
ar
X

iv
:1

91
1.

03
01

2v
2 

 [
m

at
h.

C
O

] 
 2

9 
Ju

l 2
02

1

Counting extensions revisited
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Abstract

We consider rooted subgraphs in random graphs, i.e., extension counts such as (i) the number of
triangles containing a given vertex or (ii) the number of paths of length three connecting two given vertices.
In 1989, Spencer gave sufficient conditions for the event that, with high probability, these extension counts
are asymptotically equal for all choices of the root vertices. For the important strictly balanced case,
Spencer also raised the fundamental question as to whether these conditions are necessary. We answer this
question by a careful second moment argument, and discuss some intriguing problems that remain open.

1 Introduction

Subgraph counts and their many natural generalizations are central topics in random graph theory: since
the 1960’s they are a constant source of beautiful problems and conjectures, which have repeatedly inspired
the development of important new probabilistic techniques and insights (see [7, 1, 15, 12]).

In this paper we consider rooted subgraph counts in the binomial random graph Gn,p, i.e., so-called
extension counts [27, 31, 20, 35] such as (i) the number of triangles containing a given vertex or (ii) the
number of paths of length three connecting two given vertices. In combinatorics and related areas, the need
for studying such extension counts arises frequently in probabilistic proofs and applications, including zero-
one laws in random graphs [27, 20, 32], games on random graphs [19, 22], random graph processes [4, 3, 5,
11, 6], sparse random analogues of classical extremal and Ramsey results [23, 26, 2], and many more, such
as [30, 24, 35, 33, 39, 17, 34, 21, 36]. Consequently the investigation of extension counts is not only a natural
problem in probabilistic combinatorics, but also an important issue from the applications point of view.

After initial groundwork of Shelah and Spencer [27] as well as Spencer [30] on (rooted subgraph) extension
counts, in 1989 Spencer [31] proved sufficient conditions for the event that, with high probability1, these
extension counts are asymptotically equal in Gn,p for all choices of the root vertices. For the important strictly
balanced case, he also raised the fundamental question whether these sufficient conditions (see (3) below) are
qualitatively necessary. In this paper we answer Spencer’s 30-year old question by a careful second moment
argument (see Theorem 1 below), rectifying a surprising gap in the random graph literature. We also discuss
some further partial results and intriguing open problems (see Sections 1.2–1.3 below).

1.1 Main result

To fix notation, by a rooted graph (G,H) we mean a graph H = (V (H), E(H)) and an induced sub-
graph G ⊆ H with labeled ‘root’ vertices V (G) = {1, . . . , vG}. Given a tuple x = (x1, . . . , xvG ) of distinct
vertices from some ‘host’ graph, a (G,H)-extension of x is a copy of the graph HG := (V (H), E(H) \ E(G))
in which each vertex j ∈ V (G) is mapped onto xj . Note that if x spans a copy of G in the host graph (i.e., if
the function j 7→ xj maps edges of G to edges in the host graph), then every (G,H)-extension of x corresponds
to a copy of H . Since the edges between root vertices do not affect the definition of a (G,H)-extension, the
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1As usual, we say that an event holds whp (with high probability) if it holds with probability tending to 1 as n → ∞.
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reader may without loss of generality assume that V (G) is an independent set of H in the results below,
cf. [15, 17] (allowing for G that are not independent will be convenient in some proofs, though). For brevity,
we write [n]vG for the set of all roots, i.e., tuples x = (x1, . . . , xvG) of distinct vertices from [n] := {1, . . . , n}.
Let Xx = XG,H(x) denote the number of (G,H)-extensions of x in the binomial random graph Gn,p. Note
that the expected value

µ = µG,H := EXx ≍ nvH−vGpeH−eG (1)

does not depend2 on the particular choice of x. To avoid trivialities, we henceforth assume that H has more
edges than G, i.e., that eH > eG. Extending the standard density notation for unrooted subgraphs, we define

m(G,H) := max
G(J⊆H

d(G, J) with d(G, J) :=
eJ − eG
vJ − vG

, (2)

and say that (G,H) is strictly balanced if d(G, J) < d(G,H) for all G ( J ( H . We also call (G,H) grounded
if at least one root vertex j ∈ V (G) is connected to a non-root vertex w ∈ V (H) \ V (G).

Spencer derived in 1989 sufficient conditions for the event that, with high probability, all extension counts
satisfy Xx ∼ µ, i.e., are asymptotically equal. In the important case when (G,H) is strictly balanced,
[31, Theorem 2] states that for every fixed ε ∈ (0, 1] there is a constant K(ε) > 0 such that

lim
n→∞

P
(

max
x∈[n]vG

|Xx − µ| < εµ
)

= 1 if µ > K(ε) logn. (3)

Spencer remarked that his constant satisfies K(ε) → ∞ as ε → 0, and speculated that this is probably also
necessary, see [31, Remark on p.249]. In other words, he raised the question whether his sufficient condition
is qualitatively best possible.

Our main result answers this fundamental question: (4) shows that the ‘correct’ dependence is K(ε) =
Θ(ε−2) in the grounded case, even when ε = ε(n) → 0 at some polynomial rate. For completeness, (5) also
shows that the logarithm in the sufficient condition (3) is unnecessary in the less interesting ungrounded case
(where extension counts are essentially unrooted subgraph counts, cf. example (b) in Figure 1).

Theorem 1 (Main result: strictly balanced case). Let (G,H) be a rooted graph that is strictly balanced. There
are constants c, C, α > 0 such that, for all p = p(n) ∈ [0, 1] and ε = ε(n) ∈ [n−α, 1], the following holds:

(i) If the rooted graph (G,H) is grounded, then

lim
n→∞

P
(

max
x∈[n]vG

|Xx − µ| < εµ
)

=

{

0 if ε2µ 6 c logn,

1 if ε2µ > C logn.
(4)

(ii) If the rooted graph (G,H) is not grounded, then

lim
n→∞

P
(

max
x∈[n]vG

|Xx − µ| < εµ
)

=

{

0 if ε2µ → 0,

1 if ε2µ → ∞.
(5)

In concrete words, (4)–(5) of Theorem 1 give thresholds for the concentration of extension counts in terms
of ε2µ, similar to the thresholds in terms of the edge probability p that are well-known for many properties
of Gn,p. The role of the expression ε2µ in (4)–(5) can be made plausible by pretending that Xx behaves like a
binomial random variable with expectation µ (the actual behaviour is of course more involved), in which case

Chernoff-type tail bounds of the form P(|Xx−µ| > εµ) 6 e−Ω(ε2µ) hold. Indeed, considering the union bound
over the Θ(nvG) roots x, it then seems plausible that the 1-statement follows when ε2µ is at least a large
enough multiple of logn. An intuitive reason why the log n factor is absent in the ungrounded threshold (5) is
that here the Xx are strongly correlated and in fact almost equal (e.g., in example (b) from Figure 1 each Xx

is well-approximated by the total number of triangles), so there should be no need to use a union bound.
The main contribution of Theorem 1 is the 0-statement in the grounded threshold (4), which was missing

in previous work: our proof uses a careful second moment argument (combining correlation inequalities and

2Here an ≍ bn is a convenient shorthand for an = Θ(bn), following standard asymptotic notation as in [15, p. 9].
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(a) (b) (c) (d)

Figure 1: Examples of rooted graphs, with the root vertex circled and primal subgraphs marked in bold:
(a) strictly balanced and grounded, (b) strictly balanced and not grounded, (c) with a unique primal that
is grounded, and (d) with a unique primal that is not grounded. Our main result Theorem 1 applies to (a),(b),
Theorem 2 applies to (a),(c), Theorem 3 applies to (b),(d), and Theorem 4 applies to all of them.

counting arguments with Janson’s inequality) in order to establish that, with high probability, there exists
a root x with Xx > (1 + ε)µ, i.e., with too many (G,H)-extensions. This is closely related to the task
of obtaining good lower bounds on P(Xx > (1 + ε)µ), which are not so well understood as upper bounds;
see [16, 18, 9, 29]. To sidestep this conceptual obstacle, in Section 3 we therefore work with (easier to estimate)
auxiliary events that enforce Xx > (1 + ε)µ via ‘disjoint’ extensions, and we believe that our approach might
also be useful for establishing ‘lower bounds’ in other problems.

1.2 Partial results: beyond the strictly balanced case

We also establish some threshold results for extension counts of rooted graphs (G,H) that are not neces-
sarily strictly balanced. Here things are more complicated, since we now need to take into account all sub-
graphs J ⊆ H containing the root G, in particular those that satisfy d(G, J) = m(G,H); cf. [30, 31, 24, 15].
We call such subgraphs J primal, and for brevity also say that J is grounded if (G, J) is grounded. The partial
results Theorems 2–3 below cover all strictly balanced (G,H), and they in particular imply that Theorem 1
also holds with ε2Φ instead of ε2µ (possibly after modifying the constants c, C, α), where

Φ = ΦG,H := min
G⊆J⊆H:eJ>eG

µG,J . (6)

There is no contradiction here: the extra assumption ε > n−α ensures that the conclusions of the 0- and
1-statements of Theorem 1 coincide regardless of whether we use ε2Φ or ε2µ (cf. Section 5.2). It thus comes
as no surprise that in our main result Theorem 1 the technical assumption ε > n−α is indeed3 necessary.

The following result covers the case where (G,H) has only one primal subgraph which also happens to be
grounded, such as in examples (a) and (c) from Figure 1; this case includes the rooted graphs in Theorem 1 (i)
since in that case H is a unique primal subgraph.

Theorem 2 (Unique and grounded primal case). Let (G,H) be a rooted graph with a unique primal sub-
graph J . If (G, J) is grounded, then there are constants c, C, α > 0 such that, for all p = p(n) ∈ [0, 1] and
ε = ε(n) ∈ [n−α, 1],

lim
n→∞

P
(

max
x∈[n]vG

|Xx − µ| < εµ
)

=

{

0 if ε2Φ 6 c logn,

1 if ε2Φ > C logn.
(7)

The heuristic idea is that the main contribution to deviations of Xx = XG,H(x) comes from those of XG,J(x),
and, since (G, J) is strictly balanced and grounded, the problem thus intuitively reduces to Theorem 1 (i).

The following result covers the case where no primal subgraph of (G,H) is grounded, such as in exam-
ples (b) and (d) from Figure 1; this case includes the rooted graphs in Theorem 1 (ii).

Theorem 3 (No grounded primals case). Let (G,H) be a rooted graph with no grounded primal subgraphs.
There is a constant α > 0 such that, for all p = p(n) ∈ [0, 1] and ε = ε(n) ∈ [n−α, 1],

lim
n→∞

P
(

max
x∈[n]vG

|Xx − µ| < εµ
)

=

{

0 if ε2Φ → 0,

1 if ε2Φ → ∞.
(8)

3For examples (a) and (b) from Figure 1 with ε ≍ n−1/2 and ε ≍ n−1, when p ≍ n−1/4 it is routine to check that Φ → ∞,
ε2Φ → 0 and ε2µ ≫ logn in both cases. Hence the 0-statement holds by (9) of Theorem 4, showing that (4)–(5) of Theorem 1 fail.
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(e) (f)

Figure 2: The rooted graphs used in Propositions 5–6, with the root vertex circled: for (e) Spencer’s general
1-statement is not optimal, and for (f) the natural condition ε2Φ ≫ logn does not imply the 1-statement.

Similar to Theorem 1 (ii), the intuition is that all Xx are approximately equal once we know the number of
unrooted copies of a certain subgraph of H (e.g., in example (d) from Figure 1 this special subgraph is K4).

Theorems 2–3 give thresholds for the concentration of extension counts in terms of ε2Φ. For general (G,H)
we do not have such a threshold, but the following result intuitively states that the transition from the
0-statement to the 1-statement always happens at some point as ε2Φ changes from o(1) to nΩ(1).

Theorem 4 (General case: approximate conditions). Let (G,H) be a rooted graph. For all p = p(n) ∈ [0, 1]
and ε = ε(n) ∈ (0, 1] with 1− p = Ω(1) and Φ → ∞,

lim
n→∞

P
(

max
x∈[n]vG

|Xx − µ| < εµ
)

=

{

0 if ε2Φ → 0,

1 if ε2Φ = nΩ(1).
(9)

The 1-statement in (9) implies [31, Corollary 4], which in turn strengthens a result that played a key role
in the study of zero-one laws [27] due to Shelah and Spencer (since the ‘safe’ assumptions from [31, 27]
imply Φ = nΩ(1) via Remark 1 (iv) from Section 2).

1.3 Discussion: open problems and cautionary examples

For rooted subgraph extension counts, the main open problem is to fully determine the thresholds for con-
centration, i.e., to close the gap in (9) of Theorem 4 (and to weaken the conditions of Theorems 1–3).

Problem 1. Determine the ‘correct’ conditions for the 0- and 1-statements of any rooted graph (G,H).

Our understanding of Problem 1 is still far from satisfactory. Indeed, even for fixed ε ∈ (0, 1] the correct 1-
statement condition remains open, which we now illustrate for the rooted graph (e) from Figure 2. In this case,
any (G,H)-extension can be viewed as a combination of a (G,K4)-extension and a (K4, H)-extension. The
proof of Spencer’s general 1-statement result [31, Theorem 3] combines this decomposition with his strictly
balanced result (3) for (G,K4) and (K4, H), leading to a sufficient condition of form min{µG,K4, µK4,H} >

K ′(ε) logn (cf. [31, Section 2]). The following result shows that this sufficient condition can be weakened in
some range, demonstrating that Spencer’s general 1-statement condition is not always optimal.

Proposition 5. Let (G,H) be the rooted graph (e) depicted in Figure 2. Set ω := np2. For all p = p(n) ∈
[0, 1] and ε = ε(n) ∈ (0, 1] such that ω ≪ logn and ε2ω3 ≫ logn, we have ε2µG,K4 ≫ logn ≫ ε2µK4,H

but P(maxx∈[n]vG
|Xx − µ| < εµ) → 1 as n → ∞.

It is not hard to see that in the setting of Proposition 5 we have ε2Φ ≍ ε2µG,K4 ≫ logn, which together with
Theorems 2–3 suggests that maybe ε2Φ ≫ logn is always a sufficient condition4 for the 1-statement (which
would sharpen Theorem 4). However, the following result shows that this speculation is false for the rooted
graph (f) depicted in Figure 2, indicating that Problem 1 is more tricky than one might think.

Proposition 6. Let (G,H) be the rooted graph (f) depicted in Figure 2. Set ω := np2. For all p = p(n) ∈ [0, 1]
and ε = ε(n) ∈ (0, 1] such that ω ≪ (logn)0.39 and ε2ω3 ≫ logn, we have ε2Φ ≍ ε2µG,K4 ≫ logn
but P(maxx∈[n]vG

|Xx − µ| < εµ) → 0 as n → ∞.

4Further support comes from the fact that Xx is asymptotically normal, see Claim 17 (ii) in Appendix A and the variance

estimate (10) from Section 2, which makes it plausible that P(|Xx − µ| > εµ) 6 e−Ω((εµ)2/VarXx) 6 e−Ω(ε2Φ) ≪ n−vG holds,
which in turn would then establish the 1-statement by taking the union bound over all Θ(nvG ) roots x.
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Overall, we hope that the above intriguing examples and open problems will stimulate more research into
rooted subgraph counts. When (G,H) is strictly balanced and grounded, then we conjecture that (7) holds
for suitable c, C > 0 under the natural assumptions µ → ∞ and 1−p = Ω(1), i.e., without assuming ε > n−α.
We leave it as an open problem to formulate a conjecture for the general solution to Problem 1, which in many
cases is closely related to determining the regime where P(|Xx−µ| > εµ) changes from n−o(1) to n−ω(1), say.
In the concluding remarks we also discuss a potential connection to extreme value theory (see Section 7).

1.4 Organization of the paper

In Section 2 we introduce some auxiliary results, which also imply Theorem 4. In Section 3 we prove our
main result Theorem 1 (i) for strictly balanced (G,H) that are grounded. In Sections 4 and 5.1 we prove
Theorems 2 and 3, i.e., cover the case where no grounded primal of (G,H) exists, and the case where the
primal of (G,H) is unique and grounded, respectively. In Section 5.2, we prove Theorem 1 (ii) for strictly
balanced (G,H) that are not grounded. In Section 6 we prove the cautionary examples from Propositions 5–6.
Finally, Section 7 contains some concluding remarks and problems.

2 Preliminaries

In this section we collect some useful basic observations, and a partial result which implies Theorem 4.
First, by adapting the textbook argument [15, Lemma 3.5] for (unrooted) subgraph counts, for any rooted
graph (G,H) it is standard to see that the variance of XG,H(x) satisfies

σ2 = σ2
G,H := VarXG,H(x) ≍ (1− p)µ2

G,H/ΦG,H (10)

for any edge probability p = p(n) ∈ (0, 1], where µ = µG,H and Φ = ΦG,H are as defined in (1) and (6); cf. [28].
Next, inspired by similar statements for subgraph counts [15, Lemma 3.6], using the relation µG,J ≍
(n1/d(G,J)p)eJ−eG for all G ⊆ J ⊆ H with eJ > eG, it is straightforward to establish the following use-
ful properties. Recall that m(G,H) and Φ = ΦG,H are defined in (2) and (6), respectively.

Remark 1. For any rooted graph (G,H), the following hold for all p = p(n) ∈ [0, 1]:

(i) Φ → ∞ is equivalent to p ≫ n−1/m(G,H).
(ii) Φ = Ω(1) is equivalent to p = Ω(n−1/m(G,H)).
(iii) If Φ ≍ 1, then µG,J ≍ 1 for any G ⊆ J ⊆ H that is primal for (G,H).
(iv) If p = Ω(n−1/m(G,H)+η) for some constant η > 0, then Φ = Ω(nη).

Finally, the approximate result Theorem 4 immediately follows from the following slightly more general
theorem, whose technical statement will be convenient in several later proofs. In particular, in some ranges
of the parameters, we will be able to deduce the desired 1- or 0-statements directly from (11)–(12) below.

Theorem 7. For any rooted graph (G,H), the following hold for all p = p(n) ∈ [0, 1]:

(i) If Φ = Ω(1) and (t/µ)2Φ > nΩ(1), then

lim
n→∞

P
(

max
x∈[n]vG

|Xx − µ| < t
)

= 1. (11)

(ii) If ε = ε(n) ∈ (0, 1] and either (a) Φ(1− p) → ∞ and ε2Φ/(1− p) → 0, or (b) Φ → 0, then

lim
n→∞

P
(

max
x∈[n]vG

|Xx − µ| > εµ
)

= 1. (12)

Remark 2. In (i), the conclusion (11) holds with probability 1− o(n−τ ) for any constant τ > 0.

We defer the simple proof of Theorem 7 to Appendix A, and only mention the main ideas here. Claim (ii)
exploits thatXx is asymptotically normal when Φ(1−p) → ∞. Claim (i) is based on Markov’s inequality and a
central moment estimate E(Xx−µ)2m 6 Cmσ2m 6 Dm(µ2/Φ)m that is a by-product of the usual asymptotic
normality proof via the method of moments (see Claim 17 in Appendix A). This approach for obtaining tail
estimates ‘without much effort’ does not seem to be as widely known in probabilistic combinatorics, and we
believe that it will be useful in other applications (e.g., it yields a simple direct proof of [31, Corollary 4]).
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3 Strictly balanced and grounded case (Theorem 1)

In this section we prove the threshold (4) of Theorem 1 (i) for strictly balanced rooted graphs (G,H) that
are grounded (see Section 5.2 for the less interesting ungrounded case).

The 0-statement in (4) is the main difficulty, and here the plan is to use a second moment argument to show
the existence of a root x ∈ [n]vG with too many (G,H)-extensions, i.e., with Xx > (1 + ε)µ. Unfortunately,
even an asymptotic estimate of the relevant first moment is challenging, since the upper tail probabili-
ty P(Xx > (1 + ε)µ) is hard to estimate up to a 1 + o(1) factor (this is an instance of the ‘infamous’ upper
tail problem [16, 29]). To sidestep this technical difficulty, we instead show the existence of a root x ∈ [n]vG
which attains Xx = ⌈(1+ ε)µ⌉ due to exactly ⌈(1+ ε)µ⌉ extensions that are vertex-disjoint outside of x. The
crux is that these auxiliary events are more tractable: we can estimate the relevant first and second moments
up to the required 1 + o(1) factors via a careful mix of Harris’ Lemma [13], Janson’s inequality [14, 8, 25],
and counting arguments. It turns out that here the extra assumption ε > n−α is helpful: it will allow us
to focus on fairly small edge probabilities p = p(n) that are close to n−1/d(G,H), which intuitively makes it
easier to show that various events are approximately independent (as tacitly required by the second moment
method); see Section 3.2 for the details.

The 1-statement in (4) is simpler (and nowadays fairly routine). For edge probabilities p = p(n) that are
close to n−1/d(G,H), we use a standard union bound argument, estimating the lower tail P(Xx 6 (1 − ε)µ)
via Janson’s inequality [14, 15, 25] and the upper tail P(Xx > (1 + ε)µ) via an inequality of Warnke [38].
For edge probabilities p = p(n) much larger than n−1/d(G,H), it turns out that we can simply use the partial
result Theorem 7 (i) due to the extra assumption ε > n−α; see Section 3.3 for the details.

3.1 Technical preliminaries

Our upcoming arguments exploit two standard properties of strictly balanced rooted graphs: (i) for fairly
small edge probabilities p = p(n), the expectation µ = µG,H is significantly smaller than any other expec-
tation µG,J with G ( J ( H (note that µG,H/µG,J ≍ nvH−vJpeH−eJ ≪ 1 via (13) below), and (ii) after
removing the root vertices from H , the remaining graph H − V (G) is connected. Both mimic well-known
properties from the unrooted case, so we defer the routine proof of Lemma 8 to Section 3.4.

Lemma 8. For any strictly balanced rooted graph (G,H), the following hold:

(i) There is a constant β = β(G,H) > 0 such that, for all p = p(n) ∈ [0, 1] with p = O(n−1/d(G,H)+β),

max
G(J(H

nvH−vJpeH−eJ ≪ n−β. (13)

(ii) The graph H − V (G), obtained from H by deleting the vertices of G, is connected.

3.2 The 0-statement

Our second-moment-based proof of the 0-statement in (4) of Theorem 1 hinges on the following key lemma.
Given a root x ∈ [n]vG , let Ex denote the event that, in Gn,p, the root x has exactly z := ⌈(1 + ε)µ⌉ many
(G,H)-extensions, and all of them are pairwise vertex-disjoint (i.e., sharing no vertices outside x). We also
say that two roots x1,x2 ∈ [n]vG are disjoint if they share no elements as (unordered) sets.

Lemma 9. Let (G,H) be a rooted graph that is strictly balanced and grounded. There are constants c, γ > 0
such that, for all ε = ε(n) ∈ (0, 1] and p = p(n) ∈ [0, 1] with p 6 n−1/d(G,H)+γ, µ > 1/2 and ε2µ 6 c logn,
the following holds: for all roots x ∈ [n]vG we have

P(Ex) ≫ n−1/2, (14)

and for all disjoint roots x1,x2 ∈ [n]vG we have

P(Ex1 , Ex2) 6 (1 + o(1))P(Ex1)P(Ex2). (15)

Proof of the 0-statement in (4) of Theorem 1. Let c, γ > 0 be the constants given by Lemma 9. Fix arbitrary
0 < α < γ/2. First, when p > n−1/d(G,H)+γ , then ε > n−α and Remark 1 (iv) imply ε2µ > n−2α · ΦG,H =

6



Ω(nγ−2α) ≫ logn, so the condition of the 0-statement cannot be satisfied and hence there is nothing to
prove. Next, when µ < 1/2, then (1 + ε)µ 6 2µ < 1 and ε 6 1 imply that the interval ((1− ε)µ, (1 + ε)µ)
contains no integers, and so the 0-statement again holds trivially.

Thus we can henceforth assume µ > 1/2 and p 6 n−1/d(G,H)+γ , as required by Lemma 9. For convenience,
we set s := ⌊n/vG⌋ ≍ n, and choose disjoint roots x1, . . . ,xs ∈ [n]vG . Writing Y := | {i ∈ [s] : Exi

holds} |, to
prove the 0-statement of Theorem 1 we shall now show that Y > 0 whp, i.e., that P(Y > 0) → 1 as n → ∞.
Using (14) we obtain EY =

∑

16i6s P(Exi
) ≫ s · n−1/2 ≍ n1/2 → ∞. Together with (15) it follows that

EY 2
6

∑

16i,j6s: i6=j

P(Exi
, Exj

) +
∑

16i6s

P(Exi
) 6 (1 + o(1)) · (EY )2 + EY ∼ (EY )2.

Now Chebyshev’s inequality readily yields P(Y = 0) 6 Var Y/(EY )2 → 0 as n → ∞, completing the proof.

The remainder of Section 3.2 is dedicated to the proof of Lemma 9. For concreteness, for β > 0 as given
by Lemma 8 (i), we choose the constants γ, c ∈ (0, 1/2) such that

γeH < min
{

β/vH , β/2, 1/2, 1− 2c
}

. (16)

Recalling µ ≍ nvH−vGpeH−eG and ε 6 1, using the assumptions µ > 1/2 and p 6 n−1/d(G,H)+γ , we infer

1/2 6 µ 6 z = ⌈(1 + ε)µ⌉ 6 O(nγeH ) ≪ min
{

n1/2, nβ/2
}

, (17)

and

p 6

(

n−(vH−vG)+γ(eH−eG)
)

1
eH−eG

6

(

n−1+1/2
)

1
eH−eG ≪ 1/2, (18)

with room to spare. With foresight, given x ∈ [n]vG , we denote by N = NG,H(x) the number of (G,H)-
extensions of x in Kn. Note that N ≍ nvH−vG does not depend on the particular choice of x.

3.2.1 The first moment: inequality (14)

We start with (14), i.e., a lower bound for P(Ex). Recall that every x ∈ [n]vG has N extensions in Kn. The
plan is to show that P(Ex) is comparable with P(Bin(N, peH−eG) = z). More precisely, we will show that

P(Ex) > (1 + o(1)) ·
(

N

z

)

p(eH−eG)z(1− peH−eG)N−z. (19)

In view of z ≈ (1 + ε)µ = (1+ ε)NpeH−eG , using Stirling’s formula it then will be routine to deduce that the

lower bound in (19) is Θ(z−1/2) · e−Θ(ε2µ), which together with (16)–(17) and the assumption ε2µ 6 c logn
will eventually imply the desired inequality (14); see (28)–(29) below.

Turning to the technical details, given x ∈ [n]vG , let H(x) denote the set of all (unordered) collections
of z = ⌈(1 + ε)µ⌉ vertex-disjoint (G,H)-extensions of x in Kn. Given C ∈ H(x), let Cc denote the remain-
ing N − z extensions of x in Kn. Given a collection S of extensions of x, we write IS for the event that all
extensions in S are present in Gn,p, and DS for the event that all extensions in S are not present in Gn,p.
Note that

P(Ex) =
∑

C∈H(x)

P(IC , DCc) =
∑

C∈H(x)

P(IC)P(DCc | IC) > |H(x)| min
C∈H(x)

P(IC)P(DCc | IC), (20)

where the minimum is of course only formal: by symmetry the probabilities are the same for every C ∈ H(x).
To estimate |H(x)|, note that given i 6 z vertex-disjoint extensions, the number of choices for another
vertex-disjoint extension is N − O(znvH−vG−1). Since H(x) consists of unordered collections of extensions,
using N ≍ nvH−vG and z ≪ n1/2 (see (17)) together with 1− x = e−x(1+o(1)) as x → 0 it follows that

|H(x)| =
(

N −O(znvH−vG−1)
)z

z!
=

Nz

z!
·
(

1−O
(

z/n
)

)z

∼ Nz

z!
∼

(

N

z

)

. (21)
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Since the extensions in C ∈ H(x) are disjoint, we have

P(IC) = p(eH−eG)z. (22)

For the remaining lower bound on P(DCc |IC), the idea is to apply Harris’ Lemma [13] and then use Lemma 8 (i)
to show that the effect of ‘overlapping’ pairs of extensions is negligible.

Claim 10. Let x ∈ [n]vG . Then, for all C ∈ H(x), we have

P(DCc |IC) > (1 + o(1)) · (1− peH−eG)N−z . (23)

Proof. We fix C ∈ H(x), and define the auxiliary graph F :=
(

[n],
⋃

H1∈C E(H1)
)

. Note that after condi-
tioning on the event IC , in Gn,p each possible edge from E(Kn) \ E(F ) is still included independently with
probability p. Therefore Harris’ Lemma (see, e.g., [1, Theorem 6.3.2]) implies that

P(DCc |IC) >
∏

H2∈Cc

(

1− peH−eG−e(H2∩F )
)

. (24)

Note that there are at most N − z extensions H2 ∈ Cc with e(H2 ∩ F ) = 0, each contributing a factor
of 1− peH−eG to the right-hand side of (24). Every other extension H2 ∈ Cc contains at least one edge
not in F (since by Lemma 8 (ii), after deleting the root vertices x, all graphs in {H1 − x : H1 ∈ C} are
vertex-disjoint and connected), so that peH−eG−e(H2∩F ) 6 p 6 1/2 by (18). Since 1 − x > e−2x for x 6 1/2,
from (24) it follows that

P(DCc |IC) > (1− peH−eG)N−z · exp
(

− 2
∑

H2∈Cc:
e(H2∩F )>1

peH−eG−e(H2∩F )
)

. (25)

To estimate the sum in (25), note that if H2 ∈ Cc shares an edge with F , then E(H2 ∩ F ) corresponds to a
(G, J)-extension of x for some G ( J ( H . The number of such extensions is at most (vHz)vJ−vG = O(zvH ),
with room to spare. Given a (G, J)-extension, it can be further extended to some H2 ∈ Cc in at most nvH−vJ

ways. Using eH − eG − (eJ − eG) = eH − eJ together with (17) and (13), it follows that

∑

H2∈Cc:
e(H2∩F )>1

peH−eG−e(H2∩F )
6

∑

G(J(H

O
(

zvHnvH−vJ · peH−eJ
)

≪ nγeHvH−β = o(1), (26)

which together with (25) establishes inequality (23).

Combining estimates (20)–(23), we readily obtain inequality (19). To establish (14), it remains to estimate
the right-hand side of (19) via the following well-known form of Stirling’s formula (see, e.g., [7, equation (1.4)]):

n! =
√
2πn

(n

e

)n

eαn with αn = O(n−1). (27)

With foresight, let t := z−µ = εµ+O(1), and define ϕ(x) := (1+x) log(1+x)−x for x > −1. Recalling (17)
we have 1 6 z ≪ n1/2 ≪ N . Using Stirling’s formula (27) together with µ = NpeH−eG and z = µ+ t, then a
simple (but slightly tedious) calculation along the lines of the Appendix of [37] gives

(

N

z

)

p(eH−eG)z(1 − peH−eG)N−z
>

exp
(

−O
(

N−1 + z−1 + (N − z)−1
)

)

√

2πz(1− z/N)
·
(µ

z

)z
(

N − µ

N − z

)N−z

> Ω(z−1/2) · exp
(

−µϕ
(

t/µ
)

− (N − µ)ϕ
(

−t/(N − µ)
)

)

.

(28)

Note that log(1 + x) 6 x implies ϕ(x) 6 x2. Using (17) we readily infer t2/µ = ε2µ + O(1). Furthermore,
(16) implies peH−eG 6 n−1/2, so that N > n1/2µ ≫ µ. Using the estimates (17) and ε2µ 6 c logn together
with γeH/2 + c < 1/2 (see (16)), it now follows that (28) is at least

Ω
(

z−1/2
)

· exp
(

−
(

1 +O
(

n−1/2
))

ε2µ
)

> Ω(1) · exp
(

−
(

γeH/2 + c
)

logn
)

≫ n−1/2, (29)

which together with (19) completes the proof of inequality (14) from Lemma 9.
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3.2.2 The second moment: inequality (15)

Now we turn to (15), i.e., an upper bound for P (Ex1 , Ex2) when x1, x2 are disjoint. Recalling (20), note that

P(Ex1 , Ex2) =
∑

C1∈H(x1)

∑

C2∈H(x2,C1)

P(IC1∪C2 , DCc
1∪Cc

2
), (30)

where we (with foresight) define

H(x2, C1) :=
{

C2 ∈ H(x2) : P(IC1∪C2 , DCc
1∪Cc

2
) > 0

}

. (31)

Guided by the heuristics that the various events are approximately independent, the plan is to show that

P(IC1∪C2 , DCc
1∪Cc

2
) 6 (1 + o(1))P(IC1 , DCc

1
) · P(IC2 , DCc

2
), (32)

though the actual details will be slightly more involved. Ignoring these complications for now, note that (32)
would together with (30), (20) and H(x2, C1) ⊆ H(x2) indeed imply the desired inequality (15).

Turning to the technical details, by applying Harris’ Lemma (noting that IC1∪C2 is an increasing event
and that DCc

1∪Cc
2
is a decreasing event; see the definitions above [1, Theorem 6.3.2]) to the right-hand side

of (30) we obtain that

P(Ex1 , Ex2) 6
∑

C1∈H(x1)

∑

C2∈H(x2,C1)

P(IC1∪C2)P(DCc
1∪Cc

2
). (33)

Recalling that every x ∈ [n]vG hasN extensions inKn, Harris’ Lemma also gives the lower bound P(DCc
1∪Cc

2
) >

(1−peH−eG)2(N−z). We will now prove an asymptotically matching upper bound that does not depend on the
choice of C1 and C2 (similarly as in Claim 10). Here the idea is to apply a form of Janson’s inequality [8, 15, 1],
and then again use Lemma 8 (i) to argue that ‘overlaps’ have negligible contribution.

Claim 11. Let x1,x2 ∈ [n]vG be disjoint. Then, for all C1 ∈ H(x1) and C2 ∈ H(x2), we have

P(DCc
1∪Cc

2
) 6 (1 + o(1)) · (1− peH−eG)2(N−z). (34)

Proof. Let S be the family of edge-sets, each of size eH − eG, corresponding to extensions in Cc
1 ∪ Cc

2 (each
extension of x1 or x2 is uniquely determined by its edge-set, since H has no isolated vertices outside of V (G)
by Lemma 8 (ii)). Note that if an extension in Cc

1 is also an extension in Cc
2, then it must contain some vertex

from x2 (because (G,H) is grounded). Since x1,x2 are disjoint, the number of such duplicate extensions
is O(nvH−vG−1), which implies that |S| > 2(N − z) − O(nvH−vG−1). Setting X :=

∑

E∈S 1{E⊆Gn,p}, note
that the event DCc

1∪Cc
2
is precisely the event that X = 0. Since p 6 1/2 (see (18)) implies 1/(1− peH−eG) 6 2

and (1 − peH−eG)−1 6 e2p
eH−eG , by invoking the Boppana–Spencer [8] variant of Janson’s inequality (see,

e.g., [15, Remark 2.20] or [1, Theorem 8.1.1]) it then follows that

P(DCc
1∪Cc

2
) = P (X = 0) 6 (1−peH−eG)|S| ·e∆/(1−peH−eG )

6 (1−peH−eG)2(N−z) ·eO(nvH−vG−1peH−eG+∆), (35)

where
∆ :=

∑

(E1,E2)∈S×S:
16|E1∩E2|<eH−eG

p|E1∪E2|. (36)

Using µ = NpeH−eG ≍ nvH−vGpeH−eG together with (17), it follows that

nvH−vG−1peH−eG ≍ µ · n−1 ≪ n1/2−1 = o(1). (37)

Turning to the ∆-term, note that |S|peH−eG 6 2(N − z)peH−eG 6 2µ. By proceeding analogously to the
estimates in (25)–(26), using (17) and (13) it routinely follows that

∆ 6
∑

E1∈S

peH−eG
∑

E2∈S:
16|E1∩E2|<eH−eG

peH−eG−|E1∩E2| 6 O
(

µ ·
∑

G(J(H

nvH−vJpeH−eJ
)

= o(1), (38)

which together with (35)–(37) establishes inequality (34).
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To sum up, by inserting the estimates (22) and (34) into (33), we readily arrive at

P(Ex1 , Ex2) 6 (1 + o(1)) · p(eH−eG)z(1 − peH−eG)2(N−z)
∑

C1∈H(x1)

∑

C2∈H(x2,C1)

P(IC2 | IC1). (39)

Anticipating that the main contribution comes from pairs C1, C2 of ‘disjoint’ collections, we partition

H(x1) := H0(x1,x2) ∪ H>1(x1,x2), (40)

where H0(x1,x2) contains the collections C1 ∈ H(x1) for which the auxiliary graph

F = F (C1) :=
(

[n],
⋃

H′∈C1
E(H ′)

)

(41)

contains no extensions of x2, andH>1(x1,x2) contains the remaining ones. Since x1,x2 are disjoint and (G,H)
is grounded, every C1 ∈ H>1(x1,x2) must contain at least one extension overlapping with x2 (in at least one
vertex). From (21), N ≍ nvH−vG and z ≪ n (see (17)) it follows that, for some constant A = A(G,H) > 0,

|H>1(x1,x2)| 6 AnvH−vG−1 ·
(

N

z − 1

)

≍ nvH−vG−1 · z

N
· |H(x1)| ≪ |H(x1)|. (42)

Exploiting the groundedness assumption, we next show that pairs C1, C2 can only overlap in at most vG = O(1)
extensions (see Claim 12), and that overlapping pairs effectively have negligible contribution (see Claim 13).

Claim 12. Let x1,x2 ∈ [n]vG be disjoint. Then, for all C1 ∈ H(x1), the graph F = F (C1) defined in (41)
contains at most vG vertex-disjoint extensions of x2.

Proof. The graph F − x1, obtained by removing the vertices x1 from F , consists of isolated vertices and
vertex-disjoint copies of the graph H − V (G), which, by Lemma 8 (ii), is connected. Let H ′ be obtained
fromH − E(G) by removing isolated root vertices (if any). Since (G,H) is grounded, we have eH−V (G) < eH′ .
Note that H ′ is connected (since it equals H − V (G) with some root vertices connected to it) and there-
fore F − x1 is H ′-free. It follows that any extension of x2 that is present in F must intersect x1, so there are
at most |x1| = vG such vertex-disjoint extensions of x2.

Claim 13. Let x1,x2 ∈ [n]vG be disjoint. Then

∑

C1∈H(x1)

∑

C2∈H(x2,C1)

P(IC2 | IC1) 6 (1 + o(1))
∑

C1∈H(x1)

∑

C2∈H(x2)

P(IC2). (43)

Proof of Claim 13. In the first step we estimate
∑

C2∈H(x2,C1)
P(IC2 | IC1) using a counting argument that

accounts for the different kinds of overlaps of C2 with the graph F = F (C1) defined in (41). Turning to the
details, as in the proof of Claim 11 we will think of (G,H)-extensions as edge-sets of size eH − eG. Recall that
|C1| = |C2| = z = ⌈(1+ ε)µ⌉. Suppose that the graph F contains k extensions of x2. If C2 ∈ H(x2, C1) then all
these k extensions must be present in C2, since otherwise P(IC1∪C2 ,DCc

1∪Cc
2
) 6 P(IC1 ,DCc

2
) = 0 contradicting

C2 ∈ H(x2, C1). List the remaining extensions in C2 as E1, . . . , Ez−k in an arbitrary order. Note that each Ei

is not fully contained in E(F ), and thus the intersection Ei ∩E(F ) is the edge-set of some (G, Ji)-extension
of x2 for some graph Ji satisfying G ⊆ Ji ( H (the case Ji = G occurs when the extension Ei is edge-disjoint
from F ). When these intersections are given by J1, . . . , Jz−k, then we clearly have

P (IC2 | IC1) =

z−k
∏

i=1

peH−eG−(eJi
−eG) =

z−k
∏

i=1

peH−eJi .

Furthermore, the number of sequences E1, . . . , Ez−k corresponding to intersections J1, . . . , Jz−k is bounded
from above by

z−k
∏

i=1

(

vG + (vH − vG)z
)vJi

−vG
N̂Ji,H ,
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where N̂J,H := NG,H = N if G = J and N̂J,H := nvH−vJ otherwise. Hence, summing over all possible choices
of J1, . . . , Jz−k and dividing by (z − k)! (since we sum over unordered collections C2), it follows that

∑

C2∈H(x2,C1)

P(IC2 | IC1) 6
1

(z − k)!

∑

J1,...,Jz−k:
G⊆Ji(H

z−k
∏

i=1

(

vG + (vH − vG)z
)vJi

−vG
N̂Ji,HpeH−eJi

6
zk

z!
·
(

∑

G⊆J(H

(

vG + (vH − vG)z
)vJ−vG

N̂J,HpeH−eJ

)z−k

. (44)

Noting that N̂G,HpeH−eG = µ, using (26) and µ ≍ z we bound the sum in (44) from above by, say,

µ+O
(

∑

G(J(H

zvHnvH−vJ peH−eJ
)

6 µ+ o(1) = µ ·
(

1 + o
(

z−1
)

)

. (45)

From the assumptions ε 6 1 and µ > 1/2 it follows that z 6 (1 + ε)µ + 1 6 4µ, say. Therefore, in view of
(44)–(45), using µ = NpeH−eG and (21) it follows that

∑

C2∈H(x2,C1)

P(IC2 | IC1) 6

(

z

µ

)k
(NpeH−eG)z

z!

(

1 + o
(

z−1
)

)z−k

6 (1 + o(1)) · 4k|H(x2)|p(eH−eG)z, (46)

whenever the graph F defined in (41) contains exactly k extensions of x2.
In the second step we sum the above estimate (46) over all C1 ∈ H(x1). Recalling the partition (40), note

that k = 0 when C1 ∈ H0(x1,x2), and that k 6 vG otherwise (see Claim 12). From (46) it follows that

∑

C1∈H(x1)

∑

C2∈H(x2,C1)

P(IC2 | IC1) 6 (1 + o(1)) ·
(

|H0(x1,x2)|+ 4vG |H>1(x1,x2)|
)

· |H(x2)|p(eH−eG)z .

In view of (42), the factor in the above parentheses is at most (1 + o(1)) · |H(x1)|, say, which together
with p(eH−eG)z = P(IC2) from (22) then completes the proof of inequality (43).

Finally, inserting the estimates (43), p(eH−eG)z = P(IC1), and (23) into (39), it follows that

P(Ex1 , Ex2) 6 (1 + o(1))
∑

C1∈H(x1)

P(IC1)P(DCc
1
|IC1)

∑

C2∈H(x2)

P(IC2)P(DCc
2
|IC2),

which together with (20) completes the proof of inequality (15) and thus Lemma 9 (which in turn implies
the 0-statement in (4) of Theorem 1, as discussed).

3.3 The 1-statement

Our proof of the 1-statement in (4) of Theorem 1 is based on a fairly standard union bound argument.

Proof of the 1-statement in (4) of Theorem 1. Fix an arbitrary constant τ > 0. For β > 0 as given by
Lemma 8 (i), fix constants 0 < γ 6 β and 0 < α < γ/2 as in the proof of the 0-statement (see Section 3.2).
If p > n−1/d(G,H)+γ , then Remark 1 (iv) implies ΦG,H = Ω(nγ), and using ε2ΦG,H = Ω(nγ−2α) = nΩ(1) we
see that the 1-statement of Theorem 1 follows from Theorem 7 (i) with t = εµ.

In the remaining (main) case p 6 n−1/d(G,H)+γ , we fix a root x ∈ [n]vG . Since there are O(nvG) many
such roots, for the 1-statement of Theorem 1 it suffices to show that, for C > 0 large enough,

P (|Xx − µ| > εµ) = o
(

n−(vG+τ)
)

if ε2µ > C logn. (47)

To avoid clutter, we shall henceforth use the convention that all implicit constants ci may depend on (G,H).
For the lower tail we shall apply Janson’s inequality [25, Theorem 1] analogously to the textbook argument [15,
18] for unrooted subgraph counts, which in view of (13) from Lemma 8 (i) routinely gives

P (Xx 6 (1− ε)µ) 6 exp
(

−c1ε
2µ

)

6 n−c1C = o
(

n−(vG+τ)
)

(48)
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for C > (vG + τ)/c1 (similar to (36) and (38), the relevant ∆-term of Janson’s inequality, which here is
defined in terms of the family S of edge-sets corresponding to extensions of x in Kn, satisfies ∆ = o(1)
by (17) and (13)). For the upper tail we shall apply [38, Theorem 32] in the setting described in [38,
Example 20] (the conditions (Hℓ), (P), (Pq) are defined in [38, Section 4.1]). The underlying hypergraph
H = H(x) consists of the edge-sets of extensions of x, thus having vertex-set V (H) = E(Kn). We set the
parameters to N = n2, ℓ = 1, q = k = eH − eG, and K = vG + 2τ . The quantity µj from [38, Example 20]
satisfies max16j<q µj 6 maxG(J(H nvH−vJpeH−eJ ≪ n−β by Lemma 8 (i). Invoking [38, Theorem 32], it
then follows that

P (Xx > (1 + ε)µ) 6
(

1 + o(1)
)

· exp
(

−min
{

c2ε
2µ, (vG + 2τ) log n

}

)

= o
(

n−(r+τ)
)

(49)

for C > (vG + τ)/c2, completing the proof of (47) and thus the 1-statement in (4) of Theorem 1.

Remark 3 (Theorem 1: stronger 1-statement). The above proof yields, in view of Remark 2, the following
stronger conclusion: for any fixed τ > 0 there is a constant C = C(τ,G,H) > 0 such that the 1-statement
in (4) of Theorem 1 holds with probability 1− o(n−τ ).

3.4 Deferred proof of Lemma 8

For completeness, we now give the routine proof of Lemma 8 deferred from Section 3.1.

Proof of Lemma 8. (i): Set ΨJ,H := nvH−vJpeH−eJ . In the case vJ = vH , for any β > 0 satisfying 1/d(G,H) >
2β we have ΨJ,H = peH−eJ ≪ n−(eH−eJ )β 6 n−β. Thus we can henceforth assume vJ < vH . Since G is
an induced subgraph of H and thus of J , we also have vG < vJ . Since (G,H) is strictly balanced we
have d(G, J) < d(G,H), which implies

d(J,H) =
(eH − eG)− (eJ − eG)

(vH − vG)− (vJ − vG)
=

(vH − vG)d(G,H)− (vJ − vG)d(G, J)

(vH − vG)− (vJ − vG)
> d(G,H). (50)

Hence 1/d(G,H) > 1/d(J,H)+2β for β > 0 sufficiently small, so that p = O(n−1/d(G,H)+β) ≪ n−1/d(J,H)−β.
Observe that eH > eJ , since otherwise eH = eJ and vH > vJ imply d(G, J) > d(G,H), contradicting
that (G,H) is strictly balanced. Hence ΨJ,H = (n1/d(J,H)p)eH−eJ ≪ n−β, completing the proof of (13).

(ii): Assume the contrary. Then we can split V (H) \ V (G) into two nonempty sets V1 and V2 such that
there are no edges between V1 and V2. Writing Hi := H [V (G) ∪ Vi], we readily obtain

d(G,H) =
eH − eG
vH − vG

=

∑

i∈[2](eHi
− eG)

∑

i∈[2](vHi
− vG)

=

∑

i∈[2](vHi
− vG)d(G,Hi)

∑

i∈[2](vHi
− vG)

6 max
i∈[2]

d(G,Hi).

Since (G,H) is strictly balanced we have d(G,Hi) < d(G,H), yielding the desired contradiction.

4 No grounded primals case (Theorem 3)

In this section we prove Theorem 3 by focusing on a maximal primal subgraph Jmax of (G,H); we remark
that Jmax is in fact unique (the union of all primal subgraphs), but we do not need this. Our arguments
hinge on the basic observation that, since Jmax is by assumption not grounded (i.e., there are no edges
between V (G) and V (Jmax) \ V (G)), extension counts XG,Jmax(x) are essentially the same as the number of
unrooted copies of the graph K := Jmax − V (G), where the vertices of G are deleted from Jmax.

For the 1-statement this heuristically means that ifXG,Jmax(x) is concentrated for some x, thenXG,Jmax(x)
is concentrated for all x (the reason being that not too many copies of K can overlap with any root x′, see
Lemma 16 below). Furthermore, using Theorem 7 (i) it turns out that whp each copy of Jmax extends to
the ‘right’ number of H-copies (here the crux will be that ΦJmax,H = nΩ(1) follows from Remark 1 (iv) and
Lemma 14 below). Combining these two estimates then allows us to deduce that whpXG,H(x) is concentrated
for all x; see Section 4.3 for the details.

For the 0-statement we shall proceed similarly, the main difference is that, for a fixed x, we start by
arguing that XG,Jmax(x) is not concentrated, i.e., whp far away from its expected value. This allows us
to deduce that x has whp the wrong number of (G,H)-extensions (since by Theorem 7 (i) whp each copy
of Jmax again extends to the right number of copies of H); see Section 4.2 for the details.
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4.1 Setup and technical preliminaries

In the upcoming arguments it will, as in [31], often be convenient to treat extensions as sequences of vertices.
Given a rooted graph (G,H) with labeled vertices V (G) = {1, . . . , vG} and V (H) \ V (G) = {vG + 1, . . . , vH},
an ordered (G,H)-extension of x = (x1, . . . , xvG) ∈ [n]vG is a sequence y = (yvG+1, . . . , yvH ) of distinct
vertices from [n] \ {x1, . . . , xvG} such that the injection which maps each vertex j ∈ V (G) onto xj and each
vertex i ∈ V (H) \ V (G) onto yi, also maps every edge f ∈ E(H) \ E(G) onto an edge. Given a root x ∈ [n]vG ,
let YG,H(x) denote the number of ordered (G,H)-extensions of x in Gn,p. Note that

νG,H := EYG,H(x) = (n− vG)(n− vG − 1) · · · (n− vH + 1) · peH−eG (51)

does not depend on the particular choice of x. Let aut(G,H) denote the number of automorphisms of H
that fix the set V (G). Since each extension corresponds to aut(G,H) many ordered extensions, we obtain

YG,H(x) = aut(G,H) ·XG,H(x), (52)

νG,H = aut(G,H) · µG,H , (53)

where µG,H = EXG,H(x) is defined as in (1). One further useful elementary observation is that, for any
induced G ⊆ J ⊆ H , we have

νG,J · νJ,H = νG,H . (54)

Our arguments will also exploit the following technical property of maximal primal subgraphs.

Lemma 14. If Jmax ( H is a maximal primal of the rooted graph (G,H), then m(Jmax, H) < m(G,H).

Proof. Fix Jmax ( J ⊆ H . Using maximality of Jmax ) G, we infer d(G, J) < m(G,H) and d(G, Jmax) =
m(G,H). Proceeding analogously to inequality (50), it routinely follows that

d(Jmax, J) =
(vJ − vG)d(G, J) − (vJmax − vG)d(G, Jmax)

(vJ − vG)− (vJmax − vG)
< m(G,H),

which completes the proof by maximizing over all feasible J .

4.2 The 0-statement

As discussed, for the 0-statement of Theorem 3 the core idea is to show that XG,Jmax(x) is not concentrated
for some x ∈ [n]vG , and that XJmax,H(y) is concentrated for all y ∈ [n]vJmax

, see (58)–(59) below.

Proof of the 0-statement of Theorem 3. Assuming ε > n−α with α < 1/2 (as we may), we have ε2ΦG,H =
Ω(n1−2αpeH−eG) ≫ peH−eG , so the assumption ε2ΦG,H → 0 implies p → 0 and thus 1−p = Θ(1). Since (G,H)
has no grounded primals, the desired 0-statement now follows by combining the conclusions of Theorem 7 (ii)
for the cases ΦG,H → 0 and ΦG,H → ∞ with the conclusion of Lemma 15 below for ΦG,H ≍ 1 (formally
using, as usual, the subsubsequence principle [15, Section 1.2]).

Lemma 15. Let (G,H) be a rooted graph with no grounded primal subgraphs. Then, for all p = p(n) ∈ [0, 1]
and ε = ε(n) ∈ (0, 1] with ΦG,H ≍ 1 and ε → 0,

lim
n→∞

P
(

max
x∈[n]vG

|Xx − µ| > εµ
)

= 1. (55)

Proof. Note that by increasing ε if necessary, we may henceforth assume ε > n−α for any constant α > 0
(since increasing ε can only decrease the probability on the left-hand side of (55) above). Let Jmax be a
maximal primal subgraph of (G,H). By Remark 1 (ii)–(iii), the assumption ΦG,H ≍ 1 implies

µG,Jmax ≍ 1, (56)

p = Ω
(

n−1/m(G,H)
)

. (57)
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Turning to the details, we start with the claim that, whp,

max
x∈[n]vG

|XG,Jmax(x)− µG,Jmax | > 3εµG,Jmax, (58)

max
y∈[n]vJmax

|XJmax,H(y) − µJmax,H | < 1
2εµJmax,H . (59)

To show that this claim implies the desired 0-statement, we consider ordered extensions and note that
multiplying (58) and (59) by aut(G, Jmax) and aut(Jmax, H), respectively, we can replace X by Y and µ by ν,
cf. (52) and (53). Observe that each ordered (G,H)-extension corresponds to a unique pair of extensions:
one of x with respect to (G, Jmax) and one of y (which consists of x plus the vertices of the first extension)
with respect to (Jmax, H). Consequently, recalling the identity (54), inequalities (58)–(59) imply that there
is x ∈ [n]vG such that either

YG,H(x) > (1 + 3ε)νG,Jmax · (1− ε/2)νJmax,H > (1 + ε)νG,H (60)

or
YG,H(x) < (1 − 3ε)νG,Jmax · (1 + ε/2)νJmax,H < (1− ε)νG,H , (61)

which in view of (52) and (53) establishes the desired 0-statement (after rescaling by aut(G,H)).
It remains to show that (58) and (59) hold whp, and we start with (58). Consider the unrooted graphK :=

Jmax − V (G), where the vertices of G are deleted from Jmax. By construction, we have vK = vJmax − vG.
Since Jmax is not grounded, we also have eK = eJmax − eG. Using (56) we infer

µK ≍ nvKpeK = nvJmax−vGpeJmax−eG ≍ µG,Jmax ≍ 1, (62)

which by Markov’s inequality implies that the number of K-copies is whp at most n/(2vK), say (with
room to spare). This means that either (i) there are no K-copies, in which case XG,Jmax(x) = 0 for all
x ∈ [n]vG , or (ii) the K-copies span at most n/2 vertices, in which case there is one x1 ∈ [n]vG that is disjoint
from all K-copies and another set x2 ∈ [n]vG that intersects at least one K-copy, so that XG,Jmax(x1) =
XK > XG,Jmax(x2). In both cases it follows that (58) holds whp, since (56) and ε → 0 imply that the
interval (1± 3ε)µG,Jmax does not contain zero, and moreover contains at most one integer.

Turning to (59), note that (59) holds trivially when Jmax = H . Otherwise m(Jmax, H) < m(G,H) by
Lemma 14, so that (57) implies p = Ω(nγ−1/m(Jmax,H)) for some constant γ > 0. Using Remark 1 (iv),
it follows that ΦJmax,H = Ω(nγ). Assuming ε > n−α with α < γ/2 (as we may), we infer ε2ΦJmax,H =
Ω(nγ/2−α) = nΩ(1). Applying Theorem 7 (i) with t = 1

2εµJmax,H , now (59) holds whp.

4.3 The 1-statement

As discussed, for the 1-statement of Theorem 3 we rely on the fact that no vertex is contained in too many
copies of the (unrooted) graph Jmax − V (G), which is formalized by Lemma 16 below. As usual, given a
graph K with vK > 1, subgraphs J ⊆ K with vJ > 1 that maximize the density dJ := d(∅, J) = eJ/vJ are
called primal (consistently with rooted graphs terminology), and K is called balanced when K itself is primal.

Lemma 16. Let K be a balanced graph with eK > 1. There are constants β,C > 0 such that, for all
p = p(n) ∈ [0, 1] with nβ−1/dK ≪ p = O(nβ−1/dK ), in Gn,p whp every vertex x ∈ [n] is contained in at
most CλvK−vGmin copies of K, where λ := npdK and Gmin ⊆ K is a primal subgraph with the smallest
number of vertices.

We defer the density based proof to Appendix B (which is rather tangential to the main argument here), and
now use Lemma 16 to prove the desired 1-statement of Theorem 3.

Proof of the 1-statement of Theorem 3. The assumptions ε 6 1 and ε2ΦG,H → ∞ imply ΦG,H → ∞, so
Remark 1 (i) implies p ≫ n−1/m(G,H). If ε2ΦG,H = nΩ(1), then the desired 1-statement follows from Theo-
rem 7 (i), so we may further assume ε2ΦG,H 6 nc for any constant c > 0 of our choice, which together with the
assumption ε > n−α implies ΦG,H 6 nc+2α. Using the contrapositive of Remark 1 (iv), by choosing α, c > 0
sufficiently small (as we may) we thus henceforth can assume

n−1/m(G,H) ≪ p ≪ nβ−1/m(G,H), (63)
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where the constant β > 0 is as given by Lemma 16.
Turning to the details, let Jmax be a maximal primal subgraph of (G,H). For convenience we use ordered

extensions, as before. Note that YG,Jmax(x) is the number of (unrooted) copies of graph K := Jmax − V (G)
that are disjoint from x. For any vertex x ∈ [n], let ZK(x) denote the number of copies of K containing x.
We fix some x′ ∈ [n]vG , and start with the claim that there exists a constant D > 0 such that, whp,

|YG,Jmax(x
′)− νG,Jmax | < 1

8ενG,Jmax . (64)

max
y∈[n]vJmax

|YJmax,H(y) − νJmax,H | < 1
2ενJmax,H , (65)

max
x∈[n]

ZK(x) 6 D
ενG,Jmax

ε2ΦG,H
. (66)

We now show that this claim implies the desired 1-statement. In view of (64), the first step is to use (66) to
show that YG,Jmax(x) is also concentrated for the remaining roots x 6= x′. Specifically, using (66) to bound
the number of (G, Jmax)-extensions of x that overlap with x′ (and those of x′ overlapping with x), in view
of the assumption ε2ΦG,H → ∞ it follows that, for every x ∈ [n]vG ,

|YG,Jmax(x)− YG,Jmax(x
′)| 6 O

(

∑

x∈x∪x′

ZK(x)
)

≪ 1
8ενG,Jmax.

Together with (64) this implies that, say,

max
x∈[n]vG

|YG,Jmax(x)− νG,Jmax | < 1
4ενG,Jmax . (67)

The second step exploits that by (65) each copy of Jmax extends to the ‘right’ number of copies of H . Indeed,
with analogous reasoning as for (60)–(61) from Section 4.2, by combining (65) with (67) it now follows (in
view of (54)) that

max
x∈[n]vG

YG,H(x) < (1 + ε/4)νG,Jmax · (1 + ε/2)νJmax,H < (1 + ε)νG,H ,

and similarly,
min

x∈[n]vG

YG,H(x) > (1 − ε)νG,H ,

which in view of (52)–(53) establishes the 1-statement of Theorem 3 (by rescaling by aut(G,H)).
It remains to show that (64)–(66) hold whp, and we start with (64). Since ΦG,Jmax > ΦG,H by definition,

using Chebyshev’s inequality together with the variance estimate (10) and ε2ΦG,H → ∞, it follows that

P
(

|XG,Jmax(x
′)− µG,Jmax | > 1

8εµG,Jmax

)

6
VarXG,Jmax(x)

(ε/8)2µ2
G,Jmax

≍ 1− p

ε2ΦG,Jmax

6
1

ε2ΦG,H
→ 0,

which in view of (52)–(53) then implies that (64) holds whp (by rescaling by aut(G, Jmax)).
Next we establish (65). Note that the proof of (59) only relies on (57) (which here holds by (63)), and

that we may assume ε > n−α for sufficiently small α > 0. Hence by the same argument as for (59), in view
of (52)–(53) it follows that (65) holds whp (after rescaling by aut(Jmax, H)).

Finally, we turn to the auxiliary estimate (66). Note that every subgraph J ⊆ K with vJ > 1 satisfies dJ =
d(G,G ∪ J). Hence J is primal for K if and only if G ∪ J is primal for (G, Jmax). Since Jmax = G ∪K is
primal for (G,H), it follows that K is balanced, with dK = d(G, Jmax) = m(G,H). Using assumption (63),
we thus have n−1/dK ≪ p ≪ nβ−1/dK . Invoking Lemma 16, there is a constant C > 0 such that, whp,

max
x∈[n]

ZK(x) 6 CλvK−vGmin ,

whereGmin is a primal subgraph ofK with the smallest number of vertices. In particular, we have dK = dGmin.
Since Jmax is a vertex-disjoint union of the graphs K and G, using Gmin ⊆ K we infer that eGmin =
eG∪Gmin − eG and vGmin = vG∪Gmin − vG. Recalling λ = npdK = npdGmin , it now follows analogously
to (62) that

λvK−vGmin =
nvKpeK

nvGminpeGmin
≍ µK

µGmin

≍ µG,Jmax

µG,G∪Gmin

6
µG,Jmax

ΦG,H
,

which together with 1 6 1/ε = ε/ε2 and (53) completes the proof of (66) for suitable D > 0.
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5 Further cases

5.1 Unique and grounded primal case (Theorem 2)

In this section we prove Theorem 2 by adapting the arguments from Section 4 (focusing on the unique
primal J = Jmax). The key difference is that here we can use the 0- and 1-statements of our main result
Theorem 1 to deduce that XG,J(x) is not concentrated for some x, or concentrated for all x, respectively.
This then allows us to prove the desired 0- and 1-statements, since each copy of J again extends to the ‘right’
number of copies of H (by Theorem 7 (i), as in Section 4); see (69)–(70) and (73) below.

Proof of Theorem 2. If ΦG,H → 0, then the 0-statement holds by Theorem 7 (ii). Therefore we henceforth
can assume ΦG,H = Ω(1), which by Remark 1 (ii) is equivalent to

p = Ω
(

n−1/m(G,H)
)

. (68)

Note that the proof of (59) relies only on (57) (which is the same as (68)), the fact that Jmax is the maximal
primal (which also holds trivially for J in the current setting), and that we may assume ε > n−α for
sufficiently small α > 0 (which we may also assume here). Hence by the same argument as for (59), after
rescaling by aut(J,H) (see (52)–(53)) we here obtain that, whp,

max
y∈[n]vJ

|YJ,H(y)− νJ,H | < 1
2ενJ,H . (69)

We start with the 1-statement. Since µG,J > ΦG,H by definition, the assumption ε2ΦG,H > C logn
implies ε2µG,J > C logn. By uniqueness of the primal J , the rooted graph (G, J) is strictly balanced.
Therefore (4) of Theorem 1 implies (after rescaling by aut(G, J)) that, for suitable α,C > 0, whp,

max
x∈[n]vG

|YG,J(x)− νG,J | < 1
4ενG,J . (70)

The 1-statement of Theorem 2 now follows from (69) and (70) by exactly the same reasoning with which (65)
and (67) from Section 4.3 implied the 1-statement of Theorem 3.

We now turn to the 0-statement. We again plan to apply (4) of Theorem 1 to the strictly balanced
rooted graph (G, J), for which we need to check that the assumption ε2ΦG,H 6 c logn implies the required
condition ε2µG,J 6 c logn. We will do this by showing that ΦG,H = µG,J for n large enough. First, note that
the assumptions ε > n−α and ε2ΦG,H 6 c logn imply ΦG,H = O(n2α logn). By (68) and the contrapositive
of Remark 1 (iv) we can thus assume that, say,

p ≍ nθ−1/m(G,H) with θ = θ(n, p) ∈ [0, 3α]. (71)

Since the primal J is unique, we have d(G, J) = m(G,H), and d(G,K) < m(G,H) when G ( K ⊆ H
satisfies J 6= K. Hence there exists a constant γ = γ(G, J,H) > 0 such that, for any G ( K ⊆ H ,

µG,K ≍
(

npd(G,K)
)vK−vG

≍
(

n1− d(G,K)
m(G,H)

+θd(G,K)
)vK−vG

=

{

Ω(nγ) if K 6= J ,

O(n3α(eJ−eG)) if K = J .
(72)

By taking α > 0 small enough, it follows that ΦG,H = µG,J for n large enough, which (as discussed)
establishes ε2µG,J 6 c logn. Therefore (4) of Theorem 1 implies (after rescaling by aut(G, J)) that, whp,

max
x∈[n]vG

|YG,J(x)− νG,J | > 3ενG,J . (73)

The 0-statement of Theorem 2 now follows from (73) and (69) by the same (routine) reasoning with
which (58)–(59) from Section 4.2 implied the 0-statement of Theorem 3.

Remark 4 (Theorem 2: stronger 1-statement). The above proof yields, in view of Remarks 2–3, the following
stronger conclusion: for any fixed τ > 0 there is a constant C = C(τ,G,H) > 0 such that the 1-statement
in (7) of Theorem 2 holds with probability 1− o(n−τ ).

16



5.2 Strictly balanced and ungrounded case (Theorem 1)

In this section we prove the threshold (5) of Theorem 1 (ii) for strictly balanced rooted graphs (G,H) that are
not grounded, which turns out to be a simple corollary of Theorem 3. The crux is that, by decreasing α > 0
(if necessary), we can ensure that the 0- and 1-statement conditions in (5) and (8) coincide.

Proof of (5) of Theorem 1. Recall that µ = µG,H and Φ = ΦG,H are defined in (1) and (6), respectively.
By assumption the unique primal H is not grounded, so Theorem 3 applies. Decreasing the constant α > 0
from Theorem 3, we can assume that β > 3α, where β > 0 is the constant given by Lemma 8 (i). We
now distinguish two ranges of p = p(n). First, when p 6 n−1/d(G,H)+β, then (13) from Lemma 8 implies
that µ = Φ for n large enough (since (13) implies µG,H/µG,J ≍ nvH−vJpeH−eJ ≪ 1 for all G ⊆ J ( H
with eJ > eG). Second, when p > n−1/d(G,H)+β > n−1/m(G,H)+3α, then ε > n−α and Remark 1 (iv) imply
that min{ε2µ, ε2Φ} > n−2α ·Φ = Ω(nα) → ∞. Since in both ranges the 0- and 1-statement conditions in (5)
and (8) coincide, it follows that Theorem 3 implies (5).

6 Cautionary examples (Proposition 5 and 6)

In this section we prove Propositions 5–6 for the rooted graphs (e) and (f) depicted in Figure 2. The proof idea
for Proposition 5 is to proceed in two rounds for a fixed vertex x: using Theorem 1 we first find about µG,K4

many (G,K4)-extensions of x = (x), which we then extend to about µG,H many (G,H)-extensions of x.
The crux is that most of the relevant (K4, H)-extensions from the second round evolve nearly independently,
which ultimately allows us to surpass the conditions of Spencer’s result (3) and Theorem 1 for (K4, H).

Proof of Proposition 5. Recalling ω = np2, by assumption we have ε2µG,K4 ≍ ε3ω3 ≫ logn and ε2µK4,H 6

µK4,H ≍ ω ≪ logn, which readily implies logω ≍ log logn and p = n−1/2+o(1). Now it is not difficult to verify
that ΦG,H ≍ µG,K4 ≍ ω3 (either directly, or similarly as for (72) from Section 5.1). Turning to the details of
the 1-statement, we start with the auxiliary claim that, whp, for each vertex x the following event Px holds:

(i) The vertex-neighbourhood Γx of x has size |Γx| 6 9np.
(ii) The collection Tx of all triangles spanned by Γx has size |Tx| = (1± ε/9)

(

n−1
3

)

p6.
(iii) Every vertex y ∈ Γx is contained in at most D := 15 triangles from Tx.

Indeed, invoking the 1-statement of Theorem 1 with H equal to K4 and G being the root vertex v, from
ε2µG,K4 ≍ ε2ω3 ≫ logn it follows that, whp, (ii) holds for all vertices x. Since np = n1/2+o(1) ≫ log n,
using standard Chernoff bounds it is routine to see that, whp, (i) holds for all vertices x. We claim that
if (iii) fails for some y ∈ Γx, then there are 4 triangles in Tx containing y that form either a flower (share
no vertices other than y) or a book (all contain an edge yz for some z ∈ Γx): to see this, note that if we
assume the contrary, then for a maximal flower (with at most 3 triangles) each edge of it is contained in
at most 2 other Tx-triangles, whence there are at most 3 + 6 · 2 = 15 triangles in Tx containing y. The
probability that there is either a 4-flower or 4-book with all vertices connected to some extra vertex x is
at most n10p21 + n7p16 = n−1/2+o(1) → 0. It follows that, whp, properties (i)–(iii) hold for all vertices x,
establishing the claim.

We now fix a root vertex x, and expose the edges of Gn,p in two rounds: in the first round we expose
all edges incident to x and all edges inside Γx, and then in the second round we expose all remaining edges.
We henceforth condition on the outcome of the first exposure round, and assume that Px holds. As usual,
to avoid clutter we shall omit this conditioning from our notation. Given distinct vertices a, b ∈ Γx, let Ya,b

denote the number of common neighbours of a and b in [n] \ ({x} ∪ Γx). Note that εω ≫
√

logn/ω ≫ 1 by
assumption. Since, by (ii), |Tx| ≍ n3p6 = ω3 ≪ εω4 ≍ εµ, using (iii) it is not difficult to see that

Zx :=
∑

abc∈Tx

(Ya,b + Yb,c + Ya,c) satisfies
∣

∣X(x) − Zx

∣

∣ 6 3|Tx| ·D ≪ εµ/2. (74)

Using (i) and εω ≫ 1 (see above) we infer 1 + |Γx| 6 10np = n1/2+o(1) ≪ n/ω ≪ εn, and together with (ii)
it then follows that, say,

EZx = 3|Tx| ·
(

n− 1− |Γx|
)

p2 = (1 ± ε/8)µ. (75)
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In (74) we now write each Ya′,b′ as a sum of indicators of length 2 paths, which enables us to estimate the lower
tail of Zx via Janson’s inequality. By distinguishing between pairs of edge-overlapping paths that share one or
two endpoints, using (iii) it is standard to see that the relevant ∆ term is at most EZx ·(2Dp+2D) = O(EZx),
say. Using ε2EZx ≍ ε2ω4 ≫ logn, by invoking [25, Theorem 1] it then follows that

P(Zx 6 (1 − ε/8)EZx) 6 exp
(

−Ω(ε2EZx)
)

= o(n−1). (76)

Using (iii) we also see that any path shares an edge with a total of at most 2D = O(1) paths, which enables
us to estimate the upper tail of Zv via concentration inequalities for random variables with ‘controlled
dependencies’. In particular, by invoking [15, Proposition 2.44] (see also [37, Theorem 9]) it follows that

P(Zx > (1 + ε/8)EZx) 6 exp
(

−Ω(ε2EZx)
)

= o(n−1). (77)

To sum up, (74)–(77) and 1 − ε/2 < (1 ± ε/8)2 < 1 + ε/2 imply P(|X(x) − µ| > εµ | Px) = o(n−1), which
readily completes the proof of the desired 1-statement (since, whp, Px holds for all n vertices x).

The proof idea for Proposition 6 is to find a copy of K4 with an edge that is contained in extremely many
triangles. To this end we proceed in two steps, inspired by [29, Lemma 3]: in the first step we find Θ(n) many
vertex-disjoint copies of K4, and in the second step we then find the desired edge contained in many triangles.

Proof of Proposition 6. Note that µ ≍ ω5. As in the proof of Proposition 5, we again have logω ≍ log logn
and ΦG,H ≍ µG,K4 ≍ ω3, so ε2ΦG,H ≍ ε2µG,K4 ≫ logn by assumption. Noting 0.39 < 2/5, we define

z :=
⌈

2
(

(1 + ε)µ
)1/2

⌉

≍ ω5/2 = o(log n/ logω). (78)

Turning to the details of the desired 0-statement, let YK4 denote the size of the largest collection of
vertex-disjoint copies of K4 spanned by the vertices in W := {1, . . . , ⌊n/2⌋}. It is routine to check that the
minimum of |W |vGpeG , taken over all G ⊆ K4 with vG > 1, equals |W | ≈ n/2 for n large enough. Since the
induced subgraph of Gn,p spanned by W has the same distribution as G|W |,p, by invoking [15, Theorem 3.29]
there is a constant c > 0 such that

P(YK4 > cn) = 1− o(1). (79)

We now condition on the edges spanned by W , and assume that YK4 > cn. To avoid clutter, we shall
again omit this conditioning from our notation (as in the proof of Proposition 6). We henceforth fix ⌈cn⌉
vertex-disjoint copies of K4 spanned by W , and from the i-th such copy we pick an edge {vi, wi} and a
further vertex xi 6∈ {vi, wi}. Defining Zi as the number of vertices in [n] \W that are common neighbours
of vi and wi, using

(

m
z

)

> (m/z)z for m > z together with np2 = ω = o(z) and (78), it routinely follows that

P(Zi > z) >

(⌈n/2⌉
z

)

p2z
(

1− p2
)⌈n/2⌉−z

>

(np2

2z

)z

e−np2

= e−Θ(z log ω)
> n−o(1).

Note that Zi > z implies X(xi) >
(

z
2

)

>
(

z/2
)2

> (1+ ε)µ. Since the random variables Zi depend on disjoint
sets of independent edges, it then follows that

P(max
x∈[n]

X(x) < (1 + ε)µ) 6 P( max
16i6⌈cn⌉

Zi < z) =
∏

16i6⌈cn⌉

P(Zi < z) 6
(

1− n−o(1)
)⌈cn⌉

= o(1).

Hence P(maxx∈[n]X(x) > (1 + ε)µ | YK4 > cn) = 1− o(1), which together with (79) completes the proof.

7 Concluding remarks

The results and problems of this paper can also be viewed through the lens of extreme value theory,
where a standard goal is to show that a (suitably shifted and normalized) maximum converges to a non-
degenerate distribution. To see the connection, note that the proof of Theorem 1 (i) describes an interval on
which maxx∈[n]vG

Xx is whp concentrated. Our setting concerns discrete random variables (which can have

complicated behaviour, cf. [10, Section 8.5]), with a correlation structure that seems quite unusual for the
field. Hence, as a first step, it would already be interesting to establish a ‘law of large numbers’ result (even
for a restricted class of (G,H), such as strictly balanced ones), which is the content of the following problem.
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Problem 2. Determine for what rooted graphs (G,H) and edge probabilities p = p(n) there is a sequence (an)
of real positive numbers such that (maxxXx − µ)/an converges to 1 in probability (as n → ∞).

Acknowledgements. We are grateful to the referees for helpful suggestions concerning the presentation.
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[34] R. Spöhel, A. Steger, and L. Warnke. General deletion lemmas via the Harris inequality. J. Comb. 4 (2013),

251–271.

19



[35] V. Vu. A large deviation result on the number of small subgraphs of a random graph. Combin. Probab. Comput.

10 (2001), 79–94.
[36] L. Warnke. On the method of typical bounded differences. Combin. Probab. Comput. 25 (2016), 269–299.
[37] L. Warnke. Upper tails for arithmetic progressions in random subsets. Israel J. Math. 221 (2017), 317–365.
[38] L. Warnke. On the missing log in upper tail estimates. J. Combin. Theory Ser. B 140 (2020), 98–146.
[39] B. Ycart and J. Ratsaby. The VC dimension of k-uniform random hypergraphs. Random Struct. Alg. 30 (2007),

564–572.

A Appendix: Proof of Theorem 7

Our proof of Theorem 7 from Section 2 hinges on the following fairly routine claim (based on central moment
estimates), where we write Xx = XG,H(x), as usual. Recall that µ = EXx and σ2 = VarXx do not depend
on the particular choice of x, and that Φ = ΦG,H is defined in (6).

Claim 17. For any rooted graph (G,H), the following holds for all p = p(n) ∈ [0, 1] and x ∈ [n]vG :

(i) If Φ = Ω(1), then E(Xx−µ)m = O
(

(µ2/Φ)m/2
)

for any fixed integer m > 2, where the implicit constant
may only depend on m, G and H.

(ii) If Φ(1− p) → ∞, then P (|Xx − µ| < δσ) → P (|η| < δ) for any fixed δ ∈ (0,∞), where η is a standard
normal random variable.

Proof of Claim 17. Recalling the variance estimate (10) and the definition (6) of Φ, a straightforward exten-
sion of the textbook proof of [15, Theorem 6.5 and Remark 6.6] for (unrooted) subgraph counts yields

E(Xx − µ)m = 1{m even}(m− 1)!!σm(1 + o(1)) +O
(

∑

16ℓ<m/2

σm
(

Φ(1 − p)
)ℓ−m/2

)

, (80)

where (m − 1)!! = (m − 1) · (m − 3) · · · 1 when m is even. As ℓ − m/2 < 0 the sum in (80) is o(σm)
when Φ(1− p) → ∞. Hence E(Xx −µ)m/σm → 1{m even}(m− 1)!!, so the method of moments (see, e.g., [15,
Corollary 6.3]) implies that (Xx − µ)/σ converges to η in distribution, which implies (ii).

Turning to (i), from (10) and Φ = Ω(1) we infer that in (80) we have σm = O
(

µm/Φm/2
)

and

σm
(

Φ(1− p)
)ℓ−m/2 ≍ µm/Φm/2 · Φℓ−m/2(1− p)ℓ = O

(

µm/Φm/2
)

,

which shows that (80) implies (i).

Proof of Theorem 7. For (i) we may assume that in our lower bound on t we have (t/µ)2Φ > nc for sufficiently
large n, where c > 0 is a constant. Fix an arbitrary constant τ > 0, and set m := ⌈(vG + τ + 1)/c⌉. Using
first a union bound, next Markov’s inequality, and finally Claim 17 (i), it then readily follows that

P

(

max
x∈[n]vG

|Xx − µ| > t

)

6
∑

x∈[n]vG

E(Xx − µ)2m

t2m
6 O(nvG) ·

(

µ2

t2Φ

)m

= o(n−τ ).

Turning to (ii) we fix x = (1, . . . , vG), say, and claim that |Xx − µ| > εµ whp. In case (a) we fix δ > 0.
Combining the variance estimate (10) with our assumption ε2Φ/(1−p) → 0, we infer for n large enough that

εµ/σ =
√

ε2µ2/σ2 ≍
√

ε2Φ/(1− p) ≪ δ.

Together with Claim 17 (ii), it follows that

lim sup
n→∞

P (|Xx − µ| < εµ) 6 P (|η| < δ) .

Since δ > 0 was arbitrary, now the basic fact limδ→0 P (|η| 6 δ) → 0 completes the proof in case (a). In the
remaining case (b), after recalling Xx = XG,H(x), then Markov’s inequality readily implies

P(Xx > 1) 6 min
G(J⊆H:eJ>eG

P(XG,J(x) > 1) 6 ΦG,H → 0,

so that whp |Xx − µ| = µ > εµ, completing the proof.
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B Appendix: Proof of Lemma 16

Recalling the notation and definitions for unrooted graphs introduced at the beginning of Section 4.3,
Lemma 16 is implied by claim (v) of the following more general auxiliary result, whose technical statement
is optimized for ease of the proofs (which are partially inspired by [30, Lemma 4 and 7]).

Lemma 18. Let K be a balanced graph with eK > 1. There are constants β,B,C > 0 such that, for
all p = p(n) ∈ [0, 1] with n−1/dK ≪ p = O(nβ−1/dK ), the following holds whp in Gn,p, writing λ := npdK :

(i) If G ⊆ K is primal for K, then any two copies of G are either vertex-disjoint or their intersection is
isomorphic to a primal subgraph of K.

(ii) If G0 ( G1 are both primal for K and there is no third primal F such that G0 ( F ( G1, then, for
every copy G′

0 of G0, all copies of G1 that contain G′
0 are vertex-disjoint outside of V (G′

0).
(iii) If G0, G1 are as in (ii), then every copy of G0 is contained in at most BλvG1−vG0 copies of G1.
(iv) If v ∈ V (K) and G(v) ⊆ K is a minimal primal subgraph of K containing v, then for each vertex x ∈ [n]

there is at most one (v,G(v))-extension of x.
(v) If Gmin ⊆ K is primal for K with the smallest number of vertices, then every vertex x ∈ [n] is contained

in at most CλvK−vGmin copies of K.

Proof. (i): Fix a graph U := G1 ∪ G2 that is formed by the union of some two distinct overlapping
copies G1, G2 of G. Since there are only finitely many such graphs, it is enough to show that Gn,p whp
does not contain a copy of U when the intersection I := G1 ∩ G2 is not isomorphic to a primal subgraph
of K. Noting eU = 2eG−eI and vU = 2vG−vI , using that I is not primal, i.e., dI < dK = dG, it follows that

dU =
eU
vU

=
2eG − eI
2vG − vI

=
2vGdG − vIdI

2vG − vI
> dG.

Since p = O(nβ−1/dK ) ≪ n−1/dU for β > 0 small enough, using µU ≍ nvU peU = (npdU )vU ≪ 1 and Markov’s
inequality it readily follows that Gn,p whp does not contain a copy of U .

(ii): By (i) any two distinct copies of G1 that contain the same copy of G0 must intersect in a subgraph
isomorphic to some primal J with G0 ⊆ J ( G1. The assumed properties of G0, G1 imply that J cannot
contain G0 properly. Hence J = G0, which implies that all copies of G1 are vertex-disjoint outside V (G′

0).
(iii): In Kn, for each a copy G′

0 of G0 the number of copies of G1 containing G′
0 is at most

⌊

AnvG1−vG0

⌋

for some constant A = A(K) > 1. Defining B := e2A, let EG′

0
denote the event that there are at least

z :=
⌈

BλvG1−vG0

⌉

copies of G1 that (a) contain G′
0 and (b) are vertex-disjoint outside of V (G′

0). Since the
copies share no edges other than E(G′

0), a standard union bound argument yields

P
(

EG′

0

)

6

(
⌊

AnvG1−vG0

⌋

z

)

peG0+(eG1−eG0 )z.

Since K is balanced and G0, G1 are its primal subgraphs, we see that dG0 = dG1 = dK , from which it
routinely follows that

d(G0, G1) =
eG1 − eG0

vG1 − vG0

=
vG1dK − vG0dK

vG1 − vG0

= dK .

Hence nvG1−vG0 peG1−eG0 = (npd(G0,G1))vG1−vG0 = λvG1−vG0 . Together with
(

x
z

)

6 (ex/z)z and the definition
of z, it then follows that, say,

P
(

EG′

0

)

6 peG0 ·
(

eAλvG1−vG0 /z
)z

6 peG0 · exp
(

−λvG1−vG0

)

.

Using dG0 = dK , we also obtain nvG0 peG0 = (npdG0 )vG0 = λvG0 . Noting that λ → ∞ as n → ∞, by summing
over all possible copies G′

0 (there are at most nvG0 of them) it then follows that

∑

G′

0

P
(

EG′

0

)

6 nvG0 peG0 · exp
(

−λvG1−vG0

)

6 λvG0 · exp
(

−λ
)

→ 0.

Now (iii) follows readily by a union bound argument and (ii).
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(iv): Given x ∈ [n], let G′, G′′ be two (v,G(v))-extensions of x. Since G′, G′′ are both copies of a primal
subgraph G(v), by (i) we have that G′ ∩G′′ is a copy of a primal subgraph J ⊆ G(v). Since each of the two
isomorphisms mapping G(v) to G′ and G′′ maps v to x, we infer that v ∈ V (J). But since G(v) is minimal
among primals containing v, it follows that J = G(v) and thus G′ = G′′.

(v): Given v ∈ V (K), set G0 := G(v) and choose a maximal chain

G(v) = G0 ( G1 ( · · · ( Gℓ = K

of primal subgraphs ofK, with the property that for any i there is no primal F forK satisfyingGi ( F ( Gi+1

(to clarify: sinceK is balanced and thus primal, such maximal chains always exist). For each (v,K)-extension
of x we can select a unique sequence of copies

x ∈ G′
0 ( G′

1 ( · · · ( G′
ℓ

such that G′
0 is an (v,G0)-extension of x, and that, for each i ∈ [ℓ], G′

i is a copy of Gi. Hence it is enough
to bound the number of such sequences, assuming (iii) and (iv). By (iv) there is at most one choice for G′

0,
and, given G′

i−1 with i ∈ [ℓ], by (iii) there are at most BλvGi
−vGi−1 choices for suitable G′

i. Multiplying these
bounds, we obtain

max
x∈[n]

Xv,K(x) 6
∏

i∈[ℓ]

BλvGi
−vGi−1 ≍ λ

∑
i∈[ℓ][vGi

−vGi−1
] = λvGℓ

−vG0 = λvK−v
G(v) .

Summing over all v ∈ V (K), using vK − vG(v) 6 vK − vGmin and λ ≫ 1 it follows that, for some C = C(K) >
0, each vertex is contained in at most CλvK−vGmin copies of K, completing the proof of Lemma 18.
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