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Abstract. In a complete graph Kn with independent uniform(0, 1)
(or exponential(1)) edge weights, let T1 be the MST (minimum-weight
spanning tree), and Tk the MST after deleting the edges of all previous
trees. We show that each tree’s weight w(Tk) converges in probability to

a constant γk, with 2k− 2
√
k < γk < 2k+ 2

√
k, and we conjecture that

γk = 2k−1 +o(1). The problem is distinct from Frieze and Johansson’s
minimum combined weight µk of k edge-disjoint spanning trees; indeed,
µ2 < γ1 + γ2.

With an edge of weight w “arriving” at time t = nw, Kruskal’s al-
gorithm defines forests Fk(t), initially empty and eventually equal to
Tk, each edge added to the first possible Fk(t). Using tools of inhomo-
geneous random graphs we obtain structural results including that the
fraction of vertices in the largest component of Fk(t) converges to some
ρk(t). We conjecture that the functions ρk tend to time translations of
a single function.

1. Introduction

1.1. Problem definition and main results. Consider the complete graph
Kn with edge costs that are i.i.d. random variables, with a uniform distri-
bution U(0, 1) or, alternatively, an exponential distribution Exp(1). A well-
known problem is to find the minimum (cost) spanning tree T1, and its cost
or “weight” w(T1). A famous result by Frieze [11] shows that as n→∞,
w(T1) converges in probability to ζ(3), in both the uniform and exponential
cases.

Suppose now that we want a second spanning tree T2, edge-disjoint from
the first, and that we do this in a greedy fashion by first finding the minimum
spanning tree T1, and then the minimum spanning tree T2 using only the
remaining edges. (I.e., T2 is the minimum spanning tree in Kn \T1, meaning
the graph with edge set E(Kn) \E(T1).) We then continue and define T3 as
the minimum spanning tree in Kn \ (T1 ∪T2), and so on. The main purpose
of the present paper is to show that the costs w(T2), w(T3), . . . also converge
in probability to some constants.

Theorem 1.1. For each k > 1, there exists a constant γk such that, as

n→∞, w(Tk)
p−→ γk (for both uniform and exponential cost distributions).
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The result extends easily to other distributions of the edge costs, see
Remark 7.1, but we consider in this paper only the uniform and exponential
cases.

A minor technical problem is that T2 and subsequent trees do not always
exist; it may happen that T1 is a star and then Kn \T1 is disconnected. This
happens only with a small probability, and w.h.p. (with high probability,
i.e., with probability 1− o(1) as n→∞) Tk is defined for every fixed k, see
Section 7. However, in the main part of the paper we avoid this problem
completely by modifying the model: we assume that we have a multigraph,
which we denote by K∞n , with an infinite number of copies of each edge in
Kn, and that each edge’s copies’ costs are given by the points in a Poisson
process with intensity 1 on [0,∞). (The Poisson processes for different edges
are, of course, independent.) Note that when finding T1, we only care about
the cheapest copy of each edge, and its cost has an Exp(1) distribution, so
the problem for T1 is the same as the original one. However, on K∞n we
never run out of edges and we can define Tk for all integers k = 1, 2, 3, . . . .
Asymptotically, the three models are equivalent, as shown in Section 7, and
Theorem 1.1 holds for any of the models. In particular:

Theorem 1.2. For each k > 1, as n→∞, w(Tk)
p−→ γk also for the

multigraph model with Poisson process costs.

Frieze [11] also proved that the expectation Ew(T1) converges to ζ(3).
For the multigraph model just described, this too extends.

Theorem 1.3. For the Poisson multigraph model, Ew(Tk) → γk for each
k > 1 as n→∞.

Remark 1.4. For the simple graph Kn with, say, exponential costs, as
explained above there is a small but positive probability that Tk does not
exist for k > 2. Hence, either Ew(Tk) is undefined for k > 2, or we define
w(Tk) =∞ when Tk does not exist, and then Ew(Tk) =∞ for k > 2 and ev-
ery n. This is no problem for the convergence in probability in Theorem 1.1,
but it implies that Theorem 1.3 does not hold for simple graphs, and the
multigraph model is essential for studying the expectation. Alternatively,
as pointed out by a referee, for the simple graph model one might consider
the conditional expectation. We leave this as an open question. �

Conjecture 1.5. In the simple graph model with uniformly or exponentially
distributed edge weights, E

[
w(Tk) | Tk exists

]
→ γk.

1.2. Motivations. Frieze and Johansson [12] recently considered a related
problem, where instead of choosing spanning trees T1, T2, . . . greedily one
by one, they choose k edge-disjoint spanning trees with minimum total cost.
It is easy to see, by small examples, that selecting k spanning trees greedily
one by one does not always give a set of k edge-disjoint spanning trees with
minimum cost, so the problems are different.

We show in Theorem 9.3 that, at least for k = 2, the two problems also
asymptotically have different answers, in the sense that the limiting values
of the minimum cost — which exist for both problems — are different.
(Also, as discussed in Section 3.1, we improve on the upper bound from [12,
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Section 3] on the cost of the net cheapest k trees, since our upper bound
(3.1) on the cost of the first k trees is smaller.)

Both our question and that of Frieze and Johansson [12] are natural, both
seem generally relevant to questions of robust network design, and both have
mathematically interesting answers.

Another reason for interest in T2 comes from the field of algorithmic
mechanism design. Imagine that each edge of G = Kn is owned by a different
“agent”; the agent owning edge e values it at w(e), an amount known only to
them. We, an “auctioneer”, want to buy a spanning tree, at low cost. One
“mechanism” for doing so is a sealed-bid auction where each agent posts a
price w′(e) for their edge, and we buy the tree that is cheapest according to
these prices. Here, agents will naturally inflate their prices, posting prices
w′(e) > w(e).

One alternative is a VCG (Vickrey–Clarke–Groves) auction, a generaliza-
tion of a single-item second-price auction. Here, we again buy the tree that
is cheapest according to the posted prices w′, but for each edge e purchased,
we pay an amount that is a function of w′−e, i.e., of all posted prices except
that of e; for details see for example [28, Chapter 9]. This means that vary-
ing w′(e) affects only whether edge e is purchased, not how much is paid for
it if it is, and results in the mechanism being truthful : it is in each agent’s
selfish interest to set w′(e) = w(e). Thus, the tree purchased is simply T1,
the tree cheapest according to the values w. However, the amount paid for
it is more than w(T1), as the mechanism ensures the amount paid for each
edge e purchased is at least w(e) and typically more. A central question
is the extent of this overpayment, measured by the “frugality ratio” of the
VCG cost V (or that of any mechanism) to some benchmark.

The question applies of course to problems other than MSTs, including
the purchase of a cheapest path between two given points in a graph, or of a
basis in a bridgeless matroid. In any of these contexts, let us continue to use
T1 for the cheapest structure and T2 for the cheapest structure disjoint from
T1. The cost w(T1) is not a useful benchmark because V/w(T1) is unbounded
in even the simplest examples (such as buying one of two identical items).

Instead, Talwar [31] and Archer and Tardos [1] propose w(T2) as the
benchmark. (An often-equivalent benchmark, based on a Nash equilibrium,
is given by [22] and [28, Chapter 13].) [31] shows that for any bridgeless
matroid, V/w(T2) 6 1, and, focusing on the worst case over all weights w,
this bound is achieved by some weights (namely weights 0 on T1, 1 on T2,
and infinity elsewhere). By contrast, for paths the ratio is unbounded. The
interpretation, based on worst-case weights, is that this frugality ratio is 1
for amenable problems like MSTs and other matroids, and larger for other
problems.

In our setting of an MST inKn with random weights, though, the frugality
ratio is naturally less than its maximum of 1. Specifically, [8] and [20] show
that the VCG cost is typically 2w(T1), which by [11] is 2ζ(3)

.
= 2.4041. We

show here that w(T2) is typically γ2, which by Remark 9.5 is at least 2.9683,
making the frugality typically at most 0.8099. (We estimate non-rigorously
that γ2 is about 3.0921 — see Table 1 — in which case the frugality ratio is
typically about 0.7775.) Specifically, this holds w.h.p. for n large, and also
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holds for the ratio between the expected VCG cost and the expected cost
w(T2).

1.3. Further results, structural properties, and conjectures. It is
well known that the minimum spanning tree (with any given costs, obtained
randomly or deterministically) can be found by Kruskal’s algorithm [23],
which processes the edges in order of increasing cost and keeps those that
join two different components in the forest obtained so far. (I.e., it keeps
each edge that does not form a cycle together with previously chosen edges.)
As in many other previous papers on the random minimum spanning tree
problem, from [11] on, our proofs are based on analyzing the behavior of
this algorithm.

Rescale weight as time, thinking of an edge of weight w as arriving at time
t = nw. Kruskal’s algorithm allows us to construct all trees Tk simultane-
ously by growing forests Fk(t), with Fk(0) empty and Fk(∞) = Tk: taking
the edges of Kn (or K∞n ) in order of time arrival (increasing cost), an edge
is added to the first forest Fk where it does not create a cycle. We will also
consider a sequence of graphs Gk(t) ⊇ Fk(t), where when we add an edge to
Fk we also add it to all the graphs G1, . . . , Gk; see Section 2.2 for details.

The proof of Theorem 1.1 is based on a detailed structural characteriza-
tion of the graphs Gk(t), given by Theorem 2.1 (too detailed to set forth
in full here in the introduction), relying heavily on the theory of inhomoge-
neous random graphs from [5] and related works. Where C1(Gk(t)) denotes
the number of vertices in the largest component of Gk(t) (or equivalently
of Fk(t), as by construction they have the same components), Theorem 2.1
shows that C1(Gk(t))/n converges in probability to some function ρk(t),
uniformly for all times t. Moreover, each Gk has its own giant-component
threshold: ρk(t) is 0 until some time σk, and strictly positive thereafter.

The functions ρk(t) are of central interest. For one thing, an edge is re-
jected from Fk, making it a candidate for Fk+1, precisely if its two endpoints
are within the same component of Fk, and it is shown (see Corollary 5.9)
that this is essentially equivalent to the two endpoints both being within the
largest component. This line of reasoning yields the constants γk explicitly,
see (6.23), albeit not in a form that is easily evaluated. We are able, at least,
to re-prove (in Example 6.5) that γ1 = ζ(3), as first shown in [11].

The functions ρk also appear to have a beautiful structure, tending to
time-translated copies of a single universal function:

Conjecture 1.6. There exists a continuous increasing function ρ∞(x) :
(−∞,∞) → [0, 1) such that ρk(2k + x) → ρ∞(x) as k →∞, uniformly in
x ∈ R.

This suggests, though does not immediately imply, another conjecture.

Conjecture 1.7. For some δ, as k →∞, γk = 2k + δ + o(1).

If this conjecture holds, then necessarily δ ∈ [−1, 0], see Remark 3.6.
A variety of computational results are given in Section 11. They are

supportive of Conjecture 1.6 (see Figures 3 and 6) and (see Table 1) a
stronger version of Conjecture 1.7 where we take δ = −1:

Conjecture 1.8. As k →∞, γk = 2k − 1 + o(1).



SUCCESSIVE MINIMUM SPANNING TREES 5

Although we cannot prove these conjectures, some bounds on γk are ob-
tained in Section 3 by a more elementary analysis of the sequence of forests
Fk. In particular, Theorem 3.1 and Corollary 3.2 lead to the following,
implying that γk ∼ 2k as k →∞.

Corollary 1.9. For every k > 1,

2k − 2k1/2 < γk < 2k + 2k1/2. (1.1)

See also the related Conjectures 3.5, 10.1 and 11.1.

Remark 1.10. For the minimum spanning tree T1, various further results
are known, including refined estimates for the expectation of the cost w(T1)
[9], a normal limit law [16], and asymptotics for the variance [16; 21; 32]. It
seems challenging to show corresponding results for T2 or later trees. �

2. Model and main structural results

2.1. Some notation. We use := as defining its left-hand side, and
def
= as

a reminder that equality of the two sides is by definition. We write
.
=

for numerical approximate equality, and ≈ for approximate equality in an
asymptotic sense (details given where used).

If x and y are real numbers, then x∨y := max(x, y) and x∧y := min(x, y).
Furthermore, x+ := x∨0. These operators bind most strongly, e.g., t−τ(i)∨
τ(j) means t− (τ(i) ∨ τ(j)).

We use “increasing” and “decreasing” in their weak senses; for example,
a function f is increasing if f(x) 6 f(y) whenever x 6 y.

Unspecified limits are as n→∞. As said above, w.h.p. means with prob-

ability 1− o(1). Convergence in probability is denoted
p−→. Furthermore, if

Xn are random variables and an are positive constants, Xn = op(an) means,

as usual, Xn/an
p−→ 0; this is also equivalent to: for every ε > 0, w.h.p.

|Xn| < εan.
Graph means, in general, multigraph. (It is usually clear from the context

whether we consider a multigraph or simple graph.) If G is a multigraph,

then Ġ denotes the simple graph obtained by merging parallel edges and
deleting loops. (Loops do not appear in the present paper.) The number of
vertices in a graph G is denoted by |G|, and the number of edges by e(G).

For a graph G, let C1(G), C2(G), . . . be the largest component, the
second largest component, and so on, using any rule to break ties. (If
there are less than k components, we define Ck(G) = ∅.) Furthermore,
let Ci(G) := |Ci(G)|; thus C1(G) is the the number of vertices in the largest
component, and so on. We generally regard components of a graph G as
sets of vertices.

2.2. Model. We elaborate the multigraph model in the introduction.
We consider (random) (multi)graphs on the vertex set [n] := {1, . . . , n};

we usually omit n from the notation. The graphs will depend on time, and
are denoted by Gk(t) and Fk(t), where k = 1, 2, 3, . . . and t ∈ [0,∞]; they
all start as empty at time t = 0 and grow as time increases. We will have
Gk(t) ⊇ Gk+1(t) and Fk(t) ⊆ Gk(t) for all k and t. Furthermore, Fk(t) will
be a forest. As t→∞, Fk(t) will eventually become a spanning tree, Fk(∞),
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which is the kth spanning tree Tk produced by the greedy algorithm in the
introduction, operating on the multigraph G1(∞).

Since the vertex set is fixed, we may when convenient identify the multi-
graphs with sets of edges. We begin by defining G1(t) by letting edges arrive
as independent Poisson processes with rate 1/n for each pair {i, j} of ver-
tices; G1(t) consists of all edges that have arrived at or before time t. (This
scaling of time turns out to be natural and useful. In essence this is because
what is relevant is the cheapest edges on each vertex, and these have ex-
pected cost Θ(1/n) and thus appear at expected time Θ(1).) We define the
cost of an edge arriving at time t to be t/n, and note that in G1(∞), the
costs of the edges joining two vertices form a Poisson process with rate 1.
Hence, G1(∞) is the multigraph model defined in Section 1.

Thus, for any fixed t > 0, G1(t) is a multigraph where the number of
edges between any two fixed vertices is Po(t/n), and these numbers are
independent for different pairs of vertices. This is a natural multigraph
version of the Erdős–Rényi graph G(n, t). (The process G1(t), t > 0, is a
continuous-time version of the multigraph process in e.g. [4] and [17, Section

1], ignoring loops.) Note that Ġ1(t), i.e., G1(t) with multiple edges merged,

is simply the random graph G(n, p) with p = 1− e−t/n.
Next, we let F1(t) be the subgraph of G1(t) consisting of every edge

that has arrived at some time s 6 t and at that time joined two different
components of G1(s). Thus, this is a subforest of G1(t), as stated above,
and it is precisely the forest constructed by Kruskal’s algorithm (recalled in
the introduction) operating on G1(∞), at the time all edges with cost 6 t/n
have been considered. Hence, F1(∞) is the minimum spanning tree T1 of
G1(∞).

Let G2(t) := G1(t) \ F1(t), i.e., the subgraph of G1(t) consisting of all
edges rejected from F1(t); in other words G2(t) consists of the edges that,
when they arrive to G1(t), have their endpoints in the same component.

We continue recursively. Fk(t) is the subforest of Gk(t) consisting of all
edges in Gk(t) that, when they arrived at some time s 6 t, joined two
different components in Gk(s). And Gk+1(t) := Gk(t) \ Fk(t), consisting of
the edges rejected from Fk(t).

Hence, the kth spanning tree Tk produced by Kruskal’s algorithm equals
Fk(∞), as asserted above.

Note that Fk(t) is a spanning subforest of Gk(t), in other words, the com-
ponents of Fk(t) (regarded as vertex sets) are the same as the components
of Gk(t); this will be used frequently below. Moreover, each edge in Gk+1(t)
has endpoints in the same component of Gk(t); hence, each component of
Gk+1(t) is a subset of a component of Gk(t). It follows that an edge arriving
to G1(t) will be passed through G2(t), . . . , Gk(t) and to Gk+1(t) (and pos-
sibly further) if and only if its endpoints belong to the same component of
Gk(t), and thus if and only if its endpoints belong to the same component
of Fk(t).

2.3. More notation. We say that a component C of a graph G is the
unique giant of G if |C| > |C′| for every other component C′; if there is no
such component (i.e., if the maximum size is tied), then we define the unique
giant to be ∅.
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We say that a component C of Fk(t) is the permanent giant of Fk(t) (or
of Gk(t)) if it is the unique giant of Fk(t) and, furthermore, it is a subset
of the unique giant of Fk(u) for every u > t; if there is no such component
then the permanent giant is defined to be ∅.

Let Ck(t) denote the permanent giant of Fk(t). Note that the permanent
giant either is empty or the largest component; thus |Ck(t)| is either 0 or
C1(Fk(t)) = C1(Gk(t)). Note also that the permanent giant Ck(t) is an
increasing function of t: Ck(t) ⊆ Ck(u) if t 6 u. Furthermore, for sufficiently
large t (viz. t such that Gk(t) is connected, and thus Fk(t) is the spanning
tree Tk), Ck(t) = Ck(∞) = [n].

2.4. A structure theorem. The basis of our proof of Theorems 1.1 and
1.2 is the following theorem on the structure of the components of Gk(t).
Recall that Fk(t) has the same components as Gk(t), so the theorem applies
as well to Fk(t). The proof is given in Section 5.

For k = 1, the theorem collects various known results for G(n, p). Our
proof includes this case too, making the proof more self-contained.

Theorem 2.1. With the definitions above, the following hold for every fixed
k > 1 as n→∞.

(i) There exists a continuous increasing function ρk : [0,∞)→ [0, 1) such
that

C1(Gk(t))/n
p−→ ρk(t), (2.1)

uniformly in t ∈ [0,∞); in other words, for any ε > 0, w.h.p., for all
t > 0,

ρk(t)− ε 6 C1(Gk(t))/n 6 ρk(t) + ε. (2.2)

(ii) supt>0C2(Gk(t))/n
p−→ 0.

(iii) There exists a threshold σk > 0 such that ρk(t) = 0 for t 6 σk, but
ρk(t) > 0 for t > σk. Furthermore, ρk is strictly increasing on [σk,∞).

(iv) There exist constants bk, Bk > 0 such that

ρk(t) > 1−Bke−bkt, t > 0. (2.3)

In particular, ρk(t)→ 1 as t→∞.
(v) If t > σk, then w.h.p. Gk(t) has a non-empty permanent giant. Hence,

for every t > 0,

|Ck(t)|/n
p−→ ρk(t). (2.4)

We note also a formula for the number of edges in Gk(t), and two simple
inequalities relating different k.

Theorem 2.2. For each fixed k > 1 and uniformly for t in any finite interval
[0, T ],

e(Gk(t))/n
p−→ 1

2

∫ t

0
ρk−1(s)2 ds. (2.5)

Theorem 2.3. ρk(t) 6 ρk−1(t) for every t > 0, with strict inequality when
ρk−1(t) > 0 (equivalently, when t > σk−1). Furthermore,

σk > σk−1 + 1. (2.6)
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Inequality (2.6) is weak in that we conjecture that as k →∞, σk = σk−1+
2 + o(1), see Conjecture 10.1.

The limits γk in Theorems 1.1–1.3 will be related to the functions ρk(t)
in (6.23).

3. Bounds on the expected cost

3.1. Total cost of the first k trees. The following theorem gives lower
and upper bounds on the total cost of the first k spanning trees.

Theorem 3.1. Letting Wk =
∑k

i=1w(Tk) be the total cost of the first k
spanning trees, for every k > 1,

k2n− 1

n
6 EWk 6 k(k + 1)

n− 1

n
< k2 + k. (3.1)

Comparing with Frieze and Johansson [12, Section 3], our upper bound

is smaller than their k2 + 3k5/3 despite the fact that they considered a
more relaxed minimization problem (see Section 9); as such ours is a strict
improvement. In both cases the lower bound is simply the expected total
cost of the cheapest k(n− 1) edges in G, with (3.2) matching [12, (3.1)].

Proof. The minimum possible cost of the k spanning trees is the cost of the
cheapest k(n − 1) edges. Since each edge’s costs (plural, in our model) are
given by a Poisson process of rate 1, the set of all edge costs is given by a
Poisson process of rate

(
n
2

)
. Recall that in a Poisson process of rate λ, the

interarrival times are independent exponential random variables with mean
1/λ, so that the ith arrival, at time Zi, has EZi = i/λ. It follows in this

case that Wk >
∑k(n−1)

i=1 Zi and

EWk >
k(n−1)∑
i=1

i(
n
2

) =
(k(n− 1))(k(n− 1) + 1)

n(n− 1)
> k2n− 1

n
. (3.2)

We now prove the upper bound. An arriving edge is rejected from Fi
iff both endpoints lie within its “forbidden” set Bi of edges, namely those
edges with both endpoints in one component. The nesting property of the
components means that B1 ⊇ B2 ⊇ · · · . An arriving edge e joins Fk if it
is rejected from all previous forests, i.e., e ∈ Bk−1 (in which case by the
nesting property, e also belongs to all earlier Bs) but can be accepted into
Fk, i.e., e /∈ Bk. The idea of the proof is to show that the first k forests fill
reasonably quickly with n−1 edges each, and we will do this by coupling the
forest-creation process (Kruskal’s algorithm) to a simpler, easily analyzable
random process.

For an integer τ = 0, 1, . . . , consider a time just after arrival of the τ ’th
edge. Let Bk(τ) denote the forbidden set Bk at this time, let pk(τ) :=
|Bk(τ)|/

(
n
2

)
denote the rejection probability for Fk, and let s(τ) = {sk(τ)}∞k=0

denote the vector of the sizes (number of edges) of each forest; we may drop
the argument τ when convenient.

For any τ , by the nesting property of the components and in turn of the
Bk,

s1 > s2 > · · · and p1 > p2 > · · · . (3.3)
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The MST process can be simulated by using a sequence of i.i.d. random
variables α(τ) ∼ U(0, 1), incrementing sk(τ) if both α(τ) 6 pk−1(τ) (so
that e is rejected from Fk−1 and thus from all previous forests too) and
α(τ) > pk(τ) (so that e is accepted into Fk). We take the convention that
p0(τ) = 1 for all τ . For intuition, note that when sk = 0 an edge is never
rejected from Fk (pk = 0, so α ∼ U(0, 1) is never smaller); when sk = 1 it
is rejected with probability pk = 1/

(
n
2

)
; and when sk = n − 1 it is always

rejected (|Bk| must be
(
n
2

)
, so pk = 1).

Given the size sk =
∑∞

i=1(Ci(Fk)−1) of the kth forest, |Bk| =
∑∞

i=1

(
Ci(Fk)

2

)
is maximized (thus so is pk) when all the edges are in one component, i.e.,

pk 6

(
sk + 1

2

)/(
n

2

)
(3.4)

6
sk

n− 1
=: p̄k. (3.5)

The size vector s(τ) thus determines the values p̄k(τ) for all k.
Let r(τ) denote a vector analogous to s(τ), but with rk(τ) incremented if

p̂k(τ) < α(τ) 6 p̂k−1(τ), with

p̂k :=
rk

n− 1
. (3.6)

By construction,

r1 > r2 > · · · and p̂1 > p̂2 > · · · . (3.7)

For intuition, here note that when rk = 0 an arrival is never rejected from
rk (p̄k = 0); when sk = 1 it is rejected with probability p̄k = 1/(n − 1) >
pk = 1/

(
n
2

)
; and when sk = n− 1 it is always rejected (p̄k = 1).

Taking each Fi(0) to be an empty forest (n isolated vertices, no edges)
and accordingly s(0) to be an infinite-dimensional 0 vector, and taking r(0)
to be the same 0 vector, we claim that for all τ , s(τ) majorizes r(τ), which
we will write as s(τ) � r(τ). That is, the prefix sums of s dominate those

of r: for all τ and k,
∑k

i=1 si(τ) >
∑k

i=1 ri(τ).
We first prove this; then use it to argue that edge arrivals to the first

k forests, i.e., to s, can only precede arrivals to the first k elements of r;
and finally analyze the arrival times of all k(n− 1) elements to the latter to
arrive at an upper bound on the total cost of the first k trees.

We prove s(τ) � r(τ) by induction on τ , the base case with τ = 0 being
trivial. Figure 1 may be helpful in illustrating the structure of this inductive
proof. Suppose the claim holds for τ . The probabilities pk(τ) are used to
determine the increments of the size vector s(τ + 1). Consider an interme-
diate object s′(τ + 1), the size vector that would be given by incrementing
s(τ) using the upper-bound values p̄k(τ) taken from s(τ) by (3.5). Then,
si(τ + 1) receives the increment if pi−1 > α > pi, and s′j(τ + 1) receives the
increment if p̄j−1 > α > p̄j ; hence, from p̄i−1 > pi−1 > α it is immediate
that i 6 j and thus s(τ + 1) � s′(τ + 1).

It suffices then to show that s′(τ + 1) � r(τ + 1). These two vectors
are obtained respectively from s(τ) and r(τ), with s(τ) � r(τ) by the
inductive hypothesis, using probability thresholds p̄k(τ) = f(sk(τ)) and
p̂k(τ) = f(rk(τ)) respectively, applied to the common random variable α,
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F(τ) F(τ + 1)

s(τ) s(τ + 1)

s′(τ + 1)

r(τ) r(τ + 1)

p

p̄

�

p

�

�
p̂

Figure 1. Coupling of the forests’ sizes s(τ) to a simply
analyzable random process r(τ), showing the structure of
the inductive proof (on τ) that s(τ) majorizes r(τ).

where f(s) = s/(n − 1) (but all that is important is that f is a monotone
function of s). Suppose that

f(si−1) > α > f(si) and f(rj−1) > α > f(rj), (3.8)

so that elements i in s and j in r are incremented. If i 6 j, we are done.
(Prefix sums of s(τ) dominated those of r(τ), and an earlier element is
incremented in s′(τ+1) than r(τ+1), thus prefix sums of s′(τ+1) dominate
those of r(τ + 1).) Consider then the case that i > j. In both processes
the increment falls between indices j and i, so the k-prefix sum inequality
continues to hold for k < j and k > i. Thus, for j 6 k < i,

k∑
`=1

s′`(τ + 1) =

j−1∑
`=1

s`(τ) +
k∑
`=j

s`(τ)

k∑
`=1

r`(τ + 1) =

j−1∑
`=1

r`(τ) + 1 +
k∑
`=j

r`(τ).

(3.9)

From j < i, (3.8), and (3.3) and (3.7) we have that when j 6 ` 6 i− 1,

s` > si−1 > f
−1(α) > rj > r`,

implying

s` > r` + 1. (3.10)

In (3.9), we have
∑i−1

`=1 s`(τ) >
∑i−1

`=1 r`(τ) from the inductive hypothesis
that s(τ) � r(τ), while using (3.10) gives

k∑
`=j

s`(τ) >
k∑
`=j

(1 + r`(τ)) > 1 +

k∑
`=j

r`(τ),

from which it follows that s′(τ + 1) � r(τ + 1), completing the inductive
proof that s(τ) � r(τ).

Having shown that the vector s(τ) of component sizes majorizes r(τ), it
suffices to analyze the latter. Until this point we could have used (3.4) rather
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than (3.5) to define p̄k, p̂k, and the function f , but now we take advantage
of the particularly simple nature of the process governing r(τ). Recall that
a new edge increments ri for the first i for which the U(0, 1) “coin toss”

α(τ) has α(τ) > p̂i
def
= ri/(n − 1). Equivalently, consider an array of cells

n − 1 rows high and infinitely many columns wide, generate an “arrival”
at a random row or “height” X(τ) uniform on 1, . . . , n − 1, and let this
arrival occupy the first unoccupied cell i at this height, thus incrementing
the occupancy ri of column i. This is equivalent because if ri of the n − 1
cells in column i are occupied, the chance that i is rejected — that X(τ)
falls into this set and thus the arrival moves along to test the next column
i+ 1 — is ri/(n− 1), matching (3.6).

Recalling that the cost of an edge arriving at time t is t/n in the original
graph problem, the combined cost Wk of the first k spanning trees is 1/n
times the sum of the arrival times of their k(n− 1) edges. The majorization∑k

i=1 si(τ) >
∑k

i=1 ri(τ) means that the `’th arrival to the first k forests
comes no later than the `’th arrival to the first k columns of the cell array.
Thus, the cost Wk of the first k trees is at most 1/n times the sum of the
times of the k(n− 1) arrivals to the array’s first k columns.

The continuous-time edge arrivals are a Poisson process with intensity 1/n
on each of the

(
n
2

)
edges, thus intensity (n− 1)/2 in all; it is at the Poisson

arrival times that the discrete time τ is incremented and X(τ) is generated.
Subdivide the “X” process into the n− 1 possible values that X may take
on, so that arrivals at each value (row in the cell array) are a Poisson process
of intensity λ = 1

2 . The sum of the first k arrival times in a row is the sum
of the first k arrival times in its Poisson process. The ith such arrival time
is the sum of i exponential random variables, and has expectation i/λ. The

expected sum of k arrival times of a line is thus
(
k+1

2

)
/λ = k(k + 1), and

(remembering that cost is time divided by n), the expected total cost of all
n− 1 lines is

n− 1

n
k(k + 1),

yielding the upper bound in (3.1) and completing the proof of the theorem.
�

Corollary 3.2. Let Γk :=
∑k

i=1 γi. Then, for every k > 1,

k2 6 Γk =

k∑
i=1

γi 6 k
2 + k. (3.11)

Proof. Immediate from Theorems 3.1 and 1.3. �

Example 3.3. In particular, Corollary 3.2 gives 1 6 γ1 6 2 and 4 6 γ1 +
γ2 6 6. In fact, we know that γ1 = ζ(3)

.
= 1.2021 [11] and γ1 + γ2 > 4.1704

by [12] and Section 9, see Corollary 9.4. A numerical estimate of γ2 from
Table 1 suggests γ1 + γ2

.
= 4.2942. �

3.2. Corollaries and conjectures for the kth tree. Turning to indi-
vidual γk instead of their sum Γk, we obtain Corollary 1.9, namely that
2k − 2k1/2 < γk < 2k + 2k1/2.
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Proof of Corollary 1.9. For the upper bound, we note that obviously γ1 6
γ2 6 . . . , and thus, for any ` > 1, using both the upper and lower bound in
(3.11),

` γk 6
k+`−1∑
i=k

γi = Γk+`−1 − Γk−1 6 (k + `− 1)(k + `)− (k − 1)2

= `2 + `(2k − 1) + k − 1 (3.12)

and hence

γk 6 2k − 1 + `+
k − 1

`
. (3.13)

Choosing ` = d
√
ke gives the upper bound in (1.1).

For the lower bound we similarly have, for 1 6 ` 6 k,

`γk > Γk − Γk−` > k
2 − (k − `)(k − `+ 1) = −`2 − (2k + 1)`− k (3.14)

and hence

γk > 2k + 1− `− k

`
. (3.15)

Choosing, again, ` = d
√
ke gives the lower bound in (1.1). �

Remark 3.4. For a specific k, we can improve (1.1) somewhat by instead

using (3.13) and (3.15) with ` = b
√
kc or ` = d

√
ke. For example, for k = 2,

taking ` = 1 yields 2 6 γ2 6 5. For k = 3, taking ` = 2 yields 3.5 6 γ3 6 8.
�

Besides these rigorous results, taking increments of the left and right-hand
sides of (3.11) also suggests the following conjecture.

Conjecture 3.5. For k > 1, 2k − 1 6 γk 6 2k.

Remark 3.6. Moreover, if γk = 2k + δ + o(1) holds, as conjectured in
Conjecture 1.7, then Γk = k2 + k(δ + 1) + o(k), and thus necessarily δ ∈
[−1, 0] as a consequence of Corollary 3.2. In fact, the numerical estimates
in Section 11, specifically Table 1, suggest that δ = −1; see Conjecture 1.8.

�

3.3. Improved upper bounds. The upper bounds in Theorem 3.1 and
Corollary 3.2 were proved using the bound (3.5). A stronger, but less ex-
plicit, bound can be proved by using instead the sharper (3.4). That is, we
consider the random vectors r(τ) defined as above but with (3.6) replaced
by

p̂k :=

(
rk + 1

2

)/(n
2

)
. (3.16)

As remarked before (3.4), this approximation comes from imagining all edges
in each Fk to be in a single component; this overestimates the probability
that an arriving edge is rejected from Fk and, as developed in the previous
subsection, gives s(τ) � r(τ) just as when p̂k was defined by (3.5).
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Using for consistency our usual time scaling in which edges arrive at rate
(n − 1)/2, by a standard martingale argument one can show that, for each
k > 1,

1

n
rk(b1

2ntc)
p−→ gk(t), uniformly for t > 0, (3.17)

for some continuously differentiable functions gk(t) satisfying the differential
equations, with g0(t) := 1,

g′k(t) = 1
2

(
gk−1(t)2 − gk(t)2

)
, gk(0) = 0, k > 1. (3.18)

Moreover, using s(τ) � r(τ) and taking limits, it can be shown that

Γk :=
k∑
i=1

γi 6
1

2

∫ ∞
0

t
(
1− gk(t)2

)
dt. (3.19)

We omit the details, but roughly, in time dt, 1
2n dt edges arrive, all costing

about t/n, and a gk(t)
2 fraction of them pass beyond the first k graphs (to

the degree that we are now modeling graphs). Compare (3.19) with (6.19),
with reference to (6.3).

For k = 1, (3.18) has the solution g1(t) = tanh(t/2), and (3.19) yields the
bound Γ1 = γ1 6 2 ln 2

.
= 1.3863. This is better than the bound 2 given by

(3.11), but still far from precise since γ1 = ζ(3)
.
= 1.2021.

For k > 2 we do not know any exact solution to (3.18), but numerical
solution of (3.18) and calculation of (3.19) (see Section 11.3) suggests that
Γk < k2 + 1. We leave the proof of this as an open problem. If proved,
this would be a marked improvement on Γk 6 k2 + k, which was the exact
expectation of the random process given by (3.5) (that part of the analysis
was tight). In particular, it would establish that 2k − 2 6 γk 6 2k; see
Conjecture 11.1.

For k = 2, the numerical calculations in Section 11.3 give γ1 + γ2 6
4.5542 . . . (see Table 2) and thus γ2 6 3.3521 . . .. The same value was also
obtained using Maple’s numerical differential equation solver, with Maple
giving greater precision but the two methods agreeing in the digits shown
here.

4. Inhomogeneous random graph preliminaries

Here, we recall various constructs, mostly related to the theory of inhomo-
geneous random graphs in [5]. They will be used in the proofs that follow,
in particular that of Theorem 2.1 in Section 5.

4.1. Some random graphs. For a symmetric array (pij)
n
i,j=1 of probabil-

ities in [0, 1], let G(n, (pij)) be the random (simple) graph on the vertex set
[n] := {1, . . . , n} where the edge ij appears with probability pij , for i < j,
and these

(
n
2

)
events are independent. We extend this (in a trivial way)

by defining G(n,A) = G(n, (aij)) := G(n, (aij ∧ 1)ni,j=1) for any symmetric

non-negative n× n matrix A = (aij)
n
i,j=1. Moreover, the matrix A can be a

random, in which case G(n,A) is defined by first conditioning on A. (Hence,
edges appear conditionally independently, given A.)

Note that we do not allow loops, so the diagonal entries pii or aii are
ignored, and may be assumed to be 0 without loss of generality.
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4.2. Susceptibility. The susceptibility χ(G) of a (deterministic or random)
graph G of order n = |G| is defined by

χ(G) :=
1

n

∞∑
i=1

Ci(G)2. (4.1)

χ(G) can be interpreted as the mean size of the component containing a
random vertex, see [19]. We also exclude the first term in the sum and
define

χ̂(G) :=
1

n

∞∑
i=2

Ci(G)2. (4.2)

(This is particularly interesting for a graph G with a single giant component
of order Θ(n), when the sum in (4.1) is dominated by the first term.)

Viewing each term in the sums (4.1)–(4.2) as (Ci(G)/n)Ci(G), since∑∞
i=1Ci(G)/n = 1 each sum can be viewed as a weighted sum of the sizes

Ci(G) with the weights summing to at most 1, so

χ(G) 6 C1(G), (4.3)

χ̂(G) 6 C2(G). (4.4)

Let π(G) be the probability that two randomly chosen distinct vertices
in G belong to the same component. Then

π(G) =

∑∞
i=1Ci(G)

(
Ci(G)− 1

)
n(n− 1)

=
nχ(G)− n
n(n− 1)

=
χ(G)− 1

n− 1
. (4.5)

4.3. Kernels and an integral operator. A kernel, or graphon, is a non-
negative symmetric measurable function κ : S2 → [0,∞), where (in a com-
mon abuse of notation) S = (S,F , µ) is a probability space.

Given a kernel κ on a probability space S, let Tκ be the integral operator
defined by (for suitable functions f on S),(

Tκf
)
(x) =

∫
S
κ(x, y)f(y) dµ(y), (4.6)

and let Φκ be the non-linear operator

Φκf := 1− e−Tκf . (4.7)

In our cases, the kernel κ is bounded, and then Tκ is a compact (in fact,
Hilbert–Schmidt) operator on L2(S, µ). Since furthermore κ > 0, it follows
that there exists an eigenfunction ψ > 0 on S with eigenvalue ‖Tk‖, see [5,
Lemma 5.15], where ‖Tκ‖ denotes the operator norm of Tk as an operator
on L2(S, µ).

4.4. Branching processes. Given a kernel κ on a probability space (S,F , µ),
as in [5] let Xκ(x) be the multi-type Galton–Watson branching process with
type space S, starting with a single particle of type x ∈ S, and where in
each generation a particle of type y is replaced by its children, consisting
of a set of particles distributed as a Poisson process on S with intensity
κ(y, z) dµ(z). Let further Xκ be the same branching process started with a
particle of random type, distributed as µ.

Let
ρκ(x) and ρ(κ) = ρ(κ;µ) (4.8)
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be the probabilities that Xκ(x) and Xκ, respectively, survive for ever. Thus,

ρ(κ) =

∫
S
ρκ(x) dµ(x). (4.9)

By [5, Theorem 6.1], assuming e.g. that κ is bounded as in our cases
(much less will do), the following hold.

(i) The function ρκ is a fixed point of Φκ, i.e., it satisfies the equation

ρκ = Φκρκ
def
= 1− e−Tκρκ . (4.10)

Moreover, ρκ is the largest non-negative solution of this equation.
(ii) If ‖Tκ‖ 6 1, then ρκ(x) = 0 for every x, and thus ρ(κ) = 0.
(iii) If ‖Tκ‖ > 1, then ρ(κ) > 0.

5. Proof of Theorem 2.1

5.1. Basics, and an approximating inhomogeneous random graph.
The proof of Theorem 2.1 is based on induction; we assume throughout this
section that, for k > 1, Theorem 2.1 holds for k − 1 and show that it holds
for k.

For convenience, we define F0(t) := G0(t) := Kn for every t > 0; this
enables us to consider G1(t) together with Gk(t) for k > 1. (Alternatively,
we could refer to known results for the random graph process G1(t).) Note
that Theorem 2.1 then trivially holds for k = 0, with ρ0(t) = 1 for all t and
σ0 = 0, except that (iii) has to be modified (since ρ0 is constant). There are
some trivial modifications below in the case k = 1 (and also some, more or
less important, simplifications); we leave these to the reader.

Thus, fix k > 1, assume that Theorem 2.1 holds for k − 1 and consider
the evolution of Gk(t). Essentially everything in this proof depends on k,
but we often omit it from the notation. (Recall that we also usually omit
n.)

We condition on the entire process (Fk−1(s))s>0. For two distinct vertices
i, j ∈ [n], let τ(i, j) = τk−1(i, j) be the time that i and j become members
of the same component in Fk−1(t). This is the time when edges ij start to
be passed to Gk(t), and it follows that, conditionally on (Fk−1(s))s>0, the
processGk(t), t > 0, can be described asG1(t) above (Section 2), except that
for each pair {i, j} of vertices, edges appear according to a Poisson process
on (τ(i, j),∞). In particular, for a fixed time t (a value, independent of
n) and conditioned on (Fk−1(s))s>0, in the multigraph Gk(t), the number
of edges ij is Po

(
(t − τ(i, j))+/n

)
, and these numbers are (conditionally)

independent for different pairs {i, j}. Hence, if we merge multiple edges and

obtain the simple graph Ġk(t), we see that

Ġk(t) = G(n, (pij)), (5.1)

the random graph defined in Section 4.1 with

pij = pij(t) := 1− e−(t−τ(i,j))+/n =
(t− τ(i, j))+

n
+O

(
n−2

)
(5.2)

when i 6= j, and (for completeness) pii = 0. Note that the probabilities
pij depend on (Fk−1(s))s>0 and thus are random, and recall that therefore
G(n, (pij)) is defined by first conditioning on (pij)i,j (or on (Fk−1(s))s>0).
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Define

τ(i) = τk−1(i) := inf{t > 0 : i ∈ Ck−1(t)}, i = 1, . . . , n, (5.3)

i.e., the first time that vertex i belongs to the permanent giant of Fk−1.
Note that

τ(i, j) 6 τ(i) ∨ τ(j), (5.4)

but strict inequality is possible since i and j may both belong to a component
of Fk−1(t) that is not the permanent giant. We shall see that this does not
happen very often, and one of the ideas in the proof is that we may regard
the inequality (5.4) as an approximate equality. This is formalized in the
following lemma, and leads to a more tractable graph defined in (5.22) and

compared with Ġk(t) in Lemma 5.3.

Lemma 5.1. For any fixed t > 0,∑
i 6=j

(
(t− τ(i, j))+ − (t− τ(i) ∨ τ(j))+

)
= op(n2). (5.5)

Proof. Fix ε > 0, let L := dt/εe and let t` := σk−1 + ` ε, ` = 1, . . . , L.
Say that the pair (i, j) is bad if

τ(i, j) 6 t and τ(i) ∨ τ(j)− τ(i, j) > 2ε. (5.6)

Note that, using (5.4), for any pair (i, j),

0 6 (t− τ(i, j))+ − (t− τ(i) ∨ τ(j))+ 6 t (5.7)

and for a good pair (i.e., a pair that is not bad),

(t− τ(i, j))+ − (t− τ(i) ∨ τ(j))+ 6 2ε. (5.8)

By the induction hypothesis Theorem 2.1(v), w.h.p. Gk−1(t1) has a per-
manent giant, so we may assume that this holds. (Failures contribute op(n2)
to the right-hand side of (5.5).)

If (i, j) is bad, then either τ(i, j) 6 σk−1 − ε, or there exists ` ∈ [1, L]
such that τ(i, j) 6 t` < τ(i) ∨ τ(j). In the first case, i and j belong to the
same component in Gk−1(σk−1 − ε), and in the second case they belong to
the same component in Gk−1(t`), but not to the largest one, since that is
assumed to be the permanent giant. Hence, for any t, the number of bad
pairs (i, j) is at most, using the definitions (4.1)–(4.2),

nχ
(
Gk−1(σk−1 − ε)

)
+

L∑
`=1

nχ̂
(
Gk−1(t`)

)
. (5.9)

By (4.3) and the induction hypothesis (i) and (iii),

χ
(
Gk−1(σk−1−ε)

)
6 C1

(
Gk−1(σk−1−ε)

)
= nρk−1(σk−1−ε)+op(n) = op(n)

(5.10)
and similarly for every `, by (4.4) and the induction hypothesis (ii),

χ̂
(
Gk−1(t`)

)
6 C2

(
Gk−1(t`)

)
= op(n). (5.11)

By (5.9)–(5.11), the number of bad pairs is op(n2). Hence, using (5.7) and
(5.8), we obtain∑

i 6=j

(
(t− τ(i, j))+ − (t− τ(i) ∨ τ(j))+

)
6 2εn2 + top(n2), (5.12)
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and the result follows since ε is arbitrary. �

We use the machinery and notation in Bollobás, Janson and Riordan [5,
in particular Section 2], and make the following definitions:

• S is the set

S := [0,∞). (5.13)

• µk−1 is the probability measure on S with distribution function

µk−1([0, x]) = ρk−1(x). (5.14)

• xn := (x1, . . . , xn) where

xi = τk−1(i). (5.15)

• νn is a probability measure given by

νn :=
1

n

n∑
i=1

δxi , (5.16)

where δx is the point mass (Dirac delta) at x. (In other words, νn is
the empirical distribution of {x1, . . . , xn}. Put yet another way, for
any set A ⊂ S, νn(A) := 1

n

∣∣{i : xi ∈ A}∣∣.)
Note that xn and νn are random, and determined by (Fk−1(s))s>0.

Lemma 5.2. νn
p−→ µk−1 in the space P(S) of probability measures on S.

Proof. The claim is equivalent to

νn[0, x]
p−→ µk−1[0, x] (5.17)

for every continuity point x of µk−1, see e.g. [5, Lemma A.2 and Remark
A.3] or [2, Section 3]. (In our case, for k > 1, µk−1 is a continuous measure,
by (5.14) and (i), so we should consider all x.) However, (5.17) follows from
(5.3) and the induction hypothesis (v), which yield, for any x > 0,

νn[0, x] =
1

n

∣∣{i : τk−1(i) 6 x}
∣∣ =

1

n

∣∣Ck−1(x)
∣∣ p−→ ρk−1(x) = µk−1[0, x].

(5.18)
�

In the terminology of [5, Section 2], (S, µk−1) is a ground space and, by
Lemma 5.2,

V := (S, µk−1, (xn)n>1) (5.19)

is a vertex space, meaning that the number of vertices xi appearing by time
t is governed by µk−1, as made precise by (5.18). We define also, for every
t > 0, the kernel

κt(x, y) := (t− x∨ y)+ = (t− x)+ ∧ (t− y)+, x, y ∈ S = [0,∞). (5.20)

Note that, for fixed t, the kernel κt is bounded and continuous; hence κt is
a graphical kernel [5, Definition 2.7, Remark 2.8 and Lemma 8.1]. Further-
more, κt is strictly positive, and thus irreducible, on [0, t)×[0, t), and 0 on the
complement S2\[0, t)2; hence, κt is quasi-irreducible [5, Definition 2.11], pro-
vided t > σk−1 so ρk−1(t) > 0. (If t 6 σk−1, then µk−1[0, t] = ρk−1(t) = 0,
and thus κt = 0 µ2

k−1-a.e. on S2.)
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As detailed in [5, Section 2], specifically near its (2.3), these ingredients
define a random graph

GV(n, κt). (5.21)

Recall that in our case the kernel κt is given by (5.20) while the vertex space
V is given by (5.19), in turn with S and µk−1 given by (5.13) and (5.14),
and xn given by (5.15).

In general, GV(n, κt) denotes a random graph with vertices arriving at
random times xn, vertices i and j joined with probability κt(xi, xj)/n, in-
dependently for all pairs {i, j}, and [5] describes the behavior of such an
inhomogeneous random graph. It suffices to think of GV(n, κt) in terms of
S, µk−1, and κt, because as shown in [5] the particulars of xn are irrelevant
as long as xn is consistent with µk−1 in the sense of (5.18) and (5.16), this
consistency following from the fact that V is a vertex space (see (5.19) and
the line following it).

Here, GV(n, κt) is the random graph alluded to after (5.4), a proxy for
Gk(t) with the difference that it is based on the times τ(i) of vertices joining
the permanent giant of Fk−1, rather than the more complicated two-variable
times τ(i, j) of two vertices first belonging to a common component. Con-
cretely,

GV(n, κt)
def
= G(n, (p−ij)), (5.22)

the right-hand side being the random graph defined in Section 4.1 with
(recalling (5.20) and (5.15))

p−ij :=
1

n
κt(xi, xj) =

1

n

(
t− xi ∨ xj

)
+

=
1

n

(
t− τ(i) ∨ τ(j)

)
+

(5.23)

when i 6= j, and (for completeness) p−ii = 0. We assume throughout that

n > t, so that p−ij ∈ [0, 1]; this is not an issue since t is fixed while n → ∞.

Note that by (5.2) and (5.5),∑
i,j

|pij − p−ij | =
∑
i 6=j

(t− τ(i, j))+ − (t− τ(i) ∨ τ(j))+

n
+O(1) = op(n).

(5.24)

Recall that both pij and p−ij depend on (Fk−1(s))s>0, and thus are ran-

dom. By (5.1) and (5.22), Ġk(t) = G(n, (pij)) and GV(n, κt) = G(n, (p−ij)),

so by making the obvious maximal coupling of G(n, (pij)) and G(n, (p−ij))

conditionally on (Fk−1(s))s>0, we obtain a coupling of Ġk(t) and GV(n, κt)

such that if e
(
Ġk(t)4GV(n, κt)

)
is the number of edges that are present in

one of the graphs but not in the other, then

E
(
e
(
Ġk(t)4GV(n, κt)

)
| (Fk−1(s))s>0

)
=
∑
i<j

|pij − p−ij |. (5.25)

Lemma 5.3. For every fixed t > 0,

e
(
Ġk(t)4GV(n, κt)

)
= op(n). (5.26)

Proof. Let ε > 0. For convenience, let Xn := e
(
Ġk(t) 4 GV(n, κt)

)
and

Yn := E
(
Xn | (Fk−1(s))s>0

)
. Then, using Markov’s inequality, for any
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δ > 0,

P
(
Xn > εn

)
6 P(Yn > δn) + EP(Xn > εn | Yn 6 δn) 6 P(Yn > δn) +

δn

εn
.

(5.27)
But Yn = op(n) by (5.25) and (5.24), so P(Yn > δn) = o(1). Hence P(Xn >
εn) 6 δ/ε + o(1). Since δ is arbitrary, this shows P(Xn > εn) = o(1), i.e.,
0 6 Xn 6 εn w.h.p., which completes the proof. �

5.2. Towards part (i) of Theorem 2.1. The following lemma establishes
(2.1) of Theorem 2.1(i) for any fixed t > 0; doing so uniformly for all t > 0,
as the theorem states, follows later. Here we rely on [5, Theorem 3.1], which,
roughly speaking, relates the size of the largest component of a random graph
GV(n, κt), to the survival probability of the branching process defined by the
same kernel κt and the measure (here µk−1) comprised by the vertex space

V. By Lemma 5.3, the graph Ġk(t) of interest differs from GV(n, κt) in only
op(n) edges, and the stability theorem [5, Theorem 3.9] shows that the size

of the largest component of Ġk(t) is about the same as that of GV(n, κt).
Let Xt = Xt,k := Xκt be the branching process defined in Section 4.4

for the kernel κt and the measure µk−1, and (recalling (4.8)) let ρ(κt)
def
=

ρ(κt;µk−1) be its survival probability.

Lemma 5.4. For every fixed t > 0, (2.1) holds with

ρk(t) := ρ(κt;µk−1)
def
= ρ(κt), (5.28)

the survival probability of the branching process Xt.

Do not confuse ρk with ρκ, respectively the ρ and ρκ of (4.8).

Proof. Fix t > 0. First, if t 6 σk−1, then, by the induction hypothesis,

C1(Gk−1(t))/n
p−→ ρk−1(t) = 0. Since each component of Gk(t) is a subset

of a component of Gk−1(t), we have C1(Gk(t)) 6 C1(Gk−1(t)), and thus

also C1(Gk(t))/n
p−→ 0, which shows (2.1) with ρk(t) = 0. The survival

probability ρ(κt) = 0 here as well, establishing (5.28), as indeed no particle
has any children: recalling the definitions in Section 4.4, the total number of
children of a particle of any type y is Po

(∫∞
0 κt(y, z) dµk−1(z)dz

)
= Po(0),

since for z < σk−1 we have µk−1(z) = 0 thus dµk−1(z) = 0, while for
z > σk−1 > t we have κt(y, z) = 0.

Hence we may in the rest of the proof assume t > σk−1 and thus µk−1(t) =
ρk−1(t) > 0. As noted after (5.20) above, the kernel κt then is quasi-
irreducible. Hence, it follows from [5, Theorem 3.1] that

C1(GV(n, κt))/n
p−→ ρ(κt). (5.29)

We have shown in Lemma 5.3 that Ġk(t) differs from GV(n, κt) by only
op(n) edges, and we appeal to the stability theorem [5, Theorem 3.9] to show
that largest components of these two graphs have essentially the same size.
(Alternatively, we could use [6, Theorem 1.1].) A minor technical problem
is that this theorem is stated for irreducible kernels, while κt is only quasi-
irreducible. We can extend the theorem (in a standard way) by considering
only the vertices i with xi = τk−1(i) 6 t, i.e., the vertices i in the permanent
giant Ck−1(t) of Gk−1(t), see (5.3). This defines a generalized vertex space [5,
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Section 2] V ′ = (S ′, µ′k−1, (x
′
n)n>1), where S ′ := [0, t], µ′k−1 is the restriction

of µk−1 to S ′, and x′n is the subsequence of xn = (x1, . . . , xn) consisting of
all xi ∈ S ′. The kernel κt is strictly positive a.e. on S ′ × S ′, and is thus
irreducible.

Thus, we may take Gn in [5, Theorem 3.9] to be

Gn := GV
′
(n, κt), (5.30)

which may be thought of as the restriction of GV(n, κt) to Ck−1(t). Take
the theorem’s G′n to be

G′n := Ġk(t) [Ck−1(t)] , (5.31)

the restriction of Ġk(t) to Ck−1(t). For any δ > 0, from Lemma 5.3, w.h.p.

e
(
Ġk(t)4 GV(n, κt)

)
6 δn. Restricting each of these graphs to Ck−1(t), it

follows that w.h.p.

e(G′n 4Gn) 6 δn. (5.32)

Thus, Gn and G′n fulfill the theorem’s hypotheses. For any ε > 0, we may
choose δ > 0 per the theorem’s hypotheses, and it follows from the theorem
and (5.29) that w.h.p.(

ρ(κt)− ε
)
n 6 C1(G′n) 6

(
ρ(κt) + ε

)
n. (5.33)

Our aim is to establish (2.2), which is (5.33) with C1(Gk(t)) in lieu of

C1(G′n). Each component C of Gk(t) (or equivalently of Ġk(t)) is a subset
of some component of Gk−1(t), either C1(Gk−1(t)) or some other compo-
nent. Since t > σk−1 and by the induction hypothesis (v) of Theorem 2.1,
w.h.p. Ck−1(t) 6= ∅ and thus C1(Gk−1(t)) = Ck−1(t). Thus, components of
Gk(t) contained in C1(Gk−1(t)) are also contained in G′n, and the largest
such component is governed by (5.33). Components of Gk(t) contained in
a smaller component of Gk−1(t) have size at most C2(Gk−1(t)), which by
the induction hypothesis (ii) is w.h.p. smaller than any constant times n,
and thus smaller than the component described by (5.33). Consequently,
w.h.p. C1(Gk(t)) = C1(G′n), and thus (5.33) implies (2.2) w.h.p., for every
ε > 0 (for the fixed t, rather than for all t > 0 as in Theorem 2.1). This is
equivalent to (2.1) (again, for the fixed t). �

5.3. Towards part (ii) of Theorem 2.1. The next lemma establishes
something like Theorem 2.1 (ii), but only for any fixed t > 0; extending this
to the supremum follows later.

Lemma 5.5. For every fixed t > 0, C2(Gk(t)) = op(n).

Proof. We use the notation of the proof of Lemma 5.4, specifically (5.30)

and (5.31). Let G†n be the graph G′n with a single edge added such that the
two largest components C1(G′n) and C2(G′n) are joined and let ε > 0. (If

C2(G′n) = ∅, let G†n := G′n.) Since w.h.p. the analog of (5.32) holds also for

G†n, [5, Theorem 3.9] applies also to Gn and G†n and shows that w.h.p.

C1(G′n) + C2(G′n) = C1(G†n) 6
(
ρ(κt) + ε

)
n. (5.34)

This and (5.33) imply that w.h.p.

C2(G′n) 6 2εn. (5.35)
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Furthermore, as shown in the proof of Lemma 5.4, w.h.p. every component
of Gk(t) that is not part of G′n has size at most C2(Gk−1(t)), which w.h.p.
is 6 εn by the induction hypothesis. Consequently, w.h.p.

C2(Gk(t)) 6 2εn, (5.36)

which completes the proof. �

Let Tt = Tt,k := Tκt be the integral operator defined by (4.6) with the
measure µk−1. We regard Tt as an operator on L2(S, µk−1), and recall that
(since κt is bounded) Tt is a bounded and compact operator for every t > 0.

Lemma 5.6. The operator norm ‖Tt‖ is a continuous function of t > 0.
Furthermore,

(a) ‖Tt‖ = 0 ⇐⇒ t 6 σk−1

(b) ‖Tt‖ is strictly increasing on [σk−1,∞).
(c) ‖Tt‖ → ∞ as t→∞.

Proof. If 0 6 t 6 u <∞, then by (5.20), for any x, y ∈ S = [0,∞),

0 6 κu(x, y)− κt(x, y) 6 u− t, (5.37)

and consequently, with ‖ · ‖HS the Hilbert–Schmidt norm,∣∣‖Tt‖ − ‖Tu‖∣∣ 6 ‖Tt − Tu‖ 6 ‖Tt − Tu‖HS = ‖κt − κu‖L2(S2,µ2k−1) 6 |t− u|.
(5.38)

Hence, t 7→ ‖Tt‖ is continuous.
(a): By (5.20), κt(x, y) > 0 ⇐⇒ (x, y) ∈ [0, t)2. If t 6 σk−1, then

µk−1[0, t) = ρk−1(t) = 0, and thus κt = 0 a.s., so Tt = 0.
Conversely, if t > σk−1, then κt > 0 on a set of positive measure, and thus

Tt1 > 0 on a set of positive measure (where 1 denotes the function that is
constant 1); hence ‖Tt‖ > ‖Tt1‖L2 > 0.

(b): Assume u > t > σk−1. Then, as just shown, ‖Tt‖ > 0. Moreover,
as said in Section 4.3, there exists an eigenfunction ψt > 0 with eigenvalue
‖Tt‖, which we can assume is normalized: ‖ψt‖L2 = 1. Since κt > 0 on
[0, t)× [0, t), and 0 elsewhere, it follows from ψt = Ttψt/‖Tt‖ and (4.6) that
ψt = 0 a.e. on [t,∞), and thus nonzero somewhere on [0, t), and thus ψt > 0
a.e. on [0, t). As u > t, then κu(x, y) > κt(x, y) on [0, t)×[0, t), and it follows
that for x ∈ [0, t),

(Tuψt)(x) =

∫ ∞
0

κu(x, y)ψt(y) dµk−1(y)

>

∫ ∞
0

κt(x, y)ψt(y) dµk−1(y) = Ttψt(x) = ‖Tt‖ψt(x). (5.39)

Thus,

‖Tu‖ > ‖Tuψt‖L2 > ‖Tt‖ ‖ψt‖L2 = ‖Tt‖. (5.40)

Consequently, (b) holds.
(c): By (5.20), κt(x, y) ↗ ∞ as t→∞ for every x, y ∈ [0,∞). Hence,

using monotone convergence, Tt1(x) =
∫∞

0 κt(x, y) dµk−1(y) ↗ ∞ for ev-
ery x ∈ [0,∞), and thus by monotone convergence again, ‖Tt1‖L2 ↗ ∞.
Consequently, ‖Tt‖ > ‖Tt1‖L2 →∞. �
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5.4. Proofs of parts (iii) and (iv) of Theorem 2.1.

Proof of Theorem 2.1(iii). By Lemma 5.6, there exists a unique σk > 0 such
that

‖Tσk‖ = 1. (5.41)

Furthermore, ‖Tt‖ < 1 if t < σk and ‖Tt‖ > 1 if t > σk. Thus,

t > σk ⇐⇒ ‖Tt‖ > 1 ⇐⇒ ρk(t) > 0, (5.42)

where the last equivalence follows from [5, Theorem 3.1], establishing ‖Tt‖ >
1 as a necessary and sufficient condition for the existence of a giant com-
ponent, and providing its size. In order to see that ρk is strictly increasing
on [σk,∞), let σk < t < u. Since κu(x, y) > κt(x, y) for all x, y ∈ S, we
may couple the branching processes Xt = Xκt and Xu = Xκu such that Xu is
obtained from Xt by adding extra children to some individuals. (Each indi-
vidual of type x gets extra children of type y distributed as a Poisson process
with intensity (κu(x, y)−κt(x, y)) dµk−1(y), independent of everything else.)
Then clearly Xu survives if Xt does, so ρk(u) := ρ(κu) > ρ(κt) = ρk(t). (See
[5, Lemma 6.3].) Moreover, there is a positive probability that Xt dies out
but Xu survives, for example because the initial particle has no children in
Xt but at least one in Xu, and this child starts a surviving branching process.
Hence ρk(u) > ρk(t). �

We next prove Theorem 2.1(iv). A simple lemma will be useful here and
subsequently.

Consider the process defined in Section 2 of all graphs Gj(t), j > 1 and t >
0, under some edge-arrival process; consider also a similar set of graphs G′j(t)

coming from a second arrival process thicker than the first (i.e., containing
the same arrivals and possibly others).

Lemma 5.7. The thicker process yields larger graphs, i.e., Gj(t) ⊆ G′j(t) for
all j and t. Also, any edge e present in both arrival processes, if contained
in F ′1(t) ∪ · · · ∪ F ′j(t), is also contained in F1(t) ∪ · · · ∪ Fj(t).

Proof. It is easy to see that adding edges can only make G1 larger, i.e., that
G′1(t) ⊇ G1(t). Thus any edge originally passed on to G2(t) will still be
passed on, plus perhaps some others; by induction on j, any Gj(t) can only
increase, i.e., G′j(t) ⊇ Gj(t). This proves the first assertion. The second

assertion follows from the first. If e is not contained in F1(t) ∪ · · · ∪ Fj(t)
then it is passed on to Gj+1(t), and hence, as just shown, it belongs also to
G′j+1(t) and therefore not to F ′1(t) ∪ · · · ∪ F ′j(t). �

Let qn(t) be the probability that two fixed, distinct, vertices in Gk(t)
belong to the same component. By symmetry, this is the same for any pair
of vertices, and thus also for a random pair of distinct vertices. Hence,
recalling (4.5),

qn(t) = Eπ(Gk(t)). (5.43)

Lemma 5.8. There exist constants bk, Bk > 0 such that, for every n > 2,

qn(t) > 1−Bke−bkt, t > 0. (5.44)
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Proof. Fix some t0 > σk; thus ρk(t0) > 0 by (iii). Then, cf. (4.5), writing
Ci := Ci(Gk(t0)),

qn(t0) = E
∑∞

i=1Ci(Ci − 1)

n(n− 1)
> E

C1(C1 − 1)

n(n− 1)
. (5.45)

By Lemma 5.4, C1/n
p−→ ρk(t0) as n→∞, and thus C1(C1 − 1)/(n(n −

1))
p−→ ρk(t0)2. Hence, by (5.45) and dominated convergence (see e.g. [15,

Theorems 5.5.4 and 5.5.5]),

lim inf
n→∞

qn(t0) > lim
n→∞

E
C1(C1 − 1)

n(n− 1)
= ρk(t0)2 > 0. (5.46)

Let q := ρk(t0)2/2, say. Then (5.46) shows that if n is large enough, qn(t0) >
q. By reducing q, if necessary, we may assume that this holds for every n,
since obviously qn(t0) > 0 for every fixed n > 2.

For an integer m > 0, consider the process defined in Section 2 of all
graphs Gj(t), j > 1 and t > 0, but erase all edges and restart at mt0; denote

the resulting random graphs by G
(m)
j (t) and note that G

(m)
j (t + mt0)

d
=

Gj(t). In particular, let Gk,m := G
(m)
k ((m + 1)t0). Then Gk,m

d
= Gk(t0);

furthermore, the random graphs Gk,m, m = 0, 1, . . . , are independent, since
they depend on edges arriving in disjoint time intervals.

Consider the process at times i t0 for integers i. By Lemma 5.7, Gk(i t0)
dominates what it would have been had no edges arrived by (i−1)t0, which,
for i > 2, is simply an independent copy of Gk(t0) (that is, independent
of Gk(t0) but identically distributed). Consequently, for any integer M ,
vertices x and y can be in different components of Gk(Mt0) only if they
are in different components in each of the M copies of Gk(t0). Thinking of
all values i > 1 at once, these copies of Gk(t0) are all independent, as they
depend on edge arrivals in disjoint time intervals

(
(i− 1)t0, i t0

]
. Thus,

1− qn(Mt0) 6 (1− qn(t0))M 6 (1− q)M 6 e−qM . (5.47)

Thus, for any t > 0, taking M := bt/t0c,

qn(t) > qn(Mt0) > 1− e−qbt/t0c > 1− eq−(q/t0)t, (5.48)

which shows (5.44). (In fact, we get Bk = eq < e; we can take q arbitrarily
small and thus Bk arbitrarily close to 1, at the expense of decreasing bk.) �

Proof of Theorem 2.1(iv). Let C1(t) be the component of Gk(t) that con-
tains vertex 1. Then, by Lemma 5.8,

EC1(Gk(t)) > E |C1(t)| = 1 + (n− 1)qn(t) > (n− 1)
(
1−Bke−bkt

)
. (5.49)

Furthermore, by Lemma 5.4 and dominated convergence, EC1(Gk(t))/n→
ρk(t) as n→∞. Hence, (5.49) implies ρk(t) > 1 − Bke−bkt, which is (2.3).

�

5.5. Proofs of parts (i), (ii), and (v) of Theorem 2.1.

Proof of Theorem 2.1(i). If tn is a sequence such that either tn ↗ t or
tn ↘ t, then κtn(x, y) → κt(x, y) for all x and y by (5.20), and thus by
[5, Theorem 6.4], recalling (5.28), ρk(tn) = ρ(κtn) → ρ(κt) = ρk(t). Hence,
ρk is continuous. That ρk is increasing was shown above in Theorem 2.1(iii).
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Let ε > 0 and let N be an integer with N > ε−1. Since ρk is continuous,
and ρk(t) → 1 as t→∞ by Theorem 2.1(iv), we can choose t0 = 0 < t1 <
· · · < tN−1 < tN =∞ with

ρk(tj) = j/N. (5.50)

By Lemma 5.4, w.h.p.

ρk(tj)− ε 6 C1

(
Gk(tj)

)
/n 6 ρk(tj) + ε (5.51)

for every j 6 N . (The case j = N is trivial, since Gk(∞) a.s. is connected.)
Then, for every j = 1, . . . , N and every t ∈ [tj−1, tj ],

C1

(
Gk(t)

)
/n 6 C1

(
Gk(tj)

)
/n 6 ρk(tj) + ε 6 ρk(t) +

1

N
+ ε 6 ρk(t) + 2ε,

(5.52)
which together with a similar lower bound shows that w.h.p. |C1

(
Gk(t)

)
/n−

ρk(t)| 6 2ε for all t > 0. Since ε is arbitrary, this shows (2.2). �

Proof of Theorem 2.1(ii). Let ε, N , and tj , j = 0, . . . , N , be as in the proof
of Theorem 2.1(i) above. Again, w.h.p., (5.51) holds for every j 6 N .
Moreover, by Lemma 5.5, for every j 6 N − 1, and trivially when j = N ,
w.h.p.

C2

(
Gk(tj)

)
6 εn. (5.53)

Assume (5.51) and (5.53) for every j 6 N , and also that C2

(
Gk(t)

)
> 3εn

for some t > 0. Choose j with 1 6 j 6 N such that t ∈ [tj−1, tj ]. If
C2(Gk(t)) has not merged with C1(Gk(t)) by time tj , then

C2

(
Gk(tj)

)
> C2

(
Gk(t)

)
> 3εn, (5.54)

which contradicts (5.53). If on the other hand these two components have
merged, then, using (5.51) and (from (5.50)) that ρk(tj−1) > ρk(tj)− ε,

C1

(
Gk(tj)

)
> C1

(
Gk(t)

)
+ C2

(
Gk(t)

)
> C1

(
Gk(tj−1)

)
+ 3εn

> ρk(tj−1)n− εn+ 3εn > ρk(tj)n+ εn, (5.55)

which contradicts (5.51). Consequently, w.h.p. suptC2

(
Gk(t)

)
6 3εn. �

Proof of Theorem 2.1(v). If t > σk, then ρk(t) > 0 by Theorem 2.1(iii). Let
δ = ρk(t)/2. Then, by (i) and (ii), w.h.p. C1(Gk(t)) > δn, and, simulta-
neously for every u > 0, C2(Gk(u)) < δn. Assume that these inequalities
hold. Then, in particular, the largest component of Gk(t) is a unique giant.
(Recall the definition from Section 2.3.) Moreover, for every u > t, the
component C of Gk(u) that contains the largest component of Gk(t) then
satisfies

|C| > C1(Gk(t)) > δn > C2(Gk(u)), (5.56)

showing that C is the unique giant of Gk(u). Hence, the largest component
of Gk(t) is w.h.p. a permanent giant.

Consequently, if t > σk, then w.h.p. |Ck(t)| = C1(Gk(t)) and (2.4) follows
from (2.1). On the other hand, if t 6 σk, then (2.1) and (iii) yield

|Ck(t)|/n 6 C1(Gk(t))/n
p−→ ρk(t) = 0, (5.57)

and (2.4) follows in this case too. �

This completes the proof of Theorem 2.1.
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5.6. A corollary, and proof of Theorem 2.3. We note the following
corollary.

Corollary 5.9. For k > 1, uniformly for all t ∈ [0,∞),

χ
(
Gk(t)

)
/n

p−→ ρk(t)
2, (5.58)

χ̂
(
Gk(t)

)
/n

p−→ 0. (5.59)

Proof. First, (5.59) follows immediately from (4.4) and Theorem 2.1(ii).
Next, by the definitions (4.1)–(4.2),

χ
(
Gk(t)

)
/n = χ̂

(
Gk(t)

)
/n+ C1

(
Gk(t)

)2
/n2, (5.60)

and (5.58) follows by (5.59) and (2.1). �

Remark 5.10. Using [19, Theorem 4.7 and Lemma 2.2] together with re-
sults above (in particular (5.1)–(5.2) and Lemmas 5.1 and 5.2), it is not
difficult to prove the much stronger results that if t < σk is fixed, then there

exists a finite constant χk(t) such that χ(Gk(t))
p−→ χk(t), and if t 6= σk is

fixed, then there exists a finite constant χ̂k(t) such that χ̂(Gk(t))
p−→ χ̂k(t).

Furthermore, these limits can be calculated from the branching process
Xt = Xκt on (S, µk−1): if we let |Xt| be the total population of the branching
process, then χk(t) = E(|Xt|) and χ̂k(t) = E

(
|Xt|1{|Xt| < ∞}

)
. We omit

the details. �

Proof of Theorem 2.3. Since κt(x, y) = 0 for every y when x > t, a particle
of type x > t will not get any children at all in the branching process
Xt,k = Xκt , hence has survival probability ρκ(x) = 0. Thus, recalling (4.9)
and (5.14), the survival probability

ρk(t) =

∫ ∞
0

ρκ(x)dµk−1(x) 6
∫ t

0
1 dµk−1(x) = µk−1[0, t) = ρk−1(t). (5.61)

Moreover, even if x < t, there is a positive probability that x has no children
in Xt,k, and thus there is strict inequality in (5.61) whenever ρk−1(t) > 0.

Turning to the threshold, we note that µ[0, σk−1) = ρk−1(σk−1) = 0, and
thus µk−1-a.e. x satisfies x > σk−1, in which case κt(x, y) 6 (t− σk−1)+. In
particular, if t < σk−1 + 1, then ‖Tt‖ 6 ‖Tt‖HS = ‖κt‖L2 6 (t− σk−1)+ < 1
and hence t < σk, see after (5.41). Consequently, σk > σk−1 + 1.

An alternative view of the last part is that, asymptotically, no edges
arrive in Gk(t) until t = σk−1, and even if all edges were passed on to Gk(t)
from that instant, Gk(t) would thenceforth evolve as a simple Erdős–Rényi
random graph, developing a giant component only 1 unit of time later, at
t = σk−1 + 1. �

6. Proofs of Theorems 1.2, 1.3 and 2.2

For a and b with 0 6 a < b 6∞, let Nk(a, b) be the number of edges that
arrive to G1(t) during the interval (a, b] and are not passed on to Gk+1(t);
furthermore, let Wk(a, b) be their total cost. In other words, we consider the
edges, arriving in (a, b], that end up in one of T1 = F1(∞), . . . , Tk = Fk(∞).
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In particular, for 0 6 t 6∞,

Nk(0, t) =
k∑
i=1

e(Fi(t)), (6.1)

Wk(0, t) =

k∑
i=1

w(Fi(t)) (6.2)

and thus

Wk(0,∞) =

k∑
i=1

w(Ti). (6.3)

Since an edge arriving at time t has cost t/n, we have

a

n
Nk(a, b) 6Wk(a, b) 6

b

n
Nk(a, b). (6.4)

Lemma 6.1. Let 0 6 a < b 6∞ and k > 1. For any ε > 0, w.h.p.

1
2(b− a)

(
1− ρk(b)2 − ε

)
n 6 Nk(a, b) 6

1
2(b− a)

(
1− ρk(a)2 + ε

)
n. (6.5)

Proof. Let Ft be the σ-field generated by everything that has happened up
to time t. At time t, the fraction of edges arriving to G1(t) that are rejected
by all of F1(t), . . . , Fk(t) is simply the fraction lying within a component of
Fk(t), namely π(Gk(t)) (see (4.5)). Since edges arrive to G1(t) at a total
rate 1

n

(
n
2

)
= n−1

2 , conditioned on Ft, edges are added to F1(t) ∪ · · · ∪ Fk(t)
at a rate, using (4.5),

rk(t) :=
n− 1

2

(
1− π(Gk(t))

)
=
n− χ(Gk(t))

2
. (6.6)

By Corollary 5.9, for every fixed t,

rk(t)/n
p−→
(
1− ρk(t)2

)
/2. (6.7)

Condition on the event rk(a) 6
(
1−ρk(a)2 +ε

)
n/2, which by (6.7) occurs

w.h.p. Then, since rk(t) is a decreasing function of t, the process of edges
that are added to F1(t)∪ · · · ∪Fk(t) can for t > a be coupled with a Poisson
process with constant intensity

(
1−ρk(a)2+ε

)
n/2 that is thicker (in the sense

defined just before Lemma 5.7). Thus, letting Z be the number arriving in
the latter process in (a, b], we have w.h.p.

Nk(a, b) 6 Z ∼ Po
(
(b− a)(1− ρk(a)2 + ε)n/2

)
. (6.8)

Furthermore, by the law of large numbers, w.h.p.

Z 6 (b− a)
(
1− ρk(a)2 + 2ε

)
n/2. (6.9)

Combining (6.8) and (6.9) yields the upper bound in (6.5) (with 2ε in place
of ε).

For the lower bound, we stop the entire process as soon as rk(t) <
1
2

(
1−

ρk(b)
2 − ε

)
n. Since rk(t) is decreasing, if the stopping condition does not

hold at time t = b then it also does not hold at any earlier time, so by (6.7),
w.h.p. we do not stop before b. As long as we have not stopped, we can
couple with a Poisson process with constant intensity

(
1 − ρk(b)2 − ε

)
n/2
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that is thinner (i.e., opposite to thicker), and we obtain the lower bound in
(6.5) in an analogous way as the upper bound. �

Lemma 6.2. If 0 < b <∞, then

Wk(0, b)
p−→ 1

2

∫ b

0

(
1− ρk(t)2

)
t dt. (6.10)

Proof. Let N > 1 and define tj := jb/N . By (6.4) and Lemma 6.1, for every
j ∈ [N ], w.h.p.

Wk(tj−1, tj) 6 tj 1
2(tj − tj−1)

(
1− ρk(tj−1)2 +N−1

)
=

∫ tj

tj−1

fN (t) dt, (6.11)

where we define the piecewise-constant function fN by

fN (t) := 1
2 tj
(
1− ρk(tj−1)2 +N−1

)
, tj−1 6 t < tj . (6.12)

Consequently, w.h.p.,

Wk(0, b) =

N∑
j=1

Wk(tj−1, tj) 6
N∑
j=1

∫ tj

tj−1

fN (t) dt =

∫ b

0
fN (t) dt. (6.13)

Now let N → ∞. The functions fN (t) are uniformly bounded on [0, b],
and fN (t) → f(t) := 1

2 t
(
1 − ρk(t)2

)
as N →∞ for every t by (6.12) and

the continuity of ρk(t). Hence, dominated convergence yields
∫ b

0 fN (t) dt→∫ b
0 f(t) dt. Given ε > 0, we may thus choose N such that

∫ b
0 fN (t) dt <∫ b

0 f(t) dt+ ε, and then (6.13) shows that w.h.p.

Wk(0, b) <

∫ b

0
f(t) dt+ ε. (6.14)

We obtain a corresponding lower bound similarly, using the lower bounds in

(6.4) and (6.5). Consequently, Wk(0, b)
p−→
∫ b

0 f(t) dt, which is (6.10). �

We want to extend Lemma 6.2 to b = ∞. This will be Lemma 6.4, but
to prove it we need the following lemma.

Lemma 6.3. For any k > 1 there exist constants b′k, B
′
k > 0 such that, for

all t > 0,

EWk(t,∞) 6 B′ke
−b′kt. (6.15)

Proof. For any t, recalling that Nk counts edges arriving at rate rk(t) and
that rk(t) is a decreasing function, we obtain by (6.6), (5.43), and Lemma 5.8,

ENk(t, t+ 1) 6 E rk(t) =
n− 1

2

(
1− qn(t)

)
6 nBke

−bkt. (6.16)

Thus, by (6.4), for b′k := bk/2 and some B′′k <∞,

EWk(t, t+ 1) 6
t+ 1

n
ENk(t, t+ 1) 6 (t+ 1)Bke

−bkt 6 B′′ke
−b′kt. (6.17)

Hence, for some B′k <∞ and all t > 0,

EWk(t,∞) =
∞∑
j=0

EWk(t+ j, t+ j + 1) 6 B′ke
−b′kt. (6.18)

�
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Lemma 6.4.

Wk(0,∞)
p−→ 1

2

∫ ∞
0

(
1− ρk(t)2

)
t dt < ∞. (6.19)

Proof. First, 1 − ρk(t)
2 6 2(1 − ρk(t)) 6 2Bke

−bkt by Theorem 2.1(iv),
establishing that the integral converges.

Let ε > 0. We may choose b <∞ such that

1

2

∫ b

0

(
1− ρk(t)2

)
t dt >

1

2

∫ ∞
0

(
1− ρk(t)2

)
t dt− ε, (6.20)

and then Lemma 6.2 shows that w.h.p.

Wk(0,∞) >Wk(0, b) >
1

2

∫ ∞
0

(
1− ρk(t)2

)
t dt− ε. (6.21)

For an upper bound, we note that by Lemma 6.3, given δ, ε > 0, we may
choose b such that EWk(b,∞) < δε (for all n), and thus with probability
> 1−δ, Wk(b,∞) < ε. It then follows from Lemma 6.2 that with probability
> 1 − δ − o(1) (failure probabilities at most δ for the first inequality and
o(1) for the second),

Wk(0,∞) < Wk(0, b) + ε 6
1

2

∫ b

0

(
1− ρk(t)2

)
tdt+ 2ε

6
1

2

∫ ∞
0

(
1− ρk(t)2

)
t dt+ 2ε. (6.22)

Since δ is arbitrary, (6.22) holds w.h.p., which together with (6.21) shows
(6.19). �

Proof of Theorem 1.2. By (6.3) and Lemma 6.4 (with W0(0,∞) = 0),

w(Tk) = Wk(0,∞)−Wk−1(0,∞)
p−→ γk :=

1

2

∫ ∞
0

(
ρk−1(t)2 − ρk(t)2

)
tdt.

(6.23)
�

Example 6.5. The limit γk in Theorem 1.2 is thus given by the integral in
(6.23). Unfortunately, we do not know how to calculate this, even numeri-
cally, for k > 2. However, we can illustrate the result with the case k = 1.
In this case, ρ1(t) is the asymptotic relative size of the giant component in
G(n, t/n), and as is well-known, and follows from (5.28) and (4.10) noting

that κt(x, y) = t, σ1 = 1 and for t > 1, ρ1(t) = 1 − e−tρ1(t). The latter
function has the inverse t(ρ) = − log(1 − ρ)/ρ, ρ ∈ (0, 1). Hence, by an
integration by parts and two changes of variables, with ρ = 1− e−x,

γ1 =
1

2

∫ ∞
0

(
1− ρ1(t)2

)
tdt =

1

4

[
t2(1− ρ1(t)2)

]∞
0

+
1

2

∫ ∞
0

t2ρ1(t) dρ1(t)

=
1

2

∫ 1

0
t(ρ)2ρ dρ =

1

2

∫ 1

0

log2(1− ρ)

ρ
dρ

=
1

2

∫ ∞
0

x2e−x

1− e−x
dx = ζ(3), (6.24)

where the final integral can be evaluated using a series expansion. Hence we
recover the limit ζ(3) found by Frieze [11]. �
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Remark 6.6. An argument similar to the proofs of Lemmas 6.2 and 6.4
shows that

Nk(0,∞)/n
p−→ 1

2

∫ ∞
0

(
1− ρk(t)2

)
dt. (6.25)

However, since Tk has n − 1 edges, we trivially have Nk(0,∞) = k(n − 1)
a.s. Hence, for any k > 1,

1

2

∫ ∞
0

(
1− ρk(t)2

)
dt = k. (6.26)

(This is easily verified for the case k = 1, by calculations similar to (6.24).)
Equivalently, for any k > 1 (since (6.26) holds trivially for k = 0 too),

1

2

∫ ∞
0

(
ρk−1(t)2 − ρk(t)2

)
dt = 1. (6.27)

�

Equation (6.27) is weakly supportive of Conjecture 1.6.

Proof of Theorem 1.3. It follows from (6.1) that Nk(0, t) 6 k(n − 1) and
thus, using also (6.4), Wk(0, b) 6 kb. Consequently, Lemma 6.2 and domi-
nated convergence yield, for every b <∞,

EWk(0, b)→
1

2

∫ b

0

(
1− ρk(t)2

)
t dt. (6.28)

Lemma 6.3 shows that EWk(0, b) = EWk(0,∞)−EWk(b,∞)→ EWk(0,∞)
uniformly in n as b→∞. Hence, (6.28) holds for b =∞ too by the following
routine three-epsilon argument: We have

EWk(0,∞)− 1

2

∫ ∞
0

(
1− ρk(t)2

)
tdt

=
(
EWk(0, b)−

1

2

∫ b

0

(
1− ρk(t)2

)
t dt
)

+ EWk(b,∞)− 1

2

∫ ∞
b

(
1− ρk(t)2

)
tdt, (6.29)

where, for any ε > 0, we can make all three terms on the right-hand side
less than ε (in absolute value) by choosing first b and then n large enough.

The result follows since w(Tk) = Wk(0,∞)−Wk−1(0,∞), cf. (6.23). �

We can now prove Theorem 2.2.

Proof of Theorem 2.2. Let 0 6 a < b 6 ∞, and let N(a, b) be the total
number of edges arriving to G1(s) in the interval s ∈ (a, b]. Then N(a, b) ∼
Po
((
n
2

)
1
n(b− a)

)
, and by the law of large numbers, for any ε > 0, w.h.p.

1
2(b− a− ε)n 6 N(a, b) 6 1

2(b− a+ ε)n. (6.30)

The number of edges passed to Gk(s) in (a, b] is N(a, b) − Nk−1(a, b), and
thus it follows from (6.30) and (6.5) that for any ε > 0, w.h.p.

e(Gk(b))−e(Gk(a)) = N(a, b)−Nk−1(a, b)

{
> 1

2(b− a)
(
ρk−1(a)2 − ε

)
n,

6 1
2(b− a)

(
ρk−1(b)2 + ε

)
n.

For any fixed t > 0, we obtain (2.5) by partitioning the interval [0, t) into
small subintervals and taking limits as in the proof of Lemma 6.2. Uniform
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convergence for t ∈ [0, T ] then follows as in the proof of Theorem 2.1(i), cf.
(5.52). �

7. Simple graphs and proof of Theorem 1.1

In the Poisson (process) model studied so far, we have a multigraph with
an infinite number of parallel edges (with increasing costs) between each
pair of vertices.

It is also of interest to consider the simple graph Kn with a single edge
(with random cost) between each pair of vertices, with the costs i.i.d. random
variables. We consider two cases, the exponential model with costs Exp(1)
and the uniform model with costs U(0, 1). When necessary, we distinguish
the three models by superscripts P, E, and U.

We use the standard coupling of the exponential and uniform models: if
XE
ij ∼ Exp(1) is the cost of edge ij in the exponential model, then the costs

XU
ij := 1− exp(−XE

ij) (7.1)

are i.i.d. and U(0, 1), and thus yield the uniform model. Since the mapping
XE
ij 7→ XU

ij is monotone, the Kruskal algorithm selects the same set of edges

for both models, and thus the trees T1, T2, . . . (as long as they exist) are the
same for both models; the edge costs are different, but since we select edges
with small costs, XU

ij ≈ XE
ij for all edges in Tk and thus w(TU

k ) ≈ w(TE
k );

see Lemma 7.4 for a precise statement.

Remark 7.1. We can in the same way couple the exponential (or uniform)
model with a model with i.i.d. edge costs with any given distribution. It is
easily seen, by the proof below and arguments as in Frieze [11] or Steele [30]
for T1, that Theorem 1.1 extends to any edge costs Xij that have a continu-
ous distribution on [0,∞) with the distribution function F (x) having a right
derivative F ′(0+) = 1 (for example, an absolutely continuous distribution
with a density function f(x) that is right-continuous at 0 with f(0+) = 1);

if F ′(0+) = a > 0, we obtain instead w(Tk)
p−→ γk/a. This involves no

new arguments, so we confine ourselves to the important models above as
an illustration, and leave the general case to the reader. �

Moreover, we obtain the exponential model from the Poisson model by
keeping only the first (cheapest) edge for each pair of vertices. We assume
throughout the section this coupling of the two models. We regard also
the exponential model as evolving in time, and define GE

k (t) and FE
k (t)

recursively as we did Gk(t) and Fk(t) in Section 2, starting with GE
1 (t) :=

Ġ1(t), the simple subgraph of Kn obtained by merging parallel edges and
giving the merged edge the smallest cost of the edges (which is the same as
keeping just the first edge between each pair of vertices).

Recall from the introduction that while in the Poisson model every Tk
exists a.s., in the exponential and uniform models there is a positive proba-
bility that Tk does not exist, for any k > 2 and any n > 2. (In this case we
define w(Tk) :=∞.) The next lemma shows, in particular, that this proba-
bility is o(1) as n→∞. (The estimates in this and the following lemma are
not best possible and can easily be improved.)
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Lemma 7.2. In any of the three models and for any fixed k > 1, w.h.p. Tk
exists and, moreover, uses only edges of costs 6 2k log n/n.

Proof. Consider the exponential model; the result for the other two models
is an immediate consequence by the couplings above (or by trivial mod-
ifications of the proof). The result then says that w.h.p. GE

k (2k log n) is
connected.

By induction, we may for k > 1 assume that the result holds for k − 1.
Thus, w.h.p., GE

k−1

(
2(k− 1) log n

)
is connected, and then all later edges are

passed to GE
k (t).

Consider now the edges arriving in (2(k− 1) log n, 2k log n]. They form a
random graph G(n, p) with

p = e−2(k−1) logn/n − e−2k logn/n = e−2k logn/n
(
e2 logn/n − 1

)
=
(
2 + o(1)

)
log n/n. (7.2)

As is well-known since the beginning of random graph theory [10], see e.g.
[3], such a random graph G(n, p) is w.h.p. connected. We have also seen that
w.h.p. this graph G(n, p) is a subgraph of GE

k (2k log n). Hence, GE
k (2k log n)

is w.h.p. connected, which completes the induction. �

Lemma 7.3. For each fixed k,

0 6 w(TE
k )− w(TP

k ) = Op

( log3 n

n

)
. (7.3)

Proof. Since the exponential model is obtained from the Poisson model by
deleting some edges, we have by Lemma 5.7 that every edge contained in
both processes and contained in F1(t)∪· · ·∪Fk(t) is also contained in FE

1 (t)∪
· · · ∪ FE

k (t); the only edges “missing” from the latter are those that were
repeat edges in the Poisson model.

At time tk := 2k log n, how many repeat edges are there? For two given
vertices i and j, the number of parallel edges is Po(tk/n), so the probability
that it is two or more is p2(tk) := P(Po(tk/n) > 2) 6 (tk/n)2/2. (We use
that the kth factorial moment of Po(λ) is λk, and Markov’s inequality.)
Hence, the number of pairs {i, j} with more than one edge is Bi(

(
n
2

)
, p2(tk)),

which is stochastically smaller than Bi(n2, (tk/n)2), which by Chebyshev’s
inequality w.h.p. is 6 2t2k = 8k2 log2 n. Similarly, the probability that i and
j have three or more parallel edges is 6 (tk/n)3/6 and thus w.h.p. there are
no triple edges in G1(tk).

By Lemma 7.2, w.h.p. TP
1 ∪· · ·∪TP

k = F1(tk)∪· · ·∪Fk(tk), and we have just
established that w.h.p. all but at most 2t2k of the edges in F1(tk)∪· · ·∪Fk(tk)
are also in FE

1 (tk) ∪ · · · ∪ FE
k (tk) ⊆ TE

1 ∪ · · · ∪ TE
k . Since each spanning tree

has exactly n− 1 edges, the missing edges are replaced by the same number
of other edges, which by Lemma 7.2 w.h.p. also have cost 6 tk/n each, thus
total cost at most 2t3k = 16k3 log3 n/n. Consequently, w.h.p.,

w
(
TE

1 ∪ · · · ∪ TE
k

)
6 w

(
TP

1 ∪ · · · ∪ TP
k

)
+ 16k3 log3 n/n. (7.4)

Having additional edges can never hurt (in this matroidal context), so

w(TP
j ) 6 w(TE

j ), j > 1. (7.5)
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This yields the first inequality in (7.3), while the second follows from (7.4)
together with (7.5) for j 6 k − 1. �

Lemma 7.4. For each fixed k,

0 6 w(TE
k )− w(TU

k ) = Op

( log2 n

n

)
. (7.6)

Proof. As said above, TE
k and TU

k consist of the same edges, with edge costs

related by (7.1). Since (7.1) implies 0 6 XE
ij − XU

ij 6
1
2(XE

ij)
2, it follows

that, using Lemma 7.2, w.h.p.

0 6 w
(
TE
k

)
− w

(
TU
k

)
6

∑
e∈E(Tk)

(XE
e )2 6 n

(2k log n

n

)2
. (7.7)

�

Proof of Theorem 1.1. It follows from Theorem 1.2 and Lemma 7.3 that for

each fixed k, w(TE
k )

p−→ γk, and then from Lemma 7.4 that w(TU
k )

p−→ γk,
which is Theorem 1.1. �

Recall that the corresponding statement for the expectation is false, as
Ew(TE

k ) = Ew(TU
k ) =∞ for k > 2; see Remark 1.4.

8. The second threshold

As noted in Example 6.5 we do not know how to calculate the limit γ2.
However, we can find the threshold σ2. In principle, the method works for
σk for any k > 2, provided we know ρk−1, so we will explain the method for
general k. However, we will assume the following:

ρk−1(x) is continuously differentiable on (σk−1,∞), with ρ′k−1(x) > 0,

and ρ′k−1(x) is continuous as x↘ σk−1. (8.1)

This is, we think, not a serious restriction, for the following reasons. First,
(8.1) is easily verified for k = 2, since we know ρ1 explicitly (see Exam-
ple 6.5), so the calculation of σ2 is rigorous. Second, we conjecture that
(8.1) holds for all k > 2, although we have not proved this. (Cf. what we
have proved in Theorem 2.1.) Third, even if this conjecture is wrong and
(8.1) does not hold for some k, we believe that the result below is true,
and can be shown by suitable modifications of the argument and perhaps
replacing ρk−1 by suitable approximations.

By (5.41), σk is defined by ‖Tσk‖ = 1. As said in Section 4.3, since κσk
is bounded, there exists an eigenfunction ψ(x) > 0 of Tσk with eigenvalue
‖Tσk‖ = 1, i.e.,

ψ(x) = Tσkψ(x)
def
=

∫ ∞
0

κσk(x, y)ψ(y) dµk−1(y). (8.2)

By (5.20), κσk(x, y) = 0 when x > σk, and thus ψ(x) = 0 when x > σk;
furthermore, we can write (8.2) as

ψ(x) =

∫ σk

0

(
σk − x ∨ y

)
ψ(y) dµk−1(y), x ∈ [0, σk]. (8.3)
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Since ψ ∈ L2(µk−1), it follows from (8.3) that ψ is bounded and continuous
on [0, σk], and thus on [0,∞). Moreover, it is easily verified by dominated
convergence that we can differentiate under the integral sign in (8.3); thus
ψ(x) is differentiable on (0, σk) with, using the definition (5.14) of µk−1,

ψ′(x) = −
∫ x

0
ψ(y) dµk−1(y) = −

∫ x

0
ψ(y) dρk−1(y), x ∈ (0, σk). (8.4)

We now use our assumption in (8.1) that ρk−1(x) is continuously differ-
entiable on (σk−1,∞). Then (8.4) yields, for x ∈ (σk−1, σk),

ψ′′(x) = −ρ′k−1(x)ψ(x), (8.5)

Furthermore, we have the boundary conditions ψ(σk) = 0 and, by (8.4),
ψ′(σk−1) = 0. We can thus find σk by solving the Sturm–Liouville equa-
tion (8.5) for x > σk−1 with the initial conditions ψ(σk−1) = 1, say, and
ψ′(σk−1) = 0; then σk is the first zero of ψ in (σk−1,∞). (Note that the
solution ψ of (8.5) with these initial conditions is unique, again using (8.1).)

We can transform the solution further as follows, which is advantageous
for k = 2, when we know the inverse of ρk−1 explicitly. Since ρk−1 is strictly
increasing on [σk−1,∞), there exists an inverse

ϕ := ρ−1
k−1 : [0, 1)→ [σk−1,∞). (8.6)

Let

sk := ρk−1(σk) ∈ (0, 1) (8.7)

and, for x ∈ [0, sk], let

h(x) := ψ(ϕ(x)) (8.8)

and

H(x) :=

∫ x

0
h(y) dy. (8.9)

Then h is continuous on [0, sk], and on the interior (0, sk),

H ′(x) = h(x). (8.10)

The assumption (8.1) implies that ϕ is differentiable on (0, 1). Thus, for
x ∈ (0, sk), (8.10) and (8.8) yield

H ′′(x) = h′(x) = ψ′(ϕ(x))ϕ′(x). (8.11)

We now make a change of variables in (8.4). In (8.12) we use that
ρk−1(y) = 0 for y 6 σk−1 from Theorem 2.1(iii); in (8.13) that ϕ(ρk−1(y)) =
y for y > σk−1 by definition (8.6); and in (8.14) again that ρk−1 = ϕ−1, as
well as ρk−1(σk−1) = 0.

ψ′(ϕ(x)) = −
∫ ϕ(x)

0
ψ(y) dρk−1(y)

= −
∫ ϕ(x)

σk−1

ψ(y)
dρk−1(y)

dy
dy (8.12)

= −
∫ ϕ(x)

σk−1

ψ(ϕ(ρk−1(y)))ρ′k−1(y) dy (8.13)

= −
∫ x

0
ψ(ϕ(ρ)) dρ (8.14)
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= −
∫ x

0
h(ρ) dρ = −H(x). (8.15)

By (8.11) and (8.15), for x ∈ (0, sk),

H ′′(x) = −ϕ′(x)H(x). (8.16)

Note that H(0) = 0 by (8.9) while, by (8.10), (8.8), (8.7), (8.6), and (8.3),

H ′(sk)
def
= h(sk)

def
= ψ(ϕ(sk)) = ψ(ϕ(ρk−1(σk))) = ψ(σk) = 0. (8.17)

Furthermore, (8.3) yields ψ(x) > 0 for x ∈ [0, σk), and thus (8.8) and (8.6)–
(8.7) yield

h(x)
def
= ψ(ϕ(x)) > 0 for x ∈ [0, sk), (8.18)

as ϕ(0) = 0 while ϕ(sk) = σk.
Consequently, if we solve the Sturm–Liouville equation (8.16) with

H(0) = 0 and H ′(0) = 1 (8.19)

(the former, repeating, by (8.9), the latter by (8.10), (8.18), and convenient
scaling, going back to the arbitrary scale of ψ in (8.2)), then sk is the smallest
positive root of H ′(sk) = 0, and by (8.7) and (8.6), σk = ϕ(sk).

We can reduce (8.16) to a first-order equation by the substitution

H = R sin θ and H ′ = R cos θ, (8.20)

which yields

R′(x) sin θ(x) +R(x)θ′(x) cos θ(x) = H ′(x) = R(x) cos θ(x), (8.21)

R′(x) cos θ(x)−R(x)θ′(x) sin θ(x) = H ′′(x) = −ϕ′(x)R(x) sin θ(x). (8.22)

Multiplying the first equation by cos θ(x) and the second by sin θ(x) and
subtracting yields, after division by R(x),

θ′(x) = cos2(θ(x)) + ϕ′(x) sin2(θ(x)). (8.23)

Since ϕ′(x) > 0 on (0, 1), by (8.6) and the assumption ρ′k−1 > 0 on (σk−1,∞)
in (8.1), it follows from (8.23) that θ′(x) > 0, and thus the function θ(x) is
strictly increasing and thus invertible. Moreover, taking reciprocals, (8.23)
shows that the inverse function x(θ) satisfies

dx

dθ
=

1

cos2 θ + ϕ′(x(θ)) sin2 θ
. (8.24)

Now, H(0) = 0 and H ′(0) = 1 (see (8.19)), so from (8.20) θ(0) is a multiple
of 2π, and we take θ(0) = 0. Also, by (8.18) H is increasing up to sk and
thus H(sk) > 0, while H ′(sk) = 0 by (8.17), so (8.20) yields θ(sk) = π/2.
Thus

sk = x(π/2), (8.25)

where x(θ) is the solution of (8.24) with x(0) = 0 (since θ(0) = 0 as just
shown).

For k = 2, as said in Example 6.5 we have ρ1(t) = 1−e−tρ1(t) and thus the
inverse ϕ(x) = − log(1− x)/x. A numerical solution of (8.24) (with Maple)
yields from (8.25) that s2

.
= 0.91511 and thus

σ2 = ϕ(s2)
.
= 2.69521. (8.26)
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9. A related problem by Frieze and Johansson

As said in the introduction, Frieze and Johansson [12] recently considered
the problem of finding the minimum total cost of k edge-disjoint spanning
trees in Kn, for a fixed integer k > 2. (They used random costs with
the uniform model, see Section 7; we may consider all three models used
above.) We denote this minimum cost by mstk, following [12] (which uses
mstk(Kn,X) for the random variable, where X is the vector of random edge
costs, and uses mstk(Kn) for its expectation). Trivially,

mstk 6
k∑
i=1

w(Ti), (9.1)

and as said in the introduction, it is easy to see that strict inequality may
hold when k > 2, i.e., that our greedy procedure of choosing T1, T2, . . .
successively does not yield the minimum cost set of k disjoint spanning
trees.

We assume in this section that n > 2k; then k edge-disjoint spanning trees
exist and thus mstk <∞. (Indeed, K2k can be decomposed into k Hamilton
paths, as shown in 1892 by Lucas [25, pp. 162–164] using a construction he
attributes to Walecki.1)

Remark 9.1. As observed by Frieze and Johansson [12], the problem is
equivalent to finding the minimum cost of a basis in the matroidMk, defined
as the union matroid of k copies of the cycle matroid of Kn. This means that
the elements of Mk are the edges in Kn, and a set of edges is independent
in Mk if and only if it can be written as the union of k forests, see e.g.
[34, Chapter 8.3]. (Hence, the bases, i.e., the maximal independent sets, are
precisely the unions of k edge-disjoint spanning trees. For the multigraph
version in the Poisson model, of course we use instead the union matroid of
k copies of the cycle matroid of K∞n ; we use the same notation Mk.) We
write rk for rank in this matroid. �

Kruskal’s algorithm, recapitulated in the introduction, is valid for finding
a minimum cost basis in any matroid; see e.g. [34, Chapter 19.1]. In the
present case it means that we process the edges in order of increasing cost
and keep the ones that are not dependent (in Mk) on the ones already
selected; equivalently, we keep the next edge e if rk(S ∪{e}) > rk(S), where
rk is the rank function in Mk and S is the set of edges already selected.

Remark 9.2. It follows that the largest individual edge cost for the optimal
set of k edge-disjoint spanning trees is at most the largest edge cost for any
given set of k edge-disjoint spanning trees. Hence, it follows from Lemma 7.2
that for the random models studied here, the optimal k spanning trees w.h.p.
use only edges of cost 6 2k log n/n. It follows, with only minor modifications
of the proofs, that analogues of Lemmas 7.3 and 7.4 hold for mstk for the

1Lucas introduces the problem as one of “Les Jeux de Demoiselles”, namely “Les Ron-
des Enfantines”, a game of children holding hands in a circle repeatedly, never repeating
a partner. The conversion between the Hamilton cycles of the game and the Hamilton
paths serving as our spanning trees is simple, and Walecki’s construction is more natu-
rally viewed in terms of Hamilton paths. For much stronger recent results on Hamilton
decompositions, see for example [24].
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three different models. Hence, for limits in probability, the three models are
equivalent for mstk too.

Moreover, one can similarly show that for any b > 0 there is a constant
B such that with probability at least 1− n−b, the optimal k spanning trees
w.h.p. use only edges of cost 6 Bk log n/n. One can then argue as for
the minimum spanning tree, see e.g. [13], [26, Section 4.2.3] or [7, Example
3.15], and obtain strong concentration of mstk for any of the three models;
in particular Var(mstk) = o(1), and thus convergence of the expectation
E(mstk) is equivalent to convergence in probability of mstk.

Frieze and Johansson [12] stated their results for the expectation Emstk
(for the uniform model), but the results thus hold also for convergence in
probability (and for any of the three models). �

For k = 2, Frieze and Johansson [12] show that the expectation

Emst2 → µ2
.
= 4.1704. (9.2)

As noted in Example 3.3, using γ1 = ζ(3) and the estimate of γ2 from Table 1
suggests that the cost of two edge-disjoint spanning trees chosen successively
is strictly larger, namely γ1 + γ2

.
= 4.2942. This would show that choosing

minimum spanning trees one by one is not optimal, even asymptotically,
except that our estimate is not rigorous. The following theorem is less precise
but establishes rigorously (subject to the numerical solution to (8.24) giving
σ2 as in (8.26)) that the values are indeed different.

Theorem 9.3. There exists δ > 0 such that, for any of the three models,
w.h.p. w(T1) + w(T2) > mst2 + δ.

With µ2 defined by the limit in (9.2), this can be restated in the following
equivalent form.

Corollary 9.4. γ1 + γ2 > µ2.

Proof. The equivalence of the statements in Theorem 9.3 and Corollary 9.4

is immediate since w(T1)
p−→ γ1 and w(T2)

p−→ γ2 by Theorem 1.1 or 1.2

(depending on the choice of model), and mst2
p−→ µ2 by [12] and Remark 9.2.

�

Remark 9.5. Numerically,

γ2 > 2.9683. (9.3)

This is immediate from Corollary 9.4, (9.2), and (by [11]) γ1 = ζ(3). �

The proof of Theorem 9.3 is based on the fact that many edges are rejected
from T1 and T2 starting at time σ2, but none is rejected from the union
matroid before the threshold c3 for appearance of a 3-core in a random
graph, and σ2 < c3.

We begin with three elementary lemmas that are deterministic, and do
not assume any particular distribution of edge costs; nevertheless, we use
the same scaling of time as before, and say that an edge with cost w is born
at time nw. (Lemma 9.6 has been used in several works, including [12], in
the study of minimum spanning trees.)
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Lemma 9.6. Suppose that we select N edges e1, . . . , eN , by any procedure,
and that ei has cost wi. Let N(t) := |{i : wi 6 t/n}|, the number of selected
edges born at or before time t. Then the total cost is

N∑
i=1

wi =
1

n

∫ ∞
0

(N −N(t)) dt. (9.4)

Proof.

N∑
i=1

wi =

N∑
i=1

1

n

∫ ∞
0

1{t/n < wi} dt =
1

n

∫ ∞
0

N∑
i=1

(
1− 1{wi 6 t/n}

)
dt

=
1

n

∫ ∞
0

(N −N(t)) dt. �

For the next lemma, recall from Remark 9.1 that rk is rank in the union
matroid Mk. We consider several (multi)graphs with the same vertex set
[n], and we define the intersection G∩H of two such graphs by E(G∩H) :=
E(G) ∩ E(H). (We regard the multigraphs as having labelled edges, so
parallel edges are distinguishable.) Note too that the trees T i in the lemma
are arbitrary, not necessarily the trees Ti defined in Section 2.2.

Lemma 9.7. Consider K∞n with any costs we > 0. Suppose that T 1, . . . , T k
are any k edge-disjoint spanning trees. For t > 0, let G(t) be the graph with
edge set {e ∈ E(K∞n ) : we 6 t/n}, and let N(t) := e

(
G(t)∩ (T 1 ∪ · · · ∪T k)

)
.

Then, N(t) 6 rk(G(t)) for every t, and

k∑
i=1

w(T i)−mstk =
1

n

∫ ∞
0

(
rk(G(t))−N(t)

)
dt. (9.5)

Proof. First, N(t) is by definition the number of edges in E
(
G(t) ∩ (T 1 ∪

· · ·∪T k)
)
, an independent (with respect toMk) subset of E(G(t)), and thus

N(t) 6 rk(G(t)), as asserted.
Now apply Lemma 9.6, taking N = k(n− 1), taking the edges e1, . . . , eN

to be the N edges in T 1 ∪ · · · ∪ T k, and noting that the definition of N(t)
in Lemma 9.6 matches that here. This yields

k∑
i=1

w(T i) =
1

n

∫ ∞
0

(N −N(t)) dt. (9.6)

Next, as a special case, consider a collection of k spanning trees T̂1, . . . , T̂k
with minimum total cost. (Since we are in a deterministic setting, such
a collection may not be unique.) We may assume that they are found by

Kruskal’s algorithm, and thus, for every t, the set of edges in G(t)∩(T̂1∪· · ·∪
T̂k) is a maximal set of independent edges in G(t) (independent with respect
toMk), hence the number of these edges is N(t) = rk(G(t)). Consequently,
Lemma 9.6 yields

mstk =

k∑
i=1

w(T̂i) =
1

n

∫ ∞
0

(
N − rk(G(t))

)
dt. (9.7)

The result (9.5) follows by subtracting (9.6) from (9.7). �
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Lemma 9.8. Let the multigraph G be a subgraph of K∞n and assume that
the (k+ 1)-core of G is empty for some k > 1. Then the edge set E(G) is a
union of k disjoint forests. In other words, rk(G) = e(G).

The properties in two last sentences are equivalent by Remark 9.1.

Proof. We use induction on |G|; the base case |G| = 1 is trivial.
If |G| > 1 and |G| has an empty (k+ 1)-core, then there exists a vertex v

in G of degree d(v) 6 k. Let G′ be G with v and its incident edges deleted.
By the induction hypothesis, E(G′) is the union of k edge-disjoint forests
F ′1, . . . , F

′
k. These forests do not contain any edge with v as an endpoint, so

we may simply add the first edge of v to F ′1, the second to F ′2, and so on, to
obtain the desired decomposition of E(G).

Alternatively, the lemma follows easily from a multigraph version of a the-
orem of Nash-Williams [27], appearing also as [34, Theorem 8.4.4]; specif-
ically, the matroidal proof in [34] extends to multigraphs. This theorem
hypothesizes that G is “sparse”, meaning that for every vertex subset A,
e(G[A]) 6 k(|A| − 1), but this follows from our hypothesis. If G has empty
core, so does G[A], thus G[A] has a vertex v of degree 6 k, whose deletion
leaves another such vertex, and so on until there are no edges, showing that
e(G[A]) 6 k(|A| − 1). �

Proof of Theorem 9.3. By Lemmas 7.3–7.4 and Remark 9.2, the choice of
model does not matter; for convenience we again take the Poisson model.

We use Lemma 9.7, with the first and second minimum spanning trees,
i.e., k = 2 and T j = Tj , j = 1, 2. Then the lemma’s G(t) = G1(t) as defined
in Section 2.2 and used throughout, and

N(t)
def
= e

(
G1(t)∩(T1∪T2)

)
=

2∑
i=1

e
(
G1(t)∩Ti

)
= e(F1(t))+e(F2(t)). (9.8)

Now, by Pittel, Spencer and Wormald [29], see also [18], the 3-core thresh-
old of a random graph is c3 := minλ>0 (λ/P(Po(λ) > 2))

.
= 3.3509, so that

for any b < c3, w.h.p. the 3-core of G(n, b/n) is empty. In our context this

says that for all t 6 b, Ġ1(t) has an empty 3-core. This holds for the multi-
graph G1(t) too, e.g. by the proof in [18] which uses random multigraphs.

(Alternatively, we can use Ġ1(t) in (9.9) below, with a negligible error.)
Hence, Lemma 9.8 shows that w.h.p., for all t 6 b, G(t) = G1(t) has full
rank, i.e., r2(G(t)) = e(G(t)).

Furthermore, by (8.26), σ2 < c3. Choosing any a and b with σ2 < a <
b < c3, by (9.5) and (9.8), w.h.p.,

w(T1) + w(T2)−mst2 >
1

n

∫ b

0

(
rk(G(t))−N(t)

)
dt

=
1

n

∫ b

0

(
e(G(t))− e(F1(t))− e(F2(t))

)
dt

=
1

n

∫ b

0
e(G3(t)) dt >

1

n
(b− a)e(G3(a)). (9.9)
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But by Theorem 2.2,

(b− a)e(G3(a))/n
p−→ (b− a) · 1

2

∫ a

0
ρ2(s)2 ds =: 2δ, (9.10)

where δ > 0 since ρ2(s) > 0 for s > σ2 by Theorem 2.1. Thus the theorem
is established by (9.9) and (9.10). �

10. Conjectured asymptotics of ρk(t)

As discussed in Section 3, γk ∼ 2k for large k, see for example Corol-
lary 1.9. Moreover, simulations (see Section 11) suggest that the functions
ρk(t) converge, after suitable translations. If so, and assuming suitable tail
bounds, (6.26) implies that the translations should be by 2k, up to an arbi-
trary constant plus o(1); this is formalized in Conjecture 1.6.

It is easy to see that this, together with suitable tail bounds justifying
dominated convergence, by (6.23) and (6.27) would imply

γk − 2k =
1

2

∫ ∞
0

(
ρk−1(t)2 − ρk(t)2

)
(t− 2k) dt

=
1

2

∫ ∞
−2k

(
ρk−1(x+ 2k)2 − ρk(x+ 2k)2

)
x dx

→ 1

2

∫ ∞
−∞

(
ρ∞(x+ 2)2 − ρ∞(x)2

)
x dx, (10.1)

which would show Conjecture 1.7, with δ = 1
2

∫∞
−∞
(
ρ∞(x+2)2−ρ∞(x)2

)
x dx

(and necessarily δ ∈ [−1, 0], see Remark 3.6).
Recall that ρk(t) is given by Lemma 5.4 as the survival probability of the

branching process Xt defined in Section 4.4 with kernel κt(x, y) on the prob-
ability space (R+, µk−1) where µk−1 has the distribution function ρk−1(t).
More generally, we could start with any distribution function F (t) on R+

and the corresponding probability measure µ and define a new distribution
function Ψ(F )(t) as the survival probability ρ(κt;µ). This defines a map
from the set of distribution functions (or probability measures) on [0,∞)
into itself, and we have ρk = Ψ(ρk−1). If one could show that Ψ is a
contraction for some complete metric (perhaps on some suitable subset of
distribution functions), then Banach’s fixed point theorem would imply the
existence of a unique fixed point ρ∞, and convergence of ρk to it. However,
the mapping Ψ is quite complicated, and we leave the possible construction
of such a metric as an open problem.

Recall also that t = σk is where ρk(t) becomes non-zero, see Theo-
rem 2.1(iii). Hence, Conjecture 1.6 suggests also the following, related con-
jecture.

Conjecture 10.1. There exists a real constant σ∞ such that as k →∞,

σk = 2k + σ∞ + o(1). (10.2)

In particular,

σk − σk−1 → 2. (10.3)
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11. Computational results

11.1. Naive simulations. For intuition and as a sanity check on all calcu-
lations, we first directly simulate the problem described in the introduction’s
Poisson edge-weight model. Specifically, we take a graph with n vertices and
random edge weights (i.i.d.exponential random variables with mean 1), find
the MST, add fresh exponentials to the weights of the MST edges, and re-
peat to get the second and subsequent MSTs. For each MST, we plot each
edge’s rank within the MST, divided by n (so, 1/n for the first edge, up
to (n − 1)/n for the last) on the vertical axis, against the edge’s weight
(multiplied by n in accordance with our time scaling) on the horizontal axis.
The results are shown in Figure 2. The corresponding estimates of γk, for k

Figure 2. Size of kth MST (divided by n) plotted against
the weight of the next edge added (multiplied by n), with
n = 4000, for k = 1, . . . , 11.

up to 5, are 1.197, 3.055, 5.035, 7.086, 9.100. This was done for just a single
graph with n = 4000, not averaged over several graphs. For a sense of the
limited accuracy of the estimates, remember that γ1 = ζ(3)

.
= 1.2021.

11.2. Better simulations. Better simulations can be done with reference
to the model introduced in Section 2.2 and used throughout. We begin with
k empty graphs of order n. At each step we introduce a random edge e
and, in the first graph Gi for which e does not lie within a component, we
merge the two components given by its endpoints. (If this does not occur
within the k graphs under consideration, we do nothing, just move on to
the next edge.) For each graph we simulate only the components (i.e., the
sets of vertices comprised by each component); there is no need for any
more detailed structure. The edge arrivals should be regarded as occurring
as a Poisson process of intensity (n − 1)/2, but to eliminate one source of
randomness we treat the edges as arriving at times 2/(n−1), 4/(n−1), etc.,
and thus as having weights 2/(n(n− 1)), 4/(n(n− 1)), etc.
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Figure 3. Largest component sizes, as a fraction of n, for
graphs G1, . . . , G5, based on a single simulation with n =
1000000.

Figure 3 depicts the result of a single such simulation with n = 1000000,
showing for each k from 1 to 5 the size of the largest component of Gk (as
a fraction of n) against time.

A larger experiment supports Conjecture 1.8 that γk = 2k − 1 + o(1).
Here we performed N = 100 simulations each with n = 10000000, running
each simulation until the first 20 trees were complete. The results are shown
in Table 1. Where xi indicates one observation of a value of interest, the
table’s sample mean is x̄ =

∑
xi/N and its standard error is s/

√
N , where

s is the sample standard deviation, with s2 =
∑

(xi − x̄)2/(N − 1).

11.3. Estimates of the improved upper bound. The differential equa-
tion system (3.18), giving the improved upper bound of Section 3.3, is easy
to solve numerically. We did so as a discrete-time approximation, setting
gk(t+ ∆t) = gk(t) + 1

2∆
(
gk−1(t)2− gk(t)2

)
, using ∆t = 0.00001 and consid-

ering k up to 50.
Figure 4 shows the results up to time t = 10. Because gk(t) pertains to

a model in which all edges of Fk are imagined to be in a single component,
this plot is comparable both to that in Figure 2 (which counts all edges)
and to those in Figure 3 (which counts edges in the largest component) and
Figure 6 (the theoretical giant-component size).

Table 2 and Figure 5 show the corresponding upper bounds on Γk. Specif-
ically, the bound on Γk from (3.19), call it Γk, is estimated as Γk

.
=

1
2∆

∑
t∈T t(1 − gk(t)

2) where T = {0,∆, 2∆, . . .}. Since we cannot sum
to infinity, we terminate when the final gk under consideration is judged
sufficiently close to 1, specifically within 0.0000001 of 1. It appears experi-
mentally that the gap 1−gk(t) decreases exponentially fast (very plausible in
light of (2.3)) so termination should not be a large concern; see also (6.15).

Figure 5 suggests that the gaps Γk − k2 level off at about 0.743. (Beyond
about k = 25 the gaps decrease, but using ∆t = 0.0001 they continued to
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k sample mean standard error
1.00 1.20203 0.00002
2.00 3.09211 0.00002
3.00 5.04782 0.00002
4.00 7.02665 0.00002
5.00 9.01553 0.00002
6.00 11.00938 0.00002
7.00 13.00580 0.00003
8.00 15.00364 0.00003
9.00 17.00231 0.00003

10.00 19.00150 0.00002
11.00 21.00099 0.00003
12.00 23.00062 0.00003
13.00 25.00042 0.00003
14.00 27.00028 0.00003
15.00 29.00017 0.00002
16.00 31.00014 0.00003
17.00 33.00010 0.00002
18.00 35.00007 0.00002
19.00 37.00007 0.00002
20.00 39.00005 0.00003

Table 1. Estimates of γ1, . . . , γ20 from 100 simulations each
with n = 10000000.00. Compare with Conjecture 1.8 that
γk = 2k − 1 + o(1).

Figure 4. Values gk(t) plotted against t. The function g7(t)
is just rising from 0 within the plot range; the values of gk(t)
for larger k are too close to 0 to be seen.

increase, and in either case the degree of change is comparable with ∆t and
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Figure 5. Upper bounds from (3.19) on Γk− k2, for k from
1 to 50, based on numerical solution to the differential equa-
tions (3.18).

k 1 2 3 4 5 6 7 8 9
Γk 1.3863 4.5542 9.6362 16.6799 25.7045 36.7189 49.7277 64.7331 81.7365

Table 2. Upper bounds on Γk obtained from numerical so-
lution of (3.19).

thus numerically unreliable.) This suggests the following conjecture. (Recall
from (3.11) that Γk > k2.)

Conjecture 11.1. For every k > 1, Γk 6 Γk 6 k2 + δ̄ for some constant δ̄.

We established in Section 3.3 that Γk 6 Γk, so only Γk 6 k2 + δ̄ is
conjectural. If the conjecture holds, then it follows, using also (3.11), that
γk = Γk − Γk−1 > (k2)− ((k − 1)2 + δ̄) = 2k − 1− δ̄ and γk = Γk − Γk−1 6
(k2 + δ̄)− (k − 1)2 = 2k − 1 + δ̄. Hence, the conjecture would imply

2k − 1− δ̄ 6 γk 6 2k − 1 + δ̄. (11.1)

In particular, if Conjecture 11.1 holds with δ̄ 6 1 as it appears, then 2k−2 6
γk 6 2k.

11.4. Estimates of the fixed-point distributions ρk. We also numeri-
cally estimated the distributions ρk; recall from Theorem 2.1 that C1(Gk(t))/n

p−→ ρk(t). We may begin with either ρ0(t), which is 0 for t < 0 and 1 for
t > 0, or with ρ1(t), which as described in Example 6.5 is the inverse func-
tion of − log(1 − ρ)/ρ. (Both choices gave similar results, the latter being
slightly preferable numerically.) We use ρk−1 to obtain ρk, following the
branching process described in Section 4.4. The survival probability ρt(x)
at time t of a particle born at time x in the branching process equivalent of
Gk is given by the function ρt = ρκ which (see (4.10)) is the largest fixed
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point of

ρt = Φκρt
def
= 1− e−Tκρt (11.2)

(the time t is implicit in the kernel κ = kkt thus in the operators Φκ and
Tκ), where (see (4.6)) Tκ is given by

(
Tκf

)
(x) =

∫
S κ(x, y)f(y) dµ(y). With

reference to the kernel κ defined in (5.20),
(
Tκf

)
(x) = 0 for x > t, while

otherwise, with µ = ρk−1 as in (5.14),(
Tκf

)
(x) =

∫ t

0
(t− x ∨ y)f(y) dρk−1(y)

=

∫ x

0
(t− x)f(y) dρk−1(y) +

∫ t

x
(t− y)f(y) dρk−1(y). (11.3)

Given t, to find ρt numerically we iterate (11.2), starting with some f known
to be larger than ρt and repeatedly setting f(x) equal to

(
Φκf

)
(x); this gives

a sequence of functions that converges to the desired largest fixed point ρt,
cf. [5, Lemma 5.6]. We will estimate ρt for times i∆t, for ∆t some small
constant and i = 0, . . . , I, with I∆t judged to be sufficient time to observe
all relevant behavior. We initialize with f ≡ 1 to find ρI∆t, then iteratively
initialize with f = ρi∆t to find ρ(i−1)∆t. Since the branching process is
monotone in t — each vertex can only have more children by a later time t
— so is the survival probability, thus ρi∆t is larger than ρ(i−1)∆t and therefore
a suitable starting estimate. In practice we find that the process converges
in 20 iterations or so even for ρI∆t, and less for subsequent functions ρi∆t,
with convergence defined as two iterates differing by at most 10−8 for any
x.

For each k in turn, we do the above for all times t, whereupon the desired

function ρk(t)
def
= ρ(κ) = ρ(κt) is given by (see (4.9) and (5.28))

ρk(t) =

∫ ∞
0

ρt(x) dρk−1(x). (11.4)

Do not confuse ρt of (11.2) and ρk of (11.4), respectively the ρκ and ρ of
(4.8); see also (5.28) and the comment following it.

All the calculations were performed with time (t, x, and y) discretized
to multiples of ∆t = 0.01 and restricted to the interval [0, 10]. For a fixed
t, the calculation in (11.3) can be done efficiently for all x. The derivative
of (11.3) with respect to x is −

∫ x
0 f(y) dρk−1(y) (cf. (8.3) and (8.4)). So,

given the value of (11.3) for some x, that at the next discrete x is the
discrete sum corresponding to this integral, and in one pass we can compute
these integrals (discretized to summations) for all x. Each computed ρk(t)
is translated by 2k to keep the functions’ interesting regimes within the time
range [0, 10], before doing the computations for k+1, but these translations
are reversed before interpreting the results.

The first observation is that the estimates of ρk are consistent with Con-
jecture 1.6. As shown in Figure 6, even the first few functions ρk have
visually very similar forms.

To make a more precise comparison, we time-shift each function ρk so
that it reaches the value 1− e−1 at time t = 4 (arbitrarily chosen). Figure 7
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Figure 6. Estimates of ρk for k = 1, . . . , 6, already suggest-
ing a limiting ρ∞ (up to translation).

shows the thus-superposed curves for ρ1, ρ2, and ρ1000; the curve ρ5 (not
shown) is already visually indistinguishable from ρ1000.

Figure 7. Functions ρk time-shifted to coincide as nearly
as possible, each shifted so as to make ρk(4) = 1 − e−1, for
k = 1, 2, and 1000.

Estimates for γk, obtained via (6.23) from those for ρk, are shown in Ta-
ble 3. Estimates of γk for large k were deemed numerically unreliable for
two reasons. First, discretization of time to intervals of size ∆t = 0.01 is
problematic: the timing of ρ1 is uncertain to this order, that of ρ2 addi-
tionally uncertain by the same amount, and so on, and translation of ρk
directly affects the corresponding estimate of γk. Second, the time range
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t ∈ [0, 10] (translated as appropriate) used in the computations proved to
be too narrow, in that for large k the maximum value of ρk observed was
only about 0.9975, and the gap between this and 1 may be enough to throw
off the estimates of γk perceptibly.

For the same reason, we believe the results in Table 1 are more accurate
than those in Table 3, despite the former coming from simulations and the
latter from deterministic calculations.

k 1 2 3 4 5 6 7 8 9 10
γk 1.202 3.095 5.057 7.043 9.038 11.039 13.042 15.047 17.052 19.058

Table 3. Estimates of γk from (6.23).

12. Open questions

We would be delighted to confirm the various conjectures above, in partic-
ular Conjectures 1.5–1.8, and to get a better understanding of (and ideally
a closed form for) ρ∞ (provided it exists).

It is also of natural interest to ask this kth-minimum question for struc-
tures other than spanning trees. Subsequent to this work, the length Xk of
the kth shortest s–t path in a complete graph with random edge weights has
been studied by Gerke, Mezei, and Sorkin [14]. They show that Xk/(2k/n+

lnn/n)
p−→ 1 for all k from 1 to n− 1. In particular, the first few paths all

cost nearly identical amounts, quite different from the situation for succes-
sive MSTs.

The “random assignment problem” is to determine the cost of a minimum-
cost perfect matching in a complete bipartite graph with random edge
weights. A great deal is known about it, by a variety of methods; for one
relatively recent work, with references to others, see Wästlund [33]. It would
be interesting to understand the kth cheapest matching.

It could also be interesting to consider other variants of all these ques-
tions. Frieze and Johansson [12] considered the k disjoint structures which
together have the smallest possible total cost, where we consider disjoint
structures generated successively. In either case, instead of asking for dis-
joint structures, we could require structures which are merely distinct, or
perhaps which differ in some adversarially specified elements.
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