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DEVIATION PROBABILITIES FOR ARITHMETIC PROGRESSIONS

AND OTHER REGULAR DISCRETE STRUCTURES

GONZALO FIZ PONTIVEROS, SIMON GRIFFITHS, MATHEUS SECCO, AND ORIOL SERRA

Abstract. Let the random variable X := e(H[B]) count the number of edges of a hy-
pergraph H induced by a random m element subset B of its vertex set. Focussing on the
case that H satisfies some regularity condition we prove bounds on the probability that X
is far from its mean. It is possible to apply these results to discrete structures such as the
set of k-term arithmetic progressions in the cyclic group ZN . Furthermore, we show that
our main theorem is essentially best possible and we deduce results for the case B ∼ Bp is
generated by including each vertex independently with probability p.

1. Introduction

The problem of determining how well a random variable X is concentrated around its
mean E [X ] has a long history and is of great interest in many areas of mathematics. In the
area of Combinatorics this question most frequently arises when X counts the number of
occurrences of some substructure. The cases of subgraphs in a random graph and arithmetic
progressions in a random set have been studied extensively in recent years, as we discuss
below. There is a common framework in which these problems may be viewed: Given a
hypergraph H on [N ] := {1, . . . , N} and a distribution on subsets B ⊆ [N ] we may ask how
well concentrated is

X := e(H[B]) ,

the number of edges of H contained in B.

Work on this problem has focussed on the case that B ∼ Bp is a p–random subset of
[N ] (each element included independently with probability p). In this case general bounds
on deviation probabilities of the random variable X := e(H[Bp]) follow from the famous
inequality of Kim and Vu [23]. In the case of large deviations (of the order of the mean)
further progress has been made by Janson and Ruciński [21], who determined (under certain
conditions) the log probability log(P (X > (1 + δ)E [X ])) up to a factor of order log 1/p, and
by Warnke [31, 32] who determined the log probability up to a constant factor (in which
the constant may depend on δ). Recently Bhattacharya and Mukherjee [4] have shown how

Acknowledgements: G.F.P. was supported by BGSMath Postdoctoral Grant and the Spanish Research
Agency under projects MDM-2014-0445 and MTM2017-82166, S.G. was supported by CNPq bolsa de
produtividade em pesquisa (Proc. 310656/2016-8) and FAPERJ Jovem cientista do nosso estado (Proc.
202.713/2018), M.S. was supported as a PhD student by CAPES and O.S. was supported by grants MDM-
2014-0445 and MTM2017-82166-P of the Spanish Ministry of Science.

1

http://arxiv.org/abs/1910.12835v2


2 GONZALO FIZ PONTIVEROS, SIMON GRIFFITHS, MATHEUS SECCO, AND ORIOL SERRA

the large deviations framework introduced by Chatterjee and Varadhan [9] (in the context
of subgraph counts) may be used to understand when replica symmetry is broken.

We focus on the case B ∼ Bm is a uniformly randomm element subset of [N ] = {1, . . . , N}.
We prove upper bounds on the probability of deviations of the random variable e(H[Bm]),
which are particularly relevant in the case that the hypergraph H is highly regular. Fur-
thermore, since Bp, the p-random subset, may be obtained by averaging over the models
Bm where m is selected according to Bin(N, p), we may deduce results in the context of
p–random sets.

Given a k-uniform hypergraph H on vertex set [N ] and a subset B ⊆ [N ] we set

NH(B) := e(H[B]) ,

the number of edges of H contained in the set B. We also define

LH(m) := E
[

NH(Bm)
]

,

the expected value of NH(Bm) where Bm is a uniformly selected m element subset of [N ].
Our focus will be on studying

DH(Bm) := NH(Bm) − LH(m) ,

the deviation of NH(Bm) from its mean.

We may now state our bounds on the probability of certain deviations DH(Bm). We say
that a hypergraph H is r–tuple–regular1 if all r–tuples of vertices are included in the same
number of edges. Note that all hypergraphs are 0–tuple-regular, and a hypergraph is 1–
tuple-regular if it is regular in the usual sense that each vertex is in the same number of
edges. We also note that, by a simple double counting argument, r–tuple regular implies
r′–tuple regular for all 0 6 r′ 6 r.

Theorem 1.1. . Let 1 6 r 6 k. Let H be a k–uniform hypergraph on [N ]. Suppose that H
is (r − 1)–tuple–regular with maximum r-degree ∆r. Then

P
(

|DH(Bm)| > a
)

6 NOk(1) exp

(−Ωk(1)a
2/r

m∆
2/r
r

)

for all a > 0.

Remark 1. We focus throughout the article on hypergraphs rather than even more general
structures such as weighted hypergraphs or polynomials, that were considered by Kim and
Vu [23]. In fact, the proof goes through with no major changes for the case of hypergraphs
with positively weighted edges. Since a general weighted hypergraph may be written as a
difference of two with positive weights, one may deduce results in this setting. Similarly, a
bounded degree polynomial may be broken into a finite number of homogeneous polynomials
which correspond to weighted hypergraphs.

1Equivalently, in the language of combinatorial designs, H is an r − (N, k, λ) design, for some λ .



DEVIATION PROBABILITIES FOR ARITHMETIC PROGRESSIONS 3

Unfortunately some natural hypergraphs are not precisely r-tuple-regular, but just very
close to being so. Let d̄r = d̄r(H) denote the average degree of r-sets in a hypergraph H.
We say that H is (r, η)–near–regular if every r–tuple of vertices is contained in (1 ± η)d̄r
edges. Obviously, a hypergraph which is r-tuple-regular is (r, η)-near-regular for all η > 0.
In particular, Theorem 1.1 is a special case (η = 0) of the following theorem.

Theorem 1.2. Let 1 6 r 6 k and let η ∈ [0, 3−r+1]. Let H be a k–uniform hypergraph on
[N ]. Suppose that H is (r − 1, η)–near–regular with maximum r–degree ∆r. Then

P
(

|DH(Bm)| > a
)

6 NOk(1) exp

(−Ωk(1)a
2/r

m∆
2/r
r

)

for all

a > (10k!)10
r

e(H)

(

ηmk−1

Nk−1

)r/(r−1)

.

Remark 2. In the dense case (m = Θ(N)), the bound given by Theorem 1.2 is best possible
(up to the constant implicit in Ωk(1)) for all r > 0 and across the whole range Θ(1) 6 ∆r 6

Θ(N). Examples are given in Section 6.

Remark 3. One may easily observe by a double counting argument that an (r − 1, η)-near-
regular hypergraph H is (r′ − 1, η)-near-regular for all 1 6 r′ 6 r. So one may choose which
of the above inequalities to apply. Therefore

P
(

DH(Bm) > a
)

6 NOk(1) min
16r′6r

{

exp

(

−Ωk(1)a
2/r′

m∆
2/r′

r′

)}

.

It is worth remarking that the minimum is not always obtained at the extremes r′ ∈ {1, r},
see the application to arithmetic progressions in Section 5 for example.

Remark 4. The lower bound condition on a given in Theorem 1.2 is best possible in the weak
sense that there exist hypergraphs for which it cannot be significantly improved. However,
with extra conditions one may weaken the condition on a. In particular, the condition in
Theorem 1.2 may be weakened to

a > (10k!)10
r

e(H)

(

ηmk−2

Nk−2

)r/(r−2)

if H is regular and (r− 1, η)-near-regular, for r > 3. This result is stated as Proposition 3.5
in Section 3.4.

The existing literature has focussed on the probability of deviations of e(H(Bp)) in the
model of a p-random subset Bp ⊆ [N ], in which each element is included in Bp independently
with probability p. As usual in probabilistic combinatorics we allow for the possibility that
p = p(n) is a function of n. Our results apply for a range of moderate deviations, which are
smaller than the order of magnitude of the mean.
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For the range of deviations covered by the theorem below it precisely provides the asymp-
totic log probability of the corresponding deviation event. For comparison, the bounds given
by the Kim-Vu inequality [23] are not so strong, however they often apply for a much larger
range of deviations.

Theorem 1.3. Let k > r > 2. Let HN be a sequence of k-uniform hypergraphs which are
(r − 1, η)-near-regular with maximum r-degree ∆r and V (HN) = [N ]. Let δN be a sequence
satisfying

max

{

∆r(N logN)r/2

pk−r/2e(H)
,
(

ηrpk−r
)1/(r−1)

,
1√
pN

}

≪ δN ≪
(

pk−re(H)

N r∆r

)1/(r−1)

,

where 0 6 p 6 1 is bounded away from 1. Then

P
(

|DHN (Bp)| > δNL
HN (Bp)

)

= exp

(

−(1 + o(1))
δ2NpN

2k2(1− p)

)

.

Remark 5. As in Remark 4, we may be able extend the range of δN if we also know that H
is regular as well as (r − 1, η)-near-regular. Using Proposition 3.5 in place of Theorem 1.2

one may replace the term
(

ηrpk−r
)1/(r−1)

by
(

ηrp2k−2r
)1/(r−2)

in the lower bound of δN in
Theorem 1.3.

When ∆r is much larger than e(H)/N r, the order of magnitude of the average r-degree, the
range of deviations covered by the above theorem may be disappointing. In particular this
theorem does not appear to give new results when applied in the context of subgraph counts
in the Erdős-Rényi random graph G(n, p). For results concerning moderate deviations for
subgraph counts the reader may consult [12, 13, 14, 22]. There is a large literature dedicated
to problems of large deviations of subgraph counts, we encourage the interested reader to
consult the survey of Chatterjee [10], the recent article of Harel, Mousset and Samotij [17],
and the references therein.

On the other hand the condition on δN in Theorem 1.3 simplifies significantly if ∆r is of
the same order as the average r-degree. For example, when r = 2 and the hypergraph is
regular the condition simplifies to

max

{

logN

pk−1N
,

1√
pN

}

≪ δN ≪ pk−2 .
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As an immediate application, consider 3-term arithmetic progressions in the cyclic group
Z/NZ, for N prime. Let us write D3(Bp) for the deviation of the 3–progressions count in a p-
random subset Bp of Z/NZ. Note that the expected number of such arithmetic progressions

is L3(Bp) = p3
(

N
2

)

.

Theorem 1.4. Let δN be a sequence satisfying

max

{

logN

p2N
,

1√
pN

}

≪ δN ≪ p.

Then,

P
(

D3(Bp) > δNL
3(Bp)

)

= exp

(

−(1 + o(1))
δ2NpN

18(1− p)

)

.

Furthermore, the same bounds apply to the corresponding negative deviations.

See Section 5 for a discussion of Theorem 1.4 and analogous results.

We remark that the results above would not hold for hypergraphs without some kind of
regularity property. Related results for the non-regular setting, which includes arithmetic
progressions in [N ] = {1, . . . , N} for example, have recently been obtained by Christoph
Koch together with the second and third authors [15].

1.1. Layout of the article. In Section 2 we prepare for the proof of Theorem 1.2 by
stating a number of auxiliary results which we require. In particular we state a martingale
representation for the deviation DH(Bm), which may be of independent interest. This section
also introduces notation and required inequalities from probability theory.

In Section 3 we complete the proof of Theorem 1.2. This is achieved by a double induction
argument which links deviation probabilities to the increments of the martingale and vice-
versa in successive steps. In Section 4 we show how Theorem 1.3 may be deduced from
Theorem 1.2.

Section 5 illustrates possible applications of Theorem 1.2 to obtain deviation probabilities
for a variety of arithmetic structures. These include k–arithmetic progressions, Schur triples,
additive energy and, more generally, solutions of linear systems in random sets. We also
include a direct proof of the deviation result for 3-term arithmetic progressions which is
simpler than the general case (Theorem 1.2). Since many of the same ideas arise, the reader
may wish to read this proof before that of Theorem 1.2. See Theorem 5.2, and its proof.

In Section 6 we prove that the bound given in Theorem 1.2 is best possible up to the
implicit constant Ωk(1). The proof is based on a construction of hypergraphs with certain
regularity properties. The details of the construction are given in the appendix.

Finally, in Section 7 we give some concluding remarks and discuss some related open
questions.
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2. Overview and Auxiliary results

In this section we introduce notation and auxiliary results which we require for the proof
of Theorem 1.2. In particular we introduce a martingale representation for DH(Bm) (see
Proposition 2.1) which is the basis of our proof of Theorem 1.2. This representation is
similar in spirit to that introduced in [14] in the context of subgraph counts. The section
is divided into Section 2.1 in which we introduce notation, Section 2.2 in which we state
auxiliary results and Section 2.3 in which we state some inequalities from probability theory.
The proofs of the auxiliary results of Section 2.2 are presented in Section 2.4.

2.1. Notation. We will continue to use N for the number of vertices of the hypergraph H.
We set h := e(H).

We will continue to use m for the number of elements in the random subset Bm ⊆ [N ].
We denote its density by t := m/N . We sometimes consider the set Bi at an earlier step i
of the process. We denote its density s := i/N .

Given a vertex x of a hypergraph H we define

H(x) := {f \ {x} : f ∈ E(H) , x ∈ f} .
In the case that H is a k-uniform hypergraph on [N ], then H(x) is a (k − 1)-uniform
hypergraph on [N ] \ {x}.

In addition to NH(Bm), the number of edges of H in Bm, we shall also consider partially
filled edges (with multiplicity). Let NH

j (Bm) be the number of j–subsets of edges of H which
are contained in Bm. Equivalently,

NH
j (Bm) :=

∑

f∈E(H)

(|f ∩ Bm|
j

)

.

For a k-uniform hypergraph H we have NH(Bm) = NH
k (Bm).

Throughout the article we denote by

LH
j (m) := E

[

NH
j (Bm)

]

= h

(

k

j

)

(m)j
(N)j

, and (1)

DH
j (Bm) := NH

j (Bm) − LH
j (m) , (2)

the mean and deviation of NH
j (Bm) respectively.

In order to define the increments of the key martingale representation, we introduce2

XH
ℓ (Bi) := NH

ℓ (Bi) − E
[

NH
ℓ (Bi) |Bi−1

]

.

Since NH
ℓ (Bi−1) is determined by Bi−1 we observe that

XH
ℓ (Bi) = AH

ℓ (Bi) − E
[

AH
ℓ (Bi) |Bi−1

]

,

2Implicit in this notation is the fact that we regard Bi as a set together with the information of the order
in which the points were added.
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where
AH

ℓ (Bi) := NH
ℓ (Bi) − NH

ℓ (Bi−1)

denotes the increase in NH
ℓ (Bi) with the addition of the i–th element. Both the above

expressions for XH
ℓ (Bi) will be used during the proof. We observe that, by its definition, the

sequence XH
ℓ (Bi) is a difference martingale for each ℓ.

When the hypergraph H is clear from context we drop it from the notation. That is, we
write Nj(Bm), Dj(Bm), Aℓ(Bi), Xℓ(Bi), etc.

It will sometimes be convenient to write x ∈ a± b to express that x belongs to the interval
[a− b, a + b].

2.2. Auxiliary results. The most significant auxiliary result we state here is the martingale
representation for DH

j (Bm).

Proposition 2.1. Let H be a k-uniform hypergraph and let 1 6 j 6 k. Then

DH
j (Bm) =

m
∑

i=1

j
∑

ℓ=1

(N −m)ℓ(m− i)j−ℓ

(N − i)j

(

k − ℓ

k − j

)

XH
ℓ (Bi) . (3)

The equation (3) expresses DH
j (Bm) as a linear combination of difference martingales and

it is therefore a martingale.

It will also be useful to note the ways in which η-near-regularity is inherited.

Lemma 2.2. Let H be a k-uniform (r, η)-near-regular hypergraph with maximum (r + 1)-
degree ∆r+1, for some η ∈ [0, 1/3]. Let x ∈ V (H). Then

(i) H is (r − 1, η)-near-regular
(ii) H(x) is (r − 1, 3η)-near-regular with maximum r-degree at most ∆r+1.

A major part of the proof of Theorem 1.2 involves controlling the size of the increments
in the martingale representation. In some cases we can control |XH

ℓ (Bi)| directly and deter-
ministically.

Lemma 2.3. Let H be a k-uniform hypergraph on [N ] which is (r, η)-near-regular. If 1 6

ℓ 6 r, then

|XH
ℓ (Bi)| 6

2ℓ
(

k
ℓ

)

ηsℓ−1h

N
.

Finally, given a Bi–measurable event E let E− be the Bi−1–measurable event that E
occurs for some extension Bi−1 ∪ {x} of Bi−1. Since the conditional probability P (E|E−) is
between 1/N and 1 we immediately obtain the following.

Lemma 2.4. Let E be a Bi measurable then

P (E) 6 P
(

E−
)

6 NP (E) .
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2.3. Martingale Inequalities. Our proofs will rely on the Azuma–Hoeffding [1, 18] mar-
tingale inequality.

Lemma 2.5 (Azuma–Hoeffding inequality). Let (Si)
m
i=0 be a martingale with increments

(Xi)
m
i=1, and let ci = ‖Xi‖∞ for each 1 6 i 6 m. Then, for each a > 0,

P (Sm − S0 > a) 6 exp

( −a2

2
∑m

i=1 c
2
i

)

.

Furthermore, the same bound holds for P (Sm − S0 < −a).

By considering a “truncation” of the increments in which Xi is set to 0 if it could be larger
than ci with positive probability then one immediately obtains the following straightforward
variant. We state the lemma in our context of a sequence of random sets (Bi)

N
i=0. This process

may be defined by taking b1, . . . , bN to be a uniformly random permutation of {1, . . . , N}
and setting Bi = {b1, . . . , bi} for each i = 0, . . .N .

Lemma 2.6 (Azuma–Hoeffding inequality (a variant)). Let (Si)
m
i=0 be a martingale with

respect to the natural filtration of the process (Bi)
N
i=0, let (Xi)

m
i=1 be the increments of the

process and let (ci)
N
i=1 be a sequence of real numbers. Then, for each a > 0,

P (Sm − S0 > a) 6 exp

( −a2

2
∑m

i=1 c
2
i

)

+ N

m
∑

i=1

P (|Xi| > ci) .

Furthermore, the same bound holds for P (Sm − S0 < −a).

Proof. We first define for 1 6 i 6 m the “truncation” X∗
i of the increment Xi as

X∗
i := Xi 1‖Xi|Bi−1‖∞6ci .

Let us define a new process (S∗
j )

m
j=0 by S∗

0 := S0 and for 1 6 j 6 m:

S∗
j := S∗

0 +

j
∑

i=1

X∗
i .

Since the event considered by the indicator function is Bi−1–measurable we have E [X∗
i |Bi−1] =

0 and so (S∗
j )

m
j=0 is a martingale with respect to the natural filtration of the process (Bi)

N
i=0.

Note also that the increments of this process satisfy |X∗
i | 6 ci almost surely. Therefore the

Azuma–Hoeffding inequality gives us

P (S∗
m − S∗

0 > a) 6 exp

( −a2

2
∑m

i=1 c
2
i

)

. (4)

We also observe that by union bound and Lemma 2.4
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P (S∗
m 6= Sm) 6

m
∑

i=1

P (X∗
i 6= Xi)

=
m
∑

i=1

P (‖Xi|Bi−1‖∞ > ci)

6 N
m
∑

i=1

P (|Xi| > ci) .

(5)

Finally we have

P (Sm − S0 > a) 6 P (S∗
m − S∗

0 > a) + P (S∗
m 6= Sm)

and so by (4) and (5) we get the desired result. �

2.4. Proofs of auxiliary results. We now prove Proposition 2.1 and Lemmas 2.2 and 2.3.

Proof of Proposition 2.1. Fix the hypergraph H. We prove the required expression (3) by a
double induction over m and j. The base cases j = 0 and m = 0 are trivial.

For the induction step we may assume that (3) holds if j′ < j or if j′ = j and m′ < m.
The argument proceeds by focussing on the latest point added. We recall that Xj(Bm) =
Aj(Bm) − E [Aj(Bm)|Bm−1] and that Aj(Bm) = Nj(Bm) − Nj−1(Bm−1) counts the increase
in Nj(Bm) with the addition of the m–th element of Bm. Considering that any such increase
must consist of a (j − 1)–subset together with an extra element of the same edge (which is
not already present) and each vertex has probability 1/(N −m+ 1) to be selected next, we
have that

E [Aj(Bm)|Bm−1] =
(k − j + 1)Nj−1(Bm−1) − jNj(Bm−1)

N −m+ 1
.

We will use this expression to find a suitable expression for Dj(Bm) in terms of the deviations
Dj−1(Bm−1), Dj(Bm−1) and Xj(Bm). The first step will be to express Dj as Nj − Lj . To
reach the later steps we expand Nj(Bm) as Aj(Bm) +Nj(Bm−1) and when possible express
Nj as Lj +Dj and use the identity

(k − j + 1)Lj−1(Bm−1) − jLj(Bm−1)

N −m+ 1
= Lj(m) − Lj(m− 1) .

We obtain the following expression for Dj(Bm):

Dj(Bm) = Nj(Bm) − Lj(m)

= Aj(Bm) + Dj(Bm−1) −
(

Lj(m) − Lj(m− 1)
)

=
N −m− j + 1

N −m+ 1
Dj(Bm−1) +

(k − j + 1)

N −m+ 1
Dj−1(Bm−1) + Xj(Bm) .
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The required expression (3) now follows immediately from the induction hypothesis by simply
checking the coefficient of each Xℓ(Bi). This may be verified easily by checking the cases (i)
i = m and ℓ = j, (ii) i = m and ℓ < j, (iii) i < m and ℓ = j, and (iv) i < m and ℓ < j.

In case (i), the coefficients on each side are 1 and in case (ii), the coefficients on each side
are 0. In case (iii), the coefficients on both sides are (N −m)j/(N − i)j . Finally in case (iv),
the coefficient on the right hand side is given by

N −m− j + 1

N −m+ 1
· (N −m+ 1)ℓ(m− 1− i)j−ℓ

(N − i)j
·
(

k − ℓ

k − j

)

+
k − j + 1

N −m+ 1
· (N −m+ 1)ℓ(m− 1− i)j−1−ℓ

(N − i)j−1
·
(

k − ℓ

k − j + 1

)

=
(N −m)ℓ−1(m− 1− i)j−1−ℓ

(N − i)j

(

k − ℓ

k − j

)

[(N −m− j + 1)(m− i− j + ℓ) + (N − i− j + 1)(j − ℓ)]

=
(N −m)ℓ−1(m− 1− i)j−1−ℓ

(N − i)j

(

k − ℓ

k − j

)

· (N −m− ℓ+ 1)(m− i)

=
(N −m)ℓ(m− i)j−ℓ

(N − i)j

(

k − ℓ

k − j

)

,

which agrees with the coefficient on the left hand side. �

Proof of Lemma 2.2. Part (i) is immediate by a double counting argument. This argument
shows that the average (r− 1)–degree is (N − r+1)/r times the average r–degree, while the
maximum (r − 1)–degree is at most this multiple of the maximum r–degree, and similarly
for the minimum.

For (ii) we observe that H(x) is (k − 1)-uniform with maximum r-degree at most ∆r+1.
We will prove now that H(x) is (r − 1, 3η)-near-regular. Since H is (r, η)-near-regular, it is
also (1, η)-near-regular, by (i), and therefore dH(x) > (1− η)hk/N . And so it follows from
a simple double counting argument that the average (r − 1)-degree in H(x) satisfies

d̄
H(x)
r−1 =

(k − 1)r−1

(N − 1)r−1
dH(x) = d̄H

r · N
hk

dH(x) > (1− η)d̄Hr .

Now let A ⊆ V (H(x)) be an (r − 1) element set. Since H is (r, η)-near-regular we have

dH(x)(A) = dH(A ∪ {x}) 6 (1 + η)d̄H
r ,

and so, since η ∈ [0, 1/3] we have

dH(x)(A) 6
1 + η

1− η
d̄
H(x)
r−1 6 (1 + 3η) d̄

H(x)
r−1 .
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A near identical argument gives the lower bound (1− η)/(1+ η) > (1− 3η) times d̄
H(x)
r−1 , and

so completes the proof. �

We now prove Lemma 2.3, which bounds the possible value of |Xℓ(Bi)| in a k-uniform
(r, η)-near-regular hypergraph H.

Proof of Lemma 2.3. Recall first that Xℓ(Bi) := Aℓ(Bi)−E [Aℓ(Bi)|Bi−1] and that Aℓ(Bi) =
Nℓ(Bi)−Nℓ(Bi−1). If bi is the last element added to Bi, i.e, Bi = Bi−1 ∪ {bi}, then

Aℓ(Bi) =
∑

C⊆Bi−1

|C|=ℓ−1

d(C ∪ {bi}).

As 1 6 ℓ 6 r and H is (r, η)-near-regular, we have that H is also (ℓ, η)-near-regular by part
(i) of Lemma 2.2. And so d(C ∪ {bi}) = (1 ± η)d̄ℓ for all (ℓ− 1) element subsets C ⊆ Bi−1.
It follows that

Aℓ(Bi) = (1± η)

(

i− 1

ℓ− 1

)

d̄ℓ .

Now, as Xℓ(Bi) := Aℓ(Bi)− E [Aℓ(Bi)|Bi−1], it follows that

|Xℓ(Bi)| 6 2η

(

i− 1

ℓ− 1

)

d̄ℓ .

Finally, since d̄ℓ = h
(

k
ℓ

)

/
(

N
ℓ

)

, and using the bound (i− 1)ℓ−1 6 sℓ−1(N − 1)ℓ−1, we obtain

|Xℓ(Bi)| 6
2ℓ
(

k
ℓ

)

ηsℓ−1h

N
,

as required. �

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is given by induction on r. In fact we prove two series of
statements with a joint induction. Since NH

k (Bm) = NH(Bm), it is clear that Theorem 1.2
is included in the sequence of statements Pr, r > 1.

Pr: For all k > j > r and η ∈ [0, 3−r+1], for all k-uniform hypergraphs H on [N ] which
are (r − 1, η)-near-regular with maximum r-degree ∆r, we have

P
(

DH
j (Bm) > a

)

6 NOk(1) exp

(−Ωk(1)a
2/r

m∆
2/r
r

)

for all 0 6 m 6 N and all a > Crη
r/(r−1)ht(j−1)r/(r−1), where Cr = (10k!)10

r

.

The other sequence of statements Qr will be related to the behaviour of the random
variables XH

ℓ (Bi) that occur in the martingale representation of DH(Bm). We define Qr to
be the following statement.
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Qr: For all k > ℓ > r+ 1 and η ∈ [0, 3−r], for all k-uniform hypergraphs H on [N ] which
are (r, η)-near-regular with maximum (r + 1)-degree ∆r+1, we have

P
(

|XH
ℓ (Bi)| > α

)

6 NOk(1) exp

(

−Ωk(1)α
2/r

i∆
2/r
r+1

)

for all 0 6 i 6 N and all α > Drηs
ℓ−1h/N , where Dr = (10k!)10

r+10.

The base case of the induction, P1, is proved in Section 3.1 by a straightforward application
of the Azuma–Hoeffding inequality. We complete the proof by showing that Pr implies Qr

and Qr implies Pr+1. These proofs are given in Sections 3.2 and 3.3 respectively.

3.1. The base case – P1. Let us fix k > j > 1, η ∈ [0, 1], and a k-uniform hypergraph H
on [N ] with maximum degree ∆.

We use the Azuma–Hoeffding inequality applied to the martingale representation:

Dj(Bm) =
m
∑

i=1

j
∑

ℓ=1

(N −m)ℓ(m− i)j−ℓ

(N − i)j
·
(

k − ℓ

k − j

)

Xℓ(Bi) .

In order to do so we must bound the magnitude of the increment

Yi :=

j
∑

ℓ=1

(N −m)ℓ(m− i)j−ℓ

(N − i)j
·
(

k − ℓ

k − j

)

Xℓ(Bi)

of the martingale. We observe that the first fraction is always at most 1, and so the coefficient
itself is Ok(1). Recalling that Xℓ(Bi) := Aℓ(Bi)−E [Aℓ(Bi)|Bi−1], and that both Aℓ(Bi) and
E [Aℓ(Bi)|Bi−1] are non-negative we have

‖Xℓ(Bi)‖∞ 6 ‖Aℓ(Bi)‖∞ 6 Ok(1) · ∆ a.s.

where the second inequality follows since Aℓ(Bi) = Nℓ(Bi) − Nℓ(Bi−1) is certainly at most
(

k−1
ℓ−1

)

= Ok(1) times dH(bi) 6 ∆ (any “new” ℓ-sets must be in edges containing bi).

Since Yi consists of a finite number of terms and the coefficients are Ok(1),

|Yi| 6 Ok(1) · ∆ a.s.

By an application of the Azuma–Hoeffding inequality to Dj(Bm) =
∑m

i=1 Yi, we have that

P (Dj(Bm) > a) 6 exp

( −a2

2mOk(1)∆2

)

= exp

(−Ωk(1)a
2

m∆2

)

.

This complete the proof of the base case P1.
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3.2. P implies Q. In this section, we shall prove that Pr ⇒ Qr. Let us fix k > ℓ > r + 1,
η ∈ [0, 3−r] and a k-uniform hypergraph H on [N ] which is (r, η)-near-regular. Let ∆r+1 be
the maximum (r+1)-degree of H. Let us also fix 0 6 i 6 N and α > Drηs

ℓ−1h/N . In order
to prove Qr we must prove that

P (|Xℓ(Bi)| > α) 6 NOk(1) exp

(

−Ωk(1)α
2/r

i∆
2/r
r+1

)

. (6)

We recall that Xℓ(Bi) = Aℓ(Bi) − E [Aℓ(Bi)|Bi−1]. Our proof of (6) is based on the
following proposition on the deviation of Aℓ(Bi) from its mean. We set

λℓ(i) := E [Aℓ(Bi)] =
ℓ
(

k
ℓ

)

h(i− 1)ℓ−1

(N)ℓ
.

Note that λℓ(Bi) is also equal to Lℓ(i)− Lℓ(i− 1).

Proposition 3.1.

P
(
∣

∣Aℓ(Bi) − λℓ(i)
∣

∣ > α
)

6 NOk(1) exp

(

−Ωk(1)α
2/r

i∆
2/r
r+1

)

for all α > Drηs
ℓ−1h/2N .

Let us first observe that (6) follows from Proposition 3.1. Since Xℓ(Bi) = Aℓ(Bi) −
E [Aℓ(Bi)|Bi−1], the event |Xℓ(Bi)| > α of (6) may only occur if either |Aℓ(Bi)− λℓ(i)| > α/2
or |E [Aℓ(Bi)|Bi−1] − λℓ(i)| > α/2, by the triangle inequality. The first of these events has
probability at most

NOk(1) exp

(

−Ωk(1)α
2/r

i∆
2/r
r+1

)

by Proposition 3.1. The second may only occur if there exists x ∈ [N ] \ Bi−1 such that
|Aℓ(Bi−1 ∪ {x}) − λℓ(i)| > α/2 and so the same bound holds by Lemma 2.4 and Proposi-
tion 3.1. This completes the proof of (6).

All that remains is to prove Proposition 3.1. We shall base the proof of Proposition 3.1 on
Lemma 3.2, which shows how we may view Aℓ in terms a deviation in a hypergraph H(x),
and Lemma 3.3 which uses Pr to bound the probability of such deviations.

It will be useful to condition on the element bi = x that is added as the ith element of the
process. Given that bi = x the set Bi is distributed as

Bi = B
(x)
i−1 ∪ {x}

where B
(x)
i−1 is a uniformly random subset of i− 1 elements of [N ] \ {x}. We also recall that

we define the hypergraph

H(x) := {f \ {x} : f ∈ E(H) , x ∈ f} .
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The first lemma shows that Aℓ(B
(x)
i−1 ∪ {x}) may be expressed precisely in terms of the

deviation of (ℓ− 1) sets in the hypergraph H(x)

Lemma 3.2. For each x ∈ [N ]

Aℓ(B
(x)
i−1 ∪ {x}) = D

H(x)
ℓ−1 (B

(x)
i−1) + E

[

N
H(x)
ℓ−1 (B

(x)
i−1)
]

= D
H(x)
ℓ−1 (B

(x)
i−1) + λℓ(i) ± ηℓ

(

k
ℓ

)

hsℓ−1

N
.

We use Pr to provide a bound on the probability that D
H(x)
ℓ−1 (B

(x)
i−1) is large.

Lemma 3.3. Let r + 1 6 ℓ 6 k. Then

P

(

∣

∣D
H(x)
ℓ−1 (B

(x)
i−1)
∣

∣ > α
)

6 NOk(1) exp

(

−Ωk(1)α
2/r

i∆
2/r
r+1

)

for all α > Cr(3η)
r/(r−1)e(H(x))s(ℓ−2)r/(r−1). In particular, the result holds for all α >

Drηs
ℓ−1h/4N .

Let us see how Proposition 3.1 follows from these lemmas.

Proof of Proposition 3.1. By Lemma 3.2 we have that

∣

∣Aℓ(Bi) − λℓ(i)
∣

∣ 6
∣

∣D
H(x)
ℓ−1 (B

(x)
i−1)
∣

∣ +
ηℓ
(

k
ℓ

)

hsℓ−1

N
.

Since the second term on the right is at most α/2 (this follows from the condition on α and
the fact that Dr > 4ℓ

(

k
l

)

), the event that
∣

∣Aℓ(Bi) − λℓ(i)
∣

∣ > α is contained in the event that

|DH(x)
ℓ−1 (B

(x)
i−1)| > α/2. The required bound now follows immediately from Lemma 3.3. �

All that remains is to prove Lemma 3.2 and Lemma 3.3. We begin with Lemma 3.2.

Proof of Lemma 3.2. Recall that

Aℓ(B
(x)
i−1 ∪ {x}) := Nℓ(B

(x)
i−1 ∪ {x}) − Nℓ(B

(x)
i−1)

which is precisely the number of pairs (S, f) where S ⊆ B
(x)
i−1 is a subset of ℓ − 1 elements,

and f is an edge of H such that S ∪ {x} ⊆ f . Setting f− = f \ {x} we note that this

condition is equivalent to the fact that S ⊆ f−. It follows that Aℓ(B
(x)
i−1 ∪ {x}) is precisely

N
H(x)
ℓ−1 (B

(x)
i−1), and so

Aℓ(B
(x)
i−1 ∪ {x}) = D

H(x)
ℓ−1 (B

(x)
i−1) + E

[

N
H(x)
ℓ−1 (B

(x)
i−1)
]
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by the definition of D
H(x)
ℓ−1 (B

(x)
i−1) as the deviation of N

H(x)
ℓ−1 (B

(x)
i−1) from its mean. All that

remains is to prove that

E

[

N
H(x)
ℓ−1 (B

(x)
i−1)
]

= λℓ(i) ± ηℓ
(

k
ℓ

)

sℓ−1h

N
.

Since H is (r, η)-near-regular (and so (1, η)-near-regular by Lemma 2.2) we have e(H(x)) =
dH(x) = (1± η)hk/N . We may also observe that H(x) is (k − 1)-uniform on N − 1 vertices
and so

E

[

N
H(x)
ℓ−1 (B

(x)
i−1)
]

=
e(H(x))

(

k−1
ℓ−1

)

(i− 1)ℓ−1

(N − 1)ℓ−1

=
ℓ
(

k
ℓ

)

h(i− 1)ℓ−1

(N)ℓ
± ηℓ

(

k
ℓ

)

h(i− 1)ℓ−1

(N)ℓ

= λℓ(i) ± ηℓ
(

k
ℓ

)

sℓ−1h

N
,

as required. �

Proof of Lemma 3.3. We prove the required bound by applying the inequality given by Pr

to the hypergraph H(x). We observe that H(x) is a (k − 1)-uniform hypergraph on N − 1
vertices. We may also observe that H(x) inherits the regularity condition (r − 1, 3η)-near-
regular from H by Lemma 2.2 and the maximum r-degree of H(x) is at most ∆r+1. By Pr

we have that

P

(

∣

∣D
H(x)
ℓ−1 (B−

i−1)
∣

∣ > α
)

6 NOk(1) exp

(

−Ωk(1)α
2/r

i∆
2/r
r+1

)

for all α > Cr(3η)
r/(r−1)e(H(x))s(ℓ−2)r/(r−1). This is exactly the result we need. All that

remains is to verify that this includes all α > Drηs
ℓ−1h/4N .

We have that Dr > 10k · 3r/(r−1)Cr, η < 1, (ℓ − 2)r 6 (ℓ − 1)(r − 1) and e(H(x)) 6

(1 + η)hk/N 6 2hk/N . It follows that

Drηhs
ℓ−1

4N
>

10Cr(3η)
r/(r−1)hks(ℓ−2)r/(r−1)

4N

> Cr(3η)
r/(r−1)e(H(x))s(ℓ−2)r/(r−1) .

This confirms that the inequality holds across the whole of the range we claimed. �

3.3. Q implies P. In this section, we will prove that Qr ⇒ Pr+1. The main idea of
the induction step is using our information about the magnitude of increments combined
with Lemma 2.6. Let us fix k > j > r + 1, η ∈ [0, 3−r] and a k-uniform (r, η)-near-
regular hypergraph H on [N ] with maximum (r + 1)-degree ∆r+1. We recall the martingale
representation

Dj(Bm) =

m
∑

i=1

Yi,
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where

Yi =

j
∑

ℓ=1

(N −m)ℓ(m− i)j−ℓ

(N − i)j

(

k − ℓ

k − j

)

Xℓ(Bi) .

We prove now an auxiliary lemma that controls the probability that the increments are large.

Lemma 3.4. If α > jk!Drηt
j−1h/N , then

P (|Yi| > α) 6 NOk(1) exp

(

−Ωk(1)α
2/r

m∆
2/r
r+1

)

.

Proof. We first observe that

|Yi| 6
j
∑

ℓ=1

k!tj−ℓ|Xℓ(Bi)|, (7)

since
(N −m)ℓ(m− i)j−ℓ

(N − i)j

(

k − ℓ

k − j

)

6 tj−lk!.

By an application of Lemma 2.3 and Qr, since α > jk!Drηt
j−1h/N the following bound

holds for all 1 6 ℓ 6 k:

P

(

|Xℓ(Bi)| >
αtℓ−j

jk!

)

6 NOk(1) exp

(

−Ωk(1)α
2/r

m∆
2/r
r+1

)

. (8)

Finally, using (7), (8) and the union bound, we have

P (|Yi| > α) 6 NOk(1) exp

(

−Ωk(1)α
2/r

m∆
2/r
r+1

)

.

�

We are now ready to prove Pr+1. Let a > Cr+1η
(r+1)/rht(j−1)(r+1)/r . Choosing α =

ar/(r+1)∆
1/(r+1)
r+1 , we can easily verify that

α > jk!Drηt
j−1h/N,

using ∆r+1 > h/(N r+1) and Cr+1 > k2(k!)2D2
r . By an application of the Azuma–Hoeffding

inequality (the version given in Lemma 2.6) with ci = α for every i, we have

P (Dj(Bm) > a) 6 exp

( −a2

2mα2

)

+N
m
∑

i=1

P (|Yi| > α) .

By Lemma 3.4, we obtain

P (Dj(Bm) > a) 6 exp

( −a2

2mα2

)

+NOk(1) exp

(

−Ωk(1)α
2/r

m∆
2/r
r+1

)

.
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Since α = ar/(r+1)∆
1/(r+1)
r+1 , this last inequality gives us

P (Dj(Bm) > a) 6 NOk(1) exp

(

−Ωk(1) a
2/(r+1)

m∆
2/(r+1)
r+1

)

,

which establishes the induction step.

Now that we have established the base case P1 and the implications Pr ⇒ Qr and Qr ⇒
Pr+1 for all r > 1 we have completed the proof of Theorem 1.2.

3.4. A weaker condition if H is regular and (r − 1, η)-near-regular. We remarked
(Remark 4) in the Introduction that the condition on a may be weakened to

a > (10k!)10
r

e(H)

(

ηmk−2

Nk−2

)r/(r−2)

if H is regular and (r − 1, η)-near-regular, for r > 3.

The proof is essentially identical to that given above. We highlight only the differences.

Let H be regular and (r, η)-near-regular. In this case the ±ηℓ(kℓ)sℓ−1h

N
term in Lemma 3.2

is not necessary. It follows that in this case Qr holds for all α > Cr(3η)
r/(r−1)hs(ℓ−2)r/(r−1)

(by a simple adaptation of the proof of Proposition 3.1).

It is then possible to prove the result of Lemma 3.4 for all α > 10j(k+1)!Crη
r/(r−1)ht(j−2)r/(r−1)/N .

Following the rest of the proof of Section 3.3 we obtain the required result for all a >

Cr+1η
(r+1)/(r−1)ht(j−2)(r+1)/(r−1). Taking j = k and swapping r for r − 1 we obtain the

claimed result, which we now state as a proposition.

Proposition 3.5. Let 1 6 r 6 k and let η ∈ [0, 3−r+1]. Let H be a k-uniform hypergraph on
[N ]. Suppose that H is regular and (r− 1, η)-near-regular with maximum r-degree ∆r. Then

P
(

|DH(Bm)| > a
)

6 NOk(1) exp

(−Ωk(1)a
2/r

m∆
2/r
r

)

for all

a > (10k!)10
r

e(H)

(

ηmk−2

Nk−2

)r/(r−2)

4. Deviations DH(Bp) – Proof of Theorem 1.3

Deviations D(Bp) in the p-model are intimately related to deviations D(Bm) in the m-
model, via the identity

P
(

DH(Bp) > a
)

=
N
∑

m=0

bN,p(m)P
(

NH(Bm) > pkh + a
)

, (9)
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where bN,p(m) := P (Bin(N, p) = m). Recall that LH(p) = pkh is the expected value of
NH(Bp) and we study the probability that the deviation satisfies DH(Bp) > δNL

H(p).

Our proof of Theorem 1.3 consists of a lower bound (see Section 4.1) and an upper bound
(see Section 4.2). The lower bound is based on on the fact that P

(

N(Bm) > pkh + a
)

is
increasing in m and so

P (D(Bp) > δNL(p)) > BN,p(m+)P
(

N(Bm+) >
(

1 + δN
)

L(p)
)

(10)

for all m+ > 0, where BN,p(m) := P (Bin(N, p) > m). For a particular choice of m+ =
m+(δN ) we shall prove that

BN,p(m+)P
(

N(Bm+) >
(

1 + δN
)

L(p)
)

= exp

(

−(1 + o(1))
δ2NpN

2k2(1− p)

)

which gives the required lower bound.

We need to work harder to prove the upper bound. We must control all contributions to
the sum (9). We again use that P

(

N(Bm) > pkh + a
)

is increasing to observe that

P (D(Bp) > δNL(p)) 6 P
(

N(Bm−
) >

(

1 + δN
)

L(p)
)

+ BN,p(m−)

for all m− > 0. We shall then choose m− = m−(δN) such that

BN,p(m−) = exp

(

−(1 + o(1))
δ2NpN

2k2(1− p)

)

and

P
(

N(Bm−
) >

(

1 + δN
)

L(p)
)

≪ exp

( −δ2NpN

2k2(1− p)

)

.

The latter inequality is proved using Theorem 1.2.

Based on the above sketch it is clear that the probabilities bN,p(m) and BN,p(m), related
to the binomial distribution, are central to our proof. While more precise estimates, up to
a multiplicative factor of 1 + o(1) are known3, the following is sufficient for our purposes.
Throughout the section we set q := 1− p.

Theorem 4.1. Suppose that (xN ) is a sequence such that 1 ≪ xN ≪ √
Npq. Then

bN,p(⌊pN + xN

√

Npq⌋) =
1√
Npq

exp

(

−(1 + o(1))
x2
N

2

)

and

BN,p(⌊pN + xN

√

Npq⌋) = exp

(

−(1 + o(1))
x2
N

2

)

.

To see that these bounds do indeed follow from Theorem 1.13 of [14] (for example) simply
note that for any sequence 1 ≪ xN ≪

√
Npq we have that:

3see for example the bound in [14], adapted from Bahadur [2]
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(i) the E(xN , N) expression is at most o(x2
N) (by comparison with a geometric series),

and
(ii) the multiplicative term satisfies 1/

√
2πxN = exp(− log(2πxN )/2) = exp(o(x2

N )) .

Both of the values m− and m+ discussed above will be chosen in relation to

m∗ := (1 + δN )
1/kpN ,

which is chosen so that L(m∗) = L(p). Let us also define

x(m) :=
m− pN√

Npq

in general and, in particular, set x∗ := x(m∗).

4.1. Lower Bound. First we choose a sequence fN such that

max

{

ηr/(r−1)p(k−1)/(r−1)N,
pr/2−k+1N r/2+1∆r(logN)r/2

h

}

≪ fN ≪ δNpN.

Note that since

δN ≫ max

{

∆r(N logN)r/2

pk−r/2h
,
(

ηrpk−r
)1/(r−1)

}

we can take such sequence. We then choose m+ = m∗ + fN and we also set x+ = x(m+).

Now we prove the following two lemmas, which together with (10), will give us the desired
lower bound.

Lemma 4.2.

P
(

N(Bm+) > (1 + δN)L(p)
)

= 1− o(1).

Proof. Note first that it suffices to prove that

P
(

D(Bm+) 6 (1 + δN)L(p)− L(m+)
)

= o(1).

Observe now that

(1 + δN )L(p)− L(m+) = hpk
[

(1 + δN)p
k − (m+)k

(N)k

]

6 h

[

(1 + δN)p
k − (m∗ + fN − k)k

Nk

]

6 h

[

(1 + δN)p
k − mk

∗

Nk
− mk−1

∗ fN
Nk

]

6 −hpk−1fN
N

.

So we have

P
(

D(Bm+) 6 (1 + δN)L(p)− L(m+)
)

6 P

(

D(Bm+) 6 −hpk−1fN
N

)

.
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Let us denote a = (hpk−1fN )/N . Since fN ≫ ηr/(r−1)p(k−1)/(r−1)N , if N is sufficiently large,
we can apply Theorem 1.2 and obtain

P
(

D(Bm+) 6 −a
)

6 NOk(1) exp

(−Ωk(1)a
2/r

m∆
2/r
r

)

.

Using now that

fN ≫ pr/2−k+1N r/2+1∆r(logN)r/2

h
we can easily verify that

NOk(1) exp

(−Ωk(1)a
2/r

m∆
2/r
r

)

= o(1),

which gives us the desired result. �

Lemma 4.3.

BN,p(m+) = exp

(

−(1 + o(1))
δ2NpN

2k2(1− p)

)

.

Proof. By Theorem 4.1, we have

BN,p(m+) = exp

(

−(1 + o(1))
x2
+

2

)

.

Observe now that
x+

x∗
= 1 +

fN
pN [(1 + δN )1/k − 1]

.

Since δN ≪ 1, (1 + δN)
1/k − 1 = Θ(δN) and as fN ≪ δNpN , we obtain x+ = (1 + o(1))x∗,

which gives us

BN,p(m+) = exp

(

−(1 + o(1))
x2
∗

2

)

.

Finally, note that

x∗ =

√

pN

1− p

(

(1 + δN)
1/k − 1

)

and since (1 + δN)
1/k − 1 = (1 + o(1))δN/k, we obtain the required result. �

4.2. Upper Bound. Our upper bound on P
(

DH(Bp) > δNL
H(p)

)

requires us to control all
the terms of the sum (9), i.e., all the terms in the sum

P
(

DH(Bp) > δNL
H(p)

)

=
N
∑

m=0

bN,p(m)P
(

NH(Bm) > pkh + δNL
H(p)

)

.

In fact we do not require a very precise analysis. We shall simply break the sum into two
parts m < m− and m > m− for a value of m− we define below. We bound the terms m > m−
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using only the first probability (the binomial) and the terms m < m− using only the second
probability (the deviation in the model Bm).

Let gN be a sequence satisfying

ηr/(r−1)p(k−1)/(r−1)N

h
,
N r/2+1(logN)r/2∆r

pk−r/2−1h
,
δrNN

r+1∆r

pk−r−1h
≪ gN ≪ δNpN .

It is certainly possible to choose such a sequence by the conditions on δN in Theorem 1.3.

We define m− := m∗ − gN and set x− = x(m−). By a calculation similar to that given
in (11) we have

L(m−) 6 (1 + δN)L(p) − hpk−1gN
N

. (11)

We now bound the two parts of the sum. First, for the part m > m− we simply use that
the sum of these terms is at most

BN,p(m−) = exp

(

−(1 + o(1))
δ2NpN

2k2(1− p)

)

.

This may be verified by simply following the proof of Lemma 4.3 and using that gN ≪ δNpN .

Now, we bound the rest of the sum by exp(−x2
∗) using the following lemma. This will

complete the proof of the upper bound.

Lemma 4.4.
m−
∑

m=0

P
(

NH(Bm) > pkh + δNL
H
( p)
)

6 exp(−x2
∗) .

Proof. Since P
(

NH(Bm) > pkh + δNL
H(p)

)

is increasing in m it suffices to prove that

P
(

NH(Bm−
) > pkh + δNL

H(p)
)

6
exp(−x2

∗)

N
. (12)

By (11) this event is contained in the event that DH(Bm−
) > hpk−1gN/N . Three lower

bounds on gN were given above. The first ensures that we may apply Theorem 1.2 to bound
the probability of the deviation DH(Bm−

) > hpk−1gN/N . The second and third give that

the resulting bound is at most NOk(1) exp(−ω(logN)) and NOk(1) exp(ω(x2
∗)) respectively. In

particular, for any constant C we have that

P
(

DH(Bm−
) > hpk−1gN/N

)

6 NOk(1) exp(−C logN − x2
∗)

for all sufficiently large N . Choosing C to be one larger than the constant of the Ok(1) we
obtain (12), and so complete the proof of the lemma. �
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5. Arithmetic configurations in random sets

In this section we collect some applications of Theorems 1.2 and 1.3 to illustrate its use
in obtaining bounds of deviations for the count of arithmetic structures in random sets. To
simplify matters we will consider the ambient group to be the cyclic group Z/NZ with N
prime.

5.1. k–progressions. The initial motivation of this article was to analyze moderate devia-
tions in counting the number of k–term arithmetic progressions (k–progressions for short) in
random sets. As it has been mentioned in the Introduction, large deviations for this problem
have been intensively studied and they are currently well understood, see [21, 31, 5, 17, 8].
It was also proved by Berkowitz, Sah and Sawhney [6] that the number of k–progressions in
a dense binomial random subset of Zn does not obey a local central limit theorem, despite
obeying a central limit theorem. We consider here moderate deviations for the m–model
first. Let Nk(Bm) denote the number of k–progressions in a random subset Bm of the cyclic
group Z/NZ, N prime, and by Dk(Bm) the deviation of Nk(Bm).

Let Hk be the k–uniform hypergraph with vertex set Z/NZ and edges the nontrivial k–
progressions {x, x+d, . . . , x+(k−1)d} with x ∈ Z/NZ and d ∈ {1, 2, . . . , (N−1)/2}. Every
pair {x, y} of elements in Z/NZ is contained in

(

k
2

)

edges of Hk, so that the hypergraph is
2–regular and hence 1–regular. A direct application of Theorem 1.1 for r = 2 gives the
following result.

Theorem 5.1. For each a > 0,

P
(

|Dk(Bm)| > a
)

6 N c1 exp
(

−c2
a

m

)

for some constants c1, c2 which depend only on k.

The expected value of Nk(Bm) in this example is (see (1))

Lk(m) =

(

N

2

)

(m)k
(N)k

∼ mk

2Nk−2
.

Bounds on moderate deviations are thus obtained in Theorem 5.1 for a ≪ mk/Nk−2.

In particular, for m logN ≪ a ≪ mk/Nk−2 we obtain exponentially small bounds for
moderate deviations of the k–progressions count, which apply to random sets of Z/NZ of size
m ≫ (Nk−2 logN)1/(k−1). This is slightly above the threshold cardinality for the existence of
k–progressions in a random set (see Rödl, Ruciński [25]). One can not expect to obtain such
small deviation for smaller sets since, as shown in Rué, Spiegel and Zumalacárregui [27], the
count of k–progressions within the threshold window converges to a Poisson distribution.

We note that the term in the exponential in Theorem 1.1 for r = 3 corresponding to this
example would be −Ωk(1)a

2/3/m (as ∆3 = Ok(1)), while for r = 1 we have ∆1 ∼ N/2 and we
would obtain −Ωk(1)a

2/mN . Both are worse than the one obtained for r = 2 as displayed
in the bound of Theorem 5.2. This exemplifies Remark 3 in the Introduction.
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By following the proof of Theorem 1.2 in the case k = 3 one can make the ok(1) and Ωk(1)
terms in the bound of the Theorem explicit (even if not optimized). We include this proof
here as it is simpler than the general one described in Section 3 and may illustrate its main
lines.

Theorem 5.2. Let D3(Bm) denote the deviation in counting 3–progressions in Z/NZ, with
N prime. For every a > 0, we have

P
(

|D3(Bm)| > a
)

6 (Nm+ 1) exp
(

− a

9m

)

.

Proof. In this case the hypergraph H3 defined in the proof of Theorem 5.1 is 2–regular.
Hence, we have D1(Bm) = D2(Bm) = 0 (by Lemma 2.3, with η = 0) and the martingale
representation (3) reduces to

D3
3(Bm) =

m
∑

j=1

(N −m)3
(N − j)3

X3(Bj).

We bound the probability that |X3(Bj)| is large as in the proof of Lemma 3.3 by consid-
ering the hypergraph H(x) which is a 2–uniform 1–regular hypergraph with ∆1(H3(x)) =
∆2(H3) = 3. It follows from the Azuma–Hoeffding inequality (the argument in Section 3.1)
that, for each α > 0,

P (X3(Bj)) > α) < exp

(

−α2

9j

)

.

Therefore, as in the argument in Section 3.3, Lemma 2.6 gives, for each a > 0 and α > 0,

P
(

D3
3(Bm) > a

)

6 exp

(

− a2

2mα2

)

+N
m
∑

j=1

exp

(

−α2

9j

)

6 exp

(

− a2

2mα2

)

+Nm exp

(

− α2

9m

)

.

The result follows by choosing α = a1/2. �

The bounds on deviations for the counting in the m–model can be transferred to the p-
binomial model as described in Section 4. As mentioned in the Introduction, Theorem 1.4
follows from Theorem 1.3 taking into account that the hypergraph H3 of 3–progressions in
Z/NZ is 1–regular. We can analogously derive the following result for k–progressions from
Theorem 1.3 using again the 1–regularity of the hypergraph Hk of k–progressions.

Theorem 5.3. Let Dk(Bp) denote the deviation of the k–progressions count in a p-random
subset Bp of Z/NZ, N prime.

Let δN be a sequence satisfying

max

{

logN

pk−1N2
,

1√
pN

}

≪ δN ≪ pk−2.

Then,

P
(

Dk(Bp) > δNL
k(p)

)

= exp

(

−(1 + o(1))
δ2NpN

2k2(1− p)

)

.
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Furthermore, the same bounds apply to the corresponding negative deviations.

As the expected number of k–progressions in Bp is Lk(p) = pk
(

N
2

)

, Theorem 5.3 provides

exponentially small bounds of moderate deviations for p ≫ N−1/(2k−3).

5.2. Schur equation. In addition to the 3–progressions, let us mention another 3–variable
case, the Schur equation x + y = z, related to problems on sum–free sets. Threshold
cardinalities and large deviations for the Schur equation have also been addressed in the
literature, see e.g. [16, 31]. Consider the hypergraph H with vertex set the nonzero elements
of Z/NZ and edge set the nontrivial Schur triples {x, y, z} with x + y = z, none of them
zero. Every nonzero element x in Z/NZ belongs to N − 3 triples of the form {x, y, x + y}
with y 6∈ {0, x,−x} and (N − 3)/2 triples of the form {y, x − y, x} with y 6∈ {0, x, x/2}.
Therefore, H is 1–regular with d1(H) = 3(N −3)/2 and maximum 2–degree ∆2(H) = 3. Let
D3(Bm) denote the deviation on the count of Schur triples of nonzero elements in a random
set Bm of (Z/NZ)∗. A proof analogous to the one of Theorem 5.2 gives, for all a > 0,

P
(

D3(Bm) > a
)

< N2 exp
(

−c
( a

m

))

,

for some constant c. The above bound is analogous to the one in Theorem 5.2 and applies to
the same ranges of a and m. The bounds on the deviations can be analogously transferred
to the p–binomial model to obtain a bound as in Theorem 1.4 for the deviation of Schur
triples in this model.

This example exemplifies some minor adjustments which can be made to apply Theorem
1.1 for r = 2 to the count of solutions of general 3–term linear equations of the form
ax+ by + cz = d in Z/NZ. The corresponding hypergraphs may fail to be regular or near–
regular by the degree of some pairs of elements, depending on the values of a, b, c, but can
be regularized without affecting the counts in a substantial way. We discuss the general
approach for linear systems in Section 5.4 below.

5.3. Sidon equation. The Sidon equation x + y = z + t has also been treated in the
literature, see e.g. [24, 27]. In particular, bounds of the deviation on the number of solutions
of the Sidon equation are given in [24, Lemma 5.3] by means of the Kim–Vu polynomial
concentration inequality [23]. An analogous analysis can be carried over in our context to
obtain bounds on moderate deviations giving more precise results in an appropriate range of
the size of random sets. The number of nontrivial quadruples (x, y, z, t) in a set A ⊂ Z/NZ

which satisfy the Sidon equation x+y = z+ t with {x, y} 6= {z, t} is also called the Additive
Energy of the set (which counts ordered quadruples). For unordered subsets, solutions of the
Sidon equation in A are either 3–progressions {x, y, z = (x+y)/2}, which satisfy x+y = 2z,
or quadruples {x, y, z, t} of distinct elements.

We consider the 4–uniform hypergraph H4 which has vertex set Z/NZ (as usual we con-
sider N prime) and edges the Sidon quadruples {x, y, z, t} with x+y = z+t. Every pair {x, y}
is contained in (N−3) quadruples of the form {x, y, z, x+y−z} with z 6∈ {x, y, (x+y)/2} and
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(N −3) quadruples of the form {x, y, z, x+z−y} with z 6∈ {x, y, (x−y)/2}, so that H4 is 2–
regular with d2(H4) = 2(N−3). Moreover, each triple {x, y, z} which is not in arithmetic pro-
gression belongs to three distinct quadruples {x, y, z, t} with t ∈ {x+y−z, x+z−y, y+z−x},
while triples which are 3–progressions, say z = (x + y)/2, belong to two distinct quadru-
ples. Hence, and ∆3(H4) = 3. By denoting by D4(Bm) the deviation in the count of Sidon
quadruples of paiwise distinct elements, Theorem 1.2 with r = 3 gives, for all a > 0,

P
(

D4(Bm) > a
)

6 N c1 exp

(

−c2
a2/3

m

)

,

for some constants c1, c2. By bounding the deviation DS(Bm) on the count of the number
of solutions of the Sidon equation by the sum of deviations on the count of quadruples of
distinct elements and the count of 3–progressions from Theorem 5.2 we obtain

P(DS(Bm) > a) 6 N c1 exp

(

−cS
a2/3

m

)

,

for some constant cS. The expected number of solutions of the Sidon equation in a random
set Bm is

LS(m) =
(m)3

2(N − 3)
+

(m)4
2(N − 4)

.

Therefore, for a ≪ m4/N and a2/3/m ≫ logN we obtain exponentially small bounds for
the deviation in the count of solutions of the Sidon equation, which apply to random sets
of cardinality m ≫ N2/5(logN)3/5. This shows that, for these values of m, the Additive
Energy of a random m–set in Z/NZ is highly concentrated on its mean value. We observe
that in this case the threshold for the appearance of solutions of the Sidon equation is N1/4

and our bound starts to be effective only above N2/5.

As in the preceding examples, Theorem 1.3 can be applied to transfer the bounds to the
p–binomial model. Let D4(Bp) denote the deviation on the number of solutions to the Sidon
equation with pairwise distinct entries in a random set Bp of Z/NZ and L4(p) its mean
value. Taking into account that the hypergraph H4 is 2–regular and has constant maximum
degree ∆3(H4) = 3, Theorem 1.3 with r = 3 gives

P(D4(Bp) > δNL
4(p)) = exp

(

−(1 + o(1))
δ2NpN

32(1− p)

)

,

for every sequence δN satisfying

max

{

1

p5/2

(

logN

N

)3/2

,
1√
pN

}

≪ δN ≪ p1/2.

The above condition on δN gives a meaningful range of applications when p ≫ (logN/N)1/2.
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5.4. Linear systems. The arithmetic configurations considered in the above examples cor-
respond to solutions of linear systems

Ax = 0

in some finite field FN , N a prime, where A is a (l×k) matrix with integer entries, l 6 k−2,
x ∈ F

k
N . This general setting has been widely addressed in the literature, see e.g. [25, 21, 27].

Conditions are imposed on the matrix A to avoid some degenerate cases, the most natural
one is that all l× l submatrices of A are nonsingular. Then substitution of k− l entries in x
gives a unique solution to the equation. It follows that the hypergraph HA with vertex set
FN and edges the k–subsets which are entries of a solution to the linear system has maximum
(k − l) degree ∆k−l(HA) 6

(

k
k−l

)

. One can apply Theorem 1.2 in this context whenever the
hypergraph is (k − l − 1, η)–near regular for an appropriate value of η.

Substitution of k− l−1 entries in x give rise to N solutions to the system. If the equation
xi = xj is linearly independent with the rows of A for every pair i, j ∈ [k], then Ok(1)
solutions may have repeated entries. Matrices A which satisfy this last condition are called
irredundant (see [25]), a property that we will also assume. Moreover, Ok(1) substitutions
may give rise to the same solution. Therefore, under the above conditions on A, every
(k − l − 1)–set belongs to

(

k
k−l−1

)

N − Ok(1) edges of the hypergraph. It follows that the

hypergraph HA is (k − l − 1, η)–near regular where η = Ok(1/N). Under the above stated
conditions on A, let DHA(Bm) denote the deviation on the count of solutions to the system
Ax = 0 with pairwise distinct entries in a random set Bm. Hence Theorem 1.2 with r = k− l
gives, for some constant ck and every sufficiently large N ,

P
(

DHA(Bm) > a
)

6 NOk(1) exp

(

−Ωk(1)a
2/(k−l)

m

)

,

for all a > ck

(

mk−1

N l+1

)(k−l)/(k−l−1)

. Since the expected value of the number of solutions is of

the order mk/N l, for

max

{

m(k−l)/2(logN)(k−l)/2,

(

mk−1

N l+1

)(k−l)/(k−l−1)
}

≪ a ≪ mk

N l
,

we obtain exponentially small bounds for moderate deviations, which apply to random sets
of cardinality m ≫ N2l/(k+l)(logN)(k−l)/(k+l).

Let DHA(Bp) denote the deviation on the count of solutions to the system Ax = 0 with
pairwise distinct entries in a random set Bp of Z/NZ and let LHA(p) be its expected value.
By using Theorem 1.3 we obtain the corresponding bound for moderate deviations in the
p–model

P
(

DHA(Bp) > δNL
HA(p)

)

= exp

(

−(1 + o(1))
δ2NpN

2k2(1− p)

)

.
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for every sequence δN satisfying

max

{

1

p(k+l)/2

(

logN

N

)(k−l)/2

,
1√
pN

}

≪ δN ≪ pl/(k−l−1)

and so this is applicable when p ≫ (logN/N)(k−l−1)/(k+l−1).

6. Lower Bounds

The aim of this section is to prove that the inequality established by Theorem 1.2 is tight
up to a constant in the exponent, when m = Ω(N), for a family of hypergraphs which satisfy
the conditions of the theorem. The density of a k-uniform hypergraph H with h edges is
h/
(

N
k

)

. We provide examples across a range of densities.

Proposition 6.1. Let 0 < τ < 1/2. For each r > 1 and each sequence γn satisfy-
ing Θr(1/n) 6 γn 6 Θr(1) for infinitely many values of N , there exists an N-vertex
(r + 1)-uniform hypergraph H with density Θr(γN), which is (r − 1, η)-near-regular for
η = Or(1/γNN) and with maximum r-degree ∆r, and for which

P
(

DH(Bm) > a
)

> N−Or,τ (1) exp

(−Or,τ (1)a
2/r

m∆
2/r
r

)

,

for all max{h/N, ηh} 6 a 6 Ωr,τ (1)h and all τN 6 m 6 (1− τ)N .

In the cases r = 1 and r = 2 particularly simple constructions exist. For r = 1 one may
take a regular graph on half the vertices and leave the remaining vertices isolated. For r = 2
one may take two disjoint copies of a regular 3-uniform hypergraph. Even for r = 3 it is not
difficult to describe a family of examples: Suppose N = 3s and partition the vertex set into
3 equal parts V = V1∪V2∪V3, a set e of four vertices will be an edge of H if it has 2 vertices
in each of two parts.

In general, for r > 4, we need to work harder to produce the examples. Based on the r = 2
and r = 3 cases we see that it is useful to partition the vertex set. Given a partition V =
V1 ∪ · · · ∪ Vℓ into ℓ equal parts of size s := N/ℓ we will label the vertices vi,j : i ∈ [ℓ], j ∈ [s].
We call H an ℓ-part hypergraph if it is invariant under permutations of the parts Vi : i ∈ [ℓ].
That is, given a permutation π of [ℓ] then {vi1,j1, . . . , vik,jk} is an edge of H if and only if
{vπ(i1),j1, . . . , vπ(ik),jk} is an edge of H. For example, the r = 2 case above is a 3-uniform
2-part hypergraph and the r = 3 case is a 4-uniform 3-part hypergraph. For general r the
hypergraphs we construct will be (r + 1)-uniform and ℓ-part for some ℓ chosen sufficiently
large. (In fact, we take ℓ = 4(r + 1)!)

We consider the deviation event DH(Bm) > a relative to an auxiliary event in which the
random set Bm is unevenly distributed with respect to the parts V1, . . . , Vℓ. Specifically, we
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define Eℓ
ε to be the event4 that

|Bm ∩ V1| = (1 + 2ε)
m

ℓ
± 1 .

|Bm ∩ Vi| = (1− ε)
m

ℓ
± 1 i = 2, 3 .

|Bm ∩ Vi| =
m

ℓ
± 1 i = 4, . . . , ℓ .

Since

P
(

DH(Bm) > a
)

> P
(

Eℓ
ε

)

P
(

DH(Bm) > a
∣

∣Eℓ
ε

)

(13)

it will suffice to prove lower bounds on P
(

Eℓ
ε

)

(see Lemma 6.4) and P
(

DH(Bm) > a|Eℓ
ε

)

(see
Lemma 6.5).

The responsiveness of the deviation DH(Bm) to the uneven distribution Eℓ
ε depends on

the hypergraph H. In particular, it depends on the coefficients of the following polynomial

QH(x) =
∑

e∈E(H)

(1 + 2x)e1(1− x)e2+e3

where ei := |e∩ Vi| for i ∈ [ℓ], which may be defined for any ℓ-part hypergaph H. Let cHj be

the coefficient of xj in QH(x).

Given an (r + 1)-uniform ℓ-part hypergraph H, we define H to be (r, η, γ)-nice if

(i) H is (r − 1, η)-near-regular,
(ii) the density of H is between γ/ℓ2 and 3γ/ℓ2,
(iii) ∆r 6 γN , and
(iv) cHr > γN r+1/ℓr+1.

Proposition 6.1 follows from the following two propositions. The first states the required
lower bound for this family of hypergraphs.

Proposition 6.2. If H is an (r+1)-uniform ℓ-part hypergraph (for ℓ = Or(1)) with maximum
r-degree ∆r, which is (r, η, γ)-nice for η = Or(1/γN) then

P
(

DH(Bm) > a
)

> N−Or,τ (1) exp

(−Or,τ (1)a
2/r

m∆
2/r
r

)

,

for all max{h/N, ηh} 6 a 6 Ωr,τ (1)h and all τN 6 m 6 (1− τ)N .

The second proposition states that such hypergraphs exist.

Proposition 6.3. For all r > 2 there exists ℓ = ℓ(r) such that for all sequences 10/n 6 γn 6

ℓ−2 for infinitely many values of N , there exists an N-vertex (r + 1)-uniform hypergraph H
which is ℓ-part and (r, η, γN)-nice with η = Or(1/γNN).

4the ±1 is only included as the values themselves may not be integers
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The proof of Proposition 6.3 is technical and unlikely to be of general interest and so will
be given in the appendix.

Our proof of Proposition 6.2 is based on (13) and the following two lemmas. The first
provides a bound on P

(

Eℓ
ε

)

.

Lemma 6.4. Let τ ∈ (0, 1/2) and ℓ ∈ N. Provided τN 6 m 6 (1− τ)N we have

P
(

Eℓ
ε

)

> N−Oℓ,τ (1) exp(−Oℓ,τ (ε
2m))

for all 0 < ε 6 τ/2(1− τ).

The second lemma shows the effect of the uneven distribution (given by Eℓ
ε) on NH(Bm)

(or at least its expected value). We show that for a certain value of ε the conditional
expectation exceeds the unconditioned expectation by at least 2a.

Lemma 6.5. There are constants C1 = C1(ℓ, τ) and C2 = C2(ℓ, τ) such that if H is an
(r+1)-uniform (r, η, γ)-nice ℓ-part hypergraph, then for all max{h/N, ηh} 6 a 6 h, we have

E
[

NH(Bm) |Eℓ
ε

]

> LH(m) + 2a

for all C1(a/h)
1/r 6 ε 6 C2.

We now deduce Proposition 6.2 from these two lemmas.

Proof of Proposition 6.2. We begin with an easy observation: if a random variable X has
mean µ, has |X| 6 h and has E [X|E] > µ+ 2a for some event E then

P (X > µ+ a) >
a

h
P (E) .

This follows immediately using that X 6 h1X>µ+a + µ + a and taking the conditional
expectation.

Taking E = Eℓ
ε where ε = Θℓ,τ ((a/h)

1/r) is given by Lemma 6.5 (observe that if Ωr,τ (1) is
sufficiently small in Proposition 6.2, the interval for ε in Lemma 6.5 is nonempty), and using
that h 6 aN , it follows from Lemma 6.4 that

P
(

DH(Bm) > a
)

> N−Oℓ,τ (1) exp(−Oℓ,τ (ε
2m)) = N−Oℓ,τ (1) exp

(−Oℓ,τ (1)a
2/rm

h2/r

)

.

Since ℓ = Or(1), the dependence of the constants on ℓ is just a dependence on r. Also,
conditions (ii) and (iii) in the definition of (r, η, γ)-nice give us that h = Ωτ (m

r∆r) and so
the required bound follows immediately. �

We now turn to the proofs of Lemmas 6.4 and 6.5. The proof of Lemma 6.4 is a relatively
straightforward exercise with Stirling’s approximation, we include it for completeness.
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Proof of Lemma 6.4. Note first that the conditions imposed on ε ensure that the event Eℓ
ε

is nonempty. Denoting t = m/N , observe that

P
(

Eℓ
ε

)

=

(

s

(1 + 2ε)st

)(

s

(1− ε)st

)2(
s

st

)ℓ−3

(

sℓ

tsℓ

) .

Using Stirling’s approximation for the factorials, if k = Ω(n), we have
(

n

k

)

= (1 + o(1))

√

n

2πk(n− k)
· nn

kk(n− k)n−k
.

Note that if k = cn, where c ∈ (0, 1), we have
(

n

k

)

= (1 + o(1))Θc(n
−1/2) · exp(nH(c)),

where H(x) = −x log x− (1− x) log(1− x). Then

P
(

Eℓ
ε

)

= (1 + o(1))Θℓ,τ(s
(1−ℓ)/2) · exp[s(H((1 + 2ε)t) + 2H((1− ε)t)− 3H(t))].

Using Taylor series, s = m/tℓ and τ 6 t 6 1− τ , we obtain that

P
(

Eℓ
ε

)

> N−Oℓ,τ exp(−Oℓ,τ(ε
2m)),

as desired. �

We will need to work a little more to prove Lemma 6.5. In particular we shall use the
following lemma about the coefficients of QH(x) in the case H is (r, η, γ)-nice. Recall that
LH(m) = E

[

NH(Bm)
]

.

Lemma 6.6. Let H be an (r + 1)-uniform ℓ-part hypergraph which is (r, η, γ)-nice and let
m = tN , where τ 6 t 6 1− τ . Then:

(i) cH0 > LH(m)/tr+1;
(ii) |cHj | = Or(ηh+ h/N), if 1 6 j 6 r − 1;

(iii) |cHr+1| = Or(∆rN
r).

Proof. (i) For the first part, observe that cH0 = h and LH(m) = h (m)r+1

(N)r+1
. Because

(m)r+1

(N)r+1
6

(m

N

)r+1

= tr+1,

it follows that cH0 > LH(m)/tr+1.
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(ii) In this part, we will use that H is (r − 1, η)-near-regular. We first observe that

cHj =
∑

e∈E(H)

j
∑

i=0

(−1)i2j−i

(

e2 + e3
i

)(

e1
j − i

)

=

j
∑

i=0

(−1)i2j−i
∑

e∈E(H)

(

e2 + e3
i

)(

e1
j − i

)

.

Note that by double counting,

∑

e∈E(H)

(

e2 + e3
i

)(

e1
j − i

)

=
∑

A⊂V1,|A|=j−i
B⊂V2∪V3,|B|=i

dj(A ∪B).

Because H is (r − 1, η)-near-regular and 1 6 j 6 r − 1, dj(A ∪ B) ∈ (1± η)d̄Hj , which gives
us

∑

e∈E(H)

(

e2 + e3
i

)(

e1
j − i

)

∈
(

s

j − i

)(

2s

i

)

d̄Hj (1± η).

Using that d̄Hj = Or(h/N
j), we have

∑

e∈E(H)

(

e2 + e3
i

)(

e1
j − i

)

=

(

s

j − i

)(

2s

i

)

d̄Hj ± Or(ηh).

Therefore

cHj =

j
∑

i=0

(−1)i2j−i

(

s

j − i

)(

2s

i

)

d̄Hj ± Or(ηh).

The sum
j
∑

i=0

(−1)i2j−i

(

s

j − i

)(

2s

i

)

is a polynomial in s of degree at most j. However the coefficient of sj in this polynomial is

j
∑

i=0

(−1)i · 2j−i · 2i
(j − i)!i!

=
2j

j!

j
∑

i=0

(−1)i
(

j

i

)

= 0.

Hence the sum is actually a polynomial in s of degree at most j − 1. Using again that
d̄Hj = Or(h/N

j) and using that s = Or(N), we obtain that |cHj | = Or(ηh+ h/N), as desired.

(iii) In this last part, as the hypergraph is (r + 1)-uniform, |cHr+1| = Or(h) and since h =
Or(∆rN

r), it follows that |cHr+1| = Or(∆rN
r). �

Armed with Lemma 6.6 we now prove Lemma 6.5 about the conditional expectation
E
[

NH(Bm) |Eℓ
ε

]

.
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Proof of Lemma 6.5. Let H be a (r, η, γ)-nice ℓ-part hypergraph and let ε = C1(a/h)
1/r for

a constant C1 which we can choose later, as a function of ℓ and τ . We must prove that

E
[

NH(Bm) |Eℓ
ε

]

> LH(m) + 2a .

We first observe that

E
[

NH(Bm)|Eℓ
ε

]

=
∑

e∈E(H)

ℓ
∏

i=1

(

s−ei
|Bm∩Vi|−ei

)

(

s
|Bm∩Vi|

)

=
∑

e∈E(H)

ℓ
∏

i=1

(

|Bm∩Vi|
ei

)

(

s
ei

) .

As we are conditioned on the event Eℓ
ε, we have |Bm∩V1| = (1+2ε)st±1, |Bm∩V2| = |Bm∩

V3| = (1−ε)st±1 and |Bm∩Vi| = st±1 for all 4 6 i 6 ℓ. Using that (N)k = Nk(1±O(1/N)),
we obtain

E
[

NH(Bm)|Eℓ
ε

]

= tr+1QH(ε) ± Or(h/N).

By Lemma 6.6, choosing C2 sufficiently small, there are positive constants α and β depending
on r and τ , such that

E
[

NH(Bm)|Eℓ
ε

]

> LH(m) + αεr∆rN
r − β(ηh+ h/N).

As ε = C1(a/h)
1/r and ∆r > h/N r,

E
[

NH(Bm)|Eℓ
ε

]

> LH(m) + αC1a− β(ηh+ h/N).

Since a > max{h/N, ηh}, we can choose C1 = (2 + 2β)/α, obtaining

E
[

NH(Bm)|Eℓ
ε

]

> LH(m) + 2a,

as desired. �

7. Concluding remarks and open questions

We showed in Section 6 that Theorem 1.2 is best possible up to the implicit constants,
at least when m = Θ(N). However, for particular cases, such as the 3-term arithmetic
progressions in ZN we do not believe that the bounds obtained are best possible. A lower
bound of the form

P
(

D3(Bm) > a
)

> exp

(−O(1)a2/3N2/3

m

)

may be proved by considering the probability that the interval {1, . . . , ⌊N/3⌋} contains
significantly more points than expected. Specifically (1+ ε)N/3 points where ε ≈ a1/3/N2/3.
WritingD3(Bm) for the deviation of number of three term arithmetic progressions, it remains
an interesting open problem to determine the value of

log P
(

D3(Bm) > a
)

up to a constant factor. We stress that this problem is open even in the dense casem = Θ(N),
for N ≪ a ≪ N2.
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Finally, we stress that we do not believe that our result is best possible in the sparse
case, m = o(N). For example, in the case of regular 3-uniform hypergraphs we believe it is
possible to improve the bound

P
(

DH(Bm) > a
)

6 NOk(1) exp

(−Ωk(1)a

m∆2

)

to

P
(

DH(Bm) > a
)

6 NOk(1) exp

(−Ωk(1)aN
1/2

m3/2∆2

)

by using Freedman’s inequality in place of the Azuma–Hoeffding inequality at a certain
point. It would be of interest to determine the best possible result across the whole range
of sparse densities. In particular we do not know whether the stronger bound

P
(

DH(Bm) > a
)

6 NOk(1) exp

(−Ωk(1)aN

m2∆2

)

may hold in general for regular 3-uniform hypergraphs. This final bound, if true, would be
best possible up to the implicit constants.

For simplicity we have stated our open problems for 3-uniform hypergraphs. The analogous
problems for k-uniform hypergraphs with one of our regularity properties are also open.

Improvements in results for the m-model Bm for m = o(N) would almost certainly allow
one to extend the range of deviations covered by Theorem 1.3 for the p-model Bp.
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[8] J. Briët and S. Gopi, Gaussian width bounds with applications to arithmetic progressions in random

settings, Int. Math. Res. Not. 22 (2020), 8673–8696.
[9] S. Chatterjee and S.R.S. Varadhan, The large deviation principle for the Erdös-Rényi random graph,
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[19] S. Janson, K.Oleszkiewicz and A. Ruciński, Upper tails for subgraph counts in random graphs, Israel J.

Math. 142 (2004), 61–92.
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[24] Y. Kohayakawa, S. J. Lee, V. Rödl and Wojciech Samotij, The number of Sidon sets and the maximum

size of Sidon sets contained in a sparse random set of integers, Random Structures Algorithms 46

(2015), no. 1, 1–25.
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8. Appendix: Lower bound construction

In this appendix we construct the hypergraphs whose existence is claimed by Proposi-
tion 6.3. We shall recall the necessary definitions and state a proposition (Proposition 8.1)
which implies Proposition 6.3.
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Let us recall that we call a hypergraph H an ℓ-part hypergraph if its vertex set V = [N ]
may be partitioned V = V1 ∪ · · · ∪ Vℓ into ℓ equal parts of size s := N/ℓ in such a way
that when we label the vertices vi,j : i ∈ [ℓ], j ∈ [s] the hypergraph H is invariant under
permutation of the parts i ∈ [ℓ].

Recall also that we define the polynomial

QH(x) =
∑

e∈E(H)

(1 + 2x)e1(1− x)e2+e3

where ei := |e ∩ Vi| for i ∈ [ℓ], and that cHj denotes the coefficient of xj in QH(x).

Finally, we defined an (r + 1)-uniform ℓ-part hypergraph H to be (r, η, γ)-nice if

(i) H is (r − 1, η)-near-regular,
(ii) the density of H is between γ/ℓ2 and 3γ/ℓ2,
(iii) ∆r 6 γN , and
(iv) cHr > γN r+1/ℓr+1.

The proposition we must prove states that such hypergraphs exist. Specifically, for all
r > 2 there exists ℓ = ℓ(r) such that for all sequences Θ(1/n) 6 γn 6 ℓ−2 there are infinitely
many (r + 1)-uniform ℓ-part hypergraphs H which are (r, η, γN)-nice with η = Or(1/γNN).

To this end, let us fix r > 2. We shall work with ℓ throughout the definition without fixing
its value. It will be clear at the end of the proof that if ℓ is taken sufficiently large then for
all sufficiently large multiples N = sℓ of ℓ the construction satisfies all 4 conditions above.
With this in mind we may always assume that s = N/ℓ is sufficiently large.

We work with a fixed value of γ ∈ [10ℓ2/s, 1/2] and the example we provide will contain
≈ 2γN r+1/(r + 1)!ℓ2 edges. This gives us the claimed range of densities.

We now state more precisely the type of construction we shall give. In particular we shall
fix the choice of ℓ as ℓ = 4(r + 1)!.

Proposition 8.1. Let r > 2, and fix ℓ = 4(r + 1)!. There exists a constant C = C(r) such
that for all 0 6 γ 6 1/2 and all s > 10ℓ2/γ there exists an ℓ-part (r+1)-uniform hypergraph
H on sℓ vertices which is (r, C/γs, γ)-nice.

It is easily checked that Proposition 6.3 follows from this proposition.

A major challenge in the proof of Proposition 8.1 is to ensure that the hypergraph H we
construct is (r − 1, C/γs)-near-regular. This is more difficult than one might imagine. We
shall define H with enough symmetry that any two sets with the same intersection pattern
with the parts have (essentially) the same degree in H. This reduces the number of degrees
we need to check to a finite number (the number of partitions of the number r−1). In order
to formalise these details, and define H, we introduce the concept of type.

8.1. Types and one-type hypergraphs. We continue to use the partition V = V1∪ . . . Vℓ

into ℓ parts defined above. Given a set e of elements of V consider the vector (e1, . . . , eℓ) :=
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(|e∩ V1|, |e∩ V2|, . . . , |e∩ Vℓ|). We define x(e), the type of e, to be the vector obtained from
(e1, . . . , eℓ) by placing its entries in decreasing order and removing the 0s. For example

Figure 1. An edge of type (2, 1, 1) and an edge of type (1, 1, 1, 1)

Note that the set of possible types of edges in our (r+1)-uniform hypergraph H is Pr+1, the
set of partitions of r + 1. We now define certain families of one-type hypergraphs. Given a
type x ∈ Pr+1 we may define Hx to be the hypergraph consisting of all edges of type x.

We shall also consider sparser subhypergraphs of Hx. We remark that each vertex v ∈ V
may be viewed as a pair (iv, jv) where iv ∈ [ℓ] and jv ∈ [s]. Given α ∈ (0, 1) we say that a
sequence (i1, j1), . . . , (ir+1, jr+1) of elements of V is α-good if

j1 + · · ·+ jr+1 ∈ {1, . . . , ⌊αs⌋} (mod s) .

We may define Hα
x
to be the hypergraph obtained from Hx by keeping those edges e =

{(i1, j1), . . . , (ir+1, jr+1)} which are α-good. It will also be useful to define H̄α
x
to be the

equivalent hypergraph, but in which multi-sets are also permitted. That is H̄α
x
contains

those multi-sets of r + 1 vertices which have type x and are α-good.

The idea of this sparsification is that roughly α proportion of the edges of Hx remain. In
fact the same is true for degrees and higher degrees, up to the r-degree which will satisfy
∆r = O(αs), where the constant in the O(·) may depend on r and ℓ.

8.2. Multi-type hypergraphs and degrees: We construct our hypergraph H as a union
of one-type hypergraphs Hα

x
defined above. In fact we do not need to consider all types. We

consider only the type (r+1) and types of the form (x, 1, 1) where x ∈ Pr−1. For each vector
x ∈ Pr−1 we will define a vector x+ ∈ Pr+1 that “extends” x. For x = (r − 1) we define
x+ = (r + 1), and all other x ∈ Pr−1 we define x+ = (x, 1, 1). Given α = (αx : x ∈ Pr−1),
which assigns a value αx ∈ (0, 1) to each partition x of r − 1, we define the hypergraph

Hα :=
⋃

x∈Pr−1

Hαx

x+ .

To re-iterate, the hypergraph Hα is a union of hypergraphs Hα
y
where the type y is either

(r + 1) or of the form (x, 1, 1) for some x ∈ Pr−1. We may think of the αx as “weights”
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which are associated with the types x+. We may also define H̄α to be the equivalent in
which multi-sets are permitted.

We now study degrees of vertices and sets in Hα. These degrees depend on the weights
αx in a predictable manner, and we shall choose the weights to ensure Hα is (r − 1, C/γs)-
near-regular. It will be extremely helpful to us that the degree of an (r − 1) set A of type
x ∈ Pr−1 depends strongly on αx and weakly on all of the other weights αy. Let us first
study the degree of the type x abstractly, and then relate this to the degree of A itself.

Given x ∈ Pr−1 let |x| denote the number of entries in the sequence x. A prototypical
set of type x is the set A0

x
which contains the elements (1, 1), . . . , (1, x1) of V1 the elements

(2, 1), . . . , (2, x2) of V2 and so on up to (a, 1), . . . (a, xa), where a := |x|. The abstract degree
of x will be a slight modification of the degree of A0

x
in Hα in that we will work with the

multi-set version H̄α. We define the abstract degree dα
x
of type x to be the number of pairs

u, u′ ∈ V such that A0
x
∪ {u, u′} ∈ H̄α.

With the following two lemmas we prove that the degrees of sets A of type x are very well
approximated by dα

x
and that dα

x
itself is very well controlled in terms of the weight αx.

Lemma 8.2. Let x ∈ Pr−1 \ {(r− 1)} and let A ⊆ V be a subset of r− 1 vertices of type x.
Let α = (αx : x ∈ Pr−1) and let α′ be the largest value of αy for y ∈ Pr−1 \ {(r− 1)}. Then
the degree of A in Hα differs from dα

x
by at most O(α′n).

Proof. By the symmetry of the definition of H̄α, the degree of A in H̄α is precisely dα
x
. The

degree of A in Hα may be slightly smaller as we no longer count multi-sets. It therefore
suffices to bound the number of α′-good multi-sets of r + 1 vertices which contain A. There
are r choices of which element to repeat (one of the r − 1 elements of A or the new rth
element) and in each case only αxn 6 α′n choices of the new rth element such that the
resulting multi-set is αx-good. �

Lemma 8.3. Let x ∈ Pr−1, and let |x| = a > 2. Let α = (αx : x ∈ Pr−1) and let α(a) be
the largest value of αy for y ∈ Pr−1 with 2 6 |y| 6 a− 1. Then the abstract degree dα

x
of x

satisfies
(

ℓ− a

2

)

αxs
2 − O(s) 6 dα

x
6

(

ℓ− a

2

)

αxs
2 + r4ℓα(a)s2 .

Proof. The abstract degree dα
x
of x is the degree of A0

x
in H̄α. Since H̄α contains Hαx

x
we

may prove the lower bound simply by observing that A0
x
is contained in

(

ℓ−a
2

)

αxs
2 − O(s)

edges of Hαx

x
. To see this note that the edges of Hαx

x
are of type x+ = (x, 1, 1) so we may

extend from A0
x
to an edge of type x+ by adding one vertex to each of two new parts of

V1∪· · ·∪Vℓ, there are
(

ℓ−a
2

)

choices of the two other parts, s choices of an element in one, and
⌊αxs⌋ = αxs± 1 choices of an element in the second such that the resulting set is αx-good.

To prove the upper bound we must consider all the other H̄αy

y subhypergraphs of H̄α. In
fact, if y is not closely related to x then A0

x
will not be included in any edges of type y+

(for example an edge of type (3, 1) is not contained in any of type (2, 2, 1, 1)). In fact it
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is necessary that xi 6 yi for all i = 1, . . . , a, and xi 6 y+i for all i = 1, . . . , a. This last
condition implies that |y| > a− 2. The cases that y ∈ Pr−1 and xi 6 y+i for all i = 1, . . . , a
correspond to just three possible cases:

(i) xa = 1 and there is a unique j < a such that yj = xj+1, and yi = xi for i ∈ [a−1]\{j}.
(ii) xa−1 = xa = 1 and there is a unique j < a such that yj = xj + 2, and yi = xi for

i ∈ [a− 2] \ {j}.
(iii) xa−1 = xa = 1 and there is a pair j < j′ < a such that yj = xj + 1, yj′ = xj′ + 1 and

yi = xi for i ∈ [a− 2] \ {j, j′}.

It is easily verified that the number of ways to extend A0
x
to an αy-good edge of type y is at

most rℓα′s2 in case (i), at most rα′s2 in case (ii) and at most r2α′s2 in case (iii). Since each
case corresponds to a bounded number of sequences y (certainly at most r2 in each case) we
deduce the upper bound. �

In fact, there are some particular types x which we shall analyse particularly carefully so
it is useful to count the degree even more carefully in these cases.

Lemma 8.4. If x = (r − 1) then every (r − 1)-tuple of type x has degree

1

2
⌊αxs

2⌋ + O(s) .

If |x| = 2 then every (r − 1)-tuple of type x has degree
(

ℓ− 2

2

)

αxs
2 + O(s) .

Proof. First, for x = (r − 1), an (r − 1)-tuple is of type x if it consists of r − 1 vertices in
the same part. Without loss of generality consider (1, j1), . . . , (1, jr−1). The only edges of
Hα which contain such a tuple are the edges of type x+ = (r + 1), which consist of r + 1
elements in the same part. There are clearly

(

s−r+1
2

)

ways to extend to an (r+1) set of this
type. The number of choices which produce an αx-good edge is between

1

2
s⌊αxs⌋ − rαxs and

1

2
sαxs .

Since both these expressions are of the form

1

2
s⌊αxs⌋ + O(s)

this completes the proof of the first part.

Now consider x with |x| = 2. This means that x = (r−1−i, i) for some 1 6 i 6 ⌊(r−1)/2⌋.
It may be easily checked in these cases that an (r − 1)-tuple of type x is not contained in
any y+ for y 6= x, and so the degree of this tuple in Hα is the degree of this tuple in Hαx

x
.

To complete the proof it suffices to observe that this degree is
(

ℓ−2
2

)

αxs
2+O(s). This follows

easily from the fact that there are
(

ℓ−2
2

)

choices of the pair of parts of the last two vertices,
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s choices for a vertex in the first part, and finally ⌊αxs⌋ = αxs ± 1 choices of the second
vertex, in such a way that an αx-good edge is created. �

8.3. Choice of the weights – completing the proof of Proposition 8.1. As we have
discussed above we shall define the hypergraph H as Hα for a particular choice of the
vector of weights α. Our aim is to select the weights such that all (r − 1)-tuples have
degree approximately γs2. To be more precise, all such degrees will be γs2 ± Cs. This
will be sufficient to ensure that the hypergraph H satisfies conditions (i),(ii) and (iii) of the
(r, C/s, γ)-nice definition. Once this has been achieved we shall verify that condition (iv)
also holds for H.

Lemma 8.5. If the constant C is chosen sufficiently large then there is a choice of the
weights α = (αx : x ∈ Pr−1) such that:

(a) The degree of each (r − 1)-set is γs2 ± Cs
(b) α(r−1) = 2γ
(c) The weights satisfy 0 6 αx 6 4γℓ−2 for all x ∈ Pr−1 \ {(r − 1)}.

Proof. We shall prove this statement by induction. For each 1 6 j 6 r − 1 consider the
statement that there exists a weighting such that (a) is satisfied for sets whose type x has
|x| 6 j, (b) and (c) are satisfied, and αx = 0 for all |x| > j.

The base case (j = 1) of this statement is proved by taking α(r−1) = 2γ. It follows from
Lemma 8.4 that the degree of a set of type (r − 1) is

1

2
α(r−1)s

2 + O(s) = γs2 + O(s) ,

as required.

We shall also treat j = 2 as a base case. We extend the choice above, and so α(r−1) = 2γ.
Note that a set of type x with |x| = 2 will not be contained in a part Vi, and so will not
be contained in any of the edges of Hα(r−1)

(r−1) . We define αx = γ/
(

ℓ−2
2

)

. And so, again by

Lemma 8.4, we have that a set of type x has degree
(

ℓ− 2

2

)

αxs
2 + O(s) = γs2 + O(s) .

For the induction step, suppose the weighting has been defined for ‖x‖ 6 j − 1 we shall
show how to extend the weighting for αx with |x| = j. Fix x with |x| = j. We first focus
on the abstract degree dα

x
of x. We use Lemma 8.3. Recall that in Lemma 8.3 α(a) is

defined to be max{αy : 2 6 |y| 6 a− 1}. By the induction hypothesis we may assume that
α(j) 6 4γℓ−2. It follows that the contribution to dα

x
from the weights αy with |y| 6 j − 1 is

at most we have that the contribution of all edges of type y+ where |y| < |x| is at most

r4ℓα(j)s2 6 4γℓ−1r4s2 6 γs2 .
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Let 0 6 γx 6 γ be such that γxs
2 is the remaining degree necessary, i.e., γs2 minus the

contributions of earlier y. We may define

αx =
γx

(

ℓ−|x|
2

) .

We observe that αx are at most 4γℓ−2, and that the abstract degree dα
x
is γs2 +O(s).

Once the weights αx have been chosen for all |x| = j we have by Lemma 8.2 (applied with
α′ 6 4γℓ−2) that all (r − 1) tuples have degree

γs2 + O(s) ,

as required. �

By taking H = Hα, where the weights α are given by Lemma 8.5, we have produced
a hypergraph which satisfies properties (i), and (ii) from the definition of (r, C/s, γ)-nice.
In fact H also satisfies condition (iii). To see this we consider two cases. For an r-set A
contained in a part Vi the only edges containing A are those of type (r + 1), it follows that
the degree of A is at most α(r−1)s = 2γs 6 γN . For any other r-set A it is contained in
edges of at most r of the hypergraphs Hαx

x+ which make up H. In each case to extend A to an
edge requires a choice of a part (at most ℓ possibilities) and a choice of a vertex to complete
an αx-good edge (at most αxs 6 4γs/ℓ2 possibilities). It follows that the degree of A is at
most 4rγs/ℓ 6 γN .

All that remains is to prove that

cHr > γN r+1/ℓr+1 .

This is achieved by this final lemma.

Lemma 8.6. Let H = Hα for some sequence of weights α = (αx : x ∈ Pr−1) with α(r−1) =
2γ and

0 6 αx 6 4γℓ−2

for all x ∈ Pr−1 \ {(r − 1)}. Then

cHr >
γs!

r!
=

γN r+1

r!ℓr+1
.

Proof. The hypergraph H = Hα is a union of hypergraphs
⋃

x∈Pr−1

Hαx

x+ .

Let us write cxr for the coefficient of xr in QHαx

x+ (x). By linearity we have that

cHr =
∑

x∈Pr−1

cxr .

We shall prove that
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(a) c(r−1)
r >

r2rγsr+1

(r + 1)!
,

(b) |cxr | 6
2r+2γsr+1

ℓ
if |x| = 2,

(c) cxr = 0 if ‖x‖ > 3.

The required result will now follow from linearity. We recall that ℓ = 4(r + 1)! and that
there are at most r/2 types x with |x| = 2. It follows that

cHr >
r2rγsr+1

(r + 1)!
− r2r+1γsr+1

ℓ

=
r2rγsr+1 (ℓ − 2(r + 1)!)

ℓ(r + 1)!

>
r2r−1γsr+1

(r + 1)!

>
γsr+1

r!
,

as required.

We now prove (a), (b), and (c) stated above.

We begin with (a). Since α(r−1) = 2γ the hypergraph H2γ
(r+1) in question contains (2γ)-

good edges of type (r + 1), that is, (2γ)-good edges contained in one of the parts Vi. The
coefficient of εn in the corresponding polynomial

QH2γ
(r+1)(x) =

∑

e∈E(H)

(1 + 2x)e1(1− x)e2+e3

satisfies5

c(r−1)
r >

7

4
γ

(

s

r + 1

)

((r + 1)2r + 2(r + 1)(−1)r)

>
r2rγsr+1

(r + 1)!
,

as required.

We now prove (b). A type x with |x| = 2 is of the form x = (j, r − j − 1) for some
(r−1)/2 6 j 6 r−2. The corresponding x+ is x+ = (j, r−j−1, 1, 1). And the corresponding
hypergraph consists of αx-good edges of type x+. A contribution to the coefficient of εr is
only made by edges which use all 3 of the parts V1, V2, V3 and one other part. We obtain

5We replace by 2 by 7/4 as we may lose something when we take the integer part. The reader may easily
verify the details.
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that

|cxr | 6 2αx(ℓ− 3)

(

s

j

)(

s

r − j − 1

)

s2
(

2j + 2r−1−j + 2
)

6
8γℓsr+1 2r−1

ℓ2j!(r − 1− j)!

6
2r+2γsr+1

ℓ
,

as required.

Finally, we note that part (c) follows immediately from the fact that if |x| > 3 then at most
r − 1 elements of any edge of the corresponding hypergraph lie in the union of V1 ∪ V2 ∪ V3

and so the coefficient of εr is 0. �
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Barcelona, Spain.

Email address : gonzalo.fiz@upc.edu
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