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Abstract: Given a graph sequence {Gn}n>1 denote by T3(Gn) the number of monochromatic triangles in
a uniformly random coloring of the vertices of Gn with c > 2 colors. This arises as a generalization of the
birthday paradox, where Gn corresponds to a friendship network and T3(Gn) counts the number of triples
of friends with matching birthdays. In this paper we prove a central limit theorem (CLT) for T3(Gn) with
explicit error rates. The proof involves constructing a martingale difference sequence by carefully ordering
the vertices of Gn, based on a certain combinatorial score function, and using a quantitive version of the
martingale CLT. We then relate this error term to the well-known fourth moment phenomenon, which, in-
terestingly, holds only when the number of colors c > 5. We also show that the convergence of the fourth
moment is necessary to obtain a Gaussian limit for any c > 2, which, together with the above result, implies
that the fourth-moment condition characterizes the limiting normal distribution of T3(Gn), whenever c > 5.
Finally, to illustrate the promise of our approach, we include an alternative proof of the CLT for the number
of monochromatic edges, which provides quantitative rates for the results obtained in [7].

Keywords: Graph coloring, martingale central limit theorem, rates of convergence, fourth moment theorem.

1 INTRODUCTION AND MAIN RESULTS

Let Gn = (V (Gn), E(Gn)) be a deterministic sequence of simple graphs with vertex set V (Gn) =
{1, 2, . . . , |V (Gn)|} and edge set E(Gn). Denote by A(Gn) = (aij(Gn))16i,j6|V (Gn)|, the adjacency
matrix of Gn, namely, aij(Gn) = 1 if (i, j) is an edge in Gn and aij(Gn) = 0 otherwise. In a
uniformly random c-coloring of Gn, the vertices of Gn are colored with c > 2 colors as follows:

P(v ∈ V (Gn) is colored with color a ∈ {1, 2, . . . , c}) =
1

c
, (1.1)

independent from the other vertices. An edge (a, b) ∈ E(Gn) is said to be monochromatic if
Xa = Xb, where Xv denotes the color of the vertex v ∈ V (Gn) in a uniformly random c-coloring of
Gn. Denote by

T2(Gn) =
∑

1≤s1<s26|V (Gn)|

as1s2(Gn)1{Xs1 = Xs2}, (1.2)

the number of monochromatic edges in Gn.
The statistic T2(Gn) arises in various contexts, for example, as the Hamiltonian of the Ising/Potts

model on Gn [4], in non-parametric two-sample tests [22], and as a generalization of the birthday
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paradox [2, 3, 9, 10, 11, 14, 15]: If Gn is a friendship-network graph colored uniformly with c = 365
colors (corresponding to birthdays and assuming the birthdays are uniformly distributed across
the year), then two friends will have the same birthday whenever the corresponding edge in the
graph Gn is monochromatic. (When the underlying graph Gn = Kn is the complete graph Kn

on n vertices, this reduces to the classical birthday problem.) In particular, T2(Gn) counts the
number of pairs of friends with matching birthdays. The birthday problem arise naturally many
applications, for example, in the study of coincidences [15], testing discrete distributions [5, 16],
and the discrete logarithm problem [6, 23, 27], all of which require understanding the asymptotic
properties of T2(Gn) for various graph sequences Gn.

The limiting distribution of T2(Gn) exhibit various universality phenomena, depending on how
the number of colors c scales with the number of edges |E(Gn)|. In particular, Bhattacharya et al.
[7] showed that for any c > 2 fixed, the asymptotic normality of the standardized version of T2(Gn)
exhibits a fourth-moment phenomenon. More precisely, for any c > 2 and a sequence of graphs
with |E(Gn)| → ∞,

Z2(Gn) =
T2(Gn)− E(T2(Gn))√

Var(T2(Gn))

D→ N(0, 1), (1.3)

whenever E(Z2(Gn)4)→ 3 (cf. [7, Theorem 1.3] and Section 1.2 below for further details). This is
an example of the celebrated fourth-moment phenomenon, which was originally discovered in the
seminal papers [29, 31] and has, since then, emerged as a unifying principle in various problems,
asserting that a central limit theorem (CLT) for non-linear functionals of random fields is often
implied by the convergence of the corresponding sequence of fourth moments.

A natural generalization of the birthday problem is to consider birthday matches between 3 or
more friends [26]. This can be formulated as a graph coloring problem, where instead of counting
monochromatic edges, one counts the number of monochromatic r-cliques (the complete graph on
r-vertices) in a uniformly random c-coloring of a friendship network Gn, for some r > 3. Hereafter,
we denote by Tr(Gn) the number of monochromatic r-cliques in a uniformly random c-coloring
of Gn. In addition to its natural application in understanding coincidences [15, Problem 3], this
and related statistics arise in various problems in occupancy urns and cryptology (cf. [6, 28]
and the references therein). Given the results for T2(Gn), it is natural to conjecture a similar
fourth-moment phenomenon for the asymptotic normality of Tr(Gn). However, the combinatorial
techniques developed in [7] for analyzing T2(Gn) does not generalize to monochromatic triangles
or higher cliques, and standard Stein’s method techniques do not appear to be robust enough for
obtaining the precise conditions required, and, as a consequence, proving such limit theorems have
turned out to be surprisingly difficult.

In this paper, we take the first step in this direction by considering the case r = 3, which
corresponds to counting monochromatic triangles. Our main result is a CLT for

Z3(Gn) =
T3(Gn)− E(T3(Gn))√

Var(T3(Gn))
, (1.4)

with an error bound for any c > 2 fixed (Theorem 1.1). The proof uses the Hoeffding’s decomposi-
tion to write Z3(Gn) as a martingale difference sequence, followed by an application of a quantitative
version of the martingale CLT [24]. The highlight of the proof is the construction of the martingale
difference sequence, which requires a careful ordering of the vertices of Gn, based on the counts
of certain subgraphs passing through each of the vertices, to control various crucial error terms.
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We then show how this error bound relates to the fourth moment condition. Here an interesting
threshold behavior emerges: For any c > 5 fixed, the error bound obtained in Theorem 1.1 can
be rewritten in terms of the fourth moment difference E(Z3(Gn)4) − 3, which shows, for c > 5,

Z3(Gn)
D→ N(0, 1) whenever E(Z3(Gn)4) → 3 (Theorem 1.2). However, this is not the case for

2 6 c 6 4, where there are instances with E(Z3(Gn)4)→ 3, but Z3(Gn) has a non-Gaussian limit.
In order to obtain the critical value of c beyond which the fourth-moment phenomenon holds, one
requires a delicate understanding of the fourth moment of Z3(Gn). While this involves a tedious
calculation, it illustrates the intricacies of the problem as one moves from monochromatic edges
to triangles and beyond. We also show that the fourth-moment condition is necessary to have
a normal limit for any c > 2 fixed (Theorem 1.3), which combined with the result above shows
that the fourth-moment condition is necessary and sufficient for Z3(Gn) to have a Gaussian limit,
whenever c > 5. In fact, to the best of our knowledge, this is the first example of the fourth mo-
ment phenomenon that is not a degenerate U -statistic of a fixed order (see Remark 1.1 for further
details). Finally, to illustrate the core idea behind of our approach, we apply this method to obtain
quantitative bounds for the CLT of the number of monochromatic edges Z2(Gn) (Theorem 1.4).
As before, the proof requires a careful reordering of the vertices (in this case, based on the non-
increasing order of the degrees), which strengthens, by providing explicit error rates, the results
obtained in [7]. The formal statements of the results are given below.

1.1 Monochromatic Triangles: CLT and the Fourth Moment Phenomenon

Recall that T3(Gn) denotes the number of monochromatic triangles in a uniformly random c-coloring
of Gn. More formally,

T3(Gn) :=
∑

16s1<s2<s36|V (Gn)|

as1s2(Gn)as2s3(Gn)as1s3(Gn)1{Xs1 = Xs2 = Xs3}, (1.5)

where Xv denotes the color of the vertex v ∈ V (Gn) obtained from (1.1). For a fixed simple graph
H, denote by N(H,Gn) the number of copies (not necessarily induced) of the graph H in Gn. Then

it is easy to see that E(T3(Gn)) = N(K3,Gn)
c2

, where K3 denotes a triangle. Hence, without loss of
generality, hereafter, we assume N(K3, Gn) > 1, for all n > 1. Moreover, a direct calculation shows
that

Var(T3(Gn)) =
1

c2

(
1− 1

c2

)
N(K3, Gn) + 2

(
1

c3
− 1

c4

)
N(42, Gn), (1.6)

where 4s denotes the graph formed by s-tuples of triangles sharing one common edge, for s > 1.
We will refer to the graph 4s as the s-pyramid (see Figure 2 in Appendix B for illustrations of 41,
42, 43, and 44). Note that 41 is isomorphic to the triangle K3, hence, both these notations will
be used interchangeably.

Our main result is a CLT along with an error bound for the standardized version of T3(Gn)
(recall the definition of Z3(Gn) from (1.4)). To this end, denote

b(Gn) :=
∑

16s1<s2<s3<s46|V (Gn)|

(ds1s2ds2s3ds3s4ds4s1 + ds1s2ds2s4ds4s3ds3s1 + ds1s3ds3s2ds2s4ds4s1) ,

where ds1s2 :=
∑

s3 6={s1,s2} as1s2(Gn)as2s3(Gn)as3s1(Gn) is the number of triangles in Gn with
(s1, s2) as an edge. Also, denote by Φ the standard normal distribution function.
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Theorem 1.1. For Z3(Gn) as defined in (1.4),

sup
x∈R
|P(Z3(Gn) 6 x)− Φ(x)| 6K

[
R

1
4
1 +R2

] 1
5

, (1.7)

where

R1 :=
1 +N(44, Gn)

(N(K3, Gn) +N(42, Gn))2
, R2 :=

b(Gn)

(N(K3, Gn) +N(42, Gn))2
, (1.8)

and K := K(c) > 0 is a constant that only depends on the number of colors c.

Note that Theorem 1.1 shows that for any c > 2 fixed, Z3(Gn)
D→ N(0, 1), whenever

N(44, Gn) = o((N(K3, Gn) +N(42, Gn))2) and b(Gn) = o((N(K3, Gn) +N(42, Gn))2).

These conditions are, in fact, tight in the sense that, if N(44, Gn) or b(Gn) is not of smaller order
than (N(K3, Gn) + N(42, Gn))2, then the CLT may not hold for Z3(Gn) (as shown in Examples
3.1 and 3.2). The proof of Theorem 1.1, which is given in Section 3, proceeds by writing Z3(Gn)
as a martingale difference sequence (using the Hoeffding’s decomposition), and then applying the
martingale CLT with error bounds from [24] to Z3(Gn). The resulting error bound involves the
two terms: one involving b(Gn) and the other involving

s(Gn) =
∑

16s1<s2<s36|V (Gn)|

d2
s1s3d

2
s2s3 . (1.9)

One of the main combinatorial ingredients of the proof is to show that, after a careful ordering of
the vertices of the graph, s(Gn) can be bounded in terms of the pyramids N(4s, Gn), for 1 6 s 6 4
(see Lemma 3.1). In fact, both the quantities s(Gn) and b(Gn) can be interpreted as the counts of
certain subgraphs in Gn which arise in the fourth moment of Z3(Gn), as will be evident from the
proof of Theorem 1.1.

Next, we discuss the connection of the above result with the fourth moment phenomenon. Recall
that the asymptotic normality of the number of monochromatic edges exhibits the fourth moment
phenomenon, that is, Z2(Gn) converges to N(0, 1) whenever E(Z2(Gn)4) → 3, for all c > 2 fixed
(see Remark 2.1 below for a more detailed discussion of this result). Therefore, it is natural to
wonder whether this phenomenon extends to monochromatic triangles. This is discussed in the
following theorem.1

Theorem 1.2. For Z3(Gn) as in (1.4) the following hold:

(1) For any c > 5 fixed,

sup
x∈R
|P(Z3(Gn) 6 x)− Φ(x)| .c (E(Z3(Gn)4)− 3)

1
20 . (1.10)

1For positive sequences {an}n>1 and {bn}n>1, an . bn means an 6 C1bn, and an & bn means an > C2bn, and
an � bn means C2bn 6 an 6 C1bn, for all n large enough and positive constants C1, C2. Moreover, subscripts
in the above notation, for example .� and &�, denote that the hidden constants may depend on the subscripted
parameters.
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(2) If 2 6 c 6 4, there exists a sequence of graphs {Gn}n>1, with N(K3, Gn) → ∞, for which
E(Z3(Gn)4)→ 3, but Z3(Gn) does not converge in distribution to N(0, 1).

The result above shows that, unlike for monochromatic edges where the fourth moment phe-
nomenon holds for all c > 2, the fourth moment phenomenon for monochromatic triangles is more
subtle. Here, E(Z3(Gn)4)→ 3 implies the asymptotic normality of Z3(Gn) only if c > 5, in which
case we can get a quantitative error rate as in (1.10). To understand why the fourth moment phe-
nomenon fails for 2 6 c 6 4, we compute in Lemma 4.1 the fourth moment difference E(Z3(Gn)4)−3
precisely. This involves keeping track of the different subgraphs (and their coefficients) which arise
when the fourth moment is expanded out as a sum (over the various graphs formed by the union of
4 triangles). The calculations are tedious, but in the end we arrive at the following rather surprising
observation: For c > 5, all the subgraph coefficients in the fourth moment difference are positive,
however, for 2 6 c 6 4 certain coefficients can be negative. Therefore, for 2 6 c 6 4, it is possible
to construct graphs such that these coefficients cancel each other and the fourth moment converges
to 3, but the corresponding subgraph counts are too large for a CLT to hold (see Section 4 details).
It remains open to show whether counts of general monochromatic cliques or subgraphs have a
CLT and fourth moment phenomenon as in (1.10) (see the discussion in Section 6 for more details
on this problem and future directions).

Remark 1.1. The fourth moment phenomenon was first discovered by Nualart and Peccati [31],
who showed that the convergence of the first, second, and fourth moments to 0, 1, and 3, respectively,
guarantees asymptotic normality for a sequence of multiple stochastic Wiener-Itô integrals of
fixed order. Later, Nourdin and Peccati [29] provided an error bound for the fourth moment
theorem of [31]. This prompted a wave of major developments and, over the years, the fourth
moment phenomenon has emerged as a ubiquitous principle governing the central limit theorems
for various non-linear functionals of random fields. We refer the reader to the book [30] for an
introduction to the topic and website https://sites.google.com/site/malliavinstein/home

for a list of the recent results. Incidentally, related results for degenerate U -statistics of a fixed
order of independent random variables were first obtained by de Jong [12, 13]. Here, in addition
to the fourth moment condition, in general, an extra condition is needed to control the maximum
influence of the underlying independent random variables (cf. [12, Theorem 2.1] and [17, Theorem
1.6]). However, to the best of our knowledge, Theorem 1.2 is the first example of the fourth moment
phenomenon that is not a degenerate U -statistic of a fixed order. In addition, we do not need the
extra condition of [12, 13] and [18] controlling the maximum influence of the underlying independent
random variables (see the discussion following Theorem 1.4 for more details on this condition).

Another natural question is whether the convergence of the fourth moment necessary for the
CLT of Z3(Gn). We answer this question in the affirmative in the following theorem

Theorem 1.3. Let Z3(Gn) be as defined in (1.4). Then for c > 2 fixed, Z3(Gn)
D→ N(0, 1) implies

E(Z3(Gn)4)→ 3.

This result shows the necessity of the fourth moment condition, for all c > 2 fixed. This

combined with Theorem 1.2 above, shows that, for any fixed c > 5, Z3(Gn)
D→ N(0, 1) if and

if E(Z3(Gn)4) → 3. The proof of Theorem 1.3 is given in Section 5. The proof shows that, for
any c > 2, all the moments of Z3(Gn) are bounded, which implies the convergence of the fourth
moments by uniform integrability. To show this, we use an estimate from extremal combinatorics
which bounds the number of copies of a hypergraph F in another weighted hypergraph H in terms
of the fractional stable number of F (see Corollary A.1 in Appendix A for the precise statement).
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1.2 Quantitative Bounds for Monochromatic Edges

As mentioned before, the precise conditions for the asymptotic normality of the number of monochro-
matic edges are well-understood [7]. For instance, when c is fixed, then [7, Theorem 1.3] shows that

Z2(Gn)
D→ N(0, 1) if and only if N(C4, Gn) = o(|E(Gn)|2), where Cs denotes the cycle of length

s > 3, which is, in fact, equivalent to the fourth moment condition E(Z2(Gn)4)→ 3. However, the
proofs in [7] used the method of moments and do not provide any rate of convergence. To showcase
the promise our approach and quantify the asymptotic results in [7], we apply the martingale CLT
approach described above to Z2(Gn).

Theorem 1.4. Let Z2(Gn) be as defined in (1.3). Then,

sup
x∈R
|P(Z2(Gn) 6 x)− Φ(x)| 6 K

(
c

|E(Gn)|
+

1√
|E(Gn)|

+
N(C4, Gn)

c|E(Gn)|2

) 1
5

, (1.11)

where K > 0 is a universal constant (not depending on n and c).

The proof of Theorem 1.4 is given below in Section 2. In this case, Z2(Gn) is a degenerate U -
statistic of order 2, and the proof proceeds by writing Z2(Gn) as a martingale difference sequence
and using a quantitive version of the martingale CLT [24], as before. The martingale CLT was used
by de Jong [12, 13] to deal with degenerate U -statistics of a fixed order of independent random
variables. More recently, Döbler and Peccati [18] used Stein’s method to prove an error bound
for de Jong’s CLT. However, this error bound is not directly applicable in our problem, because
it involves an additional term controlling the maximum influence (denoted by ρn in [18, Theorem
1.3]) which, in this case is proportional to ∆(Gn)/|E(Gn)|, where ∆(Gn) is the maximum degree of
Gn. It is easy to see that it is not necessary for this term to vanish for the CLT of Z2(Gn) to hold:
For example, if Gn = K1,n is the star graph on n vertices, with the central vertex labelled 1 and
the other vertices labeled {2, 3, . . . , n}, then ∆(Gn)/|E(Gn)| = O(1). Nevertheless, the CLT holds,
because in this case Z2(K1,n) is a sum of independent random variables (note that the collection of
edge indicators {1{X1 = Xv}}16v6n−1 are independent). Hence, the bound in [18] is not directly
applicable to our problem. We circumvent this issue by carefully ordering the vertices of Gn while
constructing the martingale, which ensures the term involving the maximum degree does not arise
in the martingale CLT error terms.

Note that in Theorem 1.4 the dependence on the number of colors c has been made explicit.
Therefore, this result holds for any c > 2, fixed or depending on n. We discuss the consequences in
the two cases separately:

• c > 2 is fixed: Here, by absorbing the dependence on c in to the leading constant, the error
term in (1.11) can be simplified as

sup
x∈R
|P(Z2(Gn) 6 x)− Φ(x)| .c

(
1√
|E(Gn)|

+
N(C4, Gn)

|E(Gn)|2

) 1
5

. (1.12)

This shows that, when c is fixed, Z2(Gn)
D→ N(0, 1), whenever |E(Gn)| → ∞ such that

N(C4, Gn) = o(|E(Gn)|2). Thus, Theorem 1.4 not only recovers the result in [7, Theorem
1.3], it provides an explicit rate of convergence.
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• c = cn →∞ such that |E(Gn)|/c→∞: In this case, using the bound N(C4, Gn) . |E(Gn)|2
(see, for example, [1, Theorem 1]), the error term in (1.11) can be simplified as

sup
x∈R
|P(Z2(Gn) 6 x)− Φ(x)| .

(
c

|E(Gn)|
+

1√
|E(Gn)|

+
1

c

) 1
5

. (1.13)

Again, this reaffirms [7, Theorem 1.2] which shows that Z2(Gn)
D→ N(0, 1), whenever c→∞

such that |E(Gn)|/c→∞. The rate in (1.13) is, in general, worse than that in [19, Theorem
1.1], which was obtained by an application of Stein’s method for normal approximation.
However, the technique in [19] was unable to recover the precise conditions for asymptotic
normality in the case where c is fixed. On the other hand, Theorem 1.4 provides a unified
proof for the case c is fixed and c→∞, and, as discussed above, obtains the exact conditions
for the asymptotic normality of Z2(Gn) in both cases.

Finally, because the conditions for the limiting normality of Z2(Gn) arising from (1.12) and (1.13)
above, are equivalent to the fourth moment condition, the error term in (1.11) can be bounded in
terms of fourth moment difference E(Z2(Gn)4)− 3 (see Remark 2.1).

1.3 Organization

The rest of the paper is organized as follows: The proof of Theorem 1.4 is given in Section 2.
In Section 3 we prove Theorem 1.1 and provide examples illustrating the necessity of the error
terms in (1.7). The proofs of Theorem 1.2 and Theorem 1.3 are given in Section 4 and Section 5,
respectively. In Section 6 we summarize our results and discuss future directions. Few technical
details are given in the Appendix.

2 PROOF OF THEOREM 1.4

Assume without loss of generality that the vertices of Gn are labelled {1, 2, . . . , |V (Gn)|} in non-
increasing order of degrees, that is, deg(1) > deg(2) > . . . > deg(|V (Gn)|), where deg(v) denotes
the degree of the vertex v ∈ {1, 2, . . . , |V (Gn)|}. We now follow [12] and write Z2(Gn) (recall
definition from (1.3)) as a sum of martingale differences. Throughout this proof we will denote

σ2 = Var(T2(Gn)) =
|E(Gn)|

c

(
1− 1

c

)
, (2.1)

where the last equality above follows from the definition of Z2(Gn) and noting that the covariance
of 1{Xs1 = Xs2} − 1

c and 1{Xs1 = Xs3} − 1
c is zero, for 1 6 s1 < s2 < s3 6 |V (Gn)|. Now, define

Wst = ast(Gn)(1{Xs = Xt} − 1
c ), for 1 6 s < t 6 |V (Gn)|, and write Z2(Gn) as

Z2(Gn) =
∑

16t6|V (Gn)|

Ut where Ut =
1

σ

∑
s:s<t

Wst.

Note that {Ut}16t6|V (Gn)| is a martingale difference sequence with respect to the filtration sequence
Ft = σ({X1, . . . , Xt}). To see this note that

E(Ut|Ft−1) =
1

σ

∑
s:s<t

ast(Gn)E
(

1{Xs = Xt} −
1

c

∣∣∣Xs

)
= 0.
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Now, from display (1) of [24] (with sn = 1, δ = 1, Yt = Ut and σ2
t = E(U2

t |X1, . . . , Xt−1), for
1 6 t 6 |V (Gn)|), we have

sup
x
|P(Z2(Gn) 6 x)− Φ(x)| = sup

x

∣∣∣∣∣∣P
 ∑

16t6|V (Gn)|

Ut 6 x

− Φ(x)

∣∣∣∣∣∣
.


|V (Gn)|∑
t=1

E(U4
t ) + Var

|V (Gn)|∑
t=1

U2
t


1
5

. (2.2)

In order to bound the two terms on the RHS above, we need the following estimates, the second
of which is due to the crucial fact that the vertices are ordered in the non-increasing order of the
degrees.

Lemma 2.1. For {Ws1s2}16s1<s26|V (Gn)| as defined above, the following hold:

(a)
∑

16s1<s26|V (Gn)| E(W 4
s1s2) . |E(Gn)|

c .

(b)
∑

16s1<s2<s36|V (Gn)| E(W 2
s1s3W

2
s2s3) . |E(Gn)|

3
2

c2
,

(c)
∑

16s1<s2<s3<s46|V (Gn)| E(Ws1s3Ws2s3Ws1s4Ws2s4) . N(C4,Gn)
c3

.

Proof. To begin with note that

∑
16s1<s26|V (Gn)|

E(W 4
s1s2) =

∑
16s1<s26|V (Gn)|

as1s2(Gn)E
(

1{Xs1 = Xs2} −
1

c

)4

.
|E(Gn)|

c
,

because the leading term in E(1{Xs1 = Xs2} − 1
c )

4 is O(1/c), since c > 2. This proves (a).

Similarly for part (c),
∑

16s1<s2<s3<s46|V (Gn)| E(Ws1s3Ws2s3Ws1s4Ws2s4) . N(C4,Gn)
c3

, since the

leading term is given by E(1{Xs1 = Xs2 = Xs3 = Xs4}) = 1
c3

.
For (b), using deg(s2) > deg(s3), gives∑

16s1<s2<s36|V (Gn)|

E(W 2
s1s3W

2
s2s3) .

1

c2

∑
16s1<s2<s36|V (Gn)|

as1s3(Gn)as2s3(Gn)

6
1

c2

∑
1<s2<s36|V (Gn)|

as2s3(Gn)deg(s3)

6
1

c2

∑
(u,v)∈E(Gn)

deg(u) ∧ deg(v)

.
|E(Gn)|

3
2

c2
,

where last step uses the inequality
∑

(u,v)∈E(Gn) deg(u) ∧ deg(v) 6
√

2|E(Gn)|3/2, from [3, Page
37].
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We now proceed to bound the two terms on the RHS of (2.2). We begin with the first term on
the RHS of (2.2),

∑
16t6|V (Gn)|

E(U4
t ) =

1

σ4

∑
16t6|V (Gn)|

E

(∑
s:s<t

Wst

)4

=
1

σ4

∑
16t6|V (Gn)|

E

∑
s:s<t

W 2
st + 2

∑
s,s′:s<s′<t

WstWs′t

2

=
1

σ4

∑
16t6|V (Gn)|

∑
s:s<t

EW 4
st + 6

∑
s,s′:s<s′<t

EW 2
stW

2
s′t


(since the cross product terms have expectation zero)

.
c2

|E(Gn)|2

(
|E(Gn)|

c
+
|E(Gn)|

3
2

c2

)
(using Lemma 2.1 (a) and (b), and σ �

(
|E(Gn)|

c

) 1
2
)

=
c

|E(Gn)|
+

1√
|E(Gn)|

. (2.3)

For the second term on the RHS of (2.2), we have

Var

|V (Gn)|∑
t=1

U2
t

 =
1

σ4
Var

 ∑
16s1<s26|V (Gn)|

W 2
s1s2 + 2

∑
16s1<s2<s36|V (Gn)|

Ws1s3Ws2s3

 (2.4)

.
1

σ4

Var

 ∑
16s1<6|V (Gn)|

W 2
s1s2

+ Var

 ∑
16s1<s2<s36|V (Gn)|

Ws1s3Ws2s3

 .
(2.5)

Now, by ruling out all the zero-covariance terms, we get

1

σ4
Var

 ∑
16s1<s26|V (Gn)|

W 2
s1s2

 =
1

σ4

∑
16s1<s26|V (Gn)|

Var(W 2
s1s2) 6

1

σ4

∑
16s1<s26|V (Gn)|

E(W 4
s1s2)

.
c

|E(Gn)|
, (2.6)

and

1

σ4
Var

 ∑
16s1<s2<s36|V (Gn)|

Ws1s3Ws2s3


=

1

σ4

 ∑
16s1<s2<s36|V (Gn)|

E(W 2
s1s3W

2
s2s3) + 2

∑
16s1<s2<s3<s46|V (Gn)|

E(Ws1s3Ws2s3Ws1s4Ws2s4)


.

1√
|E(Gn)|

+
N(C4, Gn)

c|E(Gn)|2
, (2.7)

9



where the last step uses Lemma 2.1 (a) and (c), and σ �
(
|E(Gn)|

c

) 1
2
.

Plugging in (2.3), (2.4), (2.6), and (2.7) to the RHS of (2.2), the result follows. 2

Remark 2.1. The error term in (1.11) can be expressed in terms of fourth-moment difference

E(Z2(Gn)4) − 3. To this end, recall, from (2.1), that σ2 = |E(Gn)|
c (1 − 1

c ) �
|E(Gn)|

c . Then by a
direct calculation,

E(Z2(Gn)4)− 3 =
γ1|E(Gn)|+ γ2N(K3, Gn) + γ3N(C4, Gn)

σ4
,

where γ1 = 1
c

(
1− 7

c + 12
c2
− 6

c3

)
, γ2 = 36

c2

(
1− 1

c

) (
1− 2

c

)
, and γ3 = 24

c3

(
1− 1

c

)
. Now, using the

well-known bound N(K3, Gn) . |E(Gn)|3/2 (see display (1) of [1]) gives, for any c > 2,∣∣∣∣E(Z2(Gn)4)− 3− γ3N(C4, Gn)

σ4

∣∣∣∣ . c

|E(Gn)|
+

1√
|E(Gn)|

.

Then using γ3N(C4,Gn)
σ4 � N(C4,Gn)

c|E(Gn)|2 together with (1.11), implies

sup
x∈R
|P(Z2(Gn) 6 x)− Φ(x)| . |E(Z2(Gn)4)− 3|

1
5 +

(
c

|E(Gn)|
+

1√
|E(Gn)|

) 1
5

,

hence, E(T2(Gn)) = |E(Gn)|
c →∞ and E(Z2(Gn)4)→ 3 imply Z2(Gn)→ N(0, 1) in distribution.

3 PROOF OF THEOREM 1.1

We begin by recalling the Hoeffding’s decomposition of a square integrable function of independent
random variables.

Definition 3.1. ([25]) Suppose W is a square integrable function of the independent random
variables {X1, . . . , X|V (Gn)|}. Then the Hoeffding’s decomposition of W is

W =
∑

I⊂{1,...,|V (Gn)|}

WI ,

such that

(a) WI is FI -measurable, where FI is the σ-field generated by {Xi : i ∈ I}, and

(b) E(WI |FJ) = 0 almost surely, unless I ⊂ J .

In fact, WI is almost surely uniquely determined by the above conditions and is given by

WI =
∑
J⊂I

(−1)|I|−|J |E(W |FJ).

We now begin the proof of Theorem 1.1. Throughout this proof, recalling (1.6), we will denote

σ2 := Var(T3(Gn)) =
1

c2

(
1− 1

c2

)
N(K3, Gn) + 2

(
1

c3
− 1

c4

)
N(42, Gn). (3.1)
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It is straightforward to compute the Hoeffding decomposition of Y := Z3(Gn) in (1.4) to be

Y =
1

σ

 ∑
16s1<s26|V (Gn)|

Ys1s2 +
∑

16s1<s2<s36|V (Gn)|

Ys1s2s3

 , (3.2)

where Ys1s2 = ds1s2
(

1
c1{Xs1 = Xs2} − 1

c2

)
, (recall ds1s2 =

∑
s3 /∈{s1,s2} as1s2s3(Gn), is the number of

triangles with (s1, s2) as an edge), and

Ys1s2s3 = as1s2s3(Gn)

{1{Xs1 = Xs2 = Xs3} −
1

c2

}
− 1

c

∑
16a<b63

{
1{Xsa = Xsb} −

1

c

} ,

with as1s2s3(Gn) := as1s2(Gn)as2s3(Gn)as3s1(Gn).
Now, let

Ut =
1

σ

∑
s:s<t

Yst +
∑

s,s′:s<s′<t

Yss′t

 . (3.3)

Then Y =
∑|V (Gn)|

t=1 Ut, and from property (b) of the Hoeffding decomposition, {Ut}t>1 is a mar-
tingale difference sequence. Therefore, from (2.2), it suffices to bound

A =

|V (Gn)|∑
t=1

E(U4
t ) and B = Var

|V (Gn)|∑
t=1

U2
t

 . (3.4)

Note that the random variables U1, . . . , U|V (Gn)| depend on the ordering of the vertices of Gn, which
is arbitrary. A crucial ingredient in the proof is the following combinatorial lemma, which shows
that there is a particular ordering of the vertices of Gn which ensures s(Gn) (recall definition in
(1.9)), a quantity which arises when expanding the terms A and B in (3.4), can be bounded in
terms of the counts of the pyramids N(4s, Gn), for 1 6 s 6 4.

Lemma 3.1. Let s(Gn) be as defined in (1.9). Then there exists an ordering of the vertices
{1, . . . , |V (Gn)|} such that

s(Gn) . (N(41, Gn) +N(42, Gn))
3
2 (1 +N(44, Gn))

1
4 .

Proof. For 1 6 s1 < s2 < s3 6 |V (Gn)| fixed we introduce the following symbols:

• 41,s1 will denote a triangle with one vertex being s1 and 42,s1 will denote a pair of triangles
that share a common edge with s1 as a vertex of the common edge.

• 41,s1s2 will denote a triangle with an edge (s1, s2) and 42,s1s2 will denote a pair of triangles
with the common edge (s1, s2).

• H1,s1s2s3 will denote a graph with two different triangles with the edge (s1, s3) and two
different triangles with the edge (s2, s3), H2,s1s2s3 will denote a graph with two (or respectively
one) different triangle(s) with the edge (s1, s3) and one (or respectively two) triangle(s) with
the edge (s2, s3), and H3,s1s2s3 will denote a graph with one triangle with the edge (s1, s3)
and one triangle with the edge (s2, s3).

11



For each vertex s1, let ds1 = N(41,s1 , Gn) + N(42,s1 , Gn).2 We order the vertices of Gn such
that d1 > . . . > d|V (Gn)|. Note that given 1 6 s1 < s2 < s3 6 |V (Gn)|, d2

s1s3d
2
s2s3 counts all possible

combinations of two ordered triangles with (s1, s3) as an edge and two ordered triangles with (s2, s3)
as an edge. These four triangles can form H1,s1s2s3 , H2,s1s2s3 or H3,s1s2s3 , each of which is counted
only finitely many times in s(Gn). Therefore,∑
16s1<s2<s36|V (Gn)|

d2
s1s3d

2
s2s3

.
∑

16s1<s2<s36|V (Gn)|

{
N(H1,s1s2s3 , Gn) +N(H2,s1s2s3 , Gn) +N(H3,s1s2s3 , Gn)

}
.

For s1 ∈ {1, 2, . . . , |V (Gn)|} fixed, note that∑
s2,s3:s1<s2<s3

{
N(H1,s1s2s3 , Gn) +N(H2,s1s2s3 , Gn) +N(H3,s1s2s3 , Gn)

}
.

∑
s3:s1<s3

(N(41,s1s3 , Gn) +N(42,s1s3 , Gn))ds3 . (3.5)

This is obtained by first fixing s3 > s1 and then choosing the copy of 41 or 42 on the edge (s1, s3)
in at most N(41,s1s3 , Gn) + N(42,s1s3 , Gn) ways and then choosing the copy of 41 or 42 on the
edge (s3, s2), for some s1 < s2 < s3, in at most ds3 ways. Another way to bound the quantity on
the LHS above is,∑

s2,s3:s1<s2<s3

{
N(H1,s1s2s3 , Gn) +N(H2,s1s2s3 , Gn) +N(H3,s1s2s3 , Gn)

}
. d2

s1 . (3.6)

This is by the product rule of first counting the number 41,s1 and 42,s1 in ds1 ways and then
counting the number of 41 and 42 passing through s3 in at most ds3 6 ds1 ways by the ordering
of the vertices. Therefore, combining (3.5) and (3.6) gives,∑

16s1<s2<s36|V (Gn)|

{N(H1,s1s2s3 , Gn) +N(H2,s1s2s3 , Gn) +N(H3,s1s2s3 , Gn)}

.
|V (Gn)|∑
s1=1


√
d2
s1

|V (Gn)|∑
s3=1

ds3(N(41,s1s3 , Gn) +N(42,s1s3 , Gn))

 1
2


. (N(41, Gn) +N(42, Gn))

3
2 (1 +N(44, Gn))

1
4 , (3.7)

where the last step uses
∑

s1
ds1 . (N(41, Gn) + N(42, Gn)) and maxs1,s3(N(41,s1s3 , Gn) +

N(42,s1s3 , Gn)) . (1 +N(44, Gn))1/2. The lemma follows from (3.7).

We now proceed to bound the terms A and B as defined in (3.4). We may use the properties
(a) and (b) of the Hoeffding decomposition implicitly below. First, we bound A. To this end, note

2Here, N(41,s1 , Gn) denotes the number of triangles in Gn with one vertex in s1. Similarly, N(42,s2 , Gn)
counts the number of 2-pyramids 42 in Gn with one vertex in s1. The notations N(41,s1s2 , Gn), N(42,s1s2 , Gn),
N(H1,s1s2s3 , Gn), N(H2,s1s2s3 , Gn), and N(H3,s1s2s3 , Gn) are defined similarly.
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that

A =
1

σ4

|V (Gn)|∑
t=1

E

∑
s:s<t

Yst +
∑

s,s′:s<s′<t

Yss′t

4

. A1 +A2, (3.8)

where

A1 :=
1

σ4

|V (Gn)|∑
t=1

E

(∑
s:s<t

Yst

)4

and A2 :=
1

σ4

|V (Gn)|∑
t=1

E

 ∑
s,s′:s<s′<t

Yss′t

4

.

By ruling out all the zero-expectation terms, we have A1 = A11 + 2A12, where

A11 :=
1

σ4

∑
16s<t6|V (Gn)|

E(Y 4
st) 6

1

σ4

∑
16s<t6|V (Gn)|

d4
st

c4
E
(

1{Xs1 = Xs2} −
1

c

)4

.c
1

σ4

∑
16s<t6|V (Gn)|

(
dst +

(
dst
4

))

.
N(41, Gn) +N(44, Gn)

σ4
, (3.9)

and

A12 :=
1

σ4

∑
16s1<s2<s36|V (Gn)|

E(Y 2
s1s3Y

2
s2s3)

6
1

σ4

∑
16s1<s2<s36|V (Gn)|

d2
s1s3d

2
s2s3

c4
E

[(
1{Xs1 = Xs3} −

1

c

)2(
1{Xs2 = Xs3} −

1

c

)2
]

.c
s(Gn)

σ4
. (3.10)

Next, we consider A2. It can be divided into three non-zero terms without any isolated vertex
depending on the number of vertices involved being three or four or five. More specifically,

A2 .
1

σ4

|V (Gn)|∑
t=1

∑
s1,s2<t:
s1 6=s2

EY 4
s1s2t

+
1

σ4

|V (Gn)|∑
t=1

∑
s1,s2,s3<t:
|{s1,s2,s3}|=3

E
(
Y 2
s1s2tY

2
s1s3t + Y 2

s1s2tYs1s3tYs2s3t
)

+
1

σ4

|V (Gn)|∑
t=1

∑
s1,s2,s3,s4<t:
|{s1,s2,s3,s4}|=4

E
(
Y 2
s1s2tY

2
s3s4t + Ys1s2tYs2s3tYs3s4tYs4s1t

)
(3.11)

These terms are bounded by, up to a polynomial dependence on 1
c ,

Oc

(
N(41, Gn)

σ4
+
N(42, Gn) +N(H23, Gn)

σ4
+
s(Gn) +N(H11, Gn)

σ4

)
(3.12)
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where H23 and H11 are subgraphs shown in Figure 2.3 Note that

N(H23, Gn) +N(H11, Gn) . b(Gn), (3.13)

and N(41, Gn) . s(Gn) and N(42, Gn) . b(Gn). Therefore,

A2 .c
s(Gn) + b(Gn)

σ4
. (3.14)

This implies, by (3.8), (3.9), (3.10), and (3.14),

A .c
N(44, Gn) + s(Gn) + b(Gn)

σ4
. (3.15)

Now we turn to bounding B. We have

B =
1

σ4
Var

|V (Gn)|∑
t=1

∑
s:s<t

Yst +
∑

s,s′:s<s′<t

Yss′t

2
. B1 +B2 +B3, (3.16)

where

B1 =
1

σ4
Var

|V (Gn)|∑
t=1

(∑
s:s<t

Yst

)2


B2 =
1

σ4
Var

|V (Gn)|∑
t=1

 ∑
s,s′:s<s′<t

Yss′t

2
B3 =

1

σ4
Var

|V (Gn)|∑
t=1

(∑
s:s<t

Yst

) ∑
s,s′:s<s′<t

Yss′t

 (3.17)

We begin with B1. Expanding the square gives,

B1 .
1

σ4
Var

 ∑
16s1<s26|V (Gn)|

Y 2
s1s2

+
1

σ4
Var

 ∑
16s1<s2<s36|V (Gn)|

Ys1s3Ys2s3


:= B11 +B12. (3.18)

Note that, since Cov(Y 2
s1s2 , Y

2
s1s3) = 0, for s1 < s2 < s3,

B11 =
1

σ4
Var

 ∑
16s1<s26|V (Gn)|

Y 2
s1s2

 =
1

σ4

∑
16s1<s26|V (Gn)|

Var(Y 2
s1s2)

6
1

σ4

∑
16s1<s26|V (Gn)|

E(Y 4
s1s2)

3For positive sequences {an}n>1 and {bn}n>1, an = O�(bn) means an 6 Cbn, for all n large enough, where
C = C(�) > 0 is a constant depending on the subscripted parameters.
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.c
1

σ4
(N(41, Gn) +N(44, Gn)) , (3.19)

by (3.9). Similarly, by ruling out all the zero-expectation terms whenever there is a free index, we
have

B12 =
1

σ4
Var

 ∑
16s1<s2<s36|V (Gn)|

Ys1s3Ys2s3


=

1

σ4
E

 ∑
16s1<s2<s36|V (Gn)|

Ys1s3Ys2s3

2

=
1

σ4
E

 ∑
16s1<s2<s36|V (Gn)|

Y 2
s1s3Y

2
s2s3

+
2

σ4
E

( ∑
s1<s2<s3<s4

Ys1s3Ys2s3Ys1s4Ys2s4

)

.c
s(Gn)

σ4
+

1

σ4

∑
16s1<s2<s3<s46|V (Gn)|

ds1s3ds2s3ds1s4ds2s4

=
s(Gn) + b(Gn)

σ4
. (3.20)

Hence, using (3.19) and (3.20) in (3.18) gives (recall the bound N(41, Gn) . s(Gn)),

B1 .c
N(44, Gn) + s(Gn) + b(Gn)

σ4
. (3.21)

Now, we bound B2. Recalling the definition of B2 from (3.17) gives,

B2 =
1

σ4
Var

( ∑
16s1<s2<s36|V (Gn)|

Y 2
s1s2s3 +

|V (Gn)|∑
s3=1

∑
s1,s2:s1<s2<s3

∑
s4:s4<s3
s4 /∈{s1,s2}

Ys1s2s3(Ys1s4s3 + Ys4s2s3)

+

|V (Gn)|∑
s3=1

∑
s1,s2:s1<s2<s3

∑
s4,s5:s4<s5<s3
|{s1,s2,s4,s5}|=4

Ys1s2s3Ys4s5s3

)
.B21 +B22 +B23, (3.22)

where B21, B22, and B23 are the respective variances of the 3 terms above. Note that, since the
covariances are non-zero only when there are at least two common vertices,

B21 :=
1

σ4
Var

 ∑
16s1<s2<s36|V (Gn)|

Y 2
s1s2s3

 .c N(41, Gn) +N(42, Gn)

σ4
. (3.23)

Next, for B22 the covariances of the summands can be divided into three terms depending on
the number of common vertices being two, three, or four. Following similar calculations as in
(3.11)–(3.13), these terms are bounded by, up to a polynomial dependence on 1

c

B22 .c
1

σ4
(N(H25, Gn) +N(H11, Gn) +N(H23, Gn) +N(42, Gn)) .

b(Gn)

σ4
,
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where subgraphs H25, H11 and H23 are as shown in Figure 2. Similarly, for B23 the covariances of
the summands can be divided into two terms depending on the number of common vertices being
four or five and

B23 .c
s(Gn) + b(Gn)

σ4
.

Now, recalling (3.22), N(41, Gn) . s(Gn) and N(42, Gn) . b(Gn), and combining the bounds for
B21, B22, and B23, gives

B2 .c
s(Gn) + b(Gn)

σ4
. (3.24)

Finally, we bound B3. Recalling the definition of B3 from (3.17) gives,

B3 =
1

σ4
Var

 ∑
16s1<s2<s36|V (Gn)|

(Ys1s3 + Ys2s3)Ys1s2s3 +
∑

16s1<s2<s36|V (Gn)|

∑
s4:s4<s3
s4 /∈{s1,s2}

Ys4s3Ys1s2s3


. B31 +B′31 +B32 +B′32 +B′′32, (3.25)

where

B31 =
1

σ4
Var

 ∑
16s1<s2<s36|V (Gn)|

Ys1s3Ys1s2s3

 ,

B′31 =
1

σ4
Var

 ∑
1616s1<s2<s36|V (Gn)|

Ys2s3Ys1s2s3

 ,

B32 =
1

σ4
Var

 ∑
16s1<s2<s36|V (Gn)|

∑
s4:s4<s1

Ys4s3Ys1s2s3

 ,

B′32 =
1

σ4
Var

 ∑
16s1<s2<s36|V (Gn)|

∑
s4:s1<s4<s2

Ys4s3Ys1s2s3

 ,

B′′32 =
1

σ4
Var

 ∑
16s1<s2<s36|V (Gn)|

∑
s4:s2<s4<s3

Ys4s3Ys1s2s3

 . (3.26)

We begin with B31. In this the covariances of the summands can be divided into two terms
depending on the number of common vertices being two or three. Following similar calculations as in
(3.11)–(3.13), these terms are bounded respectively by Oc(b(Gn)) and Oc(N(41, Gn)+N(42, Gn)+
N(43, Gn)). Therefore,

B31 .c
N(41, Gn) +N(44, Gn) + b(Gn)

σ4
.

Similarly,

B′31 .c
N(41, Gn) +N(44, Gn) + b(Gn)

σ4
.
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Finally, in B32 the covariances of the summands can be divided into two terms depending on
the number of common vertices being three or four. Again, following similar calculations as in
(3.11)–(3.13), these terms are bounded respectively by Oc(b(Gn)) and Oc(s(Gn)). Therefore,

B32 .c
s(Gn) + b(Gn)

σ4
.

Similarly, max{B′32, B
′′
32} .c 1

σ4 (s(Gn) + b(Gn)). Hence, combining the estimates above with (3.25)
and (3.26) gives,

B3 .c
N(41, Gn) +N(44, Gn) + s(Gn) + b(Gn)

σ4
. (3.27)

Finally, recalling (3.16), and combining the bounds in (3.21), (3.24), (3.27) gives (recallN(41, Gn) .
s(Gn)),

B .c
N(44, Gn) + s(Gn) + b(Gn)

σ4
.

Moreover, by (3.15) and using σ4 �c (N(41, Gn) +N(42, Gn))2,

A+B .c
N(44, Gn) + s(Gn) + b(Gn)

σ4
.c

N(44, Gn) + s(Gn) + b(Gn)

(N(41, Gn) +N(42, Gn))2 . (3.28)

Bounding s(Gn) by Lemma 3.1 gives,

s(Gn)

(N(41, Gn) +N(42, Gn))2 .

(
1 +N(44, Gn)

(N(41, Gn) +N(42, Gn))2

) 1
4

. (3.29)

The result in (1.7) now follows by using (3.28) and (3.29) in (2.2). 2

Having completed the proof of Theorem 1.1, we now construct two examples which show the
necessity of the error terms R1 and R2 (recall definitions from (1.8)) in (1.7), that is, if these error
terms are non-vanishing then a CLT for Z3(Gn) might not hold.

Example 3.1. Consider the n-pyramid 4n with vertex set V (4n) = {1, 2, u1, u2, . . . , un}, where
the vertices {1, 2, us} form triangles, for 1 6 s 6 n. Note that this graph has |V (4n)| = n + 2
vertices, |E(4n)| = 2n+ 1 edges, and N(K3,4n) = n triangles. Moreover, note that N(42,4n) =(
n
2

)
� n2, N(44,4n) =

(
n
4

)
� n4, and b(4n) =

(
n
2

)
� n2. Therefore, recalling (1.8),

R1 =
1 +N(44,4n)

(N(K3,4n) +N(42,4n))2
� 1 and R2 =

b(4n)

(N(K3,4n) +N(42,4n))2
� 1

n2
→ 0,

that is, the error term in Theorem 1.1 does not vanish, since R1 does not go to zero. In fact, in this
case, Z3(4n) has a non-normal limit, as argued below. Note that with probability 1

c , the vertices
1 and 2 have the same color. In this case, T3(4n) ∼ Bin(n, 1

c ) and

T3(4n)− n
c2

n

P→ 1

c

(
1− 1

c

)
. (3.30)
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On the other hand, with probability 1− 1
c , the vertices 1 and 2 have different colors. In this case,

T3(4n) = 0 and

T3(4n)− n
c2

n

P→ − 1

c2
. (3.31)

Therefore, combining (3.30) and (3.31),

T3(4n)− n
c2

n

D→ 1

c
δ 1
c (1− 1

c )
+

(
1− 1

c

)
δ− 1

c2
, (3.32)

which is a 2-point discrete distribution.

Note that in the example above the term R1 is non-vanishing. We now construct a sequence of
graphs which has a non-normal limiting distribution for which the term R2 in (1.8) is non-vanishing.

1

2

3

a

b

ub,1 ub,2 ub,3

ua,1 ua,2 ua,3

Figure 1: The graph B43 as defined in Example 3.2.

Example 3.2. Consider the graph Gn with vertex set V (Gn) = V1
⋃
V2
⋃
V3
⋃
V4, where

V1 = {a, b}, V2 = {1, 2, . . . n}, V3 = {ua,1, ua,2, . . . , ua,n}, and V4 = {ub,1, ub,2, . . . , ub,n},

where the vertices {a, s, ua,s} form a triangle and the vertices {b, s, ub,s} form a triangle, for every

1 6 s 6 n. We denote this graph by B4n . (The graph B43 is shown in Figure 1(b).) Note that this

graph has |V (B4n )| = 3n + 2 vertices, |E(B4n )| = 6n edges, and N(K3,B4n ) = 2n triangles (one

on every edge between V1 and V2). Moreover, note that N(42,B4n ) = 0, hence, N(44, Gn) = 0.
Therefore, R1 � 1/n → 0. On other hand, it is easy to check that b(Gn) � n2, since, for 1 6 s <
t 6 n, das = dbs = dbt = dat = 1. Therefore, the second term in (1.7) is

R2 =
b(Gn)

(N(K3, Gn) +N(42, Gn))2
� 1,

Note that this does not go to zero. In fact, Z3(B4n ) has a non-normal limit, which we directly derive
below.
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Let A+ be the event that the vertices a and b have the same color, and A− the event that a
and b have different colors. Denote the number of monochromatic edges in the complete bipartite
formed between V1 and V2 as T12. On the event A+, T12 ∼ 2Bin(n, 1/c). Therefore,

T3(B4n ) ∼ Bin(T12, 1/c).

Then, using

T3(B4n )− T12
c√

T12

∣∣∣T12
D→ N

(
0,

1

c

(
1− 1

c

))
,

T12
c −

2n
c2√

n

D→ N

(
0,

4

c3

(
1− 1

c

))
,

and T12/n
P→ 2/c, it follows that, on the event A+,

T3(B4n )− 2n
c2√

n

D→ N

(
0,

(
4

c3
+

2

c2

)(
1− 1

c

))
. (3.33)

Next, consider the event A−. Assume, without also generality, the vertex a is colored with
color 1 and the vertex b is colored with color 2. Then T12 ∼ N1 + N2, where (N1, N2, . . . , Nc) ∼
Multi(n, 1/c, 1/c, . . . , 1/c), where Ns denotes the number of vertices of color s in the set V2. As

before, T3(B4n ) ∼ Bin(T12, 1/c). Now, note that,

T3(B4n )− T12
c√

T12

∣∣∣T12
D→ N

(
0,

1

c

(
1− 1

c

))
,

T12
c −

2n
c2√

n

D→ N

(
0,

2

c3

(
1− 2

c

))
,

and T12/n
P→ 2/c, since N1 +N2 ∼ Bin(n, 2/c). Therefore, on the event A−,

T3(B4n )− 2n
c2√

n

D→ N

(
0,

2

c2

(
1− 2

c2

))
. (3.34)

Combining (3.33) and (3.34), and noting that P(A+) = 1/c and P(A−) = 1− 1/c, we get

T3(B4n )− 2n
c2√

n

D→ 1

c
·N
(

0,

(
4

c3
+

2

c2

)(
1− 1

c

))
+

(
1− 1

c

)
·N
(

0,
2

c2

(
1− 2

c2

))
, (3.35)

which is a mixture of two normals.

4 PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2. The proof of the fourth moment bound in (1.10) is given
in Section 4.1 below. The counterexample to the fourth-moment phenomenon for 2 6 c 6 4 is
described in Section 4.2.
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4.1 Proof of the Fourth Moment Bound for c > 5

The main step in the proof of fourth moment error bound in (1.10) is the computation of E(Z3(Gn)4)−
3.

Lemma 4.1. For any graph sequence {Gn}n>1 the following hold:

(a) For any c > 2,

E(Z3(Gn)4)− 3 =
1

σ4

{
4∑
s=1

δsN(4s, Gn) +
28∑
s=1

hsN(Hs, Gn)

}
, (4.1)

where the graphs 41,42,43,44, H1, H2, . . . ,H28, along with the specified triangles, are listed
in Figure 2, and the coefficients δ1, δ2, δ3, δ4, h1, h2, . . . , h28 are given in Table 1.4

(b) If c > 5, all the coefficients δ1, δ2, δ3, δ4, h1, h2, . . . , h28 are positive.

Proof. Note that

E(Z3(Gn)4)− 3 =
1

σ4

E

[ ∑
s1<s2<s3

as1s2s3(Gn)1

{
Xs1 = Xs2 = Xs3)− 1

c2

}]4

− 3σ4

 ,

where as1s2s3(Gn) := as1s2(Gn)as2s3(Gn)as1s3(Gn). Expanding out the fourth powers above gives
a sum over graphs formed by the union of 4 triangles. The idea of the proof is to group terms
corresponding to graphs with specified triangles (see the caption of Figure 2 for illustration) and
keep track of the corresponding coefficients. The graphs which show up and the corresponding
coefficients are listed in Table 1. Here, we only show the computation of the coefficient δ4 which
corresponds to the graph 44. The other coefficients are obtained by similar tedious but straight-
forward computations. The details are omitted.

Suppose in the expansion of

E

 ∑
16s1<s2<s36|V (Gn)|

as1s2s3(Gn)

(
1{Xs1 = Xs2 = Xs3)− 1

c2

)4

,

the four triangles which form a specified 44 in the graph Gn, have (1, 2) as the the common edge of
the four triangles and 3, 4, 5, 6 as the other four vertices of 44. Then, denoting Xs1s2s3 = {Xs1 =
Xs2 = Xs3},

E
(

1{X123} −
1

c2

)(
1{X124} −

1

c2

)(
1{X125} −

1

c2

)(
1{X126} −

1

c2

)
= P(X1 = X2 = X3 = X4 = X5 = X6)− 4

c2
P(X1 = X2 = X3 = X4 = X5)

+
6

c4
P(X1 = X2 = X3 = X4)− 4

c6
P(X1 = X2 = X3) +

1

c8

=
1

c5
− 4

c6
+

6

c7
− 3

c8
.

4Throughout this section, we will use N(Hs, Gn) to count the number of copies of Hs with the specified triangles
in Gn, for 1 6 s 6 28 (see the caption of Figure 2 for illustration).
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Since there 4! = 24 ways to order the four triangles, the contribution of EZ3(Gn)4 to the specified
44 is

24

(
1

c5
− 4

c6
+

6

c7
− 3

c8

)
. (4.2)

Next, write N(41, Gn) =
∑
41vGn 1 and N(42, Gn) =

∑
42vGn 1, where the sum is over distinct

subgraphs of Gn isomorphic to 41 and 42, respectively.5 Then expanding

3σ4 = 3

[
1

c2

(
1− 1

c2

)
N(41, Gn) + 2

(
1

c3
− 1

c4

)
N(42, Gn)

]2

,

we get a sum over graphs obtained by the union of two copies of 41, or two copies of 42, or one
copy of 41 and one copy of 42. Note that only possible way to get a 44 is to have the union of
two copies of 42 joined at the base. Since there are

(
4
2

)
= 6 ways to choosing the two non-base

vertices of 42 from the vertices 3, 4, 5, 6, the contribution of 3σ4 to a specified 44 is

3×
(

4

2

)
×
[
2

(
1

c3
− 1

c4

)]2

= 24

(
3

c6
− 6

c7
+

3

c8

)
. (4.3)

By combining (4.2) and (4.3), we obtain δ4 = 24
(

1
c5
− 7

c6
+ 12

c7
− 6

c8

)
.

The conclusion in part (b) can be verified directly from the expressions in Table 1.

Using the lemma above we now complete the proof of the first part of Theorem 1.2. Note that,
for c > 5, by Lemma 4.1(b),

E(Z3(Gn)4)− 3 &c
1

σ4

(
4∑
s=1

N(4s, Gn) +
28∑
s=1

N(Hs, Gn)

)
. (4.4)

Now, it is straightforward to check that b(Gn) .
∑4

s=1N(4s, Gn) +
∑28

s=1N(Hs, Gn). Therefore,
(1.10) follows from (1.7) and (4.4). This completes the proof of the first part of Theorem 1.2.

4.2 Counterexample to the Fourth Moment Phenomenon for 2 6 c 6 4

Here, we prove the second part of Theorem 1.2. Suppose 2 6 c 6 4, and consider Gn to be the
disjoint union of the n-pyramid 4n and B∆

n′ (as defined in Example 3.2), where n′ � n2 (will be
specified later). Then, noting that σ4 � N(K3, Gn)2 +N(42, Gn)2 � n4, and using Lemma 4.1(a)
gives,

E(Z3(Gn)4)− 3 =
1

σ4

{
4∑
s=1

δs

(
n

s

)
+ 2δ1n

′ + h16

(
n′

2

)}
=

1

σ4

{
δ4

(
n

4

)
+ h16

(
n′

2

)}
+ o(1),

since N(H16, Gn) =
(
n′

2

)
, where the graph H16 is given in the appendix in Figure 2. Now, note

from Table 1 that h16 > 0, for all c > 2, but δ4 < 0, for 2 6 c 6 4. Therefore, choosing

n′ = d
√

2|δ4|
h16

(
n
4

)
e > 0 ensures that EZ3(Gn)4 → 3.

Next, since E(T3(Gn)) = E(T3(4n)) + E(T3(B∆
n′)) = n

c2
+ 2n′

c2
,

T3(Gn)− E(T3(Gn))√
n′

=
T3(4n)− n

c2√
n′

+
T3(B∆

n′ , Gn)− 2n′

c2√
n′

D→ n√
n′
I + J,

5For two graphs G and H, H v G means H is a subgraph of G.
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where I and J are independent, I is as in (3.32), and J is the mixture of 2 normals as in (3.35). This
shows that Z3(Gn) has a non-normal limit, completing the proof of the second part of Theorem
1.2.

5 PROOF OF THEOREM 1.3

Recall the definition T3(Gn) from (1.5). We rewrite T3(Gn) as follows:

T3(Gn) :=
1

6

∑
s∈V (Gn)3

as1s2(Gn)as2s3(Gn)as3s1(Gn)1{X=s},

where:

– V (Gn)3 is the set of all 3-tuples s = (s1, s2, s3) ∈ V (Gn)3 with distinct indices.6 Thus, the

cardinality of V (Gn)3 is |V (Gn)|!
(|V (Gn)|−3)! .

– For any s = (s1, s2, s3) ∈ V (Gn)3, 1{X=s} := 1{Xs1 = Xs2 = Xs3}.

Next, for v ∈ V (Gn) and 1 6 a 6 c, let Zv(a) = 1{Xv = a} − 1
c . Then, for s = (s1, s2, s3) ∈

V (Gn)3, it is easy to check that

1{X=s} −
1

c2
=

c∑
a=1

{
1{Xs1 = Xs2 = Xs3 = a} − 1

c3

}

=
c∑

a=1

{
Zs1(a)Zs2(a) + Zs2(a)Zs3(a) + Zs3(a)Zs1(a)

c
+ Zs1(a)Zs2(a)Zs3(a)

}
, (5.1)

using
∑c

a=1 Zv(a) = 0, for all v ∈ V (Gn). Next, define M(s, Gn) =
as1s2 (Gn)as2s3 (Gn)as3s1 (Gn)

6 and
let

T1(K3, Gn) =
1

c

c∑
a=1

∑
s∈V (Gn)3

M(s, Gn) {Zs1(a)Zs2(a) + Zs2(a)Zs3(a) + Zs3(a)Zs1(a)}

=
1

2c

c∑
a=1

∑
16u6=v6|V (Gn)|

duvZu(a)Zv(a), (5.2)

where duv is the number of triangles in Gn with (u, v) as an edge, and

T2(K3, Gn) =
c∑

a=1

∑
s∈V (Gn)3

M(s, Gn)Zs1(a)Zs2(a)Zs3(a). (5.3)

Note that

Z3(Gn) =
T1(K3, Gn) + T2(K3, Gn)√

Var(T3(Gn))
.

With these definitions, we will show that the moments of Z3(Gn) are bounded. To this end,
for a hypergraph F = (V (F ), E(F )), the degree of a vertex x ∈ V (F ), to be denoted by dF (x), is
the number of hyperedges passing through on x. Let dmin(F ) denote the minimum degree of the
hypergraph.

6For a set S, the set SN denotes the N -fold cartesian product S × S × · · · × S.
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Lemma 5.1. For any integer r > 1, E(|Z3(Gn)|r) < C(c, r), where C(c, r) is a constant depending
only c and r.

The result in Theorem 1.3 is an immediate consequence of this lemma: In particular, if

Z3(Gn)
D→ N(0, 1), then, by the above lemma and uniform integrability, E(Z3(Gn)4)→ 3.

Proof of Lemma 5.1: Note that it suffices to prove the result for r even. Moreover, recalling (5.2)
and (5.3), and by the binomial expansion, it suffices to show the following: For all r > 2 even,

E(T1(K3, Gn)r)

Var(T3(Gn))
r
2

.c,r 1 and
E(T2(K3, Gn)r)

Var(T3(Gn))
r
2

.c,r 1. (5.4)

We begin with T2(K3, Gn). For s = (s1, s2, s3) ∈ V (Gn)3, denote by Zs(a) = Zs1(a)Zs2(a)Zs3(a).
Then a direct expansion gives,

E(T2(K3, Gn)r)

Var(T3(Gn))
r
2

=
1

Var(T3(Gn))
r
2

∑
a1,··· ,ar∈[c]

∑
s1,s2,...,sr∈V (Gn)3

r∏
j=1

M(sj , Gn)E

 r∏
j=1

Zsj (aj)

 .

Let F be the 3-uniform multi-hypergraph formed by the union of the hyperedges s1, s2, . . . , sr.
Note that

E

 r∏
j=1

Zsj (aj)

 = 0,

whenever there exists a v ∈ V (F ) with dF (v) = 1. This implies,

E(T2(K3, Gn)r)

Var(T3(Gn))
r
2

.c,r
1

Var(T3(Gn))
r
2

∑
F∈Hr:dmin(F )>2

∑
s∈V (Gn)V (F )

∏
(u,v,w)∈E(F )

asusvsw(Gn), (5.5)

where Hr is the collection all 3-uniform multi-hypergraphs with at most r hyperedges and no
isolated vertex, and asusvsw(Gn) = asusv(Gn)asvsw(Gn)aswsu . Now, let HGn(K3) be the 3-uniform
hypergraph with vertex set V (Gn) and a hyperedge s = (s1, s2, s3) whenever M(s, Gn) 6= 0, that
is, there is an hyperedge between 3 vertices of Gn whenever there is a triangle passing through
the vertices. Note that the number of hyperedges |E(HGn(K3))| = N(K3, Gn), which implies, by
Remark A.1 and Lemma A.1,∑

s∈V (Gn)V (F )

∏
(u,v,w)∈E(F )

asusvsw(Gn) 6 |E(HGn(K3))|
|E(F )|

2 .r N(K3, Gn)
r
2 ,

for all F ∈ Hr such that dmin(F ) > 2. Now, the recall the definition of duv from Theorem 1.1.
Clearly, N(K3, Gn) = 1

3

∑
16u<v6|V (Gn)| duv and N(42, Gn) =

∑
16u<v6|V (Gn)|

(
duv
2

)
. This shows,

recalling (3.1),

Var(T3(Gn)) � N(K3, Gn) +N(42, Gn)

�
∑

16u<v6|V (Gn)|

duv +
∑

16u<v6|V (Gn)|

d2
uv(Gn)1{duv > 2}. (5.6)
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This implies that Var(T3(Gn) >
∑

16u<v6|V (Gn)| duv & N(K3, Gn). Then, because the sum in (5.5)
is over a finite set (not depending on n), it follows that

E(T2(K3, Gn)r)

Var(T3(Gn))
r
2

.r 1. (5.7)

Next, consider T1(K3, Gn). Then,

E(T1(K3, Gn)r)

Var(T3(Gn))
r
2

=
1

2rcr Var(T3(Gn))
r
2

∑
a1,··· ,ar∈[c]

∑
16i1 6=j16|V (Gn)|

...
16ir 6=jr6|V (Gn)|

r∏
s=1

disjs(Gn)E

(
r∏
s=1

Zis(as)Zjs(as)

)
.

Let F be the unweighted multi-graph formed by the union of the edges (i1, j1), (i2, j2), . . . , (ir, jr).
Note that

E

(
r∏
s=1

Zis(as)Zjs(as)

)
= 0,

whenever there exists a v ∈ V (F ) with dF (v) = 1. This implies,

E(T1(K3, Gn)r)

Var(T3(Gn))
r
2

.c,r
1

Var(T3(Gn))
r
2

∑
F∈Gr:dmin(F )>2

∑
s∈V (Gn)V (F )

∏
(u,v)∈E(F )

dsusv(Gn), (5.8)

where Gr is the collection all multi-graphs with at most r edges and no isolated vertex. Then by
Corollary A.1, for any F ∈ Gr such that dmin(F ) > 2,

∑
s∈V (Gn)V (F )

∏
(u,v)∈E(F )

dsusv(Gn) .r

 ∑
16u6=v6|V (Gn)|

duv(Gn)2

 r
2

.

Then using the fact that Var(T3(Gn) &
∑

16u<v6|V (Gn)| d
2
uv (recall (5.6)) and the sum in (5.8) is

over a finite set (not depending on n), it follows that

E(T1(K3, Gn)r)

Var(T3(Gn))
r
2

.r 1. (5.9)

Combining (5.7) and (5.9) the result in (5.4) follows.

6 DISCUSSIONS AND FUTURE DIRECTIONS

In this paper we obtain a quantitative CLT for Z3(Gn), the (standardized) number of monochro-
matic triangles in a uniformly random c-coloring of a graph sequence Gn. The resulting error term
can be bounded in the terms of the fourth moment difference E(Z3(Gn)4) − 3 whenever c > 5.
The next natural step is to consider monochromatic r-cliques, for r > 4 or general monochromatic
subgraphs H. Even though a CLT for general monochromatic subgraphs is known in a few special
cases (for example, when Gn = Kn is itself the complete graph, or a converging sequence of dense
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graphs [8]), the precise conditions for it to have a Gaussian limit is yet to be understood. Given the
results above, it is reasonable to expect that there will exist a critical value c0(H) > 2 (depending
on H) such that a fourth moment theorem for the number of monochromatic copies of H in Gn will
hold for c > c0(H). While, in principle, the current approach based on the Hoeffding’s decomposi-
tion and quantitative martingale CLT has the promise to generalize, the analysis of the resulting
error terms become intractable as one moves from triangles to higher subgraphs. This demands a
more systematic approach for understanding the various graphs that arise in the fourth moment
of the corresponding statistics. It also remains to investigate the fourth-moment phenomenon in
the regime where c = cn → ∞ such that E(Z3(Gn)) = N(K3,Gn)

c2
→ ∞. While it is possible to

make the dependence on c in the upper bound in (1.7) explicit by following the proof of Theorem
1.1, to relate the resulting error term to the fourth-moment difference in the case c = cn → ∞, a
strengthening of Lemma 3.1 (where the subgraph counts are appropriately scaled by the leading
order of their corresponding moments) will be required.

Another interesting direction is to explore whether the error bounds obtained in Theorem 1.1
and Theorem 1.2 can be improved, using other quantitative CLT methods. In this regard, in forth-
coming work Omar El Dakkak, Ivan Nourdin, and Giovanni Peccati have used Stein’s method to
obtain a better error bound for the CLT of the number of monochromatic edges for c > 2 fixed
(personal communication).
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A ESTIMATES FROM EXTREMAL COMBINATORICS

In this section we collect some estimates from extremal combinatorics, which might be useful in
estimating graph counts.

Definition A.1. Given a s-uniform multi-hypergraph F = (V (F ), E(F )), the fractional stable
number of F , to be denoted by γ(F ), is defined as:

γ(F ) = arg max
φ:V (F )→[0,1],∑

x∈e φ(x)≤1 for every e∈E(F )

∑
v∈V (F )

φ(v). (A.1)

It is clear that γ(F ) = γ(Fsim), where Fsim is the simple hypergraph obtained from F by replacing
the hyperedges between the vertices which occur more than once, by a single hyperedge.

Recall that dmin(F ) denotes the minimum degree of a hypergraph F . The next lemma is a
generalization of [7, Lemma 4.1] for hypergraphs.

Lemma A.1. Let F = (V (F ), E(F )) be a multi-hypergraph with no isolated vertex and dmin(F ) > 2.
Then γ(F ) 6 1

2 |E(F )|.

Proof. Let ϕ : V (F ) → [0, 1] be an optimal solution of the linear program (A.1). If dmin(F ) > 2,
we have ∑

x∈V (F )

ϕ(x) 6
1

dmin(F )

∑
x∈V (F )

dF (x)ϕ(x) 6
1

dmin(F )

∑
e∈E(F )

∑
x∈e

ϕ(x) 6
1

2
|E(F )|.

which gives γ(F ) 6 1
2 |E(F )|.

A weighted r-uniform hypergraph H = (V (H), w) is a function w : V (H)r → R>0, which is
symmetric under the permutation of the coordinates. If the function w takes values in {0, 1}, then
the collection of r-tuples where w = 1 is the collection of hyperedges E(H), which gives the usual
unweighted hypergraph. The following lemma gives a bound on the number of weighted copies of
a hypergraph F in a weighted hypergraph H.
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Theorem A.1. ([21, Lemma 3.3]) For a fixed (unweighted) multi-hypergraph F = (V (F ), E(F ))
and a weighted r-uniform hypergraph H = (V (H), w), there exists a positive constant C = C(F ),
such that ∑

s∈V (H)V (F )

∏
(u1,u2,...,ur)∈E(F )

w(su1 , su2 , . . . , sur)

6 C
∏

(u1,u2,...,ur)∈E(F )

 ∑
e∈V (H)r

w(e)
1

φ(u1,u2,...,ur)

φ(u1,u2,...,ur)

, (A.2)

for any function φ : E(F )→ [0, 1] such that∑
u∈E(F ):u containing v

φ(u) > 1, for all v ∈ V (F ).

Remark A.1. The result above was proved for unweighted graphs by [1] and for unweighted

hypergraphs by [20]. In this case, w(e)
1

φ(u1,u2,...,ur) = w(e), and
∑

e∈V (H)s
w(e) = |E(H)|, the

number of hyperedges in H. Therefore, the bound above becomes N(F,H) 6 C|E(H)|α(F ) =
C|E(H)|γ(F ), where

α(F ) := min
φ:E(F )→[0,1]

∑
u∈E(F )

φ(u) such that
∑

u containing v

φ(u) > 1, for all v ∈ V (F ).

The quantity α(F ) is called the fractional edge-cover number of F , and γ(F ) = α(F ) by the linear
programming duality.

If the hypergraph F has minimum degree 2, then we can choose φ(u) = 1
2 , for all u ∈ E(F ) in

the previous result. This gives the following bound.

Corollary A.1. For a fixed (unweighted) hypergraph F = (V (F ), E(F )) with dmin(F ) > 2, and a
weighted r-uniform hypergraph H = (V (H), w), there exists a positive constant C = C(F ), such
that

∑
s∈V (H)V (F )

∏
(u1,u2,...,ur)∈E(F )

w(su1 , su2 , . . . , sur) 6 C

 ∑
e∈V (H)r

w(e)2


|E(F )|

2

. (A.3)

B LIST OF SUBGRAPHS AND THEIR COEFFICIENTS IN THE FOURTH MOMENT
DIFFERENCE

In this section we list the set of graphs which contribute to the fourth moment difference E(Z3(Gn)4)−
3 (as in Lemma 4.1) in Figure 2 and their corresponding coefficients in Table 1.
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41

42

H1

H2

H3

H4

43

H5

H6

H7

H8

H9

H10

H26

H27

H28

44 H11

H12

H13

H14

H15

H16

H17

H18

H19

H20

H21

H22

H23

H24

H25

Figure 2: The different subgraphs that arise in the fourth moment condition E(Z3(Gn)4)−3. Each subgraph
has several specified triangles which are shown in green for H14, H18, H19 and H28 and in white for other
subgraphs (1 triangle for 41, 2 triangles for 42, 3 triangles for 43, 4 triangles for 44, 3 triangles for H1–H4,
and 4 triangles for H5–H28). Grey areas are used to contrast white. Dashed lines are used for 3-dimensional
pictures. In Section 4.1, N(H,Gn) counts the number of copies of H with the specified triangles in Gn. For
example, a tetrahedron in Gn is counted four times in N(H2, Gn) (once each to account for the missing grey
face), and one time in N(H23, Gn).
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Coefficient Value of the Coefficient

δ1
1
c2 −

7
c4 + 12

c6 −
6
c8

δ2
14
c3 −

14
c4 −

72
c5 + 60

c6 + 96
c7 −

84
c8

δ3 36
(

1
c4 −

3
c5 −

2
c6 + 10

c7 −
6
c8

)
δ4 24

(
1
c5 −

7
c6 + 12

c7 −
6
c8

)
h1 36

(
1
c4 −

1
c5 −

2
c6 + 2

c7

)
h2 36

(
1
c3 −

5
c5 + 10

c7 −
6
c8

)
h3 36

(
1
c5 −

1
c6 −

2
c7 + 2

c8

)
h4 12

(
3
c4 −

6
c5 −

5
c6 + 16

c7 −
8
c8

)
h5 24

(
1
c5 −

3
c6 + 3

c7 −
1
c8

)
h6 24

(
1
c5 −

3
c6 + 2

c7

)
h7 24

(
1
c5 −

4
c6 + 5

c7 −
2
c8

)
h8 24

(
1
c5 −

3
c6 + 3

c7 −
1
c8

)
h9 24

(
1
c5 −

2
c6 + 1

c8

)
h10 24

(
1
c5 −

1
c6 −

1
c7 + 1

c8

)
h11 24

(
1
c4 −

6
c6 + 8

c7 −
3
c8

)
h12 24

(
1
c4 −

1
c5 −

5
c6 + 9

c7 −
4
c8

)
h13 24

(
1
c4 −

1
c5 −

4
c6 + 6

c7 −
2
c8

)
h14 24

(
1
c4 −

5
c6 + 5

c7 −
1
c8

)
h15 24

(
1
c6 −

2
c7 + 1

c8

)
h16 24

(
1
c7 −

1
c8

)
h17 24

(
1
c6 −

1
c7

)
h18 24

(
1
c5 −

2
c6 + 1

c7

)
h19 24

(
1
c4 −

4
c6 + 3

c7

)
h20 24

(
1
c5 −

1
c6 −

2
c7 + 2

c8

)
h21 24

(
1
c5 −

2
c6 + 1

c7

)
h22 24

(
1
c5 −

3
c6 + 2

c7

)
h23 24

(
1
c3 −

4
c5 −

3
c6 + 12

c7 −
6
c8

)
h24 24

(
1
c6 −

3
c7 + 2

c8

)
h25 24

(
1
c5 −

1
c6

)
h26 24

(
1
c6 −

3
c7 + 2

c8

)
h27 24

(
1
c6 −

2
c7 + 1

c8

)
h28 24

(
1
c5 −

4
c7 + 3

c8

)
Table 1: The values of the coefficients for the different subgraphs that contribute to E(Z3(Gn)4)− 3.
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