty subsets of [n] = {1, 2, . . . , n} and for

A ∈ [n] let µA =
∏

i∈A µi and ΩA =
∏

i∈A Ωi. Let fi ∈ Lpi(ΩAi
, µAi

) for each 1 ≤ i ≤ m. Assume

further that
∑

i:j∈Ai
p−1
i ≤ 1 for all 1 ≤ j ≤ n. Then we have that

∫ ( m∏

i=1

fi

)
dµ ≤

m∏

i=1

(∫
|fi|pi dµAi

) 1
pi

.

Our most common application involves the case where every element of [n] is contained in at
most ∆ sets Aj. Then one can take pi = ∆ for all i ∈ [m], giving the inequality

∫
f1 . . . fmdµ ≤

∏m
i=1

(∫
|fi|∆dµAi

) 1
∆ . As an example use, we have for any function f that

∫
f(x, y)f(x, z)f(y, z) dxdydz ≤

(∫
f(x, y)2 dxdy

)3/2

.

More generally, we will apply Theorem 4.1 in the following form.

Corollary 4.2 (Generalized Hölder for bounded degree hypergraphs). Let H be a hypergraph with
maximum degree at most ∆. Let Ω be some probability space and Bv ⊂ Ω a measurable subset for
each v ∈ V (H). Let U : Ωr → R≥0 be a symmetric function. Then

∫
∏

v∈V (H) Bv

∏

S∈E(H)

U(xS) dxV (H) ≤
∏

S∈E(H)

(∫
∏

v∈S Bv

U(xS)
∆ dxS

)1/∆

.

As a further special case, we have the following inequality when H is a clique. Here, for a set S,
we write

(
S
r

)
for the collection of r-element subsets of S.

Corollary 4.3 (Generalized Hölder for cliques). Let k ≥ r be positive integers, Let B be a mea-
surable subset of some probability space Ω. Let U : Ωr → R≥0 be a symmetric function. Then

∫

Bk

∏

S∈([k]r )

U(xS) dx[k] ≤
(∫

Br

U(x[r])
(k−1
r−1) dx[r]

)k/r

Let H = K
(r)
k , let G be an r-graph, and let W be the weights corresponding to G (with all weights

in [0, 1]) satisfying t(H,W ) ≥ (1 + δ)p|E(H)|. Define U = W − p. As Ip is convex, decreasing on 0
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to p, and increasing on p to 1, we can assume that 0 ≤ U ≤ 1− p, as we are trying to lower bound
Ip(W ) over all W with t(H,W ) ≥ (1 + δ)p|E(H)|. We can expand

t(H,W ) =
∑

H′⊆H

p|E(H)|−|E(H′)|t(H ′, U) (11)

where the sum is over all subgraphs H ′ of H.

For b ∈ (0, 1], define the subset Bb of vertices x ∈ V (G) by

Bb = Bb(G) := {x : dG2 (x) > b}
where

d2(x) = dG2 (x) :=

∫
U(x, x1, . . . , xr−1)

2dx[r−1].

From now on, we will drop the dependence on G in Bb(G) and dG2 (x) whenever G and the corre-
sponding functions U and W are clear from context.

Remark. In earlier work (e.g. [18, 3]), d(x) was defined as d(x) =
∫
U(x, y)dy (representing the

degree of x). While our proof actually relies on our different choice of d2, it still seems natural
because in our equality cases U only takes on values o(1) and 1− o(1), so the two choices actually
should agree.

The next lemma is analogous to Lemma 4.2 in [3].

Lemma 4.4. Fix H = K
(r)
k with k > r ≥ 3. For a graph G, let U : V (G)r → R be a function

satisfying ∫
Ip(p + U(x[r]))dx[r] . p(

k−1
r−1) log(1/p). (12)

Then ∫
U(x[r])dx[r] . p

(k−1
r−1)+1

2

√
log(1/p) (13)

and ∫
d2(x)dx =

∫
U(x[r])

2dx[r] . p(
k−1
r−1). (14)

Furthermore, if Bb = {x : d2(x) > b}, then

λ(Bb) .
p(

k−1
r−1)

b
(15)

where we write λ(S) =
∫
S 1dx[r] for the measure of S.

Before giving the proof, we state some properties of the function Ip(x) which were shown in [18].

Lemma 4.5 ([18, Lemma 3.3]). If 0 ≤ x ≪ p then Ip(p + x) ∼ x2

2p . If p ≪ x ≤ 1 − p then

Ip(p+ x) ∼ x log(x/p).

Lemma 4.6 ([18, Lemma 3.4]). There exists p0 > 0 so that for all 0 < p ≤ p0 and 0 ≤ x ≤ b ≤
1− p− 1/ log(1/p),

Ip(p + x) ≥ (x/b)2Ip(p + b).

Lemma 4.7 ([18, Corollary 3.5]). There is a constant p0 > 0 such that for all 0 < p ≤ p0 we have
that

Ip(p+ x) ≥ x2Ip(1− 1/ log(1/p)) ∼ x2 log(1/p).
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Proof of Lemma 4.4. By Lemma 4.5 we have

Ip

(
p+ cp

(k−1
r−1)+1

2

√
log(1/p)

)
∼ 1

2
c2p(

k−1
r−1) log(1/p)

Now, by the convexity of Ip(·) and (12), we find that

Ip

(
p+

∫
U(x[r])dx[r]

)
≤
∫

Ip(p + U(x[r]))dx[r] . p(
k−1
r−1) log(1/p)

Now applying the monotonicity of Ip(x) for x ≥ p gives us that
∫

U(x[r])dx[r] . p
(k−1
r−1)+1

2

√
log(1/p)

as desired. By Lemma 4.7 we have that
∫

U(x[r])
2dx[r] .

1

log(1/p)

∫
Ip(p + U(x[r]))dx[r] . p(

k−1
r−1)

as desired. Finally it is clear from the definition of Bb that

λ(Bb)b ≤
∫

U(x[r])
2dx[r] . p(

k−1
r−1),

so

λ(Bb) .
p(

k−1
r−1)

b
. �

4.2. Lower bound for the variational problem. In this section, we prove the lower bound to

Theorem 2.3(a). We assume (12), i.e.,
∫
Ip(p+ U(x[r]))dx[r] . p(

k−1
r−1) log(1/p), or else we are done.

Our first step towards showing Theorem 1.2(a) is eliminating the negligible terms in (11).

Lemma 4.8 (Negligible terms). Fix H = K
(r)
k for k > r ≥ 3. Let U be a function satisfying (12).

Let S
(r)
k (a star) denote the k-vertex r-graph that consists of all the edges that contain some fixed

vertex. If H ′ is a subgraph of H such that H ′ ≇ H and H ′ ≇ S
(r)
k , then t(H ′, U) ≪ p|e(H

′)|.

We will prove Lemma 4.8 after the following hypergraph theoretic lemma.

Lemma 4.9. Let G be a nonempty r-graph on k vertices other than K
(r)
k and S

(r)
k for k > r ≥ 2.

Then there exists a subgraph G′ of G such that

|E(G′)| >
(k−1
r−1

)
− 1

(k−1
r−1

) |E(G)| and ∆(G′) ≤
(
k − 1

r − 1

)
− 1.

Proof. Define T =
{
v ∈ G : deg(v) =

(k−1
r−1

)}
, and let t = |T |. If t = 0 then setting G′ = G suffices.

If t = 1 and G 6= S
(r)
k (as given by the condition) we can take G′ to be G with a single edge

containing the vertex in T removed. Clearly, ∆(G′) ≤
(k−1
r−1

)
− 1 and

|E(G′)| = |E(G)| − 1 >

(k−1
r−1

)
− 1

(k−1
r−1

) |E(G)|

as |E(G)| >
(k−1
r−1

)
because G 6= S

(r)
k .

Otherwise, the condition G 6= K
(r)
k shows that 2 ≤ t ≤ k − r. Note that the r-graph induced by

T on G is complete. Therefore, one can remove ⌈t/r⌉ edges from G, such that all edges but at most
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one touch r vertices in T , to get a subgraph G′ such that ∆(G′) ≤
(k−1
r−1

)
− 1. Therefore, it suffices

to verify that

|E(G)| −
⌈
t

r

⌉
>

(k−1
r−1

)
− 1

(k−1
r−1

) · |E(G)|.

Using ⌈t/r⌉ ≤ t+r−1
r and |E(G)| ≥

(
k
r

)
−
(
k−t
r

)
(which follows from the definition of T ), it suffices

to verify that (
k

r

)
−
(
k − t

r

)
>

t+ r − 1

r

(
k − 1

r − 1

)
.

This reduces to
k − r + 1− t

r

(
k − 1

r − 1

)
>

k − r + 1− t

r

(
k − t

r − 1

)
,

which is true for 2 ≤ t ≤ k − r. �

We use an easy consequence of Lemma 4.9.

Corollary 4.10. Let G be a nonempty r-uniform hypergraph on k vertices other than K
(r)
k and

S
(r)
k for k > r ≥ 3. Then there exists a subgraph G′ of G such that

|E(G′)|
max(2,∆(G′))

>
|E(G)|(k−1

r−1

) .

Proof. If ∆(G) <
(k−1
r−1

)
we are done by taking G′ ∼= G. If ∆(G) =

(k−1
r−1

)
, then take G′ to be r-graph

in the conclusion of Lemma 4.9. Then because
(k−1
r−1

)
− 1 ≥ 2 by k > r ≥ 3, we have

|E(G′)|
max(2,∆(G′))

≥ |E(G′)|(k−1
r−1

)
− 1

>
|E(G)|(k−1

r−1

)

as desired. �

Proof of Lemma 4.8. For H ′ ≇ K
(r)
k and H ′ ≇ S

(r)
k , let H ′′ be a subgraph of H ′ satisfying the

properties of Corollary 4.10. Then

|E(H ′′)|
max(2, |∆(H ′′)|) >

|E(H ′)|(k−1
r−1

) .

By Corollary 4.2 we have that

t(H ′, U) ≤ t(H ′′, U) ≤
(∫

U(x[r])
max(2,∆(H′′))dx[r]

) |E(H′′)|

max(2,∆(H′′))

≪
(∫

U(x[r])
max(2,∆(H′′))dx[r]

) |E(H′)|

(k−1
r−1) . p|E(H′)|,

where we used that
∫

U(x[r])
max(2,∆(H′′))dx[r] ≤

∫
U(x[r])

2dx[r] . p(
k−1
r−1)

by (14). �

We proceed towards the proof of Theorem 2.3(a).
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Fix H = K
(r)
k . Let W : V (G)r → [p, 1] be a symmetric function satisfying t(H,W ) ≥ (1+ δ)p(

k
r).

Now, we set U = W−p and assume that U satisfies (12) or else we are already done. By Lemma 4.8,
we know that

(1+δ)p(
k

r) ≤ t(H,W ) =
∑

H′⊆H

p|E(H)|−|E(H′)|t(H ′, U) = p(
k

r)+t(K
(r)
k , U)+kp(

k−1
r )t(S

(r)
k , U)+o(p(

k

r)).

Therefore, we have that

t(K
(r)
k , U) + kp(

k−1
r )t(S

(r)
k , U) ≥ (δ − o(1))p(

k

r). (16)

Recall that for a constant b, we define Bb = {x : d2(x) > b}. For the purposes of the proof, we let b
satisfy pε ≪ b ≪ 1 for a sufficiently small constant ε depending on k and r. Before continuing, we
define two quantities:

θb =

∫

B
r
b

U(x[r])
2dx[r] and ηb =

∫

Bb×B
r−1
b

U(x[r])
2dx[r].

Now, we analyze the t(K
(r)
k , U) term first. We show the following bound.

Lemma 4.11. Let U : V (G)r → [0, 1] be a symmetric function satisfying (12). Then we have for
k > r ≥ 3 that

t(K
(r)
k , U) ≤ θ

k/r
b + o(p(

k
r)).

Proof. Let
([k]
r

)
denote the set of all subsets of [k] of size r. Note that

∫

Bb×V (G)k−1

∏

S∈([k]r )

U(xS)dx[k] ≤ λ(Bb)t(K
(r)
k−1, U) ≤ λ(Bb)

(∫
U(x[r])

(k−2
r−1)dx[r]

)(k−1
r )

(k−2
r−1)

≤ λ(Bb)

(∫
U(x[r])

(k−2
r−1)dx[r]

) k−1
r

(17)

by Corollary 4.3.
If k = r + 1, we can compute from the above that

λ(Bb)

(∫
U(x[r])

(k−2
r−1)dx[r]

) k−1
r

≤ λ(Bb)

∫
U(x[r])dx[r] .

pr

b
· p r+1

2

√
log(1/p) ≪ pr+1

by (13), as desired. Otherwise, we have that the expression in (17) is

λ(Bb)

(∫
U(x[r])

(k−2
r−1)dx[r]

) k−1
r

≤ λ(Bb)

(∫
U(x[r])

(k−2
r−1)dx[r]

) k−1
r

≤ λ(Bb)

(∫
U(x[r])

2dx[r]

) k−1
r

.
p(

k−1
r−1)

b
· p

k−1
r (k−1

r−1) ≪ p(
k

r)

by (15), as desired.
Finally, we have that

t(K
(r)
k , U) =

∫

B
k
b

∏

S∈([k]r )

U(xS)dx[k]+o(p(
k

r)) ≤
(∫

B
r
b

U(x[r])
(k−1
r−1)dx[r]

)k/r

+o(p(
k

r)) ≤ θ
k/r
b +o(p(

k

r))

by Corollary 4.3. �

Now, we analyze the t(S
(r)
k , U) term. We show the following bound.
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Lemma 4.12. Let U : V (G)r → [0, 1] be a symmetric function satisfying (12). Then we have for
k > r ≥ 3 that

t(S
(r)
k , U) ≤ ηb + o(p(

k−1
r−1)).

Proof. Let T = {S ⊆ [k] : 1 ∈ S and |S| = r}. By Corollary 4.3 and Lemma 4.4 we have that

∫

Bb×V (G)k−1

∏

S∈T

U(xS)dx[k] ≤
∫

Bb

(∫
U(x[r])

(k−2
r−2)dx2dx3 . . . dxr

) k−1
r−1

dx1 (18)

≤
∫

Bb

d2(x)
k−1
r−1dx ≤ b

k−r
r−1 ·

∫
d2(x)dx (19)

. p(
k−1
r−1)b

k−r
r−1 ≪ p(

k−1
r−1).

We remark that going from (18) to (19) required r ≥ 3 to get that
(k−2
r−2

)
≥ 2 for k > r ≥ 3. By

Lemma 4.4 we also have that
∫

Bb×Bb×V (G)k−2

∏

S∈T

U(xS)dx[k] ≤ λ(Bb)
2 .

p2(
k−1
r−1)

b2
≪ p(

k−1
r−1).

Thus by Corollary 4.3 again,

t(S
(r)
k , U) ≤

∫

Bb×B
k−1
b

∏

S∈T

U(xS)dx[k] + o(p(
k−1
r−1))

≤
∫

Bb

(∫

B
r−1
b

U(x[r])
(k−2
r−2)dx2dx3 · · · dxr

) k−1
r−1

dx1 + o(p(
k−1
r−1))

≤
∫

Bb

(∫

B
r−1
b

U(x[r])
2dx2dx3 · · · dxr

) k−1
r−1

dx1 + o(p(
k−1
r−1))

≤
∫

Bb×B
r−1
b

U(x[r])
2dx[r] + o(p(

k−1
r−1)) = ηb + o(p(

k−1
r−1))

as desired. �

Proof of Theorem 2.3(a). Note that by Lemma 4.7 we have that

θb + rηb ≤
∫

U(x[r])
2dx[r] ≤ (1 + o(1)) · 1

log(1/p)

∫
Ip(p + U(x[r]))dx[r]. (20)

Combining Lemma 4.11, Lemma 4.12, (16), and (20) yields that
∫

Ip(p+ U(x[r]))dx[r]

≥ (1− o(1)) log(1/p) inf
{
x+ ry : xk/r + kp(

k−1
r )y ≥ (δ + o(1))p(

k
r) and x, y ≥ 0

}
(21)

= (1− o(1))min
(
δr/k,

r

k
δ
)
p(

k−1
r−1) log(1/p)

by convexity of the functions xk/r and y (e.g., see [3, Lemma 5.4]). �

5. Order of the rate function

We now show Theorem 2.2, showing that the rate function conjectured in Conjecture 3.5 has the
correct order of magnitude.
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Proof of Theorem 2.2. Assume ∆ ≥ 2, as ∆ = 1 is trivial. The upper bound follows from
Lemma 3.6. For the lower bound, we use the same notation as in Section 4. Let W be the
weighted adjacency array of an r-graph G such that t(H,W ) ≥ (1 + δ)p|E(H)|. Letting U = W − p,
we can expand

t(H,W ) =
∑

H′⊆H

p|E(H)−|E(H′)|t(H ′, U).

Recall that

t(H ′, U) ≤
(∫

U(x[r])
∆dx[r]

) |E(H′)|
∆

≤
(∫

U(x[r])
2dx[r]

) |E(H′)|
∆

by Corollary 4.2. Therefore, we get that

(1 + δ)p|E(H)| ≤
∑

H′⊆H

p|E(H)−|E(H′)|t(H ′, U) .
∑

H′⊆H

p|E(H)−|E(H′)|

(∫
U(x[r])

2dx[r]

) |E(H′)|
∆

.

This implies that
∫
U(x[r])

2dx[r] & p∆. Now by Lemma 4.7,
∫

Ip(p + U(x[r]))dx[r] ≥ (1− o(1)) log(1/p)

∫
U(x[r])

2dx[r] & p∆ log(1/p). �

6. Solution to the Variational Problem for a Special Graph

In this section we prove Theorem 2.3(b), solving the variational problem for the 3-graph in
Figure 1, reproduced below:

We have resolved the upper bound in Section 3, specifically Example 3.9. For the lower bound,
we develop slightly more general techniques than those used in Section 4. We use the same notation
as in Section 4.

6.1. Analogues and extensions of Lemma 4.4. For this section, let H be any r-graph with
maximum degree ∆. Recall that Gn is the family of all edge-weighted r-graphs on n vertices with
weights in [0, 1]. Throughout, we let W : [n]r → [0, 1] denote the adjacency array of a graph in Gn.
We show that when solving the discrete variational problem, it suffices to consider only a subset of
the weighted r-graphs in Gn, where there are no x[r] ∈ [n]r satisfying p < W (x[r]) ≤ (1 + o(1))p. In
other words, there are no x[r] ∈ [n]r such that W (x[r]) has value very close to p but not equal to p.
This is made precise by the following lemma.

Lemma 6.1. Let H be an r-graph, and let δ be fixed. Define, for every κ > 0,

φκ(H,n, p, δ) = inf
{
Ip(W ) : W ∈ Gn with t(H,W ) ≥ (1 + δ)p|E(H)|

and W (x[r]) ∈ {p} ∪ [(1 + κ)p, 1] for all x[r] ∈ [n]r
}
.

Then

φ(H,n, p, δ) ≥ φκ(H,n, p, (1 + κ)−|E(H)|(1 + δ)− 1).

Proof. Given a symmetric W : [n]r → [0, 1] with t(H,W ) ≥ (1 + δ)p|E(H)|, set W ′ : [n]r → [0, 1] by

W ′(x[r]) =

{
p, if W (x[r]) ≤ (1 + κ)p,

W (x[r]), otherwise.
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We have W ≤ (1 + κ)W ′ and Ip(W (·)) ≥ Ip(W
′(·)) both holding pointwise. So t(H,W ) ≤

(1 + κ)|E(H)|t(H,W ′), and thus W ′ satisfies the constraints in the definition of φκ(H,n, p, (1 +

κ)−|E(H)|(1 + δ) − 1). The claimed inequality then follows. �

We use Lemma 6.1 in the setting where κ := κ(p) = o(1) as p → 0. In this way, we have that for
some δ′ = δ − o(1) that

φ(H,n, p, δ) ≥ φκ(H,n, p, (1 + κ)−|E(H)|(1 + δ) − 1) = φκ(H,n, p, δ′).

We now focus on lower bounding φκ(H,n, p, δ).
Let G be some r-graph on n vertices. We first state an extension of Lemma 4.4 that we will use.

Lemma 6.2. Let U : V (G)r → [0, 1] be a symmetric function satisfying
∫

Ip(p + U(x[r]))dx[r] . p∆ log(1/p). (22)

For x ∈ V (G), define d(x) =
∫
U(x, x1, . . . , xr−1)dx[r−1]. Then we have that

∫
U(x[r])

2dx[r] . p∆. (23)

Let ε > 0 be a fixed parameter (not depending on p), and let b, b′ be parameters such that b′ < b. If
we define B = {x ∈ V (G) : b′ ≤ d(x) ≤ b} then we have that if p1−ε ≪ b then

∫

B
d(x)2dx .ε p

∆b (24)

and if p1−ε ≪ b′ then

λ(B) .ε
p∆

b′
(25)

where λ(B) =
∫
B 1dx. Here .ε denotes that the constant in the . depends on ε.

Now, for the remainder of the section, we write κ := κ(p) → 0, where the dependence on p is
implicit. Additionally, we only consider the case

W (x[r]) ∈ {p} ∪ [(1 + κ)p, 1] for all x[r] ∈ V (G)r

and U(x[r]) ∈ {0} ∪ [κp, 1− p] for all x[r] ∈ V (G)r,

where U = W − p and κ is an arbitrary function satisfying κ = o(1) as p → 0. In this setting, we
can state a different extension of Lemma 4.4 that we will also use.

Lemma 6.3. Let κ be an arbitrary function satisfying κ = o(1) as p → 0. Let U : V (G)r → [0, 1]
be a symmetric function satisfying

U(x[r]) ∈ {0} ∪ [κp, 1− p] for all x[r] ∈ V (G)r (26)

and ∫
Ip(p + U(x[r]))dx[r] . p∆ log(1/p)

For x ∈ V (G), define d(x) =
∫
U(x, x1, . . . , xr−1)dx[r−1]. Then we have that

∫
d(x)dx =

∫
U(x[r])dx[r] .

p∆ log(1/p)

κ
. (27)

For arbitrary parameters b, b′ (not necessarily b, b′ ≫ p) if we define B = {x ∈ V (G) : b′ ≤ d(x) ≤ b}
then we have that ∫

B
d(x)2dx .

p∆ log(1/p)b

κ
(28)
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and

λ(B) .
p∆ log(1/p)

b′κ
, (29)

where λ(B) =
∫
B 1dx.

Before proceeding to the proofs, we point out some differences between Lemma 4.4 versus Lem-
mas 6.2 and 6.3. The main differences comes from a stronger bound on

∫
U(x[r])dx[r] (compare

(27) and (13)). This stronger bound allowed us to bound λ(B) and
∫
B d(x)2dx even in the case

where B = {x ∈ V (G) : b′ ≤ d(x) ≤ b} and b, b′ ≪ p. Essentially, Lemma 6.1 allowed us to restrict
our attention to only a subset of weighted r-graphs in Gn, and we are able to achieve better bounds
on say

∫
U(x[r])dx[r] for this subset.

We now proceed to proofs of Lemma 6.2 and Lemma 6.3.

Proof of Lemma 6.2. By Lemma 4.7 we have that∫
U(x[r])

2dx[r] .
1

log(1/p)

∫
Ip(p+ U(x[r]))dx[r] . p∆,

which proves (23). It is clear from the definition of B (in the case b′, b ≫ p1−ε) and convexity that

λ(B)Ip(p+ b′) ≤
∫

B
Ip(p+ d(x))dx ≤

∫
Ip(p+ U(x[r]))dx[r] . p∆ log(1/p),

so

λ(B) .
p∆ log(1/p)

Ip(p+ b′)
.ε

p∆

b′

by Lemma 4.5. This shows (25). We used b′ ≫ p1−ε to obtain Ip(p+b′) & b′ log(b′/p) &ε b
′ log(1/p).

Now, by Lemma 4.6, we have that

Ip(p + b)

∫

B
(d(x)/b)2dx ≤

∫

B
Ip(p + d(x))dx ≤

∫
Ip(p + U(x[r]))dx[r] . p∆ log(1/p),

so by Lemma 4.5, ∫

B
d(x)2dx .

b2p∆ log(1/p)

Ip(p+ b)
.ε p

∆b,

which shows (24). We used b ≫ p1−ε to obtain Ip(p+ b) & b log(b/p) &ε b log(1/p). �

Proof of Lemma 6.3. We first argue that for all t ∈ {0} ∪ [κp, 1 − p] we have that Ip(p + t) & κt.
Indeed, this holds for t = 0. For t = κp, we have by Lemma 4.5 that

Ip(p+ t) = Ip(p+ κp) &
(κp)2

p
= κt.

Now, by convexity of Ip(p+ x) we have that Ip(p+ t) & κt for all t ≥ κp as desired. Using this, we
get that ∫

d(x)dx =

∫
U(x[r])dx[r] .

∫
Ip(p+ U(x[r]))

κ
dx[r] .

p∆ log(1/p)

κ
which shows (27). Now,

∫

B
d(x)2dx ≤ b

∫

B
d(x)dx .

p∆ log(1/p)b

κ

by the above. This shows (28). Also, we have that

λ(B)b′ ≤
∫

B
d(x)dx .

p∆ log(1/p)

κ
,

so

λ(B) .
p∆ log(1/p)

b′κ
,
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which shows (29). �

6.2. Proof of Theorem 2.3(b). Let H be the 3-graph in Figure 1, and ∆ = 2. Let W : V (G)3 →
[0, 1] be a symmetric function satisfying t(H,W ) ≥ (1 + δ)p4, and let U = W − p. We assume that
U satisfies (22) or else we are already done.

To this end, let b1, b2 be parameters so that p2ε0 ≪ b1, b2 ≪ pε0 for some fixed sufficiently small
ε0 > 0 (say ε0 =

1
100 ). Define

B1 = {x ∈ V (G) : d(x) ≥ b1}, B2 = {x ∈ V (G) : pb2 ≤ d(x) < b1}, B3 = {x ∈ V (G) : d(x) < pb2},
where d(x) =

∫
U(x, y, z)dy dz as defined above. Our use of B3 here is novel, invoking simultaneous

thresholds at very different scales (apart by a factor of nearly p), and it has not appeared in previous
analyses in the graph setting [18, 3]. The use of B3 appears to be essential to our argument.

Define

θ1 =

∫

B1×B2
3

U(x, y, z)2dxdy dz (30)

θ2 =

∫

B2
2×B3

U(x, y, z)2dxdy dz (31)

θ3 =

∫

B3
3

U(x, y, z)2dxdy dz (32)

η =

∫

B2×B2
3

U(x, y, z)2dxdy dz. (33)

As in Section 4, we can write W = U + p and expand

t(H,W ) = p4 + 4p3t(E1, U) + 6p2t(E2, U) + 4pt(E3, U) + t(H,U) ≥ (1 + δ)p4

where Ei is the subgraph of H with exactly i edges:

E1 E2 E3

We now analyze each piece separately. We extensively use Lemma 6.2. When we use Lemma 6.2,
we use the parameters ε = 1

100 (fixed small constant) and κ = 1/ log(1/p) (recall that in our notation
κ depends implicitly on p). The choice of κ is simply a natural explicit function that goes to 0
slowly, and 1/ log(1/p) satisfies that property.

An additional tool we employ is the idea of adaptive thresholding, which was introduced in [3].
When we are bounding the contribution of t(H,U), we do not assume that the parameters b1, b2
are fixed. Instead, we allow them to depend on U . Therefore, our claim will instead say that there
exists a choice of b1 and b2 that allows us to get a sufficiently strong bound on t(H,U). This is
used in Lemma 6.7 through the application of Lemma 6.8 and Lemma 6.11.

For the analysis below, recall the following from Lemma 6.2 and Lemma 6.3. We have that

λ(B1) .
p2

b1
and λ(B2) .

p log(1/p)

κb2
and λ(B3) .

p log(1/p)

κb2
, (34)

where the final claim follows from λ(B3) = λ(B1) + λ(B2).

Lemma 6.4 (Analysis of t(E1, U)). Let U : V (G)3 → [0, 1] be a symmetric function satisfying
(22). We have that t(E1, U) = o(p).
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Proof. By (27) we have that

t(E1, U) =

∫
U(x, y, z)dxdy dz .

p2 log(1/p)

κ
≪ p. �

Lemma 6.5 (Analysis of t(E2, U)). Let U : V (G)3 → [0, 1] be a symmetric function satisfying
(22). For parameters b1 and b2 satisfying p2ε0 ≪ b1, b2 ≪ pε0 we have that t(E2, U) ≤ θ1 + o(p2).

Proof. Recall that

t(E2, U) =

∫
U(x, y, z)U(x, y′, z′)dxdy dz dy′ dz′ =

∫
d(x)2dx. (35)

We claim that all contribution to t(E2, U) where x 6∈ B1 is o(p2). Indeed, we have by (24) with the
choice b = b1 and b′ = 0 that ∫

B1

d(x)2dx . p2b1 ≪ p2

as b1 ≪ pε0 .
Now we consider when x ∈ B1. We claim the contribution to t(E2, U) from the region where any

of y, z, y′, z′ are in B3 has o(p2) contribution in (35). Without loss of generality, say that y lies in
B3. These contributions are bounded by

∫

B1×B3×V (G)3
U(x, y, z)U(x, y′, z′)dxdy dz dy′ dz′ ≤ λ(B1)λ(B3) .

p2

b1
· p log(1/p)

κb2
≪ p2,

where we have used (34) and b1, b2 ≫ p2ε0 .
Therefore

t(E2, U) =

∫

B1×B4
3

U(x, y, z)U(x, y′, z′)dxdy dz dy′ dz′ + o(p2)

≤
∫

B1×B2
3

U(x, y, z)2dxdy dz + o(p2) = θ1 + o(p2),

where we have applied Corollary 4.2. �

Lemma 6.6 (Analysis of t(E3, U)). Let U : V (G)3 → [0, 1] be a symmetric function satisfying

(22). For parameters b1 and b2 satisfying p2ε0 ≪ b1, b2 ≪ pε0 we have that t(E3, U) ≤ θ
3/2
2 + o(p3).

Proof. We have that

t(E3, U) =

∫
U(x, y, z′)U(x, z, y′)U(y, z, x′)dxdy dz dx′ dy′ dz′. (36)

We first claim that the contribution to (36) from the region with x ∈ B1 is o(p3). The same would
hold for y, z by symmetry. Indeed, the contribution from x ∈ B1 is∫

B1×V (G)5
U(x, y, z′)U(x, z, y′)U(y, z, x′)dxdy dz dx′ dy′ dz′

≤ λ(B1)

∫
U(y, z, x′)dy dz dx′ .

p2

b1
· p

2 log(1/p)

κ
=

p4 log(1/p)

b1κ
≪ p3,

where we have used (34) and (27).
We now claim that the contribution to (36) from the region with x ∈ B3 is o(p3). The same

would hold for y, z by symmetry. Indeed, the contribution from x ∈ B3 is∫

B3×V (G)5
U(x, y, z′)U(x, z, y′)U(y, z, x′)dxdy dz dx′ dy′ dz′

≤
∫

B3

d(x)2dx .
p3b2 log(1/p)

κ
≪ p3,
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where we have used (28) for b = pb2 and b′ = 0.
Now, we consider the region where all of x, y, z ∈ B2. In this case, we claim that the region

where at least one of x′, y′, z′ lies in B3 has contribution o(p3) to (36). Without loss of generality,
assume that x′ ∈ B3. The contribution is∫

B3
2×B3×V (G)2

U(x, y, z′)U(x, z, y′)U(y, z, x′)dxdy dz dx′ dy′ dz′

≤ λ(B2)
3λ(B3) .

(
p log(1/p)

κb2

)3

· p log(1/p)
κb2

≪ p3,

where we have used (34).
Therefore, we have that

t(E3, U) =

∫

B3
2×B3

3

U(x, y, z′)U(x, y′, z)U(x′, y, z)dxdy dz dx′ dy′ dz′ + o(p3)

≤
(∫

B2
2×B3

U(x, y, z)2dxdy dz

)3/2

+ o(p3) = θ
3/2
2 + o(p3)

after using Corollary 4.2. �

Lemma 6.7 (Analysis of t(H,U)). Let U : V (G)3 → [0, 1] be a symmetric function satisfying (22).
There exist choices of b1 and b2 such that p2ε0 ≪ b1, b2 ≪ pε0 and

t(H,U) ≤ 3θ21 + 3θ22 + θ23 + 3η2 + o(p4).

Recall that

t(H,U) =

∫
U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′. (37)

Our proof strategy is to bound the contribution of the integral depending on whether which of the
Bi each of x, y, z, x′, y′, z′ is in.

Our first claim is that there exists a choice of threshold b1 in the definition of B1 such that the
contribution to (37) from the region with x ∈ B1 and x′ ∈ B1 is o(p4). The same holds for the
regions y ∈ B1, y

′ ∈ B1 and z ∈ B1, z
′ ∈ B1 by symmetry. We can show this via an adaptive

thresholding argument, as done in [3].

Lemma 6.8. Let U : V (G)3 → [0, 1] be a symmetric function satisfying (22). There is a choice
of a parameter b1 (which possibly depends on U) satisfying p2ε0 ≪ b1 ≪ pε0 for some sufficiently
small constant ε0 (say ε0 =

1
100) such that if we define B1 = {x ∈ V (G) : d(x) ≥ b1}, then

∫

B1×B1×V (G)4
U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ = o(p4).

Proof. Our proof is via an adaptive thresholding argument. First, note that by Corollary 4.2 we
have that

t(H,U) ≤
(∫

U(x, y, z)2dxdy dz

)2

. p4.

Now, let C be a constant so that t(H,U) ≤ Cp4. It is sufficient to show that for any constant c > 0
that there is some choice of b1 (which possibly depends on U) such that

∫

B1×B1×V (G)4
U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ ≤ cp4.

Set M = 3C
c . Now, choose b

(1)
1 , b

(2)
1 , . . . , b

(M)
1 such that

p2ε0 ≪ b
(1)
1 ≪ b

(2)
1 ≪ · · · ≪ b

(M)
1 ≪ pε0 .
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Define

B
(i)
1 = {x ∈ V (G) : d(x) ≥ b

(i)
1 }.

Define the quantity

Si =

∫

B
(i)
1 ×B

(i)
1 ×V (G)4

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ for 1 ≤ i ≤ M.

We want to show that there is some 1 ≤ i ≤ M such that Si ≤ cp4. Assume for contradiction that
Si ≥ cp4 for all 1 ≤ i ≤ M. Now, note that

∫

B
(i+1)
1 ×B

(i)
1 ×V (G)4

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′

≤ λ(B
(i+1)
1 )

∫

B
(i)
1

d(x′)2dx′ .
p2

b
(i+1)
1

· b(i)1 p2 =
b
(i)
1

b
(i+1)
1

· p4 ≪ p4

by (34), (24), and b
(i)
1 ≪ b

(i+1)
1 as chosen above.

This gives us that
∫

B
(i)
1 ×

(

B
(i−1)
1 \B

(i)
1

)

×V (G)4
U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′

≥ Si − o(p4) ≥ 1

2
cp4.

Now, as all the sets B
(i)
1 ×

(
B

(i−1)
1 \B(i)

1

)
× V (G)4 are disjoint, we immediately get by summing

over 1 ≤ i ≤ M that Cp4 ≥ t(H,U) ≥ 1
2Mcp4, a contradiction to our choice of M . �

Now, fix the choice b1 to satisfy the conditions of Lemma 6.8. Now, we bound the contribution
from the region where x ∈ B1.

Lemma 6.9. Consider a choice of b1 such that p2ε0 ≪ b1 ≪ pε0 and
∫

B1×B1×V (G)4
U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ = o(p4)

for B1 = {x ∈ V (G) : d(x) ≥ b1}. The contribution to the integral in (37) of the region where at
least one of x, x′, y, y′, z, z′ lies in B1 is at most 3θ21 + o(p4).

Proof. By our choice of b1 and Lemma 6.8, we only consider the region where x′ ∈ B1 also, as the
region where x ∈ B1, x

′ ∈ B1 has contribution o(p4) to (37). We now claim that the contribution
to (37) from the region where any one of y, z, y′, z′ ∈ B3 is o(p4). To show this, without loss of
generality say y ∈ B3. We have that the contribution is

∫

B2
1×B3×V (G)3

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′

≤ λ(B1)
2λ(B3) .

(
p2

b1

)2

· p log(1/p)
b2κ

≪ p4,

where we have used (34). Therefore, the contribution of the region x ∈ B1, x
′ ∈ B1 to (37) is

∫

B2
1×B4

3

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ + o(p4)

≤
(∫

B1×B2
3

U(x, y, z)2dxdy dz

)2

+ o(p4) = θ21 + o(p4)
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by Corollary 4.2. We get a total of 3θ21 + o(p4) from the symmetric cases (y, y′ ∈ B1 and z, z′ ∈
B1). �

From now on, we can restrict ourselves to the region where none of x, x′, y, y′, z, z′ lies in B1, as
we have already bounded that contribution. We first focus on the cases where all x, x′, y, y′, z, z′

lie in B3.

Lemma 6.10. The contribution to the integral in (37) of the region where all of x, x′, y, y′, z, z′ lie
in B3 is at most θ23.

Proof. If all x, x′, y, y′, z, z′ ∈ B3, the contribution to (37) is
∫

B6
3

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′

≤
(∫

B3
3

U(x, y, z)2dxdy dz

)2

= θ23

by Corollary 4.2. �

Finally, we bound the contribution in the case where none of x, x′, y, y′, z, z′ are in B1 and not
all of x, x′, y, y′, z, z′ are in B3. Therefore, without loss of generality assume that x ∈ B2. We first
argue there is a choice of b2 such that the region where x ∈ B2 and x′ ∈ B3, has contribution o(p4)
to (37).

Lemma 6.11. Let U : V (G)3 → [0, 1] be a symmetric function satisfying (22), and let b1 be a
parameter satisfying p2ε0 ≪ b1 ≪ pε0 for some sufficiently small constant ε0 (say ε0 =

1
100). There

is a choice of a parameter b2 (which possibly depends on U) satisfying p2ε0 ≪ b2 ≪ pε0 such that if
we define

B2 = {x ∈ V (G) : b1 ≥ d(x) ≥ pb2} and B3 = {x : V (G) : pb2 > d(x)},
then ∫

B2×B3×V (G)4
U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ = o(p4).

Proof. We use an adaptive thresholding argument similar to that of Lemma 6.8. First, note that
by Corollary 4.2 we have that

t(H,U) ≤
(∫

U(x, y, z)2dxdy dz

)2

. p4.

Now, let C be a constant so that t(H,U) ≤ Cp4. It is sufficient to show that for any constant c > 0
that there is some choice of b2 (which possibly depends on U) such that

∫

B2×B3×V (G)4
U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ ≤ cp4.

Set M = 3C
c . Now, choose b

(1)
2 , b

(2)
2 , . . . , b

(M)
2 such that

p2ε0 ≪ log(1/p)2

κ2
b
(i−1)
2 ≪ b

(i)
2 ≪ pε0 for all 2 ≤ i ≤ M.

We can do this as log(1/p)2M

κ2M ≪ pε0 for any constant M and ε0 > 0 (recall that we fixed κ =
1/ log(1/p), a slowly decaying function). Define

B
(i)
2 = {x ∈ V (G) : b1 > d(x) ≥ pb

(i)
2 } and B

(i)
3 = {x ∈ V (G) : d(x) ≤ pb

(i)
2 }.
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Define

Si =

∫

B
(i)
2 ×B

(i)
3 ×V (G)4

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ for 1 ≤ i ≤ M.

We want to show that Si ≤ cp4 for some i. Assume for contradiction that Si ≥ cp4 for all 1 ≤ i ≤ M.
We have that∫

B
(i)
2 ×B

(i−1)
3 ×V (G)4

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′

. λ(B
(i)
2 )

∫

B
(i−1)
3

d(x′)2dx′ .
p log(1/p)

b
(i)
2 κ

· p
3 log(1/p)b

(i−1)
2

κ
=

b
(i−1)
2 log(1/p)2

b
(i)
2 κ2

p4 ≪ p4

by (34), (28), and log(1/p)2

κ2 b
(i−1)
2 ≪ b

(i)
2 . Therefore,

∫

B
(i)
2 ×

(

B
(i)
3 \B

(i−1)
3

)

×V (G)4
U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′

≥ Si − o(p4) ≥ 1

2
cp4.

As the sets B
(i)
2 ×

(
B

(i)
3 \B(i−1)

3

)
× V (G)4 are disjoint, summing over all 1 ≤ i ≤ M gives us that

Cp4 ≥ t(H,U) ≥ 1
2cMp4, a contradiction. �

We can now bound the contribution to (37). of the region where none of x, x′, y, y′, z, z′ are in
B1 and not all of x, x′, y, y′, z, z′ are in B3.

Lemma 6.12. Consider a choice of b2 satisfying the constraints of Lemma 6.11. The contribution
to the integral in (37) of the region where at least one of x, x′, y, y′, z, z′ lies in B2 and none of
x, x′, y, y′, z, z′ lie in B1 is at most 3η2 + 3θ22 + o(p4).

Proof. We apply Lemma 6.11 and fix a threshold b2 such that the contribution to (37) from the
region x ∈ B2 and x′ ∈ B3 (and the symmetric regions y ∈ B2 and y′ ∈ B3 or z ∈ B2 and z′ ∈ B3) is
o(p4). We claim that if all of x, x′, y, y′, z, z′ lie in B2 then the contribution to (37) is o(p4). Indeed,
we have that
∫

B6
2

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ ≤ λ(B2)
6 .

(
p log(1/p)

b2κ

)6

≪ p4

by (34). The only remaining regions to analyze are

(1) x, x′ ∈ B2 and y, y′, z, z′ ∈ B3 (and its two symmetric versions)
(2) x, x′, y, y′ ∈ B2 and z, z′ ∈ B3 (and its two symmetric versions).

This tells us that∫

B
6
1

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′

≤ 3

∫

B2
2×B4

3

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′

+ 3

∫

B4
2×B2

3

U(x, y, z′)U(x, z, y′)U(y, z, x′)U(x′, y′, z′)dxdx′ dy dy′ dz dz′ + o(p4)

≤ 3

(∫

B2×B2
3

U(x, y, z)2dxdy dz

)2

+ 3

(∫

B2
2×B3

U(x, y, z)2dxdy dz

)2

+ o(p4)

≤ 3η2 + 3θ22 + o(p4)



UPPER TAIL FOR HYPERGRAPHS 29

after using Corollary 4.2. �

Proof of Lemma 6.7. Follows from Lemmas 6.8 to 6.12. �

Proof of Theorem 2.3(b). Recall that we have that

(1 + δ)p4 ≤ t(H,W ) = p4 + 4p3t(E1, U) + 6p2t(E2, U) + 4p3t(E3, U) + t(H,U). (38)

Additionally, we have by Lemma 4.7 that
∫

Ip(p+ U(x, y, z))dxdy dz ≥ (1− o(1)) log(1/p)

∫
U(x, y, z)2dxdy dz

≥ (1− o(1)) log(1/p)(3θ1 + 3θ2 + 3η + θ3). (39)

Combining (38) and (39) and Lemmas 6.4 to 6.7 gives us that

φ(H,n, p, δ)

n3 log(1/p)

≥ (1− o(1))
1

3!
inf{3θ1 + 3θ2 + 3η + θ3 : 6p

2θ1 + 3θ21 + 4pθ
3/2
2 + 3θ22 + θ23 + 3η2 ≥ (δ − o(1))p4}.

(40)

To bound the quantity in (40), note that because all the functions

6p2θ1 + 3θ21, 4pθ
3/2
2 + 3θ22, θ

2
3, and 3η2

are convex, the infimum in (40) is achieved when exactly one of θ1, θ2, θ3, and η is nonzero. A direct
computation using this observation shows that the right hand side of (40) is at least

(1− o(1))
p2

6
·min

{√
9 + 3δ − 3, 3θ⋆2 ,

√
δ,
√
3δ
}

where θ⋆2 is the solution to 4(θ⋆2)
3/2 + 3(θ⋆2)

2 = δ, and it is straightforward to check that 3θ⋆2 ≥
min

{√
9 + 3δ − 3,

√
δ
}
. Hence the quantity in (40) is at least

(1− o(1)) · p
2

6
·min

{√
9 + 3δ − 3,

√
δ
}

as desired. �

In particular, this proof shows that solution to the variational problem is given by either planting
several 1-hubs or 3-hubs. In the case where 1-hubs are planted, this increases the number of copies
of E2, and corresponds to the 6c1 term in Equation 9. In the case where 3-hubs are planted,
this directly increases the number of copies of H, and corresponds to the c61/3 term in Equation

9. The case of planting 2-hubs was only excluded in the final computation, and a more intuitive
explanation of this phenomenon would be interesting.

6.3. Speculations about general hypergraphs. Now we give some comments about possible
approaches towards resolving Conjecture 3.5, and potential obstacles. One possible approach re-
solves around making finer thresholds than those defined in Section 4. Specifically, it is reasonable
to define thresholds

B1 = {x : b1 ≤ d(x)}, B2 = {x : b2 ≤ d(x) < b1}, . . .
for well-chosen constants b1, b2, . . . . There are several potential obstacles. First, the method of
performing the analysis of Sections 4 and 6 relies on selecting for each vertex i which set Bj it lies
in, and then showing that most of these lead to negligible contributions. In this paper, we only had
at most three sets B1, B2, B3 so resolving all the cases was reasonable. When the number of sets
we are considering increases, there are significantly more cases to consider, and thus may be more
difficult to analyze. Additionally, there is no guarantee that this type of threshold is sufficient to
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show our desired conjecture. In fact, one may need to use more general thresholds. Specifically,
extend our “degree” function d to multiple inputs in the following way. In the case of r-graphs, for
an integer k define

dk(x1, x2, . . . , xk) =

∫
U(x[r])dxk+1 . . . dxr.

Then we could define sets

Bb = {(x1, x2, . . . , xk) : b ≤ dk(x1, . . . , xk)}
for example. Once again, this type of thresholding argument becomes much harder to keep track
of.

Appendix A. Large deviation principle for hypergraphs

A.1. Large deviations from Gaussian width. We show how to deduce Theorem 2.1 from the
large deviation principle of Eldan [13]. One can also derive it from the earlier LDP of Chatterjee
and Dembo [9] following ideas from [4]. It is likely that we can apply more recent frameworks of
[11] or [15] to obtain better dependencies, though it would likely involve some highly non-trivial
work. We do not try to optimize the parameters here and simply give the fastest way to derive
some large deviations framework for random graphs that works for p ≥ n−c for some constant
c = cH > 0. For constant or extremely slowly decaying p, one can alternatively apply the original
Chatterjee–Varadhan method [10] with the hypergraph regularity theorem instead of the graph
regularity theorem.

We now make the necessary definitions in order to apply Eldan’s result.

Definition A.1. For a subset K ⊆ Rn, define the Gaussian-width of K to be

GW(K) = EΓ

[
sup
x∈K

〈x,Γ〉
]

Γ ∼ N(0, Id) is a standard Gaussian random vector in Rn.

For a function f : {0, 1}N → R, we can define the discrete derivatives of f

DiscDervi(f(x)) = F (x1, . . . , xi−1, 1, xi+1, . . . , xN )− F (x1, . . . , xi−1, 0, xi+1, . . . , xN )

for any 1 ≤ i ≤ N and x = (x1, . . . , xN ) ∈ {0, 1}N . Using this, we can define the discrete gradient
of f as

DiscGrad(f(x)) = (DiscDerv1(f(x)),DiscDerv2(f(x)), . . . ,DiscDervN (f(x))).

An important quantity in Eldan’s large deviations result is the Gaussian width of the set of discrete
gradients of f , which we define as

DiscGW(f) = GW({DiscGrad(f(x)) : x ∈ {0, 1}N} ∪ {0}).
Our application will rely on bounding the discrete Gaussian width of a counting function associated
to a hypergraph, which we do in Appendix A.2. Now, define the discrete Lipschitz constant of f as

DiscLip(f) = max
1≤i≤N,x∈{0,1}N

DiscDervi(f(x))

We can define the natural variational problem associated to the function f as

φf
p(t) = inf

x∈[0,1]N

{
N∑

i=1

Ip(xi) : Ef(X) ≥ tN

}
.

where the expectation is taken with respect to a random vector X = (X1,X2, . . . ,XN ) where
Xi ∼ Bernoulli(xi) independently for each i ∈ [N ].

Eldan’s results give us a large deviation principle provided that the Gaussian width can be
efficiently controlled.
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Theorem A.2 (Eldan [13] Theorem 5). Let X = (X1,X2, . . . ,XN ) ∈ {0, 1}N be a random vector
with i.i.d Xi ∼ Bernoulli(p). Given a function f : {0, 1}N → R, for every t, ε ∈ R with 0 < ε <

φf
p(t− ε)/N , we have

log Pr [f(X) ≥ tN ] ≤ −φf
p(t− ε)(1− 64LN−1/3)

with

L =
1

ε
(2DiscLip(f) + | log(p(1− p))|)

2
3

(
2DiscGW(f) +

1

ε
DiscLip(f)2

)1/3

.

Also if 1
Nε2

DiscLip(f)2 ≤ 1
2 then we have the lower bound

log Pr [f(X) ≥ (t− ε)N ] ≥ −φp(t)

(
1 +

2

Nε2
DiscLip(f)2

)
− 2.

Using this result, we can prove Theorem 2.1, which reduces the upper tail problem to a discrete
variational problem. Before starting the proof, we define some notation. We start by defining the
function TH which counts the number of (not necessarily induced) copies of H inside a graph. We
intend to apply Theorem A.2 on TH .

Definition A.3 (Counting function associated to a hypergraph). Let H be an r-graph and let n

be a positive integer. Define TH : R(
n
r) → R by

TH(x) =
∑

1≤i1,i2,...,i|V (H)|≤n

ik 6=ik′ for k 6=k′

∏

(s1,s2,...,sr)∈E(H)

xis1 ,is2 ,...,isr ,

where x is invariant under permutation of coordinates, so that for all σ ∈ Sr we have that xi1,··· ,ir =
xiσ(1),··· ,xiσ(r)

.

In order to apply Eldan’s LDP on TH , we must bound its discrete Gaussian width. Note
that DiscGrad(TH(x)) = ∇TH(x) as TH(x) is linear in each variable. Therefore, we have that

DiscGW(TH) = GW(∇TH({0, 1}(
n
r))), where

∇TH({0, 1}(
n
r)) := {∇TH(x) : x ∈ {0, 1}(

n
r)}.

The following theorem provides the necessary bound on GW(∇TH({0, 1}(
n
r))).

Theorem A.4 (Upper bound on the Gaussian width of a r-graph). Let H be a r-graph, and let n
be a positive integer. Then we have that

1

n|V (H)|−r
·DiscGW(TH) . n

2r−1
2 ,

where TH : R(
n
r) → R is defined as in Definition A.3.

We defer the proof to Appendix A.2. Now, we combine the above results to show Theorem 2.1.

Proof of Theorem 2.1. For our r-graph H with maximum degree ∆, in the statement of Theo-
rem A.2 set N =

(n
r

)
, t = (1 + δ)p|E(H)|, X1, . . . ,XN be the variables associated to the N =

(n
r

)

r-tuples in
([n]
r

)
, and f(X) = N · t(H,X) = Nn−|V (H)|TH(X). We will choose ε later.

First, it is easy to see that

DiscLip(f) . N · n
|V (H)|−r

n|V (H)|
. 1.

Also, by Theorem A.4, we get that

DiscGW(f) . N · n 2r−1
2 · n

|V (H)|−r

n|V (H)|
. n

2r−1
2 .
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Now, we restrict ourselves to ε satisfying

ε & n− 2r−1
2 ≫ N−1/2.

Now, a direct computation gives us (assuming p ≫ N−1 say) that

64LN−1/3 . ε−1n−1/6(logN)2/3.

Because p > n
− 1

6|E(H)| log n, we can choose ε so that

p|E(H)| ≫ ε ≫ n−1/6(logN)2/3.

This way, for any fixed δ, as ε ≪ p|E(H)|, we know that

φf
p(t− ε) = φf

p((1 + δ − o(δ))p|E(H)|) = (1 + o(1))φ(H,n, p, δ)

as desired. Also, combining this with Theorem 2.2 gives us that

64L(logN)2/3

N1/3
≪ 1 and ε < φf

p(t− ε)/N,

where the second bound follows from Theorem 2.2:

φf
p(t− ε)/N &

nrp∆ log(1/p)

N
& p∆ log(1/p) & p|E(H)|.

This shows the upper bound. The lower bound follows from DiscLip(f) ≤ 1 and ε ≫ N−1/2. �

A.2. The Gaussian Width of Hypergraphs. In this section we show Theorem A.4. First, we
have the following easy bound derived from a union bound on Gaussian tails (see [4, Lemma 4.5]).

Lemma A.5 (Small sets have small Gaussian width). If S ⊆ [−1, 1]N , then

GW(S) .
√

N log |S|.

Recall from above that DiscGW(TH) = GW
(
∇TH

(
{0, 1}(

n
r)
))

. Let the vertices of H be in-

dexed 1, 2, . . . , |V (H)| and let the edges be labelled e1, e2, . . . , e|E(H)|. For edge ei, let the vertices
in that edge be si,1, si,2, . . . , si,r. Now, for functions f1, f2, . . . , fE(H) : [n]

r → R, define

T (f1, f2, . . . , f|E(H)|) =
∑

1≤i1,i2,...,i|V (H)|≤n

|E(H)|∏

j=1

fj(isj,1 , isj,2 , . . . , isj,r).

Consider an element x ∈ {0, 1}nr
. In this proof, we view x instead as a function from [n]r

to {0, 1}. In order to emphasize this view, we use the notation x(i1, i2, . . . , ir) := xi1,i2,...,ir for
1 ≤ i1, i2, . . . , ir ≤ n. Let Γ denote a random nr-dimensional Gaussian. Once again, we view Γ as a
function from [n]r → R. To emphasize this, we used the notation Γ(i1, . . . , ir) := Γi1,...,ir . One can
easily check that we have

GW
(
∇TH

(
{0, 1}(

n
r)
))

. EΓ


 sup
x∈{0,1}nr

|E(H)|∑

i=1

T (

i−1 terms︷ ︸︸ ︷
x, . . . , x,Γ, x, . . . , x)


 . (41)

From here, our proof proceeds in two steps. First, we bound T (x, . . . , x,Γ, x, . . . , x) by the cut-norm
of Γ, which we soon define. Afterwards, we use Lemma A.5 to bound the expected cut-norm of Γ.
We now formally define the cut-norm.

Definition A.6. Define the cut-norm of function f : [n]r → R as

‖f‖�r = sup
u1,u2,...,ur:[n]r−1→[0,1]
u1,u2,...,ur symmetric

∣∣∣∣∣∣

∑

1≤i1,...,ir≤n

f(i1, . . . , ir)

r∏

k=1

uk(i1, . . . , ik−1, ik+1, . . . , ir).

∣∣∣∣∣∣
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Note that the expression inside the absolute value is linear in each of the ui. Hence the supremum
is achieved when the ui all have range {0, 1} instead of [0, 1]. Specifically, we can write

‖f‖�r = sup
u1,u2,...,ur:[n]r−1→{0,1}
u1,u2,...,ur symmetric

∣∣∣∣∣∣

∑

1≤i1,...,ir≤n

f(i1, . . . , ir)

r∏

k=1

uk(i1, . . . , ik−1, ik+1, . . . , ir).

∣∣∣∣∣∣

instead.
Before proceeding, we make one more observation, which we state now.

Lemma A.7. Let f1, f2, . . . , fℓ : [n]
r → [0, 1] be functions that only depend on a proper subset of

the coordinates, i.e. for all j there exists an index t such that fj(i1, i2, . . . , it−1, it, it+1, . . . , ir) is
constant over all 1 ≤ it ≤ n. Then we have that for any function f : [n]r → R

∣∣∣∣∣∣

∑

1≤i1,...,ir≤n

f(i1, . . . , ir)

ℓ∏

k=1

fk(i1, . . . , ir)

∣∣∣∣∣∣
≤ ‖f‖�r .

Proof. We will define disjoint sets S1, S2, . . . , Sr ⊆ [ℓ], where
⋃

k Sk = [ℓ]. Here, Sk is essentially
going to be the set of j such that function fj doesn’t depend on the k-th coordinate. Specifically,
for each fj , give it an index tj such that fj doesn’t depend on the tj-th coordinate. Now, define
Sk = {j : tj = k}. Now, define

uk(i1, . . . , ik−1, ik+1, . . . , ir) =
∏

j∈Sk

fj(i1, i2, . . . , ik−1, 0, ik+1, . . . , ir),

where we can put a 0 in the k-th coordinate of each fj because it doesn’t affect the value. Now, it
is clear that

∣∣∣∣∣∣

∑

1≤i1,...,ir≤n

f(i1, . . . , ir)

ℓ∏

k=1

fk(i1, . . . , ir)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

1≤i1,...,ir≤n

f(i1, . . . , ir)
r∏

k=1

uk(i1, . . . , ik−1, ik+1, . . . , ir)

∣∣∣∣∣∣
≤ ‖f‖�r

by Definition A.6. �

Our next goal is to show that for all 1 ≤ i ≤ |E(H)|
∣∣∣∣∣T (

i−1 terms︷ ︸︸ ︷
x, . . . , x,Γ, x, . . . , x)

∣∣∣∣∣ ≤ n|V (H)|−r‖Γ‖�r .

More generally, we show the lemma below, from which the above claim follows immediately.

Lemma A.8. For f : [n]r → R and functions f2, f3, . . . , f|E(H)| : [n]
r → [0, 1] we have that

∣∣T (f, f2, . . . , f|E(H)|)
∣∣ ≤ n|V (H)|−r‖f‖�r .

Before proving this, we prove it in the special case where H = K3 as an illustrating example.

Example A.9. Let H = K3. Then using the above definitions we can compute that

T (f1, f2, f3) =
∑

1≤x,y,z≤n

f1(x, y)f2(y, z)f3(z, x).
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Also, the cut-norm in this case is defined as

‖f‖�2 = sup
u,v:[n]→[0,1]
u,v symmetric

∣∣∣∣∣∣

∑

1≤x,y≤n

u(x)v(y)f(x, y)

∣∣∣∣∣∣
.

Now, we can rewrite

|T (f, f2, f3)| =

∣∣∣∣∣∣

∑

1≤x,y,z≤n

f(x, y)f2(y, z)f3(z, x)

∣∣∣∣∣∣

≤
∑

1≤z≤n

∣∣∣∣∣∣

∑

1≤x,y≤n

f2(y, z)f3(x, z)f(x, y)

∣∣∣∣∣∣

≤
∑

1≤z≤n

‖f‖�2 = n‖f‖�2 .

The inequality between the last two lines follows from the definition of the cut-norm: for a fixed z,
we can define u := f3(x, z) and v := f2(y, z).

Now we show Lemma A.8 in general. The proof follows essentially the same format as above.

Proof of Lemma A.8. Without loss of generality, assume that the first edge of H contains vertices
1, 2, . . . , r. Then we can write

∣∣T (f, f2, . . . , f|E(H)|)
∣∣ =

∣∣∣∣∣∣

∑

1≤ir+1,...,i|V (H)|≤n




∑

1≤i1,...,ir≤n

f(i1, . . . , ir)

|V (H)|∏

k=2

fk(isk,1 , . . . , isk,r)




∣∣∣∣∣∣
.

Note that after fixing ir+1, . . . , i|V (H)| in the outer sum in the second line of the above expression,
that each of the functions fk only depends on a proper subset of i1, . . . , ir for 2 ≤ k ≤ |V (H)|.
Therefore, by Lemma A.7 we have that

∣∣T (f, f2, . . . , f|E(H)|)
∣∣

=

∣∣∣∣∣∣

∑

1≤ir+1,...,i|V (H)|≤n




∑

1≤i1,...,ir≤n

f(i1, . . . , ir)

|V (H)|∏

k=2

fk(isk,1 , . . . , isk,r)




∣∣∣∣∣∣

≤ n|V (H)|−r‖f‖�r

as desired. �

Therefore, we also have that
∣∣∣∣∣T (

i−1 terms︷ ︸︸ ︷
x, . . . , x,Γ, x, . . . , x)

∣∣∣∣∣ ≤ n|V (H)|−r‖Γ‖�r .

Using this, we now get that

1

n|V (H)|−r
GW

(
∇TH

(
{0, 1}nr))

=
1

n|V (H)|−r
EΓ


 sup
x∈{0,1}nr

|E(H)|∑

i=1

T (

i−1 terms︷ ︸︸ ︷
x, . . . , x,Γ, x, . . . , x)




. EΓ [‖Γ‖�r ] .

Lemma A.10. EΓ [‖Γ‖�r ] . n
2r−1

2 .
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Proof. In the notation of Lemma A.5, let S correspond to the set of functions f : nr → {0, 1}
representable in the form

f(i1, i2, . . . , ir) = ±
r∏

k=1

uk(i1, . . . , ik−1, ik+1, . . . , ir)

for functions uk : nr−1 → {0, 1} and a choice of sign. It is then clear that |S| ≤ 2 · 2r·nr−1
.

Additionally, we clearly have that

EΓ [‖Γ‖�r ] ≤ EΓ

[
sup
f∈S

|〈Γ, f〉|
]
= GW(S) .

√
nr log |S| . n

2r−1
2 . �

Proof of Theorem A.4. Combine (41) with Lemmas A.8 and A.10. �
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