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ABSTRACT. We consider the generalised PageRank walk on a digraph G, with refresh probability α and
resampling distribution λ. We analyse convergence to stationarity when G is a large sparse random digraph
with given degree sequences, in the limit of vanishing α. We identify three scenarios: when α is much smaller
than the inverse of the mixing time of G the relaxation to equilibrium is dominated by the simple random
walk and displays a cutoff behaviour; when α is much larger than the inverse of the mixing time of G on
the contrary one has pure exponential decay with rate α; when α is comparable to the inverse of the mixing
time of G there is a mixed behaviour interpolating between cutoff and exponential decay. This trichotomy is
shown to hold uniformly in the starting point and uniformly in the resampling distribution λ.

1. INTRODUCTION AND RESULTS

Given a directed graph G = (V,E) and a parameter α ∈ (0, 1), the PageRank surf on G with damping
factor 1− α is the Markov chain with state space V and transition probabilities given by

(1.1) Pα(x, y) = (1− α)P (x, y) +
α

n
,

where n = |V | is the number of vertices of G, and, writing d+
x for the out-degree of vertex x,

(1.2) P (x, y) =

{
1/d+

x if (x, y) ∈ E
0 otherwise

denotes the transition matrix of the simple random walk on G. The interpretation is that of a surfer
that at each step, with probability 1 − α moves to a vertex chosen uniformly at random among the
out-neighbours of its current state, and with probability α moves to a uniformly random vertex in V .
The surfer reaches eventually a stationary distribution πα over V , called the PageRank of G. Since its
introduction by Brin and Page in the seminal paper [10], PageRank has played a fundamental role in
the ranking functions of all major search engines; see e.g. [15, 17]. A common generalization is the so-
called customised or generalised PageRank, where the uniform resampling is replaced by an arbitrary
probability distribution λ over V , so that (1.1) becomes

(1.3) Pα,λ(x, y) = (1− α)P (x, y) + αλ(y).

The resulting stationary distribution πα,λ, characterised by the equation

(1.4) πα,λ(y) =
∑
x∈V

πα,λ(x)Pα,λ(x, y),
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depends in a nontrivial way on the parameter α and the distribution λ. There have been several inves-
tigations of the structural properties of πα,λ; see e.g. [18, 2, 9]; we refer in particular to the recent works
[11, 16, 21] for cases where the graph G is drawn from the configuration model. Here we focus on the
dynamical problem of determining the time needed for the surfer to reach the equilibrium distribution
πα,λ, namely we study the mixing time of the Markov chain with transition matrix Pα,λ. In the case
α = 0, this corresponds to the classical question of determining the mixing time of the simple random
walk on the graph G; see e.g. [19]. Even for graphs where the latter is well understood, it is in general
not immediate to deduce the influence of the parameter α and of the resampling distribution λ on the
speed of convergence to equilibrium.

It is intuitively reasonable to guess that if the parameter α is suitably large compared to the inverse of
the mixing time of the graph G, then the time to reach stationarity will be essentially the expected time
needed to make the first λ-resampling transition, that is a geometric random variable with parameter α,
while if α is suitably small compared to the inverse of the mixing time of the graph G, then one should
reach stationarity well before the first λ-resampling, so that the speed of convergence to equilibrium
will be essentially that of the simple random walk on G. Moreover, one could expect that when α is
neither too small nor too large compared to the inverse of the mixing time of the graph G, then some
interpolation between the two opposite behaviours should take place. In this paper we substantiate
this intuitive picture for a large class of sparse directed graphs. The results hold uniformly in the initial
position and uniformly in the resampling distribution λ.

1.1. Two models of sparse digraphs. We shall consider two families of directed graphs. Both are ob-
tained via the so-called configuration model, with the difference that in the first case we fix both in and
out degrees, while in the second case we only fix the out degrees. The models are sparse in that the
degrees are bounded. We now proceed with the formal definition.

Let V be a set of n vertices. For simplicity we often write V = [n], with [n] = {1, . . . , n}. For each n,
we are given two finite sequences d+ = (d+

x )x∈[n] and d− = (d−x )x∈[n] of non negative integers such that

(1.5) m =
∑
x∈V

d+
x =

∑
x∈V

d−x .

The directed configuration model DCM(d±), is the distribution of the random graphG obtained as follows:
1) equip each node x with d+

x tails and d−x heads; 2) pick uniformly at random one of the m! bijective
maps from the set of all tails into the set of all heads, call it ω; 3) for all x, y ∈ V , add a directed edge
(x, y) every time a tail from x is mapped into a head from y through ω. The resulting graph G may
have self-loops and multiple edges, however it is classical that by conditioning on the event that there
are no multiple edges and no self-loops one obtains a uniformly random simple digraph with in degree
sequence d− and out degree sequence d+.

Structural properties of random graphs obtained in this way have been extensively studied in [13].
Here we shall consider the sparse case corresponding to bounded degree sequences. Moreover, in order
to avoid non irreducibility issues, we shall assume that all degrees are at least 2. Thus, throughout this
work it will always be assumed that

(1.6) min
x∈[n]

d−x ∧ d+
x ≥ 2, max

x∈[n]
d−x ∨ d+

x = O(1).

We often use the notation ∆ = maxx∈[n] d
−
x ∨ d+

x . Under the first assumption it is known that DCM(d±)
is strongly connected with high probability; see e.g. [13]. Under the second assumption, it is known that
DCM(d±) has a uniformly (in n) positive probability of having no self-loops nor multiple edges; see
e.g. [12]. In particular, any property that holds with high probability for DCM(d±) will also hold with
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high probability for a uniformly chosen simple digraph subject to the constraint that in and out degrees
be given by d− and d+ respectively. Here and throughout the rest of the paper we say that a property
holds with high probability (w.h.p. for short) if the probability of the corresponding event converges to
1 as n → ∞. In particular, it follows that w.h.p. there exists a unique stationary distribution π0 for
the simple random walk on G. Several properties of π0 have been established recently in [6], where it
was shown, among other facts, that π0 can be described in terms of recursive distributional equations
determined by the sequences d±.

To define the second model, for each n let d+ = (d+
x )x∈[n] be a finite sequence of non negative integers

and define the out-configuration model OCM(d+) as the distribution of the random graph G obtained as
follows: 1) equip each node x with d+

x tails; 2) pick, for every x independently, a uniformly random
injective map from the set of tails at x to the set of all vertices V , call it ωx; 3) for all x, y ∈ V , add a
directed edge (x, y) if a tail from x is mapped into y through ωx. Equivalently, G is the graph whose
adjacency matrix is uniformly random in the set of all n × n matrices with entries 0 or 1 such that
every row x sums to d+

x . Notice that G may have self-loops, but there are no multiple edges in this
construction. This is due to the requirement that the maps ωx be injective. The latter choice is only
a matter of convenience, and everything we say below is actually seen to hold as well for the model
obtained by dropping that requirement. We write ω = (ωx)x∈[n] for the collection of maps. As before we
shall make the assumptions

(1.7) min
x∈[n]

d+
x ≥ 2, max

x∈[n]
d+
x = O(1),

and use the notation ∆ = maxx∈[n] d
+
x . We remark that under the above assumptions there can still be

vertices with in-degree zero, and therefore in this caseG is not necessarily strongly connected. However,
it is still possible to show that w.h.p. there exists a unique stationary distribution π0 for the simple
random walk on G; see e.g. [1, 7] for more details.

In what follows G = G(ω) denotes a given realization of either the directed configuration model
DCM(d±) or the out-configuration model OCM(d+) and all the results to be discussed will hold w.h.p.
within these two ensembles. For the sake of simplicity we often refer to these as model 1 and model 2
respectively.

1.2. Main results. Let P denote the transition matrix of the simple random walk on G. When G is a
digraph without multiple edges this is given by (1.2). If G has multiple edges, P (x, y) is defined as
m(x, y)/d+

x where m(x, y) denotes the number of directed edges from x to y. For any α ∈ (0, 1) and any
resampling distribution λ, let Pα,λ denote the PageRank transition matrix defined in (1.3). Notice that as
soon as α > 0, regardless of the realization of the graph G and of the chosen distribution λ, there exists
a unique stationary distribution πα,λ on V . Indeed, the transition matrix Pα,λ satisfies the so-called
Doeblin condition if α > 0; see Proposition 7 below for an explicit expression of πα,λ. Convergence to
equilibrium will be quantified using the total variation distance. For two probability measures µ, ν, the
latter is defined by

(1.8) ‖µ− ν‖TV = max
E
|µ(E)− ν(E)|,

where the maximum ranges over all possible events in the underlying probability space. Starting at a
node x the distribution of the PageRank surfer after t steps is P tα,λ(x, ·), and the distance to equilibrium
is defined by

(1.9) Dxα,λ(t) =
∥∥P tα,λ(x, ·)− πα,λ

∥∥
TV
.
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This defines a non-increasing function of t ∈ N. It is convenient to extend it to a monotone function of
t ∈ [0,∞), e.g. by considering the integer part of the argument. Finally, for any ε ∈ (0, 1), the ε-mixing
time is defined by

(1.10) Tα,λ(ε) = inf

{
t ≥ 0 : max

x∈V
Dxα,λ(t) ≤ ε

}
.

Both Dxα,λ(t) and Tα,λ(ε) are functions of the underlying graph G, and are therefore random variables.
When α = 0, we write Dx0 (t) and T0(ε) for the corresponding quantities. The behaviour of the distance
Dx0 (t) and of the mixing time T0(ε) has been thoroughly investigated in [6] for model 1 and in [7] for
model 2. Let us briefly recall the main conclusions of these works. In order to simplify the exposition,
we shall adopt the following unified notation. Let us define the in-degree distribution

(1.11) µin(x) =
1

n
×

{
d−x / 〈d〉 model 1

1 model 2

where we use the notation
〈d〉 =

1

n

∑
x∈V

d−x =
m

n

for the average degree. Note that for model 2 the distribution µin represents the average in-degrees
rather than the actual in-degrees. Next, let the entropyH and the associated entropic time TENT be defined
by

(1.12) H =
∑
x∈V

µin(x) log d+
x , TENT =

log n

H
.

Note that under our assumptions on d± the deterministic quantities H,TENT satisfy H = Θ(1) and
TENT = Θ(log n). The main results of [6, 7] state that, uniformly in the starting point x ∈ V , the rescaled
function Dx0 (s TENT), s > 0, converges in probability as n→∞ to the step function

(1.13) ϑ(s) =

{
1 if s < 1

0 if s > 1.

More precisely, we may combine [6, Theorem 1] and [7, Theorem 1] to obtain the following statement.

Theorem 1 (Uniform cutoff at the entropic time [6, 7]). Let G be a random graph from either the directed
configuration model DCM(d±) or the out-configuration model OCM(d+). For each s > 0, s 6= 1 one has:

(1.14) max
x∈[n]

|Dx0 (s TENT)− ϑ(s)| P−→ 0.

In (1.14) we use the notation P−→ for convergence in probability as n→∞. In terms of mixing times,
(1.14) implies in particular that for any ε ∈ (0, 1):

(1.15)
T0(ε)

TENT

P−→ 1,

The fact that the distance to equilibrium approaches a step function, or equivalently that the ε-mixing
time is to leading order insensitive to the value of ε ∈ (0, 1), is commonly referred to as a cutoff phenom-
enon; see e.g. [14, 19] for a review. We also refer to [20, 4, 5] for similar results in the case of undirected
graphs. We stress that a fundamental difference between the case of undirected graphs and the case of
directed graphs considered here is that the underlying stationary distribution π0 is not known explicitly
in the directed case.



MIXING TIME OF PAGERANK SURFERS ON SPARSE RANDOM DIGRAPHS 5

We now formulate our main results. To obtain explicit asymptotic statements we shall assume that
α = α(n) ∈ (0, 1) is a sequence such that α→ 0 and such that the limit

(1.16) γ = lim
n→∞

αTENT ∈ [0,∞]

exists, with possibly γ = 0 or γ =∞. We call Sn the set of all probability measures on [n].

Theorem 2. Let G be a random graph from either the directed configuration model DCM(d±) or the out-
configuration model OCM(d+). Let α = α(n) ∈ (0, 1) be parameters as in (1.16). Then, according to the
value of γ there are three scenarios:

(1) If γ = 0 then for all s > 0, s 6= 1:

(1.17) max
λ∈Sn

max
x∈[n]

∣∣Dxα,λ(s TENT)− ϑ(s)
∣∣ P−→ 0.

(2) If γ ∈ (0,∞) then for all s > 0, s 6= γ:

(1.18) max
λ∈Sn

max
x∈[n]

∣∣Dxα,λ(s/α)− e−sϑ(s/γ)
∣∣ P−→ 0.

(3) If γ =∞ then for all s > 0:

(1.19) max
λ∈Sn

max
x∈[n]

∣∣Dxα,λ(s/α)− e−s
∣∣ P−→ 0.

In terms of mixing times, Theorem 2 implies the following statements.

Corollary 3. In the setting of Theorem 2, the following holds uniformly with respect to λ:
(1) If γ = 0 then for all ε ∈ (0, 1)

(1.20)
Tα,λ(ε)

TENT

P−→ 1,

(2) If γ ∈ (0,∞):

(1.21)
Tα,λ(ε)

TENT

P−→

{
1 if ε ∈ (0, e−γ)
1
γ log(1/ε) if ε ∈ [e−γ , 1).

(3) If γ =∞ then for all ε ∈ (0, 1):

(1.22) αTα,λ(ε)
P−→ log(1/ε).

The trichotomy displayed in Theorem 2 and Corollary 3 reflects the competition between two dis-
tinct mechanisms of relaxation to equilibrium: the simple random walk dominates in the first scenario,
while the λ-resampling dominates in the third; the intermediate scenario interpolates between the two
extremes; see Figure 1.

Remarkably, essentially the same trichotomy was uncovered recently by [3] in a model of random
walk on dynamically evolving undirected graphs. In that case, the role of the resampling is played
by the underlying reshuffling of the graph edges. It is interesting to observe that, in contrast with the
undirected case considered in [3], in our setting the two competing processes may well have very distinct
goals, and the overall stationary distribution πα,λ is the result of a nontrivial balance.

To give some guidelines, below we illustrate the main ideas involved in the proof.
The starting point is the observation that the distance to stationarity Dxα,λ(t) satisfies the following

general identity at all times t, for all choices of the parameter α and distribution λ:

(1.23)
∥∥P tα,λ(x, ·)− πα,λ

∥∥
TV

= (1− α)t
∥∥P t(x, ·)− πα,λP t∥∥TV .
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Figure 1

Here we use the notation µP t(y) =
∑
x∈V µ(x)P t(x, y) for the distribution at time t of the simple random

walk started at a random vertex distributed according to some distribution µ. The relation (1.23) follows
from a simple coupling argument; see Proposition 8 below. Moreover, the stationary distribution admits
the power series expansion

(1.24) πα,λ = α

∞∑
k=0

(1− α)kλP k ,

see Proposition 7 below. A particularly simple special case is when the resampling distribution λ equals
the stationary distribution π0. Indeed, in this case the stationary distribution is the result of a trivial
balance and πα,λ = π0, so that (1.23) becomes

(1.25) Dxα,π0
(t) = (1− α)tDx0 (t) .

Therefore, when λ = π0 the results in Theorem 2 are an immediate consequence of Theorem 1. Moreover,
this shows that the trichotomy in Theorem 2 follows from Theorem 1 whenever the distribution λ ∈ Sn
is such that

(1.26) ‖πα,λ − π0‖TV
P−→ 0,

since in this case πα,λP t is well approximated by π0, and the the three claims in Theorem 2 would follow
from (1.23). As we shall see, the approximation (1.26) is rather straightforward in the first scenario.
Indeed, if αTENT → 0 then the simple random walk has enough time to reach equilibrium between
successive resampling events and (1.26) holds uniformly in λ ∈ Sn, see Proposition 16 below. The
second and third scenarios require a different approach since one cannot expect (1.26) to hold for all
λ ∈ Sn. There is however a special class of distributions, that we refer to as widespread, which does
satisfy (1.26) in all three scenarios.

Definition 4 (Widespread measure). A sequence of probability measures λ = λn on [n] is widespread if
(i) There exists δ > 0 such that

(1.27) |λ|∞ = max
x∈[n]

λ(x) = O(n−1/2−δ).

(ii) Bounded `2-distance from the uniform distribution:

(1.28)
1

n

∑
j∈[n]

(1− nλ(j))
2

= O(1).
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Note that there is no requirement on the minimum of λ(x), so that large portions of the set of vertices
are allowed to receive zero mass. An important property of widespread measures is that, if we start with
such a distribution λ, then the time needed to reach stationarity for the simple random walk is much
smaller than the entropic time TENT. More precisely we shall establish the following facts.

Lemma 5. LetG be a random graph from either the directed configuration model DCM(d±) or the out-configuration
model OCM(d+). If λ = λn is widespread, then for any sequence t = t(n)→∞,

(1.29)
∥∥λP t − π0

∥∥
TV

P−→ 0.

Moreover, in all three scenarios (1.26) holds for every widespread distribution λ.

The result in Lemma 5 illustrates well the mechanism behind the trichotomy in the case of widespread
measures λ, but it is far from explaining the general phenomenon described in Theorem 2. For instance,
if λ = δz is a Dirac mass at a vertex z, then λP t = P t(z, ·) and therefore (1.29) must fail for all t = sTENT,
with s ∈ (0, 1) fixed, since by Theorem 1 we know that in this case

(1.30) min
z∈[n]

∥∥P t(z, ·)− π0

∥∥
TV

P−→ 1.

Moreover, the stationary distribution πα,δz can be very far from π0 in both scenarios 2 and 3. In particu-
lar, using our analysis in Section 3 one can check that in scenario 3,

(1.31) min
z∈[n]

‖πα,δz − π0‖TV
P−→ 1.

While we believe the result in Lemma 5 to be of interest in its own, the proof of Theorem 2 will be based
on a different approach.

The first observation is that the identity (1.23) together with the result of Theorem 1 is already suffi-
cient to establish all the upper bounds on the distance Dxα,λ(t) required in the proof of Theorem 2, see
Section 4 for the details. On the other hand, some extra work is needed for the proof of the lower bounds
on Dxα,λ(t). A key technical point for establishing the desired lower bounds will be the following fact
concerning scenarios 2 and 3.

Lemma 6. LetG be a random graph from either the directed configuration model DCM(d±) or the out-configuration
model OCM(d+). For fixed γ > 0, including γ = ∞, and s ∈ (0, γ), for any sequence α → 0, satisfying
αTENT → γ, and t = s/α:

(1.32) min
λ∈Sn

min
x∈[n]

∥∥P t(x, ·)− πα,λP t∥∥TV P−→ 1 .

Essentially, (1.32) says that the t-step evolution of the random walk starting at any given vertex x is
singular with respect to the evolution starting at the page rank distribution, as soon as t ≤ (1− ε)TENT

for some fixed ε > 0. The uniformity in x ∈ [n] and λ ∈ Sn in Lemma 6 is a delicate matter. We shall
see that for general λ ∈ Sn, if αTENT → γ > 0, then πα,λP

t is a nontrivial mixture of π0 and another
measure µλ, see Lemma 13 below for the precise version of this statement. Depending on the nature of
λ ∈ Sn, the measure µλ can be either supported on a small subset of [n], e.g. if λ = δz for some z, or very
spread out, e.g. if λ is widespread as in Definition 4. We shall however show that structural features
of the random random graph G and the fact that α → 0 imply that the measure µλ cannot concentrate
any mass on the support of the distribution P t(x, ·) and thus µλ and P t(x, ·) are approximately singular.
We refer to Section 6 for the derivation of this anti-concentration phenomenon. Since π0 and P t(x, ·) are
approximately singular for t ≤ (1− ε)TENT as in (1.30), this will be sufficient to prove Lemma 6.
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The rest of the paper is arranged as follows: the next section establishes the basic identities (1.23)
and (1.24) and some more preliminary material; Section 3 contains our main technical estimates and
the proof of Lemma 6; Section 4 shows how to derive the main results from Lemma 6 and the facts
established in Section 2. The discussion of widespread measures and the proof of Lemma 5 form an
independent piece of work and are given in Section 5.

2. PRELIMINARIES

Here we collect some simple general facts about the PageRank surf. The statements in this section do
not depend on the graph G where the original walk takes place. Therefore, we fix an arbitrary digraph
G with vertex set V = [n], and let P be the transition matrix in (1.2). If d+

x = 0 for some x we may define
P (x, x) = 1 and P (x, y) = 0 for all y ∈ V \ {x}.

2.1. The stationary distribution πα,λ.

Proposition 7. For any α ∈ (0, 1), any probability vector λ, let Pα,λ be defined by (1.3). There exists a unique
probability vector πα,λ satisfying πα,λPα,λ = πα,λ. Moreover, πα,λ is given by

(2.1) πα,λ = α

∞∑
k=0

(1− α)kλP k.

Proof. The equation πα,λPα,λ = πα,λ is equivalent to

πα,λ(1− (1− α)P ) = αλ.

Since P is a stochastic matrix, the matrix 1 − (1 − α)P is strictly diagonally dominant, and therefore
invertible. Then (2.1) follows by expanding the expression πα,λ = αλ(1− (1− α)P )−1. �

In particular, (2.1) and the triangle inequality imply that for any other probability vector µ:

(2.2) ‖πα,λ − µ‖TV ≤ α
∞∑
k=0

(1− α)k‖λP k − µ‖TV.

2.2. Walk vs. teleport. A trajectory of the PageRank surf can be sampled as follows. At each time unit
independently, we flip a α-biased coin: if heads (with probability α) then the surfer is teleported to a new
vertex, chosen according to λ; if tails (with probability 1 − α) then the surfer walks one step according
to the transition matrix P . The probability associated to this construction will be denoted by P. If τα
denotes the first time the surfer is teleported, then for all t ∈ N:

(2.3) P(τα > t) = (1− α)t.

Proposition 8. For any α ∈ (0, 1), any probability vector λ, and all t ∈ N, x ∈ [n]:

(2.4) ‖P tα,λ(x, ·)− πα,λ‖TV = (1− α)t‖P t(x, ·)− πα,λP t‖TV.

Proof. We use the construction introduced above, and write Xx
t for the position of the surfer at time t

with initial vertex x. By using the same sample of the teleporting distribution λ we couple two trajecto-
ries Xx

t , X
z
t in such a way that Xx

t = Xz
t , for all t ≥ τα. Therefore, letting E denote the expectation with

respect to this coupling:

P tα,λ(x, y)− P tα,λ(z, y) = E [1(Xx
t = y)− 1(Xz

t = y)]

= E [1(Xx
t = y)− 1(Xz

t = y); τα > t] .(2.5)
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Moreover,

E [1(Xx
t = y); τα > t] = P(τα > t)P(Xt = y|X0 = x, τα > t) = P(τα > t)P t(x, y).(2.6)

Therefore,

P tα,λ(x, y)− P tα,λ(z, y) = P(τα > t)(P t(x, y)− P t(z, y)).(2.7)

Multiplying by πα,λ(z), summing over z, and using (2.3) one obtains

P tα,λ(x, y)− πα,λ(y) = (1− α)t
(
P t(x, y)− [πα,λP

t](y)
)
.(2.8)

It follows that

‖P tα,λ(x, ·)− πα,λ‖TV =
1

2

∑
y∈V
|P tα,λ(x, y)− πα,λ(y)|

= (1− α)t
1

2

∑
y∈V

∣∣P t(x, y)− [πα,λP
t](y)

∣∣
= (1− α)t‖P t(x, ·)− πα,λP t‖TV.(2.9)

�

Since the total variation distance is always bounded above by 1, Proposition 8 implies the upper
bound

Dxα,λ(t) = ‖P tα,λ(x, ·)− πα,λ‖TV ≤ (1− α)t.(2.10)

The latter, in turn, gives the following upper bound on the mixing time.

Corollary 9. For any α ∈ (0, 1), any probability vector λ, and all ε ∈ (0, 1), the ε-mixing time (1.10) satisfies

(2.11) Tα,λ(ε) ≤ 1

α
log(1/ε).

A further immediate consequence of Proposition 8 is that if λ is stationary for P , then the distance to
equilibrium Dxα,λ(t) takes a simple form.

Corollary 10. For any α ∈ (0, 1), for all x ∈ V and all t ∈ N, if π0 is a probability vector such that π0P = π0,
then taking λ = π0,

(2.12) Dxα,π0
(t) = (1− α)t ‖P t(x, ·)− π0‖TV.

Proof. From Proposition 7 it follows that πα,π0
= π0, and therefore πα,π0

P t = π0 for all t. �

Finally, another useful consequence of Proposition 8 is that it allows us to control the distanceDxα,λ(t)

in terms of the distance Dxα,π0
(t), for some stationary π0 as in Corollary 10, by means of the distance

between πα,λ and π0.

Corollary 11. For any α ∈ (0, 1), all t ∈ N, any probability vector λ, if π0 is such that π0P = π0,

(2.13) max
x∈V

∣∣Dxα,λ(t)−Dxα,π0
(t)
∣∣ ≤ ‖πα,λ − π0‖TV.

Proof. From the triangle inequality and the fact that ‖µP t − νP t‖TV is monotone in t for all distributions
µ, ν, one has

(2.14)
∣∣‖P t(x, ·)− πα,λP t‖TV − ‖P t(x, ·)− π0‖TV

∣∣ ≤ ‖πα,λ − π0‖TV.
The conclusion then follows from Proposition 8 and Corollary 10. �
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3. MAIN TECHNICAL ESTIMATES

The goal of this section is to prove Lemma 6. The proof is divided into three main steps. The first step
is a decomposition of πα,λP t as a mixture of π0 and a distribution µλ defined below. The second and
most delicate step is the proof that µλ and P t(x, ·) are approximately singular for t and α as in Lemma
6. The third step concludes the desired result collecting the technical estimates established in the first
two steps.

3.1. Decomposition of πα,λP t. We start with a useful decomposition of πα,λP t as a mixture of π0 and a
distribution µλ defined as follows. Fix η ∈ (0, 1/2), t ≤ (1− 2η)TENT, and define µλ = µη,tλ and A = Aη,t

as

A =

(1−η)TENT−t∑
k=0

α(1− α)k , µλ =
1

A

(1−η)TENT−t∑
k=0

α(1− α)kλP k+t.(3.1)

Note that µλ depends on the graphGwhileA is deterministic. We consider the case αTENT → γ ∈ (0,∞]
and treat the two cases γ =∞ and γ ∈ (0,∞) separately.

Lemma 12. Fix s ∈ (0,∞) and assume αTENT → +∞ and t = s/α. For all ε > 0, there exists η > 0 such that
with high probability:

max
λ∈Sn

‖πα,λP t − µλ‖TV ≤ ε,(3.2)

and the normalization in (3.1) satisfies A ≥ 1− ε.

Proof. Since αTENT → +∞we have t� TENT. It follows that A→ 1. Using Proposition 7,

πα,λP
t −Aµλ =

∞∑
k=(1−η)TENT−t

α(1− α)kλP k+t,(3.3)

and therefore ‖πα,λP t − µλ‖TV ≤ (1−A). �

Lemma 13. Fix γ ∈ (0,∞), s ∈ (0, γ) and assume αTENT → γ and t = s/α. For all ε > 0, there exists η > 0
such that with high probability:

max
λ∈Sn

‖πα,λP t −Aµλ − (1−A)π0‖TV ≤ ε,(3.4)

where A = Aη,t and µλ = µη,tλ are given in (3.1).

Proof. For any a < b, z ∈ [n], define the probability vector

νza,b =
1

Za,b

bTENT−1∑
k=aTENT

α(1− α)kP k+t(z, ·) , Za,b =

bTENT−1∑
k=aTENT

α(1− α)k.(3.5)

Since t = s/α, s ∈ (0, γ), and αTENT → γ we may take η > 0 small enough and assume that t = κTENT,
κ ∈ (0, 1− 2η). Using Proposition 7, letting δz denote the Dirac mass at z:

πα,δzP
t = Z0,1−η−κ ν

z
0,1−η−κ + Z1−η−κ,1+η−κ ν

z
1−η−κ,1+η−κ + Z1+η−κ,∞ νz1+η−κ,∞(3.6)

Note that Z0,1−η−κ = A, and νz0,1−η−κ = µδz . We show that the middle term above is negligible and that
νz1+η−κ,∞ is well approximated by π0. If αTENT → γ ∈ (0,∞), by Riemann integration it follows that for
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all n large enough

Z1−η−κ,1+η−κ ≤
(1+η−κ)TENT∑

k=(1−η−κ)TENT

αe−kα ≤ Cη,(3.7)

for some constant C > 0. Next, using the monotonicity in time of total variation distance and Theorem
1, w.h.p.

max
z∈[n]

sup
k≥(1+η−κ)TENT

‖P k+t(z, ·)− π0‖TV ≤ max
z∈[n]

‖P (1+η)TENT(z, ·)− π0‖TV ≤ η.(3.8)

It follows that w.h.p.

max
z
‖νz1+η−κ,∞ − π0‖TV ≤ η.(3.9)

Writing πα,λP t =
∑
z λ(z)πα,δzP

t and taking A and µλ as in (3.1) concludes the proof. �

3.2. Singularity of µλ and P t(x, ·). The key to this result is a property of the random walk that was
established in [6, 7]. Roughly speaking this says that with high probability, for most vertices x, the
trajectory {Xx

u , u ≤ t} of the walk started at x up to time t is supported by a “small" directed tree Tx(t)
rooted at x provided that t ≤ (1 − η)TENT where η is an arbitrary positive constant. As a result the
distribution P t(x, ·) is rather strongly localized. We shall see that the distribution µλ, depending on the
nature of λ, could be either supported on a small subset of [n] (e.g. if λ = δz for some z ∈ [n]) or very
spread out (e.g. if λ is widespread). The approximate singularity of µλ and P t(x, ·) turns out to be the
result of a delicate structural property of the digraph G which guarantees that even if µλ is localized it
must be sufficiently smeared out and cannot concentrate on the support of P t(x, ·). We first recall the
construction of the tree Tx(t) and then address the structural properties ensuring this anti-concentration.

3.2.1. The tree Tz(t). Given the digraph G, the tree Tz(t), for fixed t ≤ (1 − η)TENT, can be discovered
algorithmically as described in [6, Section 6.2] and [7, Section 4.1]. We recall the detailed construction
for model 1. A very similar construction can be given for model 2; see [7, Section 4.1].

Below we describe a sequence of digraphs G0,G1, . . . ,Gκ such that at each step G` is a subset of the
out-neighborhood of z of height t in G and such that G` is obtained from G`−1 by adding a single edge
of G. Moreover, we obtain a sequence of directed trees T 0, T 1, . . . , T κ such that for every `, T ` is a
spanning tree of G`. The tree Tz(t) will be defined as Tz(t) = T κ.

Initially all matchings of tails and heads in G are unrevealed and G0 = T 0 = {z}; let ∂−T ` (resp.
∂+T `) denote the set of unrevealed heads (resp. tails) whose endpoint belongs to T `; the height h(e) of
a tail e ∈ ∂+T ` is defined as 1 plus the number of edges in the unique path in T ` from z to the endpoint
of e; the weight of e ∈ ∂+T ` is defined as

(3.10) w(e) =

h(e)−1∏
i=0

1

d+
xi

,

where (z = x0, x1, . . . , xh(e)−1) denotes the path in T ` from z to the endpoint of e; we then iterate the
following steps:

• a tail e ∈ ∂+T ` is selected with maximal weight among all e ∈ ∂+T ` with h(e) ≤ t and w(e) ≥
wmin := n−1+η2

(using an arbitrary ordering of the tails to break ties);
• the head f matched to e in G is revealed, and G`+1 is obtained from G` by adding the edge ef ;
• if f was not in ∂−T `, then its endpoint and the edge ef are added to T ` to form T `+1.
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The process stops at ` = κ when there are no tails e ∈ ∂+T κ with height h(e) ≤ t and weight w(e) ≥
wmin. Note that T ` is a directed spanning tree of G` at each step. The tree Tz(t) is defined as T κ. After the
construction of the tree Tz(t), exactly κ edges of G have been revealed, some of which may not belong
to Tz(t). Note that Gκ has κ edges and coincides with the union of all directed paths from z which have
length at most t and at least probability wmin with respect to the random walk started at z. As in [6,
Lemma 11], [7, Lemma 7], it is not difficult to see that when exploring the out-neighborhood of z in this
way the number κ, regardless of the realization of G, is bounded as

(3.11) κ ≤ n1− η
2

2 .

Let us recall the following key facts established in [6, Section 6] for model 1 and in [7, Section 4] for
model 2. For every η > 0, for every t ≤ (1 − η)TENT, the trajectory (X0, . . . , Xt) of the random walk
started at z in G satisfies with high probability (X0, . . . , Xt) ⊂ Tz(t) for most initial positions z. More
precisely, let Qz(·) denote the quenched law of the random walk (X0, X1 . . . ) in G started at z. Let V∗
denote the set of z ∈ [n] such that B+

z,} is a directed tree, where } := 1
10 log∆(n), and B+

z,} denotes the
out neighborhood of z of height } in G (that is the subgraph of G induced by the set of vertices which
can be reached from z with a path of length at most }). Then, from [6, Proposition 10, part (ii)], and [7,
Lemma 11], one has

min
z∈V∗

Qz ((X0, . . . , Xt) ⊂ Tz(t))
P−→ 1,(3.12)

where the notation (X0, . . . , Xt) ⊂ Tz(t) indicates that the walk up to time t traverses only edges of
Tz(t).

3.2.2. Key technical estimate. LetAx(t) denote the set of vertices in Tx(t) that have distance from x exactly
t in Tx(t). Recall the definition µλ = µη,tλ in (3.1).

Lemma 14. Assume αTENT → γ ∈ (0,∞]. Fix η ∈ (0, 1/2) and take t ≤ (1 − 2η)TENT. Then, for all ε > 0,
with high probability

(3.13) max
λ∈Sn

max
x∈[n]

µλ(Ax(t)) ≤ ε.

The proof of Lemma 14 is based on a structural property of the graph G which says that the inter-
sections of the trees Tz(u) and Tx(t), where x, z are two arbitrary vertices and t ≤ u ≤ (1 − η)TENT, are
such that, with high probability, for all x, z ∈ [n], no path in Tz(u) can intersect more than K times the
set Ax(t) where K is a suitably large constant. Let us use the notation Pz(u) for the set of paths in Tz(u)
having length exactly u and, for all p ∈ Pz(u), let V (p) denote the set of vertices along that path. Note
that the endpoint of p ∈ Pz(u) is necessarily a vertex of Az(u) and |V (p)| = u, since Tz(u) is a tree.

Lemma 15. Fix η ∈ (0, 1/2). For every x, z ∈ [n] and t ≤ u ≤ (1− η)TENT,

(3.14) P (∃ p ∈ Pz(u) : Ax(t) ∩ V (p) > K) ≤ n−3,

for all n large enough, where K = (9 + 3 log2 ∆)/η2. In particular, the event

EK = {∀x, z ∈ [n], ∀p ∈ Pz(u), Ax(t) ∩ V (p) ≤ K}
holds with high probability.

Proof. We sample the pair (Tx(t), Tz(u)) in the random digraph G by generating first the subgraph Tx(t),
and then the subgraph Tz(u) conditionally on Tx(t). The construction of Tx(t) follows the steps described
by the algorithm in Section 3.2.1 with the understanding that, for model 1 the head f to be matched to
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Figure 2. A sketch of the unlikely event in Lemma 15

the tail e to form G`+1 is chosen uniformly at random among all m − ` heads that are unmatched after
the `-th step, while for model 2 the tail e has to be connected to a uniformly random vertex in [n]. The
process terminates when the tree Tx(t) has been fully generated after κx steps. A crucial feature of
this construction is that the tails of all vertices v ∈ Ax(t) are unmatched once the tree Tx(t) has been
generated. Moreover, the number of vertices of Tx(t) satisfies, as in (3.11)

(3.15) |Tx(t)| ≤ κx ≤ n1− η
2

2 .

Next, we generate the tree Tz(u), conditionally on Tx(t). This is done by starting at z and by repeating
the same steps for the construction described in Section 3.2.1 with the difference that if at step ` a tail e is
chosen which had already been matched during the generation of Tx(t) then the corresponding edge is
included in the construction (and possibly in the tree being generated). The process terminates when the
tree Tz(u) has been fully generated after κz steps. Thus, after κx + κz steps we have a sample from the
joint distribution of Tx(t) and Tz(u) in G. Note that the total number of edges of G discovered after the
generation of both trees is κx+κz ≤ 2n1−η2/2. Let {F`} denote the filtration associated to this generation
process, so that Fκx is the σ-field associated to the tree Tx(t).

During the process generating Tz(u) conditionally on Tx(t), we say that a bad matching occurs at step
` if the tail chosen at that step is currently unmatched (that is it was not revealed during the sampling of
Tx(t)) and it gets connected to a vertex y that was already discovered in Tx(t). The first key observation
is that the conditional probability of a bad matching at step ` given F` is uniformly bounded above by

(3.16) p := 2∆n−η
2/2.

Indeed, in the case of model 1 this probability is at most κx∆/(m − κx − κz), while for model 2 this
probability is at most κx/n. In either case it is less than the number p defined in (3.16) for all n large
enough.

The second key observation is that if a path p ∈ Pz(u) is such that Ax(t) ∩ V (p) > K then at least
K bad matchings have occurred during the formation of that given path. To see this, observe that after
a vertex y ∈ Ax(t) is visited for the first time during the construction of Tz(u), the tails of y will be all
matched (at suitable steps `1, . . . , `d+

y
) to a uniformly sampled head among the ones that are currently

unmatched (for model 1) or to a uniformly random vertex (for model 2). Indeed, the tails of all vertices
v ∈ Ax(t) all have the same weight w(e) and all of them are unmatched after the tree Tx(t) has been
generated. Also, by definition, every path in Tz(u) can visit a given vertex y at most once, and after a
visit to y ∈ Ax(t) it has to return to Tx(t) with a bad matching in order to visit some other y′ ∈ Ax(t).
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Hence, the number of visits to Ax(t) in a given path p ∈ Pz(u) is at most the number of bad matchings
occurred along that path +1. The extra 1 comes from the fact that z could have started already inside
Tx(t), for instance if z ∈ Ax(t).

Figure 3. A first visit to Ax(t) of a path p ∈ Pz(u) (left) and an illustration of a bad matching
(right).

Next, consider an auxiliary directed tree with random marks T̃ defined as follows: T̃ is a directed
regular tree with deterministic offspring ∆ and height u, with independent and identically distributed
Bernoulli(p) marks on its edges, where p is as in (3.16). Edges whose Bernoulli mark is 1 are colored
red. A path of length u from the root to one of the leaves is called bad if it has at least K red edges.
The previous construction then shows that the number of p ∈ Pz(u) such that Ax(t) ∩ V (p) > K is
stochastically dominated by the number of bad paths in T̃ . The probability that a given path in T̃ is bad
is given by

P (Bin(u, p) ≥ K) ≤ (up)K .

Therefore, the probability that there exists a bad path in T̃ is at most ∆u(up)K . Since u ≤ TENT ≤
log n/ log 2, it follows that

(3.17) P (∃ p ∈ Pz(u), Ax(t) ∩ V (p) > K) ≤ ∆TENT(TENTp)
K ≤ n

log ∆
log 2 −Kη

2/3,

for all n sufficiently large. Taking K = (9 + 3 log2 ∆)/η2 concludes the proof of (3.14). A union bound
then implies that the event EK in the statement of the lemma holds with probability at least 1− 1/n. �

Once Lemma 15 is available, we can prove Lemma 14.

Proof of Lemma 14. The distribution µλ satisfies µλ =
∑
z∈[n] λ(z)µz , where µz := µδz . Hence, it is suffi-

cient to prove that w.h.p.

(3.18) max
z,x∈[n]

µz(Ax(t)) ≤ ε.

We write

µz(Ax(t)) =
1

A

(1−η)TENT−t∑
k=0

α(1− α)kQz(Xk+t ∈ Ax(t)),(3.19)
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where Qz is defined as in (3.12). As in [6, Propositon 6] one shows that for both models, with high
probability:

max
z∈[n]

Qz(Xk0
∈ V \ V∗) ≤ 2−k0 ,(3.20)

for any fixed constant k0. Hence, for all non negative integers k, t with k0 ≤ k + t ≤ (1− η)TENT:

max
z∈[n]

Qz(Xk+t ∈ Ax(t)) ≤ max
v∈V∗

Qv(Xk+t−k0
∈ Ax(t)) + 2−k0 .

Set u = (1− η)TENT. For any v ∈ V∗ we write

Qv(Xk+t−k0
∈ Ax(t)) ≤ Qv ((X0, . . . , Xu) 6⊂ Tv(u)) +

∑
p∈Pv(u)

Qv ((X0, . . . , Xu) = p, Xk+t−k0
∈ Ax(t)) .

By (3.12), the first term in the right hand side is w.h.p. less than ε uniformly in v ∈ V∗, for any fixed
ε > 0. The second term, taking the summation over k ∈ [k0, (1− η)TENT − t] satisfies, w.h.p.∑

p∈Pv(u)

(1−η)TENT−t∑
k=k0

α(1− α)kQv ((X0, . . . , Xu) = p, Xk+t−k0
∈ Ax(t))

≤ α
∑

p∈Pv(u)

u∑
k=0

Qv ((X0, . . . , Xu) = p, Xk ∈ Ax(t))

≤ αK
∑

p∈Pv(u)

Qv ((X0, . . . , Xu) = p) ≤ αK,(3.21)

where K is the constant from Lemma 15 and we have used the fact that the event EK from Lemma 15
holds with high probability. From (3.19)-(3.21), noting that the first k0 terms in the summation over k
contribute to (3.19) at most αk0/A, we then obtain, w.h.p.

max
z,x∈[n]

µz(Ax(t)) ≤ ε+
αk0

A
+
αK

A
+ 2−k0 .(3.22)

Since αTENT → γ ∈ (0,∞] and α → 0, it follows that for all fixed η > 0 one has α/A → 0 as n → ∞.
Since the parameters ε > 0 and k0 ∈ N are arbitrary this implies the desired conclusion. �

3.3. Proof of Lemma 6. Assume αTENT → γ, and t = s/α, with s ∈ (0, γ) as in the statement of Lemma
6. The proof below applies to both cases γ ∈ (0,∞) and γ = ∞. We are going to show that for every
fixed ε > 0, there exists an event Eε = Eε(n) such that P(Eε) → 1, n → ∞, and such that on Eε for all
x ∈ [n] there are sets Cx ⊂ V satisfying

max
λ∈Sn

max
x∈[n]

µλ(Cx) ≤ ε , max
x∈[n]

π0(Cx) ≤ ε , min
x∈[n]

P t(x, Cx) ≥ 1− ε.(3.23)

Indeed, using the decompositions in Lemma 12 (for the case γ = ∞) and in Lemma 13 (for the case
γ ∈ (0,∞)), if (3.23) holds then w.h.p.∥∥P t(x, ·)− πα,λP t∥∥TV ≥ ∥∥P t(x, ·)−Aµλ − (1−A)π0

∥∥
TV
− ε

≥ P t(x, Cx)−Aµλ(Cx)− (1−A)π0(Cx)− ε ≥ 1− 3ε,(3.24)

where it is understood that A = 1 if γ = ∞. Since (3.24) holds uniformly in λ and x, this completes the
proof of Lemma 6. We turn to the proof of (3.23).

It is important that the estimates in (3.23) hold for all ε > 0 and η > 0 small enough (but fixed),
where η is the parameter implicit in the definition of µλ = µη,tλ . Since s ∈ (0, γ), we may assume



16 P. CAPUTO AND M. QUATTROPANI

t ≤ (1 − 2η)TENT by taking η small enough. By Theorem 1 we know that for each δ > 0, with high
probability there exists sets Bx, such that for all x ∈ [n]:

π0(Bx) ≤ δ , P t(x,Bx) ≥ 1− δ.(3.25)

For ε > 0, take k0 = k0(ε) such that 2−k0 ≤ ε/2, and call t′ = t − k0. Since t = Θ(α−1) and α → 0,
we have t′ > 0 for all n large enough. For all x ∈ [n], call Vx the subset of vertices in y ∈ V∗ such that
P k0(x, y) > 0. Define

Cx = Bx ∩ (∪y∈VxAy(t′)) .

From (3.12) we know that, for all δ > 0, with high probability,

(3.26) min
y∈V∗

P t
′
(y,Ay(t′)) ≥ 1− δ.

By (3.20), (3.25) and (3.26) we obtain

P t(x, Cx) ≥ P t(x,∪y∈VxAy(t′))− P t(x,Bcx)

≥ min
y∈Vx

P t
′
(y,Ay(t′))− 2−k0 − δ ≥ 1− 2−k0 − 2δ.(3.27)

From (3.25) we also know that π0(Cx) ≤ π0(Bx) ≤ δ. Taking δ = ε/4, this and (3.27) imply the last two
items in (3.23) since 2−k0 ≤ ε/2. It remains to estimate µλ(Cx). Since maxx |Vx| ≤ ∆k0 we obtain

µλ(Cx) ≤ µλ(∪y∈VxAy(t′)) ≤ ∆k0 max
y∈[n]

µλ(Ay(t′)).(3.28)

From Lemma 14 we see that with high probability, uniformly in λ and x, (3.28) is at most ∆k0δ for any
fixed δ > 0. Thus taking δ = ∆−k0ε concludes the proof of Lemma 6.

4. PROOF OF THE TRICHOTOMY

In this section we show how to prove Theorem 2 from the facts established above. Thus,G is a random
graph from either the directed configuration model DCM(d±) or the out-configuration model OCM(d+),
where the degree sequences satisfy the assumptions (1.6) and (1.7) respectively, and π0 denotes the
(w.h.p.) unique stationary distribution for the simple random walk on G.

4.1. Scenario 1. We begin with scenario 1, namely when αTENT → 0.

Proposition 16. For any sequence α such that αTENT → 0,

(4.1) max
λ∈Sn

‖πα,λ − π0‖TV
P−→ 0.

Proof. We need to show that, uniformly in λ, for any δ > 0,

(4.2) ‖πα,λ − π0‖ ≤ δ , w.h.p.

The upper bound (2.2) shows that for all t ∈ N:

(4.3) ‖πα,λ − π0‖TV ≤ (1− (1− α)t) +
∑
k>t

α(1− α)k‖λP k − π0‖TV.

Take t = sTENT, with some fixed s > 1, and observe that by Theorem 1 we know that for all k > t, for
all λ:

‖λP k − π0‖TV ≤ ‖λP sTENT − π0‖TV
≤ max

x∈V
‖P sTENT(x, ·)− π0‖TV ≤ δ/2 , w.h.p.(4.4)
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In particular, using αt→ 0:

(4.5) max
λ∈Sn

‖πα,λ − π0‖TV ≤ (1− (1− α)t) + δ/2 ≤ δ , w.h.p.

�

The claim (1.17) is thus a consequence of Corollary 10, Corollary 11 and Theorem 1.

4.2. Scenario 3. Suppose αTENT → +∞, and t = s/α for some fixed s ∈ (0,∞). From Lemma 6,
Proposition 8 and the upper bound (2.10) we obtain:

(4.6) max
λ∈Sn

max
x∈[n]

∣∣∣∥∥P tα,λ(x, ·)− πα,λ
∥∥
TV
− (1− α)t

∣∣∣ P−→ 0 .

Equivalently,

(4.7) max
λ∈Sn

max
x∈[n]

∣∣Dxα,λ(s/α)− e−s
∣∣ P−→ 0 .

This proves (1.19).

4.3. Scenario 2. Here αTENT → γ ∈ (0,∞). We take t = s/α, with fixed s ∈ (0,∞). We consider
separately the case s ∈ (γ,∞) and the case s ∈ (0, γ).

Suppose first s ∈ (γ,∞). By Proposition 8 and the triangle inequality

Dxα,λ(s/α) ≤
∥∥P t(x, ·)− πα,λP t∥∥TV

≤
∥∥P t(x, ·)− π0

∥∥
TV

+ max
y∈V

∥∥π0 − P t(y, ·)
∥∥
TV
.(4.8)

Since s ∈ (γ,∞), for some ε > 0 we have t ≥ (1 + ε)TENT. Therefore, by Theorem 1 it follows that

max
λ∈Sn

max
x∈[n]

Dxα,λ(s/α)
P−→ 0 , s ∈ (γ,∞).(4.9)

On the other hand, suppose that s ∈ (0, γ). Here we can apply Lemma 6, Proposition 8 and the upper
bound (2.10), as in Section 4.2 above, to obtain

(4.10) max
λ∈Sn

max
x∈[n]

∣∣Dxα,λ(s/α)− e−s
∣∣ P−→ 0 , s ∈ (0, γ).

Combining (4.9) and (4.10), we have proved (1.18).

5. WIDESPREAD MEASURES

The goal of this section is to prove Lemma 5. We remark that the statement ‖πα,λ − π0‖TV → 0 in
probability is a consequence of (1.29). Indeed, fix any sequence α = α(n) → 0, and take t = t(n) → ∞
such that αt→ 0. From (1.29) we know that

(5.1)
∥∥λP t − π0

∥∥
TV

P−→ 0.

As in (4.3), from the upper bound (2.2) and the monotonicity in time of total variation distance to sta-
tionarity we obtain:

(5.2) ‖πα,λ − π0‖TV ≤ (1− (1− α)t) + ‖λP t − π0‖TV.
Using (5.1) and αt→ 0 we conclude the proof. Thus, we are left to prove (1.29).

In the special case where λ = µin, and for the directed configuration model DCM(d±), a similar
result was already obtained in [6]. Here we are going to prove it for the case of the out-configuration
model OCM(d+) as well, and more importantly we are going to extend it to the case of an arbitrary
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widespread probability measure λ. Following the approach in [6], the proof of Lemma 5 will be based
on the construction of a martingale approximation for the distribution λP t. The latter, in turn, rests on a
branching approximation which allows one to couple the in-neighbourhood of a uniformly distributed
random vertex of G with a marked Galton-Watson tree up to depth t = o(log n).

We start with the definition of the relevant branching processes and the associated martingales.
These will later be used in a coupling argument to provide an approximate description of the in-
neighbourhood of a vertex in our random graphs, and of the stationary distribution at that vertex. Since
the constructions differ slightly for the two models DCM(d±) or OCM(d+) we will define two distinct
random trees T −(d±) and T −(d+).

5.1. The marked Galton-Watson trees T −(d±), T −(d+). Given n ∈ N, and a double sequence d± of
degrees satisfying (1.5) and (1.6), for each i ∈ [n], we define the rooted random marked tree T −i (d±)
recursively with the following rules:

• the root is given the mark i;
• every vertex with mark j has d−j children, each of which is given independently the mark k ∈ [n]

with probability d+
k /m.

On the other hand, given n ∈ N, and a sequence d+ of degrees satisfying (1.7), for each i ∈ [n], the rooted
random marked tree T −i (d+) is defined by:

• the root is given the mark i;
• regardless of its own mark every vertex has, for each j ∈ [n] independently with probability
d+
j /n, a child with mark j.

There are several differences between the two trees T −i (d±) and T −i (d+). In the first case the number of
children of a given vertex is a deterministic function of the vertex’s mark, whereas in the second case it
is a random variable D that can be written as

(5.3) D =
∑
j∈[n]

Yj , Yj = Ber(d+
j /n),

where the Yj are independent Bernoulli random variables with parameters d+
j /n. In particular, the

average number of children of any given vertex in T −i (d+) is

(5.4) E[D] =
∑
j∈[n]

d+
j

n
=
m

n
= 〈d〉 .

Since D can be zero, in contrast with the tree T −i (d±), the tree T −(d+) is finite with positive probability.
However, the two trees share several common features and we shall try to treat the two cases in a unified
fashion as much as possible.

We write o for the root and x,y for other vertices of the tree, with the notation y → x if y is a
child of x. Each vertex x of the tree has a mark, which we denote by i(x). If I denotes an independent
uniformly random i ∈ [n], and the root is given the mark i(o) = I, then we write T −(d±) = T −I (d±) and
T −(d+) = T −I (d+). Notice that T −(d±) and T −(d+) have the same average degree at the root, given by
(5.4). We often write T − for short if this creates no confusion. For each t ∈ N we let T −,t denote the set
of vertices in the generation t of the tree. Each vertex x ∈ T −,t has a unique path (xt,xt−1, . . . ,x1,x0)
connecting it to the root with xt = x and x0 = o. To any such x we associate the weight

(5.5) w(x) =

t∏
u=1

1

d+
i(xu)

.
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If T −,t coincides with the in-neighbourhood of o in a digraph G, then w(x) is the probability that the
simple random walk on G goes from x to o in t steps.

5.2. Martingale approximation. Given a function ϕ : [n] 7→ R, we define the process

(5.6) Xt(ϕ) =
∑

x∈T −,t
ϕ(i(x))w(x), X0(ϕ) = ϕ(i(o)).

We write Ft for the σ-algebra generated by the random tree T − up to and including generation t.

Lemma 17. Let T − be either T −(d±) or T −(d+), and write ϕ̄ =
∑n
j=1 ϕ(j). Then, for all t ∈ N:

(5.7) E[Xt(ϕ)|Ft−1] = Xt−1(ϕ̄µin).

Proof. Let the symbol
∑

y→x denote the sum over the set of children of x and note the symbolic identity

(5.8)
∑

y∈T −,t
≡

∑
x∈T −,t−1

∑
y→x

.

Therefore,

E[Xt(ϕ)|Ft−1] =
∑

x∈T −,t−1

E

[∑
y→x

ϕ(i(y))w(y)|Ft−1

]

=
∑

x∈T −,t−1

w(x)E

[∑
y→x

ϕ(i(y))

d+
i(y)

∣∣∣Ft−1

]
.(5.9)

For the tree T −(d±) we have

E

[∑
y→x

ϕ(i(y))

d+
i(y)

∣∣∣Ft−1

]
= d−i(x)

n∑
j=1

d+
j

m

ϕ(j)

d+
j

= ϕ̄ µin(i(x)).(5.10)

For the tree T −(d+) we have

E

[∑
y→x

ϕ(i(y))

d+
i(y)

∣∣∣Ft−1

]
=

n∑
j=1

d+
j

n

ϕ(j)

d+
j

= ϕ̄ µin(i(x)).(5.11)

This proves (5.7). �

In particular, when ϕ = µin, then

E[Xt(µin)|Ft−1] = Xt−1(µin) , t ∈ N.

Therefore, Xt(µin) is a martingale with respect to the filtration Ft. It is convenient to normalize it and
consider instead the martingale defined as

Mt = nXt(µin) =
∑

x∈T −,t
nµin(i(x))w(x), M0 = nµin(i(o)).(5.12)

Notice that E[Mt] = E[M0] = nE[µin(I)] = 1. In the case of model 1, the following convergence result
was already discussed in [6, Proposition 15].
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Proposition 18. For every fixed n, as t → ∞ the martingale Mt converges to a limit M∞, both almost surely
and in L2 (see [22, Ch. 12]) and for all t ∈ N:

E[(Mt −M∞)2] = Cρt(5.13)

where the constants ρ, C are given by

(5.14) ρ =

n∑
j=1

µin(j)
1

d+
j

, C =

 n
m(1−ρ)

∑n
j=1

(d−j −d
+
j )2

md+
j

model 1
ρ−1/n
1−ρ model 2

Proof. Consider the increments

∆t = Mt+1 −Mt.(5.15)

Reasoning as in Lemma 17, for both models we write

∆t =
∑

x∈T −,t
nµin(i(x))w(x)ψ(x),(5.16)

where ψ is defined as

ψ(x) =
∑
y→x

µin(i(y))

µin(i(x))d+
i(y)

− 1.(5.17)

As in Lemma 17 one has E[ψ(x) | Ft] = 0. Let us compute E[ψ(x)2| Ft]. For the tree T −(d±), we can
rewrite

ψ(x) =
∑
y→x

[
µin(i(y))

µin(i(x))d+
i(y)

− 1

d−i(x)

]
.(5.18)

Therefore,

E[ψ(x)2| Ft] = d−i(x)

n∑
j=1

d+
j

m

(
d−j

d−i(x)d
+
j

− 1

d−i(x)

)2

=
C1

d−i(x)

,(5.19)

where we use the notation

C1 =

n∑
j=1

(d−j − d
+
j )2

md+
j

.

For the tree T −(d+) we have

E[ψ(x)2 | Ft] = E

(∑
y→x

1

d+
i(y)

)2

− 2
∑
y→x

1

d+
i(y)

+ 1
∣∣∣Ft


=
∑
j 6=j′

d+
j d

+
j′

n2

1

d+
j d

+
j′

+
∑
j

d+
j

n

1

(d+
j )2
− 2

∑
j

d+
j

n

1

d+
j

+ 1 = ρ− 1

n
,(5.20)

where ρ is as in (5.14). Since E[ψ(x)ψ(x′) | Ft] = 0 for all x,x′ ∈ T −,t with x 6= x′,

E[∆2
t | Ft] =

∑
x∈T −,t

n2µin(i(x))2w(x)2E[ψ(x)2 | Ft].(5.21)



MIXING TIME OF PAGERANK SURFERS ON SPARSE RANDOM DIGRAPHS 21

Therefore, combining (5.19) and (5.20) we have

E[∆2
t | Ft] = C(1− ρ)

∑
x∈T −,t

nµin(i(x))w(x)2 ,(5.22)

where ρ, C are given by (5.14). Furthermore, observe that in both models one has

E[∆2
t | Ft−1] = E

[
E[∆2

t | Ft] | Ft−1

]
= C(1− ρ)

∑
x∈T −,t−1

nµin(i(x))w(x)2E

[∑
y→x

µin(i(y))

µin(i(x))(d+
i(y))

2
| Ft−1

]
= C(1− ρ)ρ

∑
x∈T −,t−1

nµin(i(x))w(x)2 = ρE[∆2
t−1 | Ft−1].(5.23)

Thus, iterating we obtain

E[∆2
t ] = E[∆2

0]ρt = C(1− ρ)E[nµin(I)]ρt = C(1− ρ)ρt.(5.24)

Since d+
j ≥ 2 one has ρ ≤ 1/2. Thus Mt is a martingale bounded in L2, and therefore Mt → M∞ almost

surely and in L2, for some M∞ ∈ L2. Using the orthogonality E[∆t∆t′ ] = 0 for all t 6= t′, (5.13) follows
by summing (5.24) from t to +∞. �

Remark 19. For each fixed n ∈ N, one can characterise the random variableM∞ as the solution to a distributional
fixed point equation. For the directed configuration model DCM(d±) this is discussed in [6, Lemma 16]. With a
similar reasoning, for the out-configuration model OCM(d+) one obtains that

M∞
d
=

n∑
j=1

Yj

d+
j

M∞,j ,(5.25)

where d
= stands for equality of distributions, M∞,j are i.i.d. copies of M∞ and Yj are independent Bernoulli

random variables with parameter d+
j /n.

The next result will be crucial for the analysis of widespread measures. Notice that the constant γ(λ)
appearing in the estimate below is bounded uniformly in n if and only if λ satisfies (1.28).

Proposition 20. For any probability vector λ, and any t ∈ N:

E[(Mt − nXt(λ))2] ≤ γ(λ)ρt ,(5.26)

where ρ ∈ (0, 1) is as in Proposition 18 and γ(λ) is defined as

(5.27) γ(λ) =
n

2

n∑
j=1

(λ(j)− µin(j))2

Proof. Setting ϕ(j) = n(µin(j) − λ(j)), we write Mt − nXt(λ) = Xt(ϕ). Since ϕ̄ = 0, Lemma 17 shows
that E[Mt − nXt(λ)|Ft−1] = 0. We now compute

Γt := E[(Mt+1 − nXt+1(λ))2|Ft].
Using ϕ̄ = 0 one has

Γt = E[Xt+1(ϕ)2|Ft]

=
∑

x∈T −,t
w(x)2 E

(∑
y→x

ϕ(i(y))

d+
i(y)

)2 ∣∣∣Ft
 .(5.28)
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For the tree T −(d±) we have

E

(∑
y→x

ϕ(i(y))

d+
i(y)

)2 ∣∣∣Ft
 = d−i(x)

n∑
j=1

d+
j

m

ϕ(j)2

(d+
j )2

= µin(i(x))

n∑
j=1

ϕ(j)2

d+
j

.(5.29)

On the other hand for the tree T −(d+) we have

E

(∑
y→x

ϕ(i(y))

d+
i(y)

)2 ∣∣∣Ft
 =

∑
j 6=j′

ϕ(j)ϕ(j′)

n2
+
∑
j

ϕ(j)2

nd+
j

=
1

n

n∑
j=1

ϕ(j)2

d+
j

(
1−

d+
j

n

)
(5.30)

Summarising, we have shown that

(5.31) Γt = C(λ)
∑

x∈T −,t
nµin(i(x))w(x)2 , C(λ) =

1

n


∑n
j=1

ϕ(j)2

d+
j

model 1∑n
j=1

ϕ(j)2

d+
j

(
1− d+

j

n

)
model 2

Thus, the same argument used in (5.23) implies that in both models

E[Γt | Ft−1] = ρΓt−1,(5.32)

where ρ is defined as in (5.14). Therefore,

E[Γt] = E[Γ0]ρt = C(λ)E[nµin(I)]ρt = C(λ)ρt.(5.33)

The desired bound follows from the fact that in both models C(λ) ≤ γ(λ). �

5.3. Branching approximation for in-neighbourhoods. The t-in-neighbourhood of a vertex v, denoted
B−v,t, is defined as the subgraph ofG induced by the set of directed paths of length t inGwhich terminate
at vertex v. Here we observe that for any fixed v ∈ [n], if t is a small multiple of log n then with high
probability B−v,t can be coupled to the first t generations of the random trees defined in Section 5.1. We
consider the two models separately.

5.3.1. B−v,t for DCM(d±). Recall that each vertex x has d−x heads and d+
x tails. Call E−x and E+

x the sets of
heads and tails at x respectively. The uniform bijection ω between heads and tails, viewed as a matching,
can be sampled by iterating the following steps until there are no unmatched heads left:
1) pick an unmatched head e− according to some priority rule;
2) pick an unmatched tail e+ uniformly at random;
3) match e− with e+, i.e. set ω(e+) = e−.
Note that this gives the desired uniform distribution over matchings regardless of the priority rule cho-
sen at step 1. The graph G is obtained by adding a directed edge (x, y) whenever e− ∈ E−y and e+ ∈ E+

x

in step 3 above.
To generate B−v,t only, one can start at vertex v and run the previous sequence of steps, by giving pri-

ority to those unmatched heads which have minimal distance from vertex v, until this minimal distance
exceeds t, at which point the process stops. During the process, say that a vertex x is exposed if at least
one of the tails e+ ∈ E+

x or heads e− ∈ E−x has been already matched. Notice that as long as in step 2 no
tail e+ is picked from exposed vertices, the resulting digraph is a directed tree.
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Let us now describe a coupling of the in-neighbourhood B−v,t and the marked tree T −v,t(d±), where
T −v,t(d±) stands for the marked tree T −v (d±) up to generation t; see Section 5.1 for the definition of
T −v (d±). Clearly, step 2 above can be modified by picking e uniformly at random among all (matched
or unmatched) tails and rejecting the proposal if the tail was already matched. The tree can then be
generated by iteration of the same sequence of steps with the difference that at step 2 we never reject the
proposal and at step 3 we add a new leaf to the current tree, with mark x if e+ ∈ E+

x , together with a
new set of d−x unmatched heads attached to it. Call τ the first time that a uniform random choice among
all tails gives e+ ∈ E+

x with x already in the tree. By construction, the in-neighbourhood and the tree
coincide up to time τ . At the k-th iteration, the probability of picking a tail with a mark already used is
at most k∆/m, where ∆ is the maximum degree. Therefore, by a union bound,

P(τ ≤ k) ≤ k2∆

m
.(5.34)

Taking k = ∆t+1 steps, we have necessarily uncovered the whole in-neighbourhoodB−v,t. Thus, we have
proved the following statement.

Lemma 21. The t-in-neighbourhood B−v,t and the marked tree T −v,t(d±) can be coupled in such a way that

P
(
B−v,t 6= T −v,t(d±)

)
≤ ∆2t+3

m
.(5.35)

5.3.2. B−v,t for OCM(d+). Recall that each vertex x has d+
x tails, and callE+

x the sets of tails at x. Consider
the following exploration process of the in-neighbourhood at a fixed vertex v. The process is defined as
a triple (C`,A`, φ`) where C`,A` ⊂ [n] are respectively the completed set and the active set at time `, and
φ` : [n] 7→ Z+ is a map such that φ`(y) ∈ {0, . . . , d+

y } for each y ∈ [n], ` ∈ Z+. At time zero we set
C0 = ∅,A0 = {v}, and φ0(y) = 0 for all y ∈ [n]. The `-th iteration of the exploration determines the triple
(C`,A`, φ`) by executing the following steps:
1) pick a vertex x ∈ A`−1 according to some priority rule;
2) for each y = 1, . . . , n independently, sample X`,y defined as the Bernoulli random variable with

parameter

(5.36) p`,y =
d+
y − φ`−1(y)

n− `+ 1
,

call V` the set of y ∈ [n] such that X`,y = 1, and define

(5.37) W` = (C`−1 ∪ A`−1)c ∩ V`.
3) define the new triple (C`,A`, φ`) as

C` = C`−1 ∪ {x} , A` = A`−1 \ {x} ∪W` , φ`(y) = φ`−1(y) + 1(y ∈ V`), y = 1, . . . , n.

Note that this process stops when A` becomes empty. Let us call τ∅ this random time:

τ∅ = min{` ≥ 1 : A` = ∅}.(5.38)

For instance, τ∅ = 1 with probability
∏n
y=1(1 − d+

y /n). We may construct a digraph Gv(`) along with
the above process by adding the directed edges (y, x) for all y ∈ V` at step 2. Notice that when the
process stops Gv(τ∅) is a sample of the subgraph of G induced by all directed paths in G that terminate
at v. In particular, if the priority in step 1 is given to x which have minimal distance to v, and if we stop
the process as soon as all active vertices have distance to v larger than t in the current graph Gv(`), we
obtain the in-neighbourhood of v at distance t, namely the digraph B−v,t for the model OCM(d+). More
formally, if τt denotes the minimal ` such that all x ∈ A` have distance to v at least t + 1 in Gv(`) then,
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B−v,t is given by the subgraph of Gv(τt∧ τ∅) induced by the completed set Cτt∧τ∅ , where a∧ b denotes the
minimum of a, b.

Let us remark that the quantity p`,y in (5.36) cannot exceed 1. In fact, in case there exists some ` ∈ N
such that p`,y = 1 then it means that at most d+

y vertices need to be discovered at step `, and vertex y
needs to link to all of them. Hence, p`,y stays 1 up to the end of the process.

Let us now describe a coupling of B−v,t and the marked tree T −v,t(d+), where we write T −v,t(d+) for the
marked tree T −v (d+) up to generation t; see Section 5.1. First, observe that the tree T −v (d+) is obtained
by iterating the steps above with the difference that at step 2 the probability p`,y must be taken always
equal to d+

` /n, and that each y ∈ V` yields a new child with mark y in the current tree. Let T −v (`) denote
the tree obtained after ` iterations, and let ∆ = maxx d

+
x .

Lemma 22. The random variables Gv(`), T −v (`) can be coupled in such a way that for every ` ∈ N:

P(Gv(`) 6= T −v (`)) ≤ ∆2`2

n− `
.(5.39)

Proof. Let E` = {Gv(`) 6= T −v (`)}. Since at time 0 one has Gv(0) = T −v (0) = {v}, the event E` satisfies
E` = ∪`k=1E

c
k−1 ∩ Ek, so that

P
(
Gv(`) 6= T −v (`)

)
≤
∑̀
k=1

P(Eck−1 ∩ Ek)(5.40)

Consider now the k-th iteration, and assume that Gv(k − 1) = T −v (k − 1). Thus, we may pick the same
x in step 1 for both samples. At step 2, let Xk,y denote the Bernoulli random variables with parameter
pk,y used for the sampling ofGv(k) and let X̃k,y be the Bernoulli random variables with parameter d+

y /n

used for the sampling of T −v (k). The total variation distance between two Bernoulli random variables
equals the absolute value of the difference of their parameters. Therefore, for each y independently we
may couple (Xk,y, X̃k,y) with probability 1− |pk,y − d+

y /n|. Notice that if Gv(k) 6= T −v (k), then either at
least one of the pairs (Xk,y, X̃k,y) fails to couple, or at least one of the y ∈ Ck−1 ∪ Ak−1 has X̃k,y = 1.
Thus, on the event Eck−1, the probability of Ek given the history up to the (k− 1)-th iteration is bounded
above by ∑

y 6∈Ck−1∪Ak−1

|pk,y − d+
y /n|+

∑
y∈Ck−1∪Ak−1

pk,y.(5.41)

If y 6∈ Ck−1 ∪ Ak−1, then φk−1(y) = 0 and pk,y − d+
y /n =

d+
y

n ·
k−1

n−k+1 . For the second term we write
|Ck−1 ∪ Ak−1| ≤ Zk−1, where Z` denotes the number of edges in the tree T −v (`). In conclusion, (5.41) is
bounded by

∆

n− k
(k + Zk−1) .

Thus, letting F` denote the σ-algebra generated by the two processes up to time `, we have obtained

P(Eck−1 ∩ Ek) = E
[
E
[
1(Eck−1 ∩ Ek) | Fk−1

]]
≤ ∆

n− k
(k + E[Zk−1]) .(5.42)

From (5.4) we deduce E[Zk−1] = (k−1) 〈d〉 ≤ (k−1)∆. Therefore, the estimate (5.39) follows from (5.40)
and (5.42). �
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The next lemma establishes the coupling estimate for the t-in-neighbourhoodB−v,t and the tree T −v,t(d+).
The estimate could be refined but (5.43) below will be more than sufficient for our purposes.

Lemma 23. The random variables B−v,t and the tree T −v,t(d+) can be coupled in such a way that for every t ≤
logn

4 log ∆ , for all n large enough:

P
(
B−v,t 6= T −v,t(d+)

)
≤ ∆3t(log n)4

n
.(5.43)

Proof. Let |T −v,t| denote the number of edges in the tree T −v,t = T −v,t(d+). Since at each iteration the number
of edges added is stochastically dominated by a binomial random variable with parameters n and ∆/n,
one has a large deviation bound for |T −v,t| of the form: there exist absolute constants a,A > 0 such that

P
(
|T −v,t| > s∆t

)
≤ Ae−a s, s ≥ 1.(5.44)

The estimate (5.44) can be proved e.g. by repeating the argument in [8, Lemma 23]. Next, observe that
if |T −v,t| ≤ s∆t and B−v,t 6= T −v,t, then there must exist ` = 1, . . . , s∆t such that Gv(`) 6= T −v (`). The latter
probability can be bounded via Lemma 22. Summarizing,

P
(
B−v,t 6= T −v,t(d+)

)
≤ P

(
|T −v,t| > s∆t

)
+ P

(
B−v,t 6= T −v,t(d+); |T −v,t| ≤ s∆t

)
≤ Ae−a s +

s∆t∑
`=1

P(Gv(`) 6= T −v (`)) ≤ Ae−a s +
s3∆3t+2

n− s∆t
.(5.45)

The estimate (5.43) follows by taking s = K log n for some large enough constant K, and by taking n
sufficiently large. �

5.4. Proof of Lemma 5. Recall that in both models DCM(d±) and OCM(d+) one has w.h.p. a unique
stationary distribution for the simple random walk on G, which we denote π0. The starting point is a
result that follows directly from [6, 7], which allows us to replace the unknown distribution π0 with a
local approximation.

Proposition 24. For any fixed ε > 0, taking h = εTENT, as n→∞ both models satisfy

(5.46)
∥∥µinP

h − π0

∥∥
TV

P−→ 0.

Proof. For a specific choice of ε = ε0, this result appears in [6, Eq. (11)] for model 1 and [7, Eq. (12)]
for model 2. In fact, the proofs in [6, 7] apply to any fixed ε ∈ (0, ε0) without modifications. Since∥∥µinP

h − π0

∥∥
TV

is monotone in h the statement (5.46) holds for all ε > 0. �

To prove Lemma 5, by monotonicity of ‖λP t − π0‖TV as a function of t, we may restrict to sequences
t = t(n)→∞with t = o(log n). Thus, taking advantage of Proposition 24, the conclusion of Lemma 5 is
a consequence of the following result.

Proposition 25. There exists ε > 0 such that if h = εTENT, then for any t = t(n) → ∞ with t = o(log n), for
any widespread measure λ:

(5.47)
∥∥λP t − µinP

h
∥∥
TV

P−→ 0.

Proof. The proof is based on a first moment argument. Indeed, it suffices to show that

(5.48) lim
n→∞

E
[∥∥λP t − µinP

h
∥∥
TV

]
= 0.
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Observe that

E
[∥∥λP t − µinP

h
∥∥
TV

]
=

1

2

∑
j∈[n]

E
[∣∣λP t(j)− µinP

h(j)
∣∣]

≤ 1

2
E
[∣∣nλP t(I)− nµinP

t(I)
∣∣]] +

1

2
E
[∣∣nµinP

t(I)− nµinP
h(I)

∣∣] ,(5.49)

where I denotes an independent uniformly random vertex in [n] and the expectation E is understood to
include the expectation over I as well. Consider the first term above. We are going to use Lemma 21 for
model 1 and Lemma 23 for model 2. Notice that since these estimates apply to any fixed vertex v, they
apply just as well if the vertex v is taken to be uniformly random in [n], i.e. if v = I as it is the case here.
In particular, since t = o(log n), as n→∞,

P
(
B−I,t 6= T

−
t

)
→ 0,(5.50)

where we use the unified notation T −t for the first t generations of the tree T −I in either model 1 or model
2. Next, note that by definition, if B−I,t = T −t , then

nλP t(I)− nµinP
t(I) = nXt(λ)−Mt ,

where we use the notation from (5.6) and (5.12). Therefore,

E
[∣∣nλP t(I)− nµinP

t(I)
∣∣] ≤ 2P

(
B−I,t 6= T

−
t

)
+ E [|Mt − nXt(λ)|] ,(5.51)

where we used the fact that

E
[∣∣nλP t(I)− nµinP

t(I)
∣∣ ∣∣B−I,t 6= T −t ] ≤ 2,

which follows from ‖λP t − µinP
t‖TV ≤ 1. Using Schwarz’ inequality and Proposition 20 it follows that

E [|Mt − nXt(λ)|]2 ≤ γ(λ)ρt.

Since t = t(n)→∞ as n→∞ and ρ ∈ (0, 1), using (5.50) we conclude that

lim
n→∞

E
[∣∣nλP t(I)− nµinP

t(I)
∣∣] = 0,

for all widespread measure λ. This settles the convergence of the first term in (5.49). To handle the
second term, reasoning as in (5.51) we obtain

E
[∣∣nµinP

t(I)− nµinP
h(I)

∣∣] ≤ 2P
(
B−I,h 6= T

−
h

)
+ E [|Mt −Mh|]

If h ≤ logn
4 log ∆ , Lemma 21 and Lemma 23 imply that both models satisfy

P
(
B−I,h 6= T

−
h

)
→ 0.(5.52)

Moreover, Schwarz’ inequality, Proposition 18 and standard facts about square integrable martingales
(see, e.g., [22, Ch. 12]) imply

E [|Mt −Mh|]2 ≤ E[(Mt −Mh)2] ≤ E[(Mt −M∞)2] = Cρt.

Since the constant C is bounded, letting n→∞ concludes the proof.
�
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