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THE INFINITE LIMIT OF SEPARABLE PERMUTATIONS

ROSS G. PINSKY

Abstract. Let P sep
n denote the uniform probability measure on the set

of separable permutations in Sn. Let N
∗ = N∪{∞} with an appropriate

metric and denote by S(N,N∗) the compact metric space consisting of

functions σ = {σi}
∞

i=1 from N to N
∗ which are injections when restricted

to σ−1(N); that is, if σi = σj , i 6= j, then σi = ∞. Extending permu-

tations σ ∈ Sn by defining σj = j, for j > n, we have Sn ⊂ S(N,N∗).

We show that {P sep
n }∞n=1 converges weakly on S(N,N∗) to a limiting

distribution of regenerative type, which we calculate explicitly.

1. Introduction and Statement of Results

Let Sn denote the permutations of [n] := {1, · · · , n}. Given σ ∈ Sk and

τ ∈ Sl, the direct sum of σ and τ is the permutation in Sk+l given by

(σ ⊕ τ)(i) =







σ(i), i = 1, · · · , k;

τ(i− k) + k, i = k + 1, · · · k + l,

and the skew sum σ ⊖ τ is the permutation in Sk+l given by

(σ ⊖ τ)(i) =







σ(i) + l, i = 1, · · · , k;

τ(i− k), i = k + 1, · · · k + l.

A permutation is indecomposable if it cannot be represented as the direct

sum of two nonempty permutations and is skew indecomposable if it cannot

be written as the skew sum of two nonempty permutations. A permutation is

separable if it can be obtained from the singleton permutation by iterating

direct sums and skew sums. Equivalently, a permutation is separable if

it can be successively decomposed and skew decomposed until all of the
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indecomposable and skew indecomposable pieces of the permutation are

singletons. (For example, using one-line notation, consider the separable

permutation σ = 4352167. It can be decomposed into 43521 ⊕ 12. Then

43521 can be skew decomposed into 213⊖21 and 12 can be decomposed

into 1 ⊕ 1. Now 213 can be decomposed into 21⊕1 and 21 can be skew

decomposed into 1⊖1. Finally, again 21 can be skew decomposed into 1⊖1.)

It is well-known [5] that a permutation is separable if and only it avoids the

patterns 2413 and 3142.

Let SEP(n) denote the set of separable permutations in Sn, and let P sep
n

denote the uniform measure on SEP(n). In this paper we investigate the

weak limiting behavior of the probability measures {P sep
n }∞n=1 as n → ∞.

In the limit we obtain a probability measure not on the set of permutations

of N, but on a more general structure that we now describe.

Let N∗ = N∪ {∞} with the metric dN∗(i, j) =
∑j−1

k=i
2−k, for 1 ≤ i < j ≤

∞. Denote by S(N,N∗) the set of functions σ = {σi}∞i=1 from N to N
∗ which

are injections when restricted to σ−1(N); that is, if σi = σj, i 6= j, then σi =

∞. The space S(N,N∗) can be identified with the countably infinite product

N
∗ ×N

∗ · · · . Since N
∗ is a compact metric space, it follows that S(N,N∗) is

also a compact metric space with the metric D(σ, τ) :=
∑∞

i=1
dN∗(σi,τi)

2i
. Any

permutation σ ∈ Sn may be identified uniquely with an element of S(N,N∗)

by defining σj = j, for j > n. Consequently, if µn is a probability measure

on Sn, for each n ∈ N, then {µn}∞n=1 may be considered as a sequence of

probability measures on the compact metric space S(N,N∗).

Let Pn denote the uniform measure on Sn. It is easy to see that the se-

quence {Pn}∞n=1, considered as probability measures on S(N,N∗), converges

weakly to the trivial δ-measure that places all its mass on the function

σ ∈ S(N,N∗) satisfying σ(j) = ∞, j ∈ N. However, when one works with

the uniform measure on certain classes of pattern avoiding permutations,

one obtains non-trivial limits. We will obtain in very explicit form the weak

limit of the probability measures {P sep
n }∞n=1 considered as probability mea-

sures on S(N,N∗). The limiting probability measure will be in the form of a

regenerative concatenation. Since the topology on S(N,N∗) is the product
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topology, the convergence of {P sep
n }∞n=1 to a limiting probability measure

allows one to understand for any fixed m, the asymptotic behavior of the

statistics of σ1 · · · σm, where σ ∈ SEP(n) is uniformly random and n → ∞.

We note that [11] considered similar types of limits for permutations avoid-

ing a particular pattern of length three. The remark after Corollary 1 points

out a fundamental difference between the limiting behavior obtained here for

separable permutations and that obtained in [11] for permutations avoiding

a particular pattern of length three.

With the exception of the class of permutations avoiding a particular pat-

tern of length three, the class of separable permutation is the most studied

class of pattern avoiding permutations. The fact that these permutations

can be completely decomposed and the fact that they can be enumerated

by a closed form generating function (see below) make them tractable. The

study of general pattern avoiding permutations goes back to Knuth’s ob-

servation [10] that a permutation is so-called stack sortable if and only if

it 231-avoiding. Similarly, the study of separable permutations goes back

to [1] where it was shown that these are precisely the permutations which

are sortable by so-called pop stacks. Separable permutations also arise in

a variety of other applications, for example in bootstrap percolation [13]

and in connection to polynomial interchanges where one studies the possi-

ble ways that the relative order of the values of a family of polynomials can

be modified when crossing a common zero [7].

We now set the stage in order to describe our convergence result. A finite

set of consecutive integers in N will be called a block. For a, b ∈ R with a ≤ b,

we will denote the block {a, · · · , b} by [a, b]. As has already been mentioned,

the limiting distribution of {P sep
n }∞n=1 that we will obtain on S(N,N∗) has a

regenerative structure. In order to describe this regenerative structure, we

need to consider permutations of blocks I. Denote the set of permutations

of a block I by SI . Thus, for example, if I = [3, 5], then there are six permu-

tation in SI ; namely (3 4 5), (3 5 4), (4 3 5), (4 5 3), (5 3 4), (5 4 3). We will

denote a generic permutation of I by σI . We define a separable permutation

in SI in the obvious way, analogous to our original definition of a separable
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permutation, or equivalently, as a permutation that avoids the patterns 2413

and 3142—see the definition of pat(σI) in the paragraph after the remark

following Corollary 1. Similarly, we define indecomposable and skew inde-

composable separable permutations in SI . For example, the permutations

(4 2 3 6 5) and (5 4 6 2 3) of the block [2, 6] are both separable, the former

one being skew indecomposable and the latter one begin indecomposable.

We also define∞(j) to be the j-fold image of ∞: ∞(j) = (∞∞· · ·∞)
︸ ︷︷ ︸

j times

, j ∈ N;

we call this a block of infinities. We can now concatenate these simple per-

mutation of blocks with each other and with blocks of infinities to build more

complicated objects. For example, if I1 = [3, 5] and I2 = [20, 23], and if the

permutations σIi , i = 1, 2, are given by σI1 = (5 3 4) and σI2 = (22 20 21 23),

then

∞(2) ∗ σI1 ∗ ∞(1) ∗ σI2 := (∞,∞, 5, 3, 4,∞, 22, 20, 21, 23).

Let sn = |SEP(n)|, n ≥ 1, denote the number of separable permutations

in Sn. Let

s(x) =

∞∑

n=1

snx
n

denote the generating function of {sn}∞n=1. For a separable permutation,

define the length of the first indecomposable block and the length of the

first skew indecomposable block respectively by

(1.1)
|B+,n

1 |(σ) = min{j : σ([j]) = [j]}, σ ∈ SEP(n);

|B−,n
1 |(σ) = min{k : σ([k]) = [n]− [n− k]}, σ ∈ SEP(n).

Let B+,n
1 (σ) denote the corresponding permutation of the block

[
1, |B+,n

1 (σ)|
]
(the first |B+,n

1 (σ)| entries in σ), and let B−,n
1 (σ) denote the

corresponding permutation of the block
[
n − |B−,n

1 (σ)| + 1, n
]
(the first

|B−,n
1 (σ)| entries in σ). Note that, by construction, the permutation B

+,n
1 (σ)

is indecomposable and the permutation B
−,n
1 (σ) is skew decomposable.

By the definition of separable permutations, for each σ ∈ SEP(n), with

n ≥ 2, exactly one out of |B+,n
1 |(σ) and |B−,n

1 |(σ) is equal to n, and by
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symmetry,

(1.2)

|{σ ∈ SEP(n) : |B+,n
1 |(σ) = n| = |{σ ∈ SEP(n) : |B−,n

1 |(σ) = n| = 1

2
sn, n ≥ 2.

That is, half of the permutations in SEP(n), n ≥ 2, are indecomposable and

half are skew indecomposable. Partitioning SEP(n) by {|B+,n
1 | = j}nj=1 (or

alternatively, by {|B−,n
1 | = j}nj=1), and using the concatenating structure of

separable permutations, it follows that

(1.3) sn = s1sn−1 +
1

2

n−1∑

j=2

sjsn−j +
1

2
sn, n ≥ 2.

From this it is easy to show that

(1.4) s(x) =
1

2
(1 − x−

√

x2 − 6x+ 1 ), for |x| < 3− 2
√
2.

From the above formula for the generating function, one can show that

(1.5) sn ∼ 1

2
√
πn3

(3− 2
√
2)−n+ 1

2 .

(See [6, p. 474-475]. Our sn is equal to their Dn−1, and Dn is known at the

nth Schröder number (or “big” Schröder number.) From (1.5), it follows

that (1.4) also holds for |x| = 3− 2
√
2; we have

(1.6) s(3− 2
√
2) =

√
2− 1.

In (1.7)-(1.11) below, we define the five types of random variables that

will be used to describe the limiting distribution of {P sep
n }∞n=1:

(1.7)

{χ(n)
0,1}∞n=1 are IID and distributed according to the Bernoulli distribution

with parameter
1

2
:

P (χ
(n)
0,1 = 0) = P (χ

(n)
0,1 = 1) =

1

2
;

(1.8)

{N (n)}∞n=1 are IID and distributed according to the following distribution:

P (N (n) = j) =







√
2
2 , j = 0;
√
2(3− 2

√
2)j , j = 1, 2, · · · .
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Remark. For later use in Proposition 1, we note that EN (n) = (12)
3
2 .

(1.9)
{
{R(n)

m }∞m=1

}∞
n=1

are IID and distributed according to the following distribution:

P (R(n)
m = k) =

sk(3− 2
√
2)k√

2− 1
, k = 1, 2, · · · .

(1.10)

{L(n)}∞n=1 are IID and distributed according to the following distribution:

P (L(n) = j) =







2(3−2
√
2)

2−
√
2

; j = 1

sj(3−2
√
2)j

2−
√
2

, j = 2, 3, · · · ;
.

Remark. It follows from (1.6) and the fact that s1 = 1 that the distributions

in (1.9) and (1.10) are indeed probability distributions.

(1.11)

Πsep(I) is a uniformly random, indecomposable, separable permutation

of the finite block I ⊂ N, and {Πsep(I) : I ⊂ N a finite block} are independent.

All the random variables in (1.7)-(1.11) are assumed to be mutually in-

dependent.

In the theorem below, we present a rather involved formula for the S(N,N∗)-

valued random variable whose distribution is the limiting distribution of

{P sep
n }∞n=1. It is worthwhile to begin with a more verbal and informal de-

scription.

The random variable is formed by regenerative concatenation. Its first

piece is constructed via the random variables χ
(1)
0,1, N

(1), {R(1)
m }∞m=1, L

(1) and

the random variable Πsep(I1) with random block I1 as specified below. To

construct this piece, first we use the random variables N (1) and {R(1)
m }∞m=1

and discard the block [1,
∑N(1)

m=1R
(1)
m ], by which we mean that these num-

bers will not appear anywhere in the range of the S(N,N∗)-valued ran-

dom variable. (Note though, that it is possible for this block to be empty

since N (1) can be equal to 0.) Then with the addition of the random

variables χ
(1)
0,1 and L(1), we build a block as follows. If χ

(1)
0,1 = 0, then
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we lay down the block ∞(L(1)), that is, a row of infinities of length L(1).

On the other hand, if χ0,1 = 1, then we lay down the block Πsep(I1), a

uniformly random, indecomposable, separable permutation of the random

block I1 := [1+
∑N(1)

m=1 R
(1)
m , L(1)+

∑N(1)

m=1 R
(1)
m ] of length L(1). This completes

the construction of the first piece.

The second piece is constructed using the random variables χ
(2)
0,1, N

(2),

{R(2)
m }∞m=1, L

(2) and the random variable Πsep(I2) with random block I2 as

specified below. Note that from the construction of the first piece, the block

of numbers [1,
∑N(1)

m=1 R
(1)
m ] was discarded. Furthermore, if χ

(1)
0,1 was equal to

1, then the block of numbers I1 = [1 +
∑N(1)

m=1 R
(1)
m , L(1) +

∑N(1)

m=1 R
(1)
m ] was

used in the construction of the first piece, in which case these numbers are

also no longer available. We start the construction of the second piece by

discarding a block of length
∑N(2)

m=1R
(2)
m , starting with the smallest number

available. This discarded block is given by

[
χ
(1)
0,1L

(1) +
N(1)
∑

m=1

R(1)
m + 1, χ

(1)
0,1L

(1) +
N(1)
∑

m=1

R(1)
m +

N(2)
∑

m=1

R(2)
m

]
;

these numbers will not appear anywhere in the range of the S(N,N∗)-valued

random variable. Then with the addition of the random variables χ
(2)
0,1 and

L(2), we build a block as follows. If χ
(2)
0,1 = 0, then we lay down the block

∞(L(2)), that is, a row of infinities of length L(2). However, if χ
(2)
0,1 = 1,

then we lay down the block Πsep(I2), a uniformly random, indecomposable,

separable permutation of the random block

I2 :=
[
1+χ

(1)
0,1L

(1)+
N(1)
∑

m=1

R(1)
m +

N(2)
∑

m=1

R(2)
m , L(2)+χ

(1)
0,1L

(1)+
N(1)
∑

m=1

R(1)
m +

N(2)
∑

m=1

R(2)
m

]

of length L(2). This completes the construction of the second piece. The

construction of the random variable continues in this regenerative fashion.

We now state the theorem. For convenience, we set

χ
(0)
0,1 = L(0) = 0.
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Theorem 1. The distributions {P sep
n }∞n=1, considered on the space S(N,N∗),

converge weakly to the distribution of the random variable

(1.12)

∗∞n=1

(
χ
(n)
0,1 Π

sep(In) + (1− χ
(n)
0,1 )∞(L(n))

)
:=

(
χ
(1)
0,1 Π

sep(I1) + (1− χ
(1)
0,1)∞(L(1))

)
∗
(
χ
(2)
0,1Π

sep(I2) + (1− χ
(2)
0,1)∞(L(2))

)
∗ · · · ,

with

In =
[
1+

n∑

k=1

χ
(k−1)
0,1 L(k−1)+

n∑

k=1

N(k)
∑

m=1

R(k)
m , χ

(n)
0,1L

(n)+
n∑

k=1

χ
(k−1)
0,1 L(k−1)+

n∑

k=1

N(k)
∑

m=1

R(k)
m

]
,

where the random variables involved here are as in (1.7)-(1.11).

From the theorem and from the explanation of the construction of the

random variable appearing in the theorem, note that in the first n pieces of

the concatenation defining the random variable, the numbers from 1 up to
∑n

k=1 χ
(k)
0,1L

(k) +
∑n

k=1

∑N(k)

m=1 R
(k)
m have been involved. Of these numbers,

∑n
k=1

∑N(k)

m=1R
(k)
m of them have been discarded and don’t appear in the ran-

dom variable, and
∑n

k=1 χ
(k)
0,1L

(k) of them do appear in the random variable.

Thus, the ratio of the quantity of numbers appearing to the quantity of

numbers appearing or discarded in the first n pieces of the concatenation is

given by

(1.13)

∑n
k=1 χ

(k)
0,1L

(k)

∑n
k=1 χ

(k)
0,1L

(k) +
∑n

k=1

∑N(k)

m=1 R
(k)
m

.

Similarly, from the theorem it follows that in the first n pieces of the con-

catenation defining the random variable, the number of integers appearing is
∑n

k=1 χ
(k)
0,1L

(k) and the number of infinities appearing is
∑n

k=1(1−χ
(k)
0,1)L

(k).

Thus the ratio of the number of integers appearing to the number of integers

and infinities appearing in the first n pieces of the concatenation is given by

(1.14)

∑n
k=1 χ

(k)
0,1L

(k)

∑n
k=1 χ

(k)
0,1L

(k) +
∑n

k=1(1− χ
(k)
0,1)L

(k)
.

We consider the limiting behavior of the ratios in (1.13) and (1.14). Note

from (2.11) and (1.5) that the random variables L(k) and R
(k)
m do not have

a finite first moment, so the law of large numbers does not hold for them.
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Actually, they are in the domain of attraction of stable laws with parameter

1
2 . We have the following proposition.

Proposition 1. i.

lim
n→∞

1

n2

n∑

k=1

L(k) dist
= ZL,

where ZL is the one-sided stable distribution with stability parameter 1
2 and

with characteristic function

φZL
(t) = E exp(−itZL) = exp

(

− (
1

2
)
3
4 |t| 12

(
1 + i sgn(t)

))

.

ii.

lim
n→∞

1

n2

n∑

k=1

R(k)
m

dist
= ZR,

where ZR is the one-sided stable distribution with stability parameter 1
2 and

with characteristic function

φZR
(t) = E exp(−itZR) = exp

(

− (
1

2
)
1
4 |t| 12

(
1 + i sgn(t)

))

.

iii.

lim
n→∞

1

n2

n∑

k=1

χ
(k))
0,1 L(k) dist

= lim
n→∞

1

n2

n∑

k=1

N(k)
∑

m=1

R(k)
m = Z,

where Z is the one-sided stable distribution with stability parameter 1
2 and

with characteristic function

φZ(t) = E exp(−itZ) = exp
(

− (
1

2
)
7
4 |t| 12

(
1 + i sgn(t)

))

.

Proposition 1 immediately gives the following corollary concerning the

ratio in (1.13).

Corollary 1. The ratio of the quantity of numbers appearing to the quantity

of numbers appearing or discarded in the first n pieces of the concatenation

defining the random variable in Theorem 1 satisfies

lim
n→∞

∑n
k=1 χ

(k)
0,1L

(k)

∑n
k=1 χ

(k)
0,1L

(k) +
∑n

k=1

∑N(k)

m=1 R
(k)
m

dist
=

Z1

Z1 + Z2
,

where Z1 and Z2 are IID random variables distributed as Z in part (iii) of

Proposition 1.
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Remark. Corollary 1 presents a fundamental difference between the struc-

ture of the limiting probability measure on S(N,N∗) for separable permuta-

tions and the corresponding limiting behavior studied in [11] in the case of

permutations avoiding a pattern of length three. The corollary above indi-

cates that the ratio of the quantity of numbers appearing to the quantity of

numbers either appearing or discarded in the first n pieces of the concate-

nation converges to a limiting nondeterministic quantity. In [11], for three

out of the six permutations in S3, namely 312, 231 and 213, the limiting

probability measure has a regenerative concatenation structure as it does

here. It is easy to check from the structures obtained there that the ratio

of the quantity of numbers appearing to the quantity of numbers either ap-

pearing or discarded in the first n pieces of the concatenation converges in

distribution to 1 as n → ∞ in the case of 312, is identically equal to 1 for

all n in the case of 231, and converges in distribution to 0 as n → ∞ in the

case of 213.

The next corollary shows that the limiting distribution of the ratio in

(1.14) is the same as that for (1.13). We will use the proof of Proposition 1

to prove this.

Corollary 2. The ratio of the number of integers appearing to the number

of integers or infinities appearing in the first n pieces of the concatenation

defining the random variable in Theorem 1 satisfies

lim
n→∞

∑n
k=1 χ

(k)
0,1L

(k)

∑n
k=1 χ

(k)
0,1L

(k) +
∑n

k=1(1− χ
(k)
0,1)L

(k)
=

Z1

Z1 + Z2
,

where Z1 and Z2 are IID random variables distributed as Z in part (iii) of

Proposition 1.

Remark. Among other things, the two corollaries above express certain

aspects of the symmetries inherent in separable permutations. Recall that

the reverse of a permutation σ = σ1 · · · σn ∈ Sn, denoted by σrev, satisfies

σrev
j = σn+1−j , j ∈ [n]. Recall that the complement of σ, denoted by σcomp,

satisfies σ
comp
j = n + 1 − σj, j ∈ [n]. Finally, the reverse-complement of

σ, denoted by σrev-comp, satisfies σ
rev-comp
j = n + 1 − σn+1−j, j ∈ [n]. It is
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clear from the definition of a separable permutation that if σ is distributed

according to the uniform measure P
sep
n on the set SEP(n) of separable per-

mutations in Sn, then the three random variables σrev, σcomp and σrev-comp

all have the same distribution as the random variable σ. Furthermore, a

weak convergence result similar to that in Theorem 1 for σ can be given for

the four-tuple (σ, σrev, σcomp, σrev-comp). Of course all of the one-dimensional

marginal distributions of the limiting random vector will coincide with the

limiting distribution in Theorem 1. This point of view can be used to gain

some insight with regard to the numbers appearing, the numbers discarded

and the infinities appearing in the limiting object in Theorem 1 and with

regard to the symmetry property of the limiting random variable appearing

in the two corollaries above. In order to describe this, we need to refer to

the proof of Theorem 1. Thus, this discussion is postponed and appears in

the remark at the end of section 3, after the proof of Theorem 1.

We end this first section by noting a type of limiting result, completely

different from the type considered in Theorem 1, that has been studied for

the class of separable permutations as well as for the class of permutations

avoiding a particular pattern of length three. Let S̃n denote a class of

permutations in Sn as above, that is, the class of permutations that avoid

a particular pattern in S3, or alternatively, that are separable. Fix m ≥ 2.

For σ ∈ S̃n, with n > m, and I = {i1, i2, · · · , im} with 1 ≤ i1 < · · · < im ≤
n, let σI = σi1 · · · σim . Let pat(σI) denote the permutation in Sm which

describes the pattern of σI . (For example, if m = 4, n = 5, σ = 32541 and

I = {1, 3, 4, 5}, then pat(σI) = 2431 ∈ S4.) Now fix a permutation π ∈ Sm.

Let occπ(σ) = |{I ⊂ [n] of cardinality m such that pat(σI) = π}}| denote
the number of occurrences of the pattern π from among the

(
n
m

)
different

σI ’s of length |I| = m. Considering σ to be a uniformly random element

of S̃n, a number of papers have studied the asymptotic behavior of occπ(σ)

as n → ∞. In the case that S̃n is the class of permutations in Sn that

avoid a particular pattern of length three, this has been done at the level of

expected value in a number of papers, see for example, [2],[3],[8], [12], while

at the level of distribution this has been carried out in [9]. In the case that
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S̃n is the class of separable permutations, this has been done at the level of

distribution in [4].

The type of asymptotic behavior studied in this paper and the type of

asymptotic behavior described in the paragraph above are mutually exclu-

sive and complement one another. Indeed, as already noted, the type of

asymptotic behavior studied in this paper allows one to understand for any

fixed m, the statistics of σ1 · · · σm, where σ ∈ SEP(n) is uniformly random

and n → ∞. However, the asymptotic results described in the above para-

graph give no information about this statistic. Conversely, the behavior of

σ1 · · · σm, for fixed m has no influence on the asymptotic results described

in the above paragraph.

In section 2 we proof some preliminary results that will be used in the

proof of Theorem 1. In section 3 we prove Theorem 1 and then remark

on how the symmetries concerning σ, σrev, σcomp and σrev-comp shed light on

certain aspects of the theorem. In section 4 we prove Proposition 1 and

Corollary 2.

2. Preliminary results concerning separable permutations and

Schröder numbers

From (1.2), we have

(2.1) P SEP
n (|B+,n

1 | = n) = P SEP
n (|B−,n

1 | = n) =
1

2
, n ≥ 2,

and from (1.3) and the text immediately preceding it, we have

(2.2)

Pn(|B+,n
1 | = j

∣
∣ |B+,n

1 | < n) = Pn(|B−,n
1 | = j

∣
∣ |B−,n

1 | < n) =







2sn−1

sn
, j = 1;

sjsn−j

sn
, j = 2, · · · , n− 1.

From (2.1) and (2.2), it follows that the distributions of |B+,n
1 | and |B−,n

1 |
under P SEP

n are identical; thus, in the sequel we will sometimes use the

notation |B±,n
1 | in formulas that hold for both |B+,n

1 | and |B−,n
1 |. It also
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follows from (2.1) and (1.3) that

(2.3) Pn(n− |B−,n
1 | = k

∣
∣ |B−,n

1 | < n) =







sksn−k

sn
, k = 1, 2, · · · n− 2;

2sn−1

sn
, k = n− 1.

(Formula (2.3) also holds with |B+,n
1 | in place of |B−,n

1 |, but it won’t be

needed.)

From (1.5), (2.2) and (2.3), we have

(2.4) lim
n→∞

Pn(|B±,n
1 | = j

∣
∣ |B±,n

1 | < n) =







2(3− 2
√
2), j = 1;

sj(3− 2
√
2)j , j = 2, 3, · · ·

.

and

(2.5) lim
n→∞

Pn(n− |B−,n
1 | = j

∣
∣ |B−,n

1 | < n) = sk(3− 2
√
2)k, k = 1, 2, · · · .

Using (1.6), the sum on the right hand side of (2.4) is given by

(2.6) 2(3− 2
√
2) +

∞∑

j=2

sj(3− 2
√
2)j = 3− 2

√
2 + s(3− 2

√
2) = 2−

√
2,

and the sum on the right hand side of (2.5) is given by

(2.7)
∞∑

k=1

sk(3− 2
√
2)k = s(3− 2

√
2) =

√
2− 1.

From (2.4) and (2.6) it follows that the random variables {|B±,n
1 |}∞n=1 under

the measures Pn(·
∣
∣ |B±,n

1 | < n), considered on the space N∗, converge weakly

to the random variable L̃ with distribution

(2.8) P
(
L̃ = j) =







2(3− 2
√
2); j = 1;

sj(3− 2
√
2)j , j = 2, 3, · · · ;

√
2− 1, j = ∞.

From (2.5) and (2.7) it follows that the random variables {n − |B−,n
1 |}∞n=1

under the measures Pn(·
∣
∣ |B−,n

1 | < n), considered on the space N∗, converge

weakly to the random variable R̃ with distribution

(2.9) P
(
R̃ = j) =







sk(3−2
√
2)k√

2−1
k = 1, 2, · · · ;

2−
√
2, j = ∞.
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Since (2−
√
2) + (

√
2− 1) = 1, it follows that on the space N

∗ × N
∗, the

random vectors {(|B−,n
1 |, n−|B−,n

1 |)}∞n=1 under the measures Pn(·
∣
∣ |B−,n

1 | <
n) converge to the random vector (L̃, R̃) with distribution

(2.10)
P
(
(L̃, R̃) = (j,∞)

)
=







2(3− 2
√
2), j = 1;

sj(3− 2
√
2)j , j = 2, 3, · · · ;

P
(
(L̃, R̃) = (∞, k)

)
= sk(3− 2

√
2)k, k = 1, 2, · · · .

Note in particular that P
(
(L̃, R̃) = (∞,∞)

)
= 0.

Denote respectively by R and L random variables whose distributions are

those of R conditioned on {R̃ < ∞} and L conditioned on {L̃ < ∞}. That
is,

(2.11)

P (R = k) =
sk(3− 2

√
2)k√

2− 1
k = 1, 2, · · · ;

P (L = j) =







2(3−2
√
2)

2−
√
2

; j = 1;

sj(3−2
√
2)j

2−
√
2

, j = 2, 3, · · · .

Note that R and L are the distributions respectively of R
(n)
m and L(n) in

(1.9) and (1.10).

3. Proof of Theorem 1

To write down a complete and entirely rigorous proof of the theorem is

extremely tedious and may well obscure the relative simplicity of the ideas

behind the proof. Thus, we will give a somewhat informal proof, with quite

a bit of verbal explanation, relating at times simultaneously to the situation

for large n and the situation in the limit after n → ∞. At the end of this

proof, we then prove completely rigorously a particular case of the proof.

From this, it will be clear that one can precede similarly to obtain the entire

proof.

Consider a permutation σ under P
sep
n , for n very large. That is, σ is a

uniformly distributed separable permutation in Sn. By (2.1), with proba-

bility 1
2 , one has |B+,n

1 |(σ) < n and |B−,n
1 |(σ) = n, and with probability 1

2

one has |B+,n
1 |(σ) = n and |B−,n

1 |(σ) < n. Consider first the former case.
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Then the distribution of |B+,n
1 |(σ) (under Pn(·

∣
∣ |B+,n

1 | < n)) is given by

the distribution in (2.2). From (2.4) and (2.6), it follows that as n → ∞,

|B+,n
1 |(σ) will run off to infinity with probability approaching

√
2− 1, while

with probability approaching 2 −
√
2, it will converge to a limit which is

distributed as L in (2.11). Now consider the latter case. The distribution

of |B−,n
1 |(σ) (under Pn(·

∣
∣ |B−,n

1 | < n)) is also given by the distribution in

(2.2). Thus, as with |B+,n
1 |(σ), |B−,n

1 |(σ) will run off to infinity with prob-

ability approaching
√
2 − 1, while with probability approaching 2 −

√
2, it

will converge to a limit which is distributed as L in (2.11).

We denote the four mutually exclusive cases above as follows:

(3.1)

( + F) : |B+,n
1 (σ)| < n and |B+,n

1 (σ)| does not run off to infinity;

(−F) : |B−,n
1 (σ)| < n and |B−,n

1 (σ)| does not run off to infinity;

(+I) : |B+,n
1 (σ)| < n and |B+,n

1 (σ)| runs off to infinity;

(−I) : |B−,n
1 (σ)| < n and |B−,n

1 (σ)| runs off to infinity.

The probabilities for these four cases are respectively

(3.2)

p(+F ) =
1

2
(2−

√
2); p(−F ) =

1

2
(2−

√
2); p(+I) =

1

2
(
√
2−1); p(−I) =

1

2
(
√
2−1).

The notation (+) will denote the union of the two cases (+F) and (+I), and

the notation (−) will denote the union of the two cases (−F) and (−I). Note

that the cases (+) are the cases in which the permutation σ is skew inde-

composable and the cases (−) are the cases in which it is indecomposable.

The notation (F) will denote the union of the two cases (+F) and (−F).

If (F) occurs, then the first piece of the concatenation in the statement

of the theorem is obtained immediately. Indeed, recalling the definition of

B
±,n
1 (σ) after (1.1), and recalling (2.4), (2.11) and (1.10), we see that in

the case (+F), this piece is a uniformly random indecomposable separable

permutation Πsep(I1), where I1 = [1, L(1)], while in the case (−F) it is the

block of infinities ∞(L(1)), where L(1) is as in the statement of the theorem.

Setting this piece aside now, in the case (+F), this essentially returns us to

the situation we started from, except that now we are looking at uniformly
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random separable permutations of [L(1) + 1, n], for large n, while in the

case (−F), this returns us exactly to the situation we started from, and

we again look at uniformly random separable permutations of [n], for large

n. We emphasize that if (F) occurs, then we obtain the first piece of the

concatenation and with regard to the rest of the permutation, we are again

presented with the four possible cases in (3.1) with the four corresponding

probabilities in (3.2).

Now consider the case (+I). Then for large n, m := |B+,n
1 (σ)| will be

very large itself. Recalling the definition of B+,n
1 (σ) after (1.1), we see that

B
+,n
1 (σ) is a uniformly distributed indecomposable separable permutation

in Sm with m large. Considering (3.1) with B
+,n
1 (σ) in place of σ and

with large m = |B+,n
1 (σ)| in place of large n, this moves us over to one of

the two cases in (−), with corresponding probabilities 2p(−F ) for moving to

(−F ) and 2p(−I) for moving to (−I). Note that here the first piece of the

concatenation has not yet been obtained.

Now consider the case (−I). Since we are assuming that |B−,n
1 (σ)| is run-

ning off to infinity, it follows from the paragraph in which (2.10) appears

that n−|B−,n
1 (σ)| will converge to a limit which is distributed as R in (2.11).

By the definition of |B−,n
1 (σ)|, the block of numbers

[
1, n − |B−,n

1 (σ)|
]
will

appear in the final n−|B−,n
1 (σ)| positions of σ. Thus, in the limit as n → ∞,

the first R(1) numbers in the permutation get swept out to infinity and will

not appear in the limiting object, where R(1) is as in the statement of the

theorem. Also, recalling the definition of B−,n
1 (σ) after (1.1), we see that

B
−,n
1 (σ) is a uniformly distributed skew indecomposable permutation of the

block
[
n − |B−,n

1 (σ)| + 1, n
]
. Since n − |B−,n

1 (σ) converges weakly to R(1),

this essentially moves us over to one of the two cases in (+), with corre-

sponding probabilities 2p(+F ) for moving to (+F ) and 2p(+I) for moving to

(+I), except that now we are looking at uniformly random indecomposable

separable permutations of [R(1) + 1, n], for large n. Note that here the first

piece of the concatenation has not yet been obtained.

We summarize the mechanism we have discovered above in the following

four statements:
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1. One begins from one of the four states in (3.1) with corresponding prob-

abilities in (3.2). The first piece of the concatenation is obtained when a

state in (F) is first reached. If (+F) is reached, then the first part of the

concatenation is an indecomposable separable permutation whose length is

distributed as L, and if (−F) is reached, then the first part of the concate-

nation is a block of infinities whose length is distributed as L.

2. From the state (+I), one moves to the state (−F) with probability 2p−F ,

in which case the first piece of the concatenation is obtained and it is a block

of infinities whose length is distributed as L, while one moves to the state

(−I) with probability 2p−I .

3. From the state (−I), one moves to the state (+F) with probability 2p+F ,

in which case the first piece of the concatenation is obtained and it is an

indecomposable permutation whose length is distributed as L, while one

moves to the state (+I) with probability 2p+I .

4. Every arrival at the state (−I) causes the r smallest numbers currently

available (that is, that have not yet been involved in the construction) to

be discarded; they will never be used in the construction. Here r has the

distribution of R.

Since p+F = p−F and p+I = p−I , it is clear that with probability 1
2

the first piece of the concatenation will be an indecomposable separable

permutation, and with probability 1
2 it will be a block of infinities. These

two possibilities are represented in the statement of the theorem through

the random variable χ
(1)
0,1.

We now show that the number of arrivals at state (−I) prior to the first

arrival at a state in (F) has the distribution of N (1) as in (1.8). Let A denote

the number of such arrivals. For k ≥ 1, in order to have A ≥ k, either the

first state visited is (−I) and then k− 1 times in a row one moves from (−I)

to (+I) and back to (−I), or the first state visited is (+I), the next one is

(−I) and then k − 1 times in a row one moves from (−I) to (+I) and back

to (−I). The probability of the former scenario is 1
2(
√
2− 1)

(
(
√
2− 1)2

)k−1

while the probability of the latter scenario is
(
1
2(
√
2 − 1)

)2(
(
√
2 − 1)2

)k−1
.

Adding these, one obtains P (A ≥ k) =
√
2
2 (

√
2− 1)(

√
2− 1)2k−2. After a bit
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of arithmetic, one finds that

P (A = k) = P (A ≥ k)− P (A ≥ k + 1) =
√
2(3− 2

√
2)k, for k ≥ 1.

Since
∑∞

k=1

√
2(3− 2

√
2)k = 1−

√
2
2 , one obtains P (A = 0) =

√
2
2 . Thus the

number of arrivals at state (−I) prior to the first arrival at a state in (F)

indeed has the distribution of N (1).

In light of the above, we see that by the time the first piece of the concate-

nation is constructed, a certain block of numbers, beginning from 1, will have

been removed from consideration, and the length of that block is distributed

as
∑N(1)

m=1 R
(1)
m . Thus, in the case that the first piece of the concatenation is

a permutation, it will be an indecomposable separable permutation of the

random block I1 = [1 +
∑N(1)

m=1 R
(1)
m , L(1) +

∑N(1)

m=1 R
(1)
m ].

After the first piece of the concatenation is obtained, be it a random per-

mutation or a block of infinities, we begin again with the same mechanism,

however now the first number available for use is 1 + χ
(1)
0,1L

(1) +
∑N(1)

m=1 R
(1)
m .

In light of the regenerative nature described above, this completes the proof

of the theorem.

As promised at the beginning of the proof, we now give a completely

rigorous derivation for one case, the case corresponding to arriving first at

(−I) and then going to (+F). Because the first state is assumed to be in (−),

we are assuming that |B−,n
1 |(σ) < n. Let n1(σ) = |B−,n

1 |(σ). Let τ = τ(σ)

denote the permutation of the block [n− n1(σ) + 1, n] corresponding to the

first n1(σ) entries of σ. Note that τ is a skew indecomposable separable

permutation. In fact, conditioned on n − n1(σ) = n − n1, τ is a uniformly

distributed skew indecomposable separable permutation of the block [n −
n1 + 1, n].

We now take the liberty to extend in the obvious way the domain of defi-

nition of |B+,k
1 |(·), k ≥ 1, which has been defined on separable permutations

in Sk, to include separable permutations of blocks of length k. Since τ is a

skew indecomposable separable permutation, we have |B+,n1(σ)
1 |(τ) < n1(σ).

Let n′
1(τ) = |B+,n1(σ)

1 |(τ), and let τ ′ = τ ′(τ) denote the first n′
1(τ) entries

of τ . Note that τ ′ is an indecomposable separable permutation of the block

[n − n1(σ) + 1, n − n1(σ) + n′
1(τ)]. In fact, conditioned on n1(σ) = n1 and
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n′
1(τ) = n′

1, τ
′ is a uniformly distributed indecomposable separable permu-

tation of the block [n− n1 + 1, n − n1 + n′
1].

For j, k ≥ 1 and for n sufficiently large to accommodate the j and k, we

have

(3.3)

P sep
n (n− n1(σ) = k, n′

1(τ) = j, τ ′ = τ0) =

P sep
n (τ ′ = τ0

∣
∣ n′

1(τ) = j, n− n1(σ) = k)×

P sep
n (n′

1(τ) = j| n− n1(σ) = k)P sep
n (n− n1(σ) = k),

for τ0 an indecomposable separable permutation of [k + 1, k + j].

Now

(3.4) P sep
n (τ ′ = τ0

∣
∣ n′

1(τ) = j, n− n1(σ) = k) =







1, j = 1;

2
sj
, j ≥ 2,

since there are
sj
2 indecomposable separable permutations of [k + 1, k + j],

for j ≥ 2. Also,

(3.5)

P sep
n (n′

1(τ) = j| n−n1(σ) = k) = P sep
n (|B+,n−k

1 |(τ) = j
∣
∣ |B+,n−k

1 |(τ) < n−k).

(The conditioning on {|B+,n−k
1 |(τ) < n − k} comes in because τ is skew

indecomposable.) From (2.4) we have

(3.6)

lim
n−k→∞

P sep
n (|B+,n−k

1 |(τ) = j
∣
∣ |B+,n−k

1 |(τ) < n−k) =







2(3− 2
√
2), j = 1;

sj(3− 2
√
2)j, j = 2, 3, · · · .

Also, from (2.1) and (2.5), we have

(3.7)

lim
n→∞

P sep
n (n−n1(σ) = k) = lim

n→∞
P sep
n (n− |B−,n

1 |(σ) = k) =
1

2
sk(3− 2

√
2)k.

From (3.3)-(3.7) we obtain

(3.8)

lim
n→∞

P sep
n (n− n1(σ) = k, n′

1(τ) = j, τ ′ = τ0) =







(
1
2sk(3− 2

√
2)k

)(
2(3− 2

√
2)
)
, j = 1; k = 1, 2, · · · ;

(
1
2sk(3− 2

√
2)k

)(
sj(3− 2

√
2)j

)
2
sj
, j = 2, 3, · · · ; k = 1, 2, · · · .
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We rewrite the right hand side of (3.8) as

(3.9)






(
1
2(
√
2− 1)

)(sk(3−2
√
2)k√

2−1

)(
2−

√
2
)2(3−2

√
2)

2−
√
2

, j = 1; k = 1, 2, · · · ;
(
1
2(
√
2− 1)

)
(sk(3−2

√
2)k√

2−1

)(
2−

√
2
) sj(3−2

√
2)j

2−
√
2

2
sj
, j = 2, 3, · · · ; k = 1, 2, · · · .

The term 1
2(
√
2−1) is p(−I) (corresponding to having started from (−I)), the

term 2−
√
2 is 2p(+F ) (corresponding to having moved from (−I) to (+F )),

the terms sk(3−2
√
2)k√

2−1
, k = 1, 2, · · · , give the distribution of R as in (2.11),

the terms 2(3−2
√
2)

2−
√
2

, j = 1;
sj(3−2

√
2)j

2−
√
2

, j = 2, 3, · · · give the distribution of L

as in (2.11), and the term 2
sj
, j ≥ 2, indicates choosing uniformly from the

indecomposable separable permutations of the block [k + 1, k + j]. �

Remark. We now return to discuss Theorem 1 in light of the symmetries

noted in the remark following Corollary 2. In the proof of the theorem, we

delineated four cases in (3.1), which were denoted by (+F ), (−F ), (+I) and

(−I). We represent them schematically in Figure 1.

From the explanation at the beginning of the proof of the theorem, we

see that in the case of (+F ), the small box at the lower left indicates that

a finite block of numbers will appear in the limiting object. In the case of

(−F ), the small box at the upper left indicates that a finite block of infinities

will appear in the limiting object. In the case of (+I), the small box on the

upper right indicates that this case has no effect on the limiting object. In

the case of (−I), the small box on the lower right indicates that a finite

block of numbers is discarded and will not appear in the limiting object.

After this step is completed, one moves from the current case to another

case according to the mechanism described in points (1), (2), (3) and (4)

in the proof. Then everything is repeated; this continues for a countable

number of steps.

Now if we were to consider the reverse of the permutation instead, then

the description in the previous paragraph concerning the contributions of
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Figure 1. (+F ), (−F ), (+I), (−I)

the four cases to the limiting object still holds, but with the following trans-

formation on the four cases:

original → reverse :

(+F ) → (−I); (−F ) → (+I); (+I) → (−F ); (−I) → (+F ).

Similarly if we were to consider the complement of the permutation, then

the description above would hold with the following transformation:

original → complement :

(+F ) → (−F ); (−F ) → (+F ); (+I) → (−I); (−I) → (+I).

And if we were to consider the reverse-complement of the permutation, then

the description above would hold with the following transformation:

original → reverse-complement :

(+F ) → (+I); (−F ) → (−I); (+I) → (+F ); (−I) → (−F ).

Furthermore, we have the following connections between the limiting ob-

ject obtained from the original permutation and the limiting objects ob-

tained from the reverse, the complement and the reverse-complement of the

permutation:

Reverse: The very block of numbers that is contributed via (+F ) to the

limiting object for the original permutation is discarded via (−I) and doesn’t

appear in the limiting object for the reverse of the permutation, and the

very block of numbers that is discarded via (−I) and doesn’t appear in the

limiting object for the original permutation is contributed via (+F ) to the

limiting object for the reverse of the permutation. (This dictates that the

limiting random variable in Corollary 1 will be symmetric with respect to

1
2 .)

Complement: The length of the block of numbers that is contributed via

(+F ) to the limiting object for the original permutation is equal to the
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length of the block of infinities that is contributed via (−F ) to the limit-

ing object for the complement of the permutation, and the length of the

block of infinities that is contributed via (−F ) to the limiting object for

the original permutation is equal to the length of the block of numbers that

is contributed via (+F ) to the limiting object for the complement of the

permutation. (This dictates that the limiting random variable in Corollary

2 will be symmetric with respect to 1
2 .)

Reverse-Complement: The length of the block of infinities that is contributed

via (−F ) to the limiting object for the original permutation is equal to the

length of the block of numbers that is discarded via (−I) and won’t appear

in the limiting object for the reverse-complement of the permutation, and

the length of the block of numbers that is discarded via (−I) and won’t

appear in the limiting object for the original permutation is equal to the

length of the block of infinities that is contributed via (−F ) to the limiting

object for the reverse-complement of the permutation.

4. Proof of Proposition 1 and Corollary 2

Proof of Proposition 1. Part (i). We need to show that E exp(−it
∑n

k=1 L
(k)

n2 )

converges to the characteristic function appearing in part (i). We consider

t to be fixed for the proof. We have

(4.1) E exp(−it

∑n
k=1 L

(k)

n2
) =

(
E exp(−it

L

n2
)
)n
.

From (2.11) and (1.4) along with the fact that (1.5) guarantees that (1.4)

holds with x replaced by complex z satisfying |z| = 3− 2
√
2, we have

(4.2)

E exp(− it

n2
L) =

2(3 − 2
√
2)

2−
√
2

exp(− it

n2
) +

∞∑

j=2

sj(3− 2
√
2)j

2−
√
2

exp(− itj

n2
) =

(3− 2
√
2)

2−
√
2

exp(− it

n2
) +

1

2−
√
2
s
(
(3− 2

√
2)e−

it

n2
)
=

2−
√
2

2
exp(− it

n2
)+

2 +
√
2

4

(

1− (3− 2
√
2)e−

it

n2 −
√

(3− 2
√
2)2e−

2it
n2 − 6(3 − 2

√
2)e−

it

n2 + 1
)

.
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Noting that 3 − 2
√
2 is a root of z2 − 6z + 1, we have after expanding in a

power series and doing some arithmetic,

(4.3)

(3−2
√
2)2e−

2it
n2 −6(3−2

√
2)e−

it

n2 +1 = (18
√
2−25)

t2

n4
+i(12

√
2−16)

t

n2
+O(

1

n6
).

For n sufficiently large, this number lies in the right half plane. Thus we

interpret the square root above as
√
z = |z| 12 exp(12 iArg(z)), with Arg(z) ∈

(−π
2 ,

π
2 ). Thus, from (4.3) we have

√

(3− 2
√
2)2e−

2it
n2 − 6(3− 2

√
2)e−

it

n2 + 1 =
2(3

√
2− 4)

1
2 |t| 12

n
ei sgn(t)

π
4+O(

1

n2
).

Thus,

(4.4)
1− (3− 2

√
2)e−

it

n2 −
√

(3− 2
√
2)2e−

2it
n2 − 6(3− 2

√
2)e−

it

n2 + 1 =

2
√
2− 2− 2(3

√
2− 4)

1
2 |t| 12

n
ei sgn(t)

π
4 +O(

1

n2
),

and from (4.2),

(4.5) E exp(− it

n2
L) = 1− (

1

2
)
1
4
|t| 12
n

ei sgn(t)
π
4 +O(

1

n2
),

(where we’ve used the fact that 2+
√
2

2 (3
√
2 − 4)

1
2 = (12 )

1
4 ). From (4.1) and

(4.5), we obtain

(4.6)

lim
n→∞

E exp(−it

∑n
k=1 L

(k)

n2
) = lim

n→∞

(

1− (
1

2
)
1
4
|t| 12
n

ei sgn(t)
π
4 +O(

1

n2
)
) 1

n
=

exp
(
− (

1

2
)
1
4 |t| 12 ei sgn(t)π4

)
= exp

(

− (
1

2
)
3
4 |t| 12

(
1 + i sgn(t)

))

.

Part (ii). The proof is very similar to that of part (i), so we leave it to the

reader. However, for use in part (iii), we note that similar to (4.5), we have

(4.7) E exp(− it

n2
R) = 1− 2

1
4
|t| 12
n

ei sgn(t)
π
4 +O(

1

n2
).

Part (iii). We will prove the result concerning 1
n2

∑n
k=1

∑N(k)

m=1 R
(k)
m . The

proof for 1
n2

∑n
k=1 χ

(k))
0,1 L(k) is very similar. What we will show is that the

characteristic functions of the random variables 1
n2

∑n
k=1

∑N(k)

m=1 R
(k)
m con-

verge to φZR
(tEN (1)), where φZR

is as in part (ii). As noted after (1.8),
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EN (1) = (12 )
3
2 . For the case of 1

n2

∑n
k=1 χ

(k))
0,1 L(k), one shows that the char-

acteristic functions of these random variables converge to φZL
(tEχ

(1)
0,1) =

φZL
(12 t). It turns out that both φZR

((12 )
3
2 t) and φZL

(12 t) are equal to the

characteristic function in part (iii).

We consider t fixed for the proof. We have

(4.8) E exp
(
− it

n2

n∑

k=1

N(k)
∑

m=1

R(k)
m

)
=

(

E exp
(
− it

n2

N(1)
∑

m=1

R(1)
m

))n

,

and from (1.8) and conditioning,

(4.9) E exp
(
− it

n2

N(1)
∑

m=1

R(1)
m

)
=

√
2

2
+

∞∑

j=1

√
2(3− 2

√
2)j

(

E exp(− it

n2
R)

)j

.

Using (4.7) and noting that (1 − z)j = 1 − jz + R2(z), with |R2(z)| ≤
j(j−1)

2 |z|2, we have

(4.10)

√
2

2
+

∞∑

j=1

√
2(3− 2

√
2)j

(

E exp(− it

n2
R)

)j

=

√
2

2
+

∞∑
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√
2(3− 2

√
2)j

(

1− 2
1
4
|t| 12
n

ei sgn(t)
π
4 +O(

1

n2
)
)j

=

√
2

2
+

∞∑

j=1

√
2(3− 2

√
2)j

(
1− 2

1
4
|t| 12
n

ei sgn(t)
π
4 j

)
+O(

1

n2
) =

1− 2
1
4
|t| 12
n

ei sgn(t)
π
4EN +O(

1

n2
).

From (4.8). (4.9), (4.10) and the fact that EN = (12 )
3
2 , we obtain

lim
n→∞

E exp
(
− it

n2

n∑

k=1

N(k)
∑

m=1

R(k)
m

)
= exp

(

− (
1

2
)
7
4 |t| 12

(
1 + i sgn(t)

))

.

�

Proof of Corollary 2. By part (iii) of Proposition 1 along with the fact

that χ
(k)
0,1 and 1 − χ

(k)
0,1 have the same distribution, it follows that both

1
n2

∑n
k=1 χ

(k)
0,1L

(k) and 1
n2

∑n
k=1(1−χ

(k)
0,1)L

(k) converge in distribution as n →
∞ to the distribution of Z given in part (iii) of that proposition. Thus, it
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remains to show that these two sums, which for fixed n are not independent,

are in fact asymptotically independent. That is, we need to show that

(4.11)
lim
n→∞

E exp
(
− it

∑n
k=1 χ

(k)
0,1L

(k)

n2
− is

∑n
k=1(1− χ

(k)
0,1)L

(k)

n2

)
=

exp
(

− (
1

2
)
7
4 |t| 12

(
1 + i sgn(t)

))

exp
(

− (
1

2
)
7
4 |s| 12

(
1 + i sgn(s)

))

.

We have

(4.12)
E exp

(
− it

∑n
k=1 χ

(k)
0,1L

(k)

n2
− is

∑n
k=1(1− χ

(k)
0,1)L

(k)

n2

)
=

(

E exp
(
− it

n2
χ
(1)
0,1L− is

n2
(1− χ

(1)
0,1)L

))n

.

Also,

(4.13)
E exp

(
− it

n2
χ
(1)
0,1L− is

n2
(1− χ

(1)
0,1)L

)
=

1

2
E exp

(
− it

n2
L
)
+

1

2
E exp

(
− is

n2
L
)
.

Using (4.12), (4.13) and (4.5), one easily obtains (4.11). �.
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[2] Bóna, M. The absence of a pattern and the occurrences of another, Discrete Math.

Theor. Comput. Sci. 12 (2010), 89-102.
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