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Self-avoiding walk on the hypercube

Gordon Slade∗

Abstract

We study the number c
(N)
n of n-step self-avoiding walks on the N -dimensional hypercube, and

identify an N -dependent connective constant µN and amplitude AN such that c
(N)
n is O(µn

N ) for all n
and N , and is asymptotically ANµn

N as long as n ≤ 2pN for any fixed p < 1
2 . We refer to the regime

n ≪ 2N/2 as the dilute phase. We discuss conjectures concerning different behaviours of c
(N)
n when n

reaches and exceeds 2N/2, corresponding to a critical window and a dense phase. In addition, we prove
that the connective constant has an asymptotic expansion to all orders in N−1, with integer coefficients,
and we compute the first five coefficients µN = N−1−N−1−4N−2−26N−3+O(N−4). The proofs are
based on generating function and Tauberian methods implemented via the lace expansion, for which
an introductory account is provided.

1 Introduction

The self-avoiding walk in a much studied model in combinatorics, probability theory, statistical physics,
and polymer chemistry [32,37]. Typically it has been studied on an infinite graph such as the hypercubic
lattice Zd. More recently its critical behaviour has been analysed on finite graphs including the complete
graph [14, 47] and (for weakly self-avoiding walk) a discrete torus in dimensions d > 4 [40, 41, 46]. Our
goal here is to investigate the critical behaviour of the self-avoiding walk on the hypercube. We analyse
its dilute phase in detail using the lace expansion, and identify the connective constant, whose reciprocal
is the critical value. We also raise open questions about its critical window and dense phase.

1.1 Self-avoiding walk on the hypercube

Let QN = ZN
2 denote the N -dimensional hypercube. Thus an element x ∈ QN is a binary string of length

N . Addition on QN is defined coordinate-wise modulo 2. The volume of QN is V = V (N) = 2N . The
Hamming norm |x| of x ∈ QN is the number of coordinates of x which are equal to 1. In particular |x| is
an integer between 0 and N .

An n-step walk on QN is a function ω : {0, 1, . . . , n} → QN with |ω(i) − ω(i − 1)| = 1 for 1 ≤ i ≤ n.
An n-step self-avoiding walk on QN is an n-step walk for which ω(i) 6= ω(j) for all i 6= j. Typically we

take ω(0) = 0. Let c
(N)
n be the number of n-step self-avoiding walks on QN with ω(0) = 0. For n = 0 we

set c
(N)
0 = 1.

For example, the 3-step walk 00000, 00100, 01100, 01000 is counted in c
(5)
3 , and for any N ≥ 1 we

have c
(N)
0 = 1, c

(N)
1 = N , c

(N)
2 = N(N − 1), c

(N)
3 = N(N − 1)2, c

(N)
4 = N2(N − 1)(N − 2). Since an n-step

self-avoiding walk visits n + 1 distinct vertices, c
(N)
n = 0 if n ≥ V . Also, c

(N)
V−1 is the number of Hamilton

paths on QN which start at 0. Our aim is to study the asymptotic behaviour of c
(N)
n for large n and N .
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The susceptibility is the generating function for the sequence c
(N)
n (for fixed N), and thus is the

polynomial in z ∈ C defined by

χN (z) =
∞
∑

n=0

c(N)
n zN =

V−1
∑

n=0

c(N)
n zN . (1.1)

Motivated by the definition of the critical value for self-avoiding walk on a finite graph proposed in [47],
which itself was motivated by finite-graph percolation [6], given any λ > 0 we define the critical value
zN = zN (λ) > 0 by

χN (zN ) = λV 1/2 = λ2N/2. (1.2)

To ensure that zN is well-defined, we always assume that λV 1/2 ≥ χN (0) = 1. Then we define the
connective constant µN = µN (λ) to be the reciprocal of the critical value:

µN = µN (λ) =
1

zN (λ)
. (1.3)

The term “constant” is used despite the dependence of µN on N and λ. By definition, zN is an increasing
function of λ, and µN is decreasing.

1.2 Main results

Our main results are the following five theorems, Theorems 1.1–1.5. We expect that with minor additional
effort it would be possible to extend our results to more general graphs including the Hamming graph, as
in [7]. However we prefer to restrict attention to the hypercube to develop methods in a concrete setting.

1.2.1 Connective constant and number of self-avoiding walks

As a first indication that the connective constant is useful, the following theorem shows that it provides
an exponential upper bound on the number of n-step self-avoiding walks, valid for all n ∈ N.

Theorem 1.1. There exist λ0 > 0 and K > 0 (depending on λ0) such that for all n,N ∈ N (with
λ0V

1/2 ≥ 1),
c(N)
n ≤ KµN (λ0)

n. (1.4)

The next theorem establishes that the connective constant truly is the exponential growth rate of the
number of n-step self-avoiding walks as long as n ≤ V p for any fixed p ∈ (0, 12 ). We regard this range of
n as the regime in which the self-avoiding walk does not yet “feel” the finite volume of the hypercube. A
more detailed error estimate is given in Theorem 2.3.

Theorem 1.2. There exists λ0 > 0 such that with µN = µN (λ) defined by (1.3) for any λ ∈ (0, λ0], and
for any choice of p ∈ (0, 12), there exists ǫp > 0 such that

c(N)
n = ANµn

N

[

1 + O(n−ǫp)
]

(1.5)

for all n,N such that n ≤ V p (and λV 1/2 ≥ 1). The sequence AN is independent of n (but depends on λ
and p). The constant in the error term depends on λ and p but not on n or N as long as n ≤ V p.

A possibly surprising feature of (1.5) is that its left-hand side does not depend on the choice of λ but
both AN and the exponential term µn

N on the right-hand side do depend on λ. This is not contradictory,
as we will prove in Section 6.2 (see (6.26)) that, for 0 < λ′ ≤ λ1 < λ2 ≤ λ0,

µN (λ1)

µN (λ2)
= 1 + O(V −1/2), (1.6)
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where the constant in the error term depends on λ′, λ0. Thus the replacement of one fixed choice of λ by
another in µn

N produces a factor [1 + O(V −1/2)]n, and for n ≤ V p with p < 1
2 this is 1 + O(nV −1/2) and

hence can be absorbed by the error term n−ǫp since when n ≤ V p we have

n

V 1/2
≤ 1

n(1−2p)/(2p)
. (1.7)

The next theorem gives another sense in which the connective constant µN depends only weakly on λ
and the amplitude AN depends only weakly on λ and p.

Theorem 1.3. Let λ0 > 0 be sufficiently small. Let m ∈ N, fix c > 0 (independent of N but possibly
depending on m), and suppose that z obeys χN (z) ∈ [cNm, λ0V

1/2]. Then there are integers an for n ∈ N,
which are universal constants that do not depend on the particular choice of z, such that

z =
m
∑

n=1

anN
−n + O(N−m−1). (1.8)

The constant in the error term depends on m,λ0, c, but does not depend otherwise on z. The first five
terms are given by

z =
1

N
+

1

N2
+

2

N3
+

7

N4
+

39

N5
+ O

( 1

N6

)

(1.9)

For any λ ∈ (0, λ0], p ∈ (0, 12), and m ∈ N, the amplitude AN in (1.5) has an asymptotic expansion

AN =

m
∑

n=1

a′nN
−n + O(N−m−1). (1.10)

with universal integer coefficients a′n (which in particular do not depend on p, λ) and with an error
depending on m,λ, p. The first five terms are given by

AN = 1 +
1

N
+

4

N2
+

26

N3
+

231

N4
+ O

( 1

N5

)

. (1.11)

By Theorem 1.3, any choice of z for which χN (z) ∈ [cNm, λ0V
1/2] has the same expansion up to

an error O(N−m−1), with the error independent of the particular choice made for z. The expansion
(1.8) is valid simultaneously to all orders m if we choose an N -dependent sequence z for which χN (z)
lies eventually in all intervals [cNm, λ0V

1/2]. In particular, (1.8) holds simultaneously for all m when
z = zN (λ) with λ ∈ (0, λ0], with the coefficients an independent of λ. It also holds if z is chosen, e.g., to

satisfy χN (z) = 2
√
N . The connective constant therefore also has an asymptotic expansion in N−1 to all

orders and with integer coefficients, and in particular by taking the reciprocal of (1.9) we find that, for
any λ ∈ (0, λ0],

µN = N − 1 − 1

N
− 4

N2
− 26

N3
+ O

( 1

N4

)

. (1.12)

The existence proof for the expansions for zN and AN presents an algorithm for the computation of any
number of coefficients, and more terms could be computed with computer assistance as has been done for
Zd (see Section 1.5, in fact the hypercube computations appear to be substantially easier than for Zd).

1.2.2 Susceptibility and expected length

The following theorem provides upper and lower bounds on the susceptibility. As the proof will show, the
lower bound in (1.13) is a general consequence of submultiplicativity and holds on any finite or infinite
transitive graph, while the upper bound relies on the proof of a “bubble condition.”
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Theorem 1.4. Fix λ ∈ (0, λ0], assume that λV 1/2 ≥ 1, and let zN = zN (λ). Let β = N−1 + λ2. For all
z ∈ [0, zN ],

1

λ−1V −1/2 + 1 − z/zN
≤ χN (z) ≤ 2 − z/zN

λ−1V −1/2 + (1 −O(β))(1 − z/zN )
. (1.13)

The expected length of a self-avoiding walk is defined as follows. The length L is the discrete random
variable with z-dependent probability mass function

P(N)
z (L = n + 1) =

1

χN (z)
c(N)
n zn, (1.14)

with fixed N and fixed z ≥ 0, and for all nonnegative integers n. With this definition using n + 1 on the
left-hand side of (1.14), L reflects the number of vertices in the walk rather than the number of steps.
The expected length is

E(N)
z L =

∞
∑

n=0

(n + 1)P(N)
z (L = n + 1) =

1

χN (z)
∂z[zχN (z)]. (1.15)

The next theorem concerns the asymptotic behaviour of the expected length. The upper bound is a
consequence of submultiplicativity and holds on any finite or infinite transitive graph, while the lower
bound is a consequence of the bubble condition.

Theorem 1.5. Fix λ ∈ (0, λ0], assume that λV 1/2 ≥ 1, and let zN = zN (λ). Let β = N−1 + λ2. For
z ∈ [0, zN ],

[1 −O(β)]χN (z) ≤ E(N)
z L ≤ χN (z). (1.16)

In particular, at the critical value,
E(N)
zN

L = λV 1/2[1 + O(β)]. (1.17)

1.3 Notation

We write f ∼ g to mean lim f/g = 1, f ≺ g to mean f ≤ c1g with c1 > 0 and f ≻ g to mean g ≺ f . We
also write f ≍ g when g ≺ f ≺ g. Constants in these relations are not permitted to depend on N but
may depend on the choice of λ used to define zN , and also on p ∈ (0, 12) when it is part of the discussion.

1.4 Conjectured phase transition

In the hypotheses of Theorem 1.2 it is assumed that p ∈ (0, 12). At the upper limit p = 1
2 , which

Theorem 1.2 does not address, the error estimate is no longer small. We believe that this is not an
artifact of our proof but that the asymptotic behaviour does change once n reaches V 1/2. The nature of
this conjectured change can be anticipated by comparison with self-avoiding walk on the complete graph,
which is exactly solvable—its susceptibility is essentially an incomplete Gamma function—and which has
been analysed recently in [47] (see also [14]). In [47], it is conjectured that the susceptibility χN (z) for
the hypercube remains of order V 1/2 throughout the critical window consisting of (N -dependent) z values
such that |1 − z/zN | is of order V −1/2. A related conjecture for self-avoiding walk on a discrete torus of
dimension d > 4 is discussed in [41].

On the complete graph on V vertices, the number kn of n-step self-avoiding walks starting from a
fixed vertex is simply

kn =
v!

(v − n)!
, (1.18)
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where v = V − 1. In the limit in which v → ∞, and assuming for simplicity that n = o(v2/3) (so in
particular v − n → ∞), it follows from Stirling’s formula that

kn = vne−n2/2v [1 + o(1)]. (1.19)

We expect similar asymptotics to apply to the hypercube in and around the critical window, with dominant

behaviour µn
Ne−αn2/V for c

(N)
n , for some α > 0. This is consistent with the susceptibility remaining of

order V 1/2 in the critical window.
By analogy with the theory of self-avoiding walk on the complete graph developed in detail in [47]

(see also [14]), we are led to the conjecture for the hypercube that the interval z ∈ (0,∞) is divided into
three regimes. With z written as z = zN (1 + ǫ) with ǫ ∈ (−1,∞), these regimes are:

• the dilute phase ǫ ≪ −V −1/2:

χN ≍ ǫ−1, c(N)
n ∼ ANµn

N for n ≪ V 1/2, E(N)
z L ≍ ǫ−1;

• the critical window |ǫ| ≍ V −1/2:

χN ≍ V 1/2, c(N)
n ≍ µn

N for n ≍ V 1/2, E(N)
z L ≍ V 1/2;

• the dense phase ǫ ≫ V −1/2:

χN exponential in V , c(N)
n ≪ µn

N for n ≫ V 1/2, E(N)
z L ≍ V

ǫ

1 + ǫ
.

In particular, if ǫ = V −p with p ∈ (0, 12 ) then the above states that E
(N)
z L ≍ V 1−p, whereas if ǫ ≥ c > 0

then it states that E
(N)
z L ≍ V . For the case ǫ = −V −p with p ∈ (0, 12), the above states that χN ≍ V p ≍

E
(N)
z L.

Theorem 1.4 proves the above behaviour for the susceptibility in the dilute phase and in the critical

window up to and including z = zN . Theorem 1.2 proves the dilute behaviour of c
(N)
n as long as n ≤ V p

for some p < 1
2 . Theorem 1.5 proves the above behaviour for the expected length in the dilute phase and

in the critical window up to and including z = zN . It is an open problem to prove (or disprove) any of
the remaining statements.

For general graphs, the mathematical analysis of the dense phase of self-avoiding walk is not yet very
well developed. Various aspects of the dense phase are studied in [9, 17,23,50].

For percolation on the hypercube, a related and much-studied parallel to the above picture is developed
in [2,5,8,28–31,33]. Our analysis takes inspiration in particular from the general study of the percolation
phase transition on finite graphs including the hypercube from [6], though we also rely on complex analytic
methods that were not used for percolation.

1.5 The connective constant on infinite graphs

It is something of a misnomer to refer to µN as the connective “constant” since it depends on N and also
on the choice of λ. However the terminology is natural in the sense that on an infinite lattice the term
“connective constant” is used for the exponential growth rate for the number cn of n-step self-avoiding
walks started from a given vertex. On any transitive graph, finite or infinite, cn obeys cn+m ≤ cncm and
by Fekete’s lemma this implies existence of the limit

µ = lim
n→∞

c1/nn = inf
n≥0

c1/nn , (1.20)
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where µ of course depends on the graph. However on a finite graph, such as the hypercube, cn is eventually
zero so µ takes the uninformative value µ = 0. On an infinite lattice such as Zd or the hexagonal lattice, µ is
not zero and it gives the exponential growth rate of cn in the sense of (1.20). There are numerical estimates
and rigorous bounds for the value of µ(Zd) but its exact value is not known for any d ≥ 2. Exceptionally,

for the hexagonal lattice it was predicted in [43] and proved in [18] that µ(Hex) =
√

2 +
√

2. Connective
constants for more general graphs are studied in [3,25,36,38,44]. Expansions for the connective constant
have been considered in other settings, e.g., two terms were computed in [44] for hyperbolic graphs. The
lace expansion (when applicable) provides a systematic method for computation of many terms.

Indeed, for Zd it is proved in [27] that the connective constant has an asymptotic expansion to all
orders in (2d)−1, with integer coefficients, and in [12] thirteen of these coefficients are computed with the
result that

µ(Zd) = 2d− 1 − 1
2d − 3

(2d)2
− 16

(2d)3
− 102

(2d)4
− 729

(2d)5
− 5 533

(2d)6
− 42 229

(2d)7

−288 761
(2d)8

− 1 026 328
(2d)9

+ 21 070 667
(2d)10

+ 780 280 468
(2d)11

+ O
(

1
(2d)12

)

. (1.21)

Equivalently, the critical value zc(Z
d) = 1/µ(Zd) satisfies

zc(Z
d) = 1

2d + 1
(2d)2 + 2

(2d)3 + 6
(2d)4 + 27

(2d)5 + 157
(2d)6 + 1 065

(2d)7 + 7 865
(2d)8 + 59 665

(2d)9

+422 421
(2d)10 + 1 991 163

(2d)11 − 16 122 550
(2d)12 − 805 887 918

(2d)13 + O
(

1
(2d)14

)

. (1.22)

Also, in the asymptotic formula cn = Aµn[1 + O(n−ǫ)] for Zd with d ≥ 5 proved in [26], the amplitude A
is proved in [12] to have an asymptotic expansion to all orders, with integer coefficients, and in particular

A(Zd) = 1 + 1
2d + 4

(2d)2
+ 23

(2d)3
+ 178

(2d)4
+ 1 591

(2d)5
+ 15 647

(2d)6
+ 164 766

(2d)7
+ 1 825 071

(2d)8

+20 875 838
(2d)9

+ 240 634 600
(2d)10

+ 2 684 759 873
(2d)11

+ 26 450 261 391
(2d)12

+ O
(

1
(2d)13

)

. (1.23)

The possibility that the above series are Borel summable is investigated but not resolved in [24].
See [49] for a sufficient condition for Borel summability. We believe that these series and also the series
for the hypercube in Theorem 1.3 have radius of convergence zero but are Borel summable; to prove any
of these statements is an open problem. Numerical results of Padé–Borel resummation [35] of the above
series for µ(Zd) and A(Zd) are reported in [12, Table 15]. For the related question of the 1/d expansion
for the critical point for the Berlin–Kac spherical model, it is resolved affirmatively in [22] that the radius
of convergence of the expansion is zero. There is a substantial literature concerning such 1/d expansions
going back as early as 1964 where the first six coefficients of (1.21) were determined [19], and decades
later confirmed with rigorous error estimate [27]. Earlier expansions for the amplitude A(Zd) including
terms up to and including order (2d)−2 (with rigorous error estimate) and to (2d)−5 (without rigorous
error estimate) were given respectively in [27] and in [21,42].

Such expansions have also been studied for other models including lattice animals [39] and percolation
[27,30,31]. In particular, a theorem analogous to Theorem 1.3 is proved for the critical value of percolation
on the hypercube and on Zd, this time with rational rather than integer coefficients, in [30,31].

1.6 Organisation

Sections 2–7 provide the proofs of Theorems 1.1–1.5, which are organised as follows.
In Section 2.1 we state Proposition 2.1 which gives a lower bound on the reciprocal of the susceptibility

as a function of complex z in the disk |z| ≤ zN , where zN = zN (λ) for a sufficiently small choice of λ > 0.
In conjunction with the elementary Tauberian theorem stated in Lemma 2.2, this leads to a short proof
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of the general upper bound on c
(N)
n stated in Theorem 1.1. In Section 2.2, a version of Theorem 1.2 with

a more accurate error estimate is stated as Theorem 2.3, and the proof of Theorem 2.3 is given subject
to Propositions 2.4–2.5. These two propositions give more refined information on the reciprocal of the
susceptibility than Proposition 2.1 but in a smaller disk |z| ≤ zN (1−V −p) for arbitrary but fixed p ∈ (0, 12).
This detailed information allows for the extraction of a leading term from the susceptibility, and thereby

from its coefficients c
(N)
n , with an error that can be estimated using the Tauberian theorem. This proves

Theorems 1.1–1.2 subject to the control of the reciprocal of the susceptiblity stated in Propositions 2.1,
2.4, and 2.5, which are all proved using the lace expansion.

The lace expansion was introduced by Brydges and Spencer in 1985 to study weakly self-avoiding
walk on Zd in dimensions d > 4 [11]. Since then, it has been developed into a flexible method for the
analysis of critical behaviour in many high-dimensional settings, including self-avoiding walk, lattice trees,
lattice animals, percolation on finite and infinite graphs, oriented percolation, the contact process, and
spin systems (Ising and ϕ4 models). In Section 3, we review the lace expansion in our present context of
self-avoiding walk on the hypercube.

The convergence of the lace expansion employs some elementary estimates for simple random walk
on the hypercube which are proved in Section 4. The convergence of the lace expansion is established in
Section 5 for complex z in the disk |z| ≤ zN , via the Fourier approach used previously for percolation
in [7] and adapted to self-avoiding walk in [45]. The zero mode of the Fourier transform plays a special
and key role, and is what forces the choice of a small λ for the definition of the critical value zN = zN (λ).
The fact that we work on the hypercube results in a convergence proof that is strikingly simple. The
centrepiece for high-dimensional percolation is the triangle condition [1, 28]; its role is played here by
the bubble condition which is established in Section 5.2. The importance of the bubble condition for
self-avoiding walk goes back at least as far as [10]. The bulk of our analysis would apply generally to
other transitive graphs for which the bubble condition holds.

Once the convergence of the lace expansion has been proved, it is short work in Section 6.3 to prove
Propositions 2.1 and 2.4, as well as the estimates for the susceptibility and expected length in Theorems 1.4
and 1.5. The proof of Proposition 2.5 makes use of the fractional derivative methodology developed in [26],
which is briefly reviewed in Section 6.4, before proving Proposition 2.5 in Section 6.5.

Finally, in Section 7 we prove the existence of the 1/N expansions for zN and AN stated in Theorem 1.3
and compute the first five coefficients. The general approach to the existence proof is related to the
approach used for Zd in [27], but improvements to that approach which were introduced in [12] are
adapted here to the hypercube to obtain a relatively simple existence proof. The computation of the
expansion coefficients follows a straightforward iterative procedure and could be extended to more terms
with further effort to enumerate lace graphs on the hypercube. For small lace graphs, enumeration on
the hypercube is not difficult to adapt from the enumerations on Zd provided in [13], and in this way we
avoid any difficult counting in the computation of the five coefficients given in Theorem 1.3.

2 Analysis of the susceptibility

In this section, we prove Theorems 1.1 and 1.2 subject to Proposition 2.1 (for Theorem 1.1) and Propo-
sitions 2.4–2.5 (for Theorem 1.2). These propositions give estimates on the susceptibility which can be

converted into estimates for c
(N)
n via the Tauberian theorem in Lemma 2.2.
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2.1 Upper bound: proof of Theorem 1.1

2.1.1 Use of the Tauberian theorem

The susceptibility is a polynomial, so its reciprocal

FN (z) =
1

χN (z)
(2.1)

is a meromorphic function of z ∈ C. Since χN is a polynomial with positive coefficients, FN has no
poles on the nonnegative real axis. We will prove the following proposition in Section 6 using the lace
expansion.

Proposition 2.1. There is a λ0 > 0 such that, with zN = zN (λ) for any λ ∈ (0, λ0], and with N
sufficiently large depending on λ, the function FN obeys the bounds |F ′

N (z)| ≤ 2N and |FN (z)| ≥ 1
2 |1 −

z/zN | uniformly in z ∈ C with |z| ≤ zN . In addition, zN ≤ 2N−1.

To prove Theorem 1.1, we use Proposition 2.1 in combination with the Tauberian theorem from [20,
Theorem 4] stated in the next lemma.

Lemma 2.2. Let b > 1. Suppose that the power series f(z) =
∑∞

n=0 anz
n obeys |f(z)| ≤ K1|1 − z/ρ|−b

for all |z| < ρ. Then |an| ≤ K2K1n
b−1ρ−n with K2 depending only on b.

Proof of Theorem 1.1. By Proposition 2.1,

|χ′
N (z)| =

∣

∣

∣

∣

F ′
N (z)

FN (z)2

∣

∣

∣

∣

≤ 8N

|1 − z/zN |2 (2.2)

holds uniformly in |z| ≤ zN . Since the coefficient of zn in χ′
N (z) is (n+ 1)c

(N)
n+1, it follows from Lemma 2.2

(with f = χ′
N , ρ = zN and b = 2) that there is a constant K such that

(n + 1)c
(N)
n+1 ≤ KNn2−1z−n

N (2.3)

for all n. Since NzN ≤ 2 by Proposition 2.1,

c(N)
n ≤ KNz

−(n−1)
N = KNzNµn

N ≤ 2Kµn
N (2.4)

which is the desired upper bound.
In the above we have assumed that N is sufficiently large, say N ≥ N0(λ0). However, for N < N0 there

are only finitely many choices of (n,N) and we can therefore obtain (2.4) for all (n,N) (with λV 1/2 ≥ 1)
by increasing K.

2.1.2 Remarks on Tauberian theorems

1. Extensions of Lemma 2.2 in [15, Lemma 3.2] include the case b = 1 which instead has upper
bound ρ−n log n. This is the reason why χ′

N appears rather than χN in the above application
of Lemma 2.2 to obtain Theorem 1.1: applied directly to χN , the extension to Lemma 2.2 would
produce an unwanted logarithm in the upper bound. Lemma 2.2 is false for b < 1, a counterexample
is given in the Remark following [37, Lemma 6.3.3].

2. We have chosen to prove Theorem 1.1 using Lemma 2.2 because Lemma 2.2 is also required for
the proof of Theorem 1.2. However, for Theorem 1.1 we could instead have applied Hutchcroft’s
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Tauberian theorem [34, Lemma 3.4] for submultiplicative sequences (since we do have c
(N)
n+m ≤

c
(N)
n c

(N)
m ), which implies that for all n ≥ 1 and all z ≥ w > 0 it is the case that

c(N)
n ≤ zn

w2n

(

χN (w)

n + 1

)2

. (2.5)

With the choices z = zN and w = n
n+1zN , and with the upper bound χN (w) ≤ 2|1 − w/zN |−1

of Proposition 2.1, the upper bound of Theorem 1.1 follows from (2.5) and without the need to
consider the derivative χ′

N nor to consider complex z. However the application of Lemma 2.2
cannot be replaced by [34, Lemma 3.4] in Section 2.2 because the generating function used in that
application is not for a submultiplicative sequence, and also (2.5) fails to provide sharp powers of n
for generating functions that diverge faster than linearly.

2.2 Asymptotic formula: proof of Theorem 1.2

2.2.1 Extended version of Theorem 1.2

The following theorem, whose statement is not limited to n ≤ V p as in Theorem 1.2, implies Theorem 1.2.

Theorem 2.3. There exists λ0 > 0 such that with µN = µN (λ) defined by (1.3) for any λ ∈ (0, λ0], with
any choice of p ∈ (0, 12) and a ∈ (0, 1), and for all n,N ∈ N (with λV 1/2 ≥ 1),

c(N)
n = ANµn

N

[

1 + O
(

n−a(N−1 + V (2+a)p−1)
)

]

[

1 + O(V −p)
]n

. (2.6)

The sequence AN is independent of n (but depends on λ and p) and obeys AN = 1 + O(N−1). The
constants in error terms depend on p, a and λ.

Theorem 2.3 has most significance for the largest values of n which give a small error, so n ≤ V p for
p close to 1

2 . To understand this, consider first the factor [1 + O(V −p)]n, which is bounded for n ≤ V p

but is not close to 1 when n = V p. However when n ≤ V p we can also apply Theorem 2.3 for any choice
of p′ ∈ (p, 12) and in this case V −p′ = (V −p)p

′/p ≤ n−p′/p and hence

[1 + O(V −p′)]n = 1 + O(nV −p′) ≤ 1 + O(nn−p′/p) = 1 + O(n−(p′−p)/p). (2.7)

Also, given any p′ ∈ (13 ,
1
2 ), we can choose a = 1−2p′

p′ ∈ (0, 1) in which case V (2+a)p′−1 = 1. Thus, (2.6)

can be simplified in this case of n ≤ V p as (with p′ and a as above)

c(N)
n = ANµn

N

[

1 + O(n−a) + O(n−(p′−p)/p)
]

(n ≤ V p). (2.8)

Therefore, as long as n ≤ V p for some p < 1
2 , the leading asymptotic behaviour of c

(N)
n is ANµn

N and
hence µN is the exponential growth rate in this regime. In this way, Theorem 2.3 implies Theorem 1.2.
We will therefore prove Theorem 2.3. It suffices to consider N large in the proof, since (2.6) holds for any
finite set of (n,N) by adjusting the constants.

2.2.2 Proof of Theorem 2.3

The proof of Theorem 2.3 also uses Lemma 2.2, but for this it is necessary to extract leading behaviour
and then apply the Tauberian theorem to bound the remainder term. This requires an extension of
Proposition 2.1 in which the linear part of FN is extracted with a higher-order remainder. In this section,
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we reduce the proof of Theorem 2.3 to Propositions 2.4–2.5, which are proved in Section 6 using the lace
expansion. We always assume that N is large enough that λV 1/2 ≥ 1 so that zN (λ) is well defined.

To extract the linear term, our method gives useful results only if we restrict z to a smaller disk than
the disk |z| ≤ zN of Proposition 2.1. Thus, for p > 0, we define ζp = ζp(N,λ) > 0 by

ζp = zN (λ)(1 − V −p), (2.9)

and we will work in the disk |z| ≤ ζp. It will be necessary to restrict to p ∈ (0, 12). The linear approximation
to FN (z) near ζp is the linear function

ΦN (z) = FN (ζp) + F ′
N (ζp)(z − ζp), (2.10)

with remainder
RN (z) = FN (z) − ΦN(z). (2.11)

Thus we have

χN (z) =
1

FN (z)
=

1

ΦN (z)
+ HN (z), HN (z) = − RN (z)

ΦN(z)FN (z)
. (2.12)

We write the coefficients of the power series representations of 1/ΦN (z) and H(z) as

1

ΦN (z)
=

∞
∑

n=0

ϕnz
n, HN (z) =

∞
∑

n=0

hnz
n. (2.13)

Both ϕn and hn depend on N . By definition,

c(N)
n = ϕn + hn. (2.14)

The next proposition provides what is needed for good estimates on the linear approximation ΦN to FN .

Proposition 2.4. There is a λ0 > 0 such that for any λ ∈ (0, λ0], for any p ∈ (0, 12), with ζp =
zN (λ)(1 − V −p), and with λ-dependent error bounds,

ζp = N−1[1 + O(N−1)], FN (ζp) ≍ V −p, F ′
N (ζp) = −N + O(1). (2.15)

The next proposition gives a bound on the remainder term RN (z) and its derivative in the disk |z| ≤ ζp
in the complex plane.

Proposition 2.5. There is a λ0 > 0 such that for any λ ∈ (0, λ0], any p ∈ (0, 12), any a ∈ (0, 1), any
z ∈ C with |z| ≤ ζp = zN (λ)(1 − V −p), and with λ-dependent error bounds,

|RN (z)| ≺ N−1(1 + NV (2+a)p−1)|1 − z/ζp|1+a, (2.16)

|R′
N (z)| ≺ (1 + NV (2+a)p−1)|1 − z/ζp|a. (2.17)

An indication of deterioration for p ≥ 1
2 can be seen from the term V (2+a)p−1 in (2.16). We desire

a remainder RN of higher order than linear, so a > 0, and when p ≥ 1
2 the term V (2+a)p−1 grows

exponentially in N and spoils control unless a ≤ 0 which we do not permit.
We prove Theorem 2.3 by using the Tauberian theorem Lemma 2.2 in conjunction with Proposi-

tions 2.4–2.5. To prepare for this we have the following two corollaries of the above propositions. The

first corollary is for the leading behaviour of c
(N)
n .
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Corollary 2.6. With zN = zN (λ) for λ ∈ (0, λ0], for all p ∈ (0, 12), all N sufficiently large, and all n ∈ N,
the coefficient ϕn of zn in 1/ΦN (z) obeys

ϕn = ANµn
N (1 + O(V −p))n (2.18)

with AN = 1+O(N−1) independent of n (but dependent on p and λ), and with λ-dependent error bounds.

Proof. We define
αN = FN (ζp) − ζpF

′
N (ζp), βN = −F ′

N (ζp), (2.19)

which are both positive for large N since then F ′
N (ζp) is negative by Proposition 2.4. By definition,

Φ(z) = αN − βNz, so expansion of the geometric series gives

1

ΦN (z)
=

1

αN

∞
∑

n=0

(

βNz

αN

)n

(|z| < αN/βN ). (2.20)

Let AN = 1/αN , so AN depends on λ and p. Then AN = 1 + O(N−1) by Proposition 2.4 and we have

ϕn = AN

(

βN
αN

)n

. (2.21)

By definition and by Proposition 2.4,

βN
αN

= µN
zNβN
αN

= µN
1

1 − V −p

ζpβN
αN

= µN
1

1 − V −p

1

1 +
FN (ζp)

−ζpF ′

N (ζp)

= µN (1 + O(V −p)). (2.22)

This gives the desired result

ϕn = AN

(

βN
αN

)n

= ANµn
N (1 + O(V −p))n (2.23)

and the proof is complete.

To prove Theorem 2.3, it now suffices to prove that

hnµ
−n
N = O(n−a(N−1 + V (2+a)p−1))(1 + O(V −p))n. (2.24)

To do so, we will use the following corollary of Propositions 2.1 and 2.4–2.5.

Corollary 2.7. With zN = zN (λ) for λ ∈ (0, λ0], and for all p ∈ (0, 12 ), all a ∈ (0, 1), and all z ∈ C with
|z| ≤ ζp,

|H ′
N (z)| ≺ 1 + NV (2+a)p−1

|1 − z/ζp|2−a
. (2.25)

Proof. Let |z| ≤ ζp. By definition,

H ′
N (z) = − R′

N (z)

FN (z)ΦN (z)
+

RN (z)F ′
N (z)

FN (z)2ΦN (z)
− βNRN (z)

FN (z)ΦN (z)2
. (2.26)
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To bound the denominators of (2.26) we proceed as follows. With the notation from the proof of Corol-
lary 2.6, it follows from the facts that βNζp ∼ 1 and

αN

ζpβN
= 1 +

FN (ζp)

−ζpF
′
N (ζp)

≥ 1 (2.27)

that for |z| ≤ ζp and for large N we have

|ΦN (z)| = |αN − βNz| = ζpβN

∣

∣

∣

αN

ζpβN
− z

ζp

∣

∣

∣
≥ 1

2
|1 − z/ζp|, (2.28)

where in the last inequality we used the geometric fact that if a > 1 and |w| ≤ 1 then |a− w| ≥ |1 − w|.
Similarly, it follows from the linear lower bound on FN from Proposition 2.1 that on the disk |z| ≤ ζp we
have

|FN (z)| ≻ z−1
N |zN − z| ≥ z−1

N |ζp − z| ≻ |1 − z/ζp| (2.29)

where we used zN > ζp for the second inequality and zN ∼ ζp for the third. Proposition 2.1 also gives
|F ′

N (z)| ≺ N . Therefore, by (2.26), (2.28), (2.29), βN ≤ 2N , and Proposition 2.5,

|H ′
N (z)| ≺ |R′

N (z)|
|1 − z/ζp|2

+
N |RN (z)|
|1 − z/ζp|3

≺ 1 + NV (2+a)p−1

|1 − z/ζp|2−a
+

1 + NV (2+a)p−1

|1 − z/ζp|2−a
, (2.30)

and the proof is complete.

We now apply Lemma 2.2 to prove Theorem 2.3. Corollary 2.7 is formulated for H ′, rather than for
H, for the reason mentioned in the first remark of Section 2.1.2.

Proof of Theorem 2.3. The combination of Corollary 2.7 with Lemma 2.2 (with f = H ′, ρ = ζp, b = 2−a)
immediately gives

(n + 1)|hn+1| ≺ n2−a−1ζ−n
p (1 + NV (2+a)p−1). (2.31)

With ζp ∼ N−1, this implies that

|hn| ≺ n−aζ−(n−1)
p (1 + NV (2+a)p−1) ≺ n−aζ−n

p (N−1 + V (2+a)p−1). (2.32)

It suffices now to observe that
(µN ζp)

−n = (1 − V −p)−n. (2.33)

This proves (2.24) and therefore completes the proof.

Thus to prove Theorem 2.3 (and thereby prove Theorem 1.2) it suffices to prove Propositions 2.4–2.5.
The proofs of Propositions 2.1, 2.4 and 2.5, as well as of Theorems 1.3–1.5, are based on the lace expansion
for self-avoiding walk, which we discuss next.

3 The lace expansion

In this section, we summarise the derivation of the lace expansion as well as its diagrammatic estimates.
More extensive treatments can be found in the original paper by Brydges and Spencer [11] or in the
books [37,45]. The setting in those references is Zd rather than the hypercube but the differences for the
derivation of the expansion and for its diagrammatic estimates in these two settings are merely superficial.
Although we do not adopt this perspective here, the lace expansion can alternatively be understood as
arising from repeated application of the inclusion-exclusion relation (see [37, Section 5.1]).
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3.1 Fourier transform on the hypercube

The proofs of Propositions 2.1, 2.4 and 2.5 rely heavily on Fourier transformation on the hypercube.
Given a function f : QN → C, its Fourier transform is

f̂(k) =
∑

x∈QN

f(x)(−1)k·x (k ∈ QN ), (3.1)

where the dot product is defined by k · x =
∑N

i=1 kixi with ki and xi respectively the ith components of
k and x. The inverse Fourier transform is

f(x) =
1

V

∑

k∈QN

f̂(k)(−1)k·x (x ∈ QN ). (3.2)

The convolution (f ∗ g)(x) =
∑

y∈QN f(x− y)g(y) obeys f̂ ∗ g = f̂ ĝ.
An important example is when f is the transition probability D for simple random walk, defined by

D(x) =

{

N−1 |x| = 1

0 |x| 6= 1
(x ∈ QN). (3.3)

Its Fourier transform is

D̂(k) = 1 − 2|k|
N

(k ∈ QN ). (3.4)

3.2 The recursion relation

Let c0(x) = δ0,x, and, for n ≥ 1, let cn(x) denote the number of n-step self-avoiding walks that begin at

the origin and end at x ∈ QN . The two-point function is the generating function for the sequence c
(N)
n (x),

defined by

Gz(x) =
∞
∑

n=0

c(N)
n (x)zn (x ∈ QN , z ∈ C). (3.5)

Since cn(x) = 0 for all n ≥ V , the two-point function is a polynomial in z.
For m ≥ 2, the lace expansion produces a function πm : QN → Z, which we will define below. We write

its generating function, which is not a polynomial, as Πz(x) =
∑∞

m=2 πm(x)zm. The following proposition
is a statement of the lace expansion. The detailed derivation of the formulas in Proposition 3.1 can be
found in [45, (3.14), (3.27)], following the original proof in [11]. Although these references are for Zd, the
discussion in [45] applies verbatim to the hypercube, or indeed to any finite or infinite transitive graph
after suitable adaptation of the transition function D. Each of D,Gz, πm,Πz depends on N but to lighten
the notation we do not make this explicit.

Proposition 3.1. For n ≥ 1 and for x ∈ QN ,

c(N)
n (x) = N(D ∗ c(N)

n−1)(x) +
n
∑

m=2

(πm ∗ c(N)
n−m)(x), (3.6)

and hence, for z ∈ C such that Πz(x) converges for all x,

Gz(x) = δ0,x + zN(D ∗Gz)(x) + (Πz ∗Gz)(x). (3.7)
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Figure 1: Laces in L(M)[0,m] for M = 1, 2, 3, 4, with s1 = 0 and tM = m.

Consequently,
Ĝz(k) = 1 + zND̂(k)Ĝz(k) + Π̂z(k)Ĝz(k). (3.8)

This can be rewritten as

Ĝz(k) =
1

1 − zND̂(k) − Π̂z(k)
. (3.9)

Since the susceptibility is equal to χN (z) = Ĝz(0), we obtain the identity

χN (z) =
1

FN (z)
=

1

1 − zN − Π̂z(0)
(3.10)

which is central to the proof of our main results Theorems 1.1–1.5. In order to make use of (3.9) and
(3.10), it will be necessary to obtain good estimates on Π̂z(k). These will be achieved via diagrammatic
estimates in Section 3.5, where the convergence of Πz(x) will be studied.

3.3 Graphs and laces

The derivation of (3.6) uses the following definitions. More detailed discussion and interpretation of these
definitions can be found in [45, Section 3.3].

Definition 3.2. (i) Given an interval I = [a, b] of positive integers, an edge is a pair {s, t} of elements
of I, often written st (with s < t). A set of edges (possibly the empty set) is called a graph. Let B[a, b]
denote the set of all graphs.
(ii) A graph Γ is connected if both a and b are endpoints of edges in Γ, and if in addition, for any c ∈ (a, b),
there is an edge st ∈ Γ such that s < c < t. Let G[a, b] denote the set of all connected graphs on [a, b].
(iii) A lace is a minimally connected graph: a connected graph for which the removal of any edge would
result in a disconnected graph. The set of laces on [a, b] is denoted by L[a, b], and the set of laces on
[a, b] which consist of exactly M edges is denoted L(M)[a, b]. Figure 1 shows laces in L(M)[0,m] for
M = 1, 2, 3, 4.

The above definition of connectivity is not the usual notion of path-connectivity in graph theory.
Instead, connected graphs are those Γ for which the union of open real intervals ∪st∈Γ(s, t) is equal to the
connected interval (a, b). This is the useful concept of connectivity for the lace expansion.

A lace L ∈ L(M)[a, b] can be written by listing its edges as L = {s1t1, . . . , sM tM}, with sl < tl for each
l. For M = 1, there is a unique lace and a = s1 < t1 = b. For M ≥ 2, a graph is a lace L ∈ L(M)[a, b] if
and only if its edge endpoints can be ordered as

a = s1 < s2, sl+1 < tl ≤ sl+2 (l = 1, . . . ,M − 2), sM < tM−1 < tM = b (3.11)
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(for M = 2 the middle inequalities are absent). Thus L divides [a, b] into 2M − 1 subintervals:

[s1, s2], [s2, t1], [t1, s3], [s3, t2], . . . , [sM , tM−1], [tM−1, tM ]. (3.12)

Of these, intervals number 3, 5, . . . , (2M − 3) can have zero length for M ≥ 3, whereas all others have
length at least 1. This last fact will be important, as intervals which cannot have zero length yield good
factors for convergence of the lace expansion.

Definition 3.3. Given a connected graph Γ on [a, b], the following prescription associates to Γ a lace
LΓ ⊂ Γ: The lace LΓ consists of edges s1t1, s2t2, . . ., with t1, s1, t2, s2, . . . determined, in that order, by

t1 = max{t : at ∈ Γ}, s1 = a,

ti+1 = max{t : ∃s < ti such that st ∈ Γ}, si+1 = min{s : sti+1 ∈ Γ}.
The procedure terminates when ti+1 = b. Given a lace L, the set of all edges st 6∈ L such that LL∪{st} = L
is denoted C(L). Edges in C(L) are said to be compatible with L.

Given a lace L and the closed intervals (3.12) it determines, any edge st with each of s, t lying in the
same one of those closed intervals is a compatible bond in C(L).

3.4 Definition of πm(x)

For m ≥ 1 and x ∈ QN , let Wm(x) denote the set of all m-step walks ω = (ω(0), ω(1), . . . , ω(m)) on QN

(possibly self-intersecting), with |ω(i) − ω(i− 1)| = 1 for i = 1, . . . ,m, and with ω(0) = 0 and ω(m) = x.
Given ω ∈ Wm(x), let

Ust(ω) =

{

−1 if ω(s) = ω(t)
0 if ω(s) 6= ω(t).

(3.13)

Then
cn(x) =

∑

ω∈Wn(x)

∏

0≤s<t≤n

(1 + Ust(ω)), (3.14)

since the product is equal to 1 if ω is a self-avoiding walk and is equal to 0 otherwise. By expanding the
product in (3.14) we obtain

cn(x) =
∑

ω∈Wn(x)

∑

Γ∈B[0,n]

∏

st∈Γ
Ust(ω). (3.15)

In the sum over all graphs Γ in (3.15), we partition according to whether:

(a) 0 does not occur in an edge in Γ, or (b) 0 does occur in an edge in Γ.

This gives the identity (3.6) (see [45, p. 22] for details), namely

cn(x) = N(D ∗ cn−1)(x) +

n
∑

m=2

(πm ∗ cn−m)(x), (3.16)

with, for m ≥ 2,

πm(x) =
∑

ω∈Wm(x)

∑

Γ∈G[0,m]

∏

st∈Γ
Ust(ω). (3.17)

Indeed, Case (a) gives rise to the first term on the right-hand side of (3.16), and Case (b) gives rise to
the second term with [0,m] the support of the connected component of Γ containing 0.
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Figure 2: Self-intersections required for a walk ω with
∏

st∈L Ust(ω) 6= 0, for the laces with M = 1, 2, 3, 4 edges
depicted in Figure 1. The configuration for M = 11 is also shown. A slashed subwalk may have length zero, whereas
subwalks which are not slashed must take at least one step.

The sum over connected graphs can be reorganised by summing over laces L and over connected
graphs for which the prescription of Definition 3.3 produces L. Then a resummation of the sum over
those connected graphs leads to the formula

πm(x) =
∑

ω∈Wm(x)

∑

L∈L[0,m]

∏

st∈L
Ust(ω)

∏

s′t′∈C(L)
(1 + Us′t′(ω)). (3.18)

More details of this resummation can be found in [45, Section 3.3] or in either of [11, 37]. The formula
(3.18) is the useful formula for application of Proposition 3.1.

A refinement of (3.18) is obtained by restricting the sum in (3.18) to laces with M edges, and we
define

π(M)
m (x) =

∑

ω∈Wm(x)

∑

L∈L(M)[0,m]

∏

st∈L
(−Ust(ω))

∏

s′t′∈C(L)
(1 + Us′t′(ω)). (3.19)

The minus sign has been introduced in the first product of (3.19) in order to make π
(M)
m (x) a nonnegative

integer. The right-hand side of (3.19) is zero unless M < m (since Ust(ω) = 0 if t = s + 1 and the subset
of L(M)[0,m] consisting of laces with all edges of length at least two is empty if M ≥ m), and hence

πm(x) =

m−1
∑

M=1

(−1)Mπ(M)
m (x). (3.20)

Each term in the double sum (3.19) is either 0 or 1, with the first product in (3.19) equal to 1 if and only
if ω(s) = ω(t) for each edge st ∈ L, while the second product is equal to 1 if and only if ω(s′) 6= ω(t′)

for each s′t′ ∈ C(L). Thus π
(M)
m (x) counts the m-step “lace graphs” starting at the origin and ending

at x, with the specific self-intersections that are enforced by the lace and with the specific self-avoidance
conditions enforced by the compatible edges. The required self-intersections are illustrated in Figure 2.

For M ≥ 1, the generating function of π
(M)
m (x) is written as

Π(M)
z (x) =

∞
∑

m=2

π(M)
m (x)zm. (3.21)

The simplest term is π
(1)
m (x), which is zero if x 6= 0. Since every edge except 0m is compatible with the

unique 1-edge lace L = 0m, π
(1)
m (x) is the number of m-step self-avoiding returns to the origin when x = 0.

Thus π
(1)
m (0) is simply equal to

∑N
i=1 cm−1(ei), where here the unit vector ei represents the penultimate

vertex visited by the self-avoiding return before it takes its final step to the origin. Its generating function
is therefore

Π(1)
z (x) = δ0,x

∞
∑

m=2

π(1)
m (x)zm = δ0,xzN(D ∗Gz)(0). (3.22)

For M ≥ 2, π
(M)
m (x) counts m-step M -loop walk configurations as indicated in Figure 2. The number

of loops in a diagram is equal to the number of edges in the corresponding lace. Each of the 2M − 1
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subwalks in a diagram is self-avoiding due to the compatible edges. The compatible edges also enforce
specific mutual avoidances between subwalks, which can be neglected in upper bounds but which must be
taken into account to compute the coefficients an in the asymptotic expansion of Theorem 1.3 (we return
to this point in Section 7.4). The slashed lines in Figure 2 correspond to subwalks which may consist
of zero steps, but the others correspond to subwalks consisting of at least one step (recall the discussion
below (3.12)).

As an example of how to estimate Π
(M)
z (x), we consider the case M = 2 in further detail. A walk

giving a contribution to π
(2)
m (x) must travel from 0 to x, then back to 0, and then finally return to x, as

in the two-loop diagram in Figure 2. Due to the product over compatible bonds in (3.19), each of these
three subwalks must itself be self-avoiding, and x cannot equal 0. By relaxing the avoidance between the
three subwalks we obtain an upper bound

π(2)
m (x) ≤

∑

m1+m2+m3=m
m1,m2,m3≥1

cm1(x)cm2(x)cm3(x). (3.23)

We define the generating function

Hz(x) = Gz(x) − δ0,x =

∞
∑

n=1

c(N)
n (x)zn (3.24)

for the sequence c
(N)
n (x) with its n = 0 term omitted. The generating function for π

(2)
m (x) converts the

convolution in (3.23) into a product, so that (since π
(2)
m (x) = 0 when x = 0)

Π(2)
z (x) ≤ Hz(x)3. (3.25)

We can then estimate the sum over x of Π
(2)
z (x) using

∑

x∈QN

Π(2)
z (x) ≤

∑

x∈QN

Hz(x)3 = (Hz ∗H2
z )(0) ≤ (Gz ∗H2

z )(0). (3.26)

This is the M = 2 version of the inequality (3.31) that will appear below. The right-hand side of (3.26)
can be further estimated as

∑

x∈QN

Π(2)
z (x) ≤ ‖Hz‖∞(Gz ∗Hz)(0) ≤ ‖Hz‖∞‖Gz ∗Hz‖∞, (3.27)

which is the M = 2 version of the inequality (3.37) that will appear below.

3.5 Diagrammatic estimates

We define the multiplication operator Mz and the convolution operator Gz by

(Mzf)(x) = Hz(x)f(x), (3.28)

(Gzf)(x) = (Gz ∗ f)(x), (3.29)

for f : QN → C and x ∈ QN . For such functions f , we use the norms ‖f‖∞ = maxx∈QN |f(x)| and

‖f‖p = [
∑

x∈QN |f(x)|p]1/p for p ∈ [1,∞).

A proof of the following diagrammatic estimate can be found at [45, (4.40)]. For Π
(1)
z it is (3.22), since

Gz in (3.22) can be replaced by Hz since D(0) = 0. Although presented in [45] for Zd, the proof applies
to the hypercube mutatis mutandis. Each of the 2M + 1 factors on the right-hand side of (3.31) arises
from one of the 2M + 1 lines in the M -loop diagrams depicted in Figure 2.
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Proposition 3.4. For z ≥ 0,
Π(1)

z (x) = δ0,xzN(D ∗Hz)(0), (3.30)

and for M ≥ 2,
‖Π(M)

z ‖1 ≤
[

(GzMz)M−1Hz

]

(0). (3.31)

Note that estimates for z ≥ 0 as in Proposition 3.4 also imply bounds for complex z ∈ C via

|Π(M)
z (x)| ≤ Π

(M)
|z| (x) (3.32)

since π
(M)
m (x) ≥ 0. The following lemma provides a way to bound the right-hand side of (3.31). For its

elementary proof see, e.g., [45, Lemma 4.6]; the assumption there that the fi be even functions is vacuous
for QN since x = −x for all x ∈ QN .

Lemma 3.5. Given nonnegative functions f0, f1, . . . , f2q on QN , for j = 1, . . . , q let Cj and Mj be the
operators (Cjf)(x) = (f2j ∗ f)(x) and (Mjf)(x) = f2j−1(x)f(x). Then for any k ∈ {0, . . . , 2q},

‖CqMq · · · C1M1f0‖∞ ≤ ‖fk‖∞
∏

‖fi ∗ fi′‖∞, (3.33)

where the product is over disjoint consecutive pairs ii′ taken from the set {0, . . . , 2q}\{k} (e.g., for k = 3
and q = 3, the product has factors with ii′ equal to 01, 24, 56).

Given a function f : QN → C and k ∈ QN , we define fk : QN → C by

fk(x) = (1 − (−1)k·x)f(x). (3.34)

Also, given a power series f(z) =
∑∞

n=0 anz
n and a real number ǫ > 0, we define the “fractional derivative”

δǫzf(z) =

∞
∑

n=1

nǫanz
n. (3.35)

For ǫ equal to a positive integer, δǫz does not give the usual derivative but gives instead (z∂z)ǫ.
The following proposition gives norm estimates for Πz, for Πz,k (defined by taking f = Πz in (3.34)),

and for fractional z-derivatives of Πz. Its proof is a very minor modification of the proof of [45, Theo-
rem 4.1] (which is inspired by [11]) to which we refer the interested reader for the somewhat lengthy details.
Rather than repeating those details here, we instead illustrate the ideas in the proof of (3.38)–(3.39) by
focussing on the cases M = 1, 2.

Proposition 3.6. Let z ≥ 0, k ∈ QN , and ǫ ≥ 1. For M = 1, Π
(1)
z,k(x) = 0 and

‖Π(1)
z ‖1 ≤ zN‖Hz‖∞, ‖δǫzΠ(1)

z ‖1 ≤ N‖δǫz(zHz)‖∞. (3.36)

For M ≥ 2,

‖Π(M)
z ‖1 ≤ ‖Hz‖∞‖Hz ∗Gz‖M−1

∞ , (3.37)

‖δǫzΠ(M)
z ‖1 ≤ (2M − 1)ǫ‖δǫzHz‖∞‖Hz ∗Gz‖M−1

∞ , (3.38)

‖Π
(M)
z,k ‖1 ≤ ⌊M/2⌋‖Hz,k‖∞‖Hz ∗Gz‖M−1

∞ . (3.39)
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Proof. Since Π
(1)
z (x) = δ0,xzN(D ∗Hz)(0) by (3.30), it follows that Π

(1)
z,k(x) = 0 as claimed, and also the

second bound of (3.36) follows from the identity

‖δǫzΠ(1)
z ‖1 = δǫz

[

zN(D ∗Hz)(0)
]

= N

N
∑

i=1

N−1δǫz[zHz(ei)], (3.40)

where the ei are the unit vectors in QN . The first estimate of (3.36) follows similarly, with δǫz omitted.
We restrict attention now to M ≥ 2. The bound (3.37) is a consequence of (3.31) and Lemma 3.5

(with k = 0), since the right-hand side of (3.31) is bounded by the left-hand side of (3.33) with f0 = Hz

and with f1, . . . , f2(M−1) alternating between Hz and Gz.
For (3.38), by definition,

δǫzΠ(M)
z (x) =

∞
∑

m=2

mǫπ(M)
m (x)zm. (3.41)

In the diagrammatic representation, π
(M)
m (x) is represented by a diagram with 2M − 1 subwalks of total

length m. Let mi be the length of the ith subwalk. By Hölder’s inequality with exponents ǫ and ǫ
ǫ−1 (here

is where the restriction ǫ ≥ 1 is convenient),

mǫ =

(

2M−1
∑

i=1

mi · 1

)ǫ

≤ (2M − 1)ǫ−1
2M−1
∑

i=1

mǫ
i . (3.42)

To see how this can be used in the simplest example, consider the case M = 2. In this case, (3.23) and
(3.42) give

mǫπ(2)
m (x) ≤ 3ǫ−1

3
∑

i=1

∑

m1+m2+m3=m
m1,m2,m3≥1

mǫ
i cm1(x)cm2(x)cm3(x). (3.43)

We can bound the sum over x of the generating function of the left-hand side, term-by-term in the sum
over i as in (3.26), by

‖δǫzΠ(2)
z ‖1 ≤ 3ǫ

∑

x∈QN

(

δǫzHz(x)
)

Hz(x)2. (3.44)

Observe that, along with the factor 3ǫ, one of the Hz factors in (3.26) has now been replaced by δǫzHz.
As in (3.26)–(3.27), we can continue the estimate with

‖δǫzΠ(2)
z ‖1 ≤ 3ǫ‖δǫzHz‖∞

∑

x∈QN

Hz(x)2 ≤ 3ǫ‖δǫzHz‖∞‖Hz ∗Gz‖∞, (3.45)

in agreement with (3.38) for M = 2. For general M ≥ 3, use of the inequality (3.42) leads to an upper

bound for ‖δǫzΠ
(M)
z ‖1 equal to (2M − 1)ǫ−1 times a sum of 2M − 1 terms with the ith term being the

modification of (3.31) in which the ith of the factors Gz,Mz,Hz has its function (Gz or Hz) replaced by
δǫzHz (note that δǫzGz = δǫzHz by definition). Consequently, with (3.33) and choosing the modified factor
as the distinguished one in (3.33), we see that

‖δǫzΠ(M)
z ‖1 ≤ (2M − 1)ǫ‖δǫzHz‖∞‖Hz ∗Gz‖M−1

∞ (3.46)

as claimed.
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Finally, for (3.39), we again illustrate this for the case M = 2, as follows. By definition, and by (3.25),

‖Π
(2)
z,k‖1 =

∑

x∈QN

[1 − (−1)k·x]Π(2)
z (x)

≤
∑

x∈QN

(

[1 − (−1)k·x]Hz(x)
)

Hz(x)2 =
∑

x∈QN

Hz,k(x)Hz(x)2. (3.47)

This is reminiscent of (3.44), with the difference that one factor on the right-hand side is Hz,k(x) rather
than δǫzHz(x). By using the supremum norm on that factor, we can similarly obtain an upper bound

‖Π
(2)
z,k‖1 ≤ ‖Hz,k‖∞‖Hz ∗Gz‖∞, (3.48)

which is the M = 2 case of (3.39). For general M ≥ 3, the proof is a very small adaptation of the proof

of [45, (4.10)]. We divide the displacement x in πm(x) as a sum x =
∑⌊M/2⌋

i=1 xi over displacements xi
along the subwalks along the bottom of the M -loop diagram depicted in Figure 2. We use the inequality

1 − (−1)k·x ≤
⌊M/2⌋
∑

i=1

[1 − (−1)k·xi ] (3.49)

which holds if k ·x is even since the left-hand side is then zero, and holds if k ·x is odd since then at least

one of the k ·xi must also be odd. Use of this inequality leads to an upper bound for ‖Π
(M)
z,k ‖1 consisting of

a sum of ⌊M/2⌋ terms, each of which is the modification of (3.31) in which one of the factors Gz,Mz ,Hz,
has its function (Gz or Hz) replaced by Hz,k (note that Hz,k = Gz,k by definition). With (3.33) and with
the modified factor chosen as the distinguished one in (3.33), this leads to (3.39).

4 Random walk on the hypercube

The convergence proof for the lace expansion makes use of a comparison with simple random walk on the
hypercube. In this section, we prove the two estimates needed for that task, in Lemma 4.1.

Recall from (3.3) that D(x) = N−1δ|x|,1 is the transition probability for simple random walk on the

hypercube. Its Fourier transform is given in (3.4) as D̂(k) = 1 − 2|k|
N . The following lemma, which is

similar to but simpler than what appears in [7, Section 2] due to our restriction to the hypercube, provides
essential estimates for the convergence proof for the lace expansion in Section 5.

Lemma 4.1. For i ≥ 0 there is a constant ci such that

max
x∈QN

1

V

∑

k∈QN

D̂(k)i(−1)k·x ≤ ciN
−⌈i/2⌉. (4.1)

For i, j ≥ 0 there is a constant ci,j such that for all t ∈ [0, 1]

1

V

∑

k∈QN :k 6=0

|D̂(k)i|
[1 − tD̂(k)]j

≤ ci,jN
−i/2. (4.2)

Proof. By inverse Fourier transformation, the normalised sum in (4.1) is the transition probability for
simple random walk to travel from 0 to x in i steps:

D∗i(x) =
1

V

∑

k∈QN

D̂(k)i(−1)k·x (4.3)
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and hence it is nonnegative and equals zero if i and |x| have different parity. It is equal to δ0,x for i = 0
so we may assume that i ≥ 1. Closely related explicit transition probabilities are written in terms of
Krawtchouk polynomials in [16] but we can instead proceed crudely here with an elementary counting
argument. Without loss of generality we may assume by symmetry that x consists of a string of |x| 1’s
followed by (N − |x|) 0’s. There are N i possible i-step walks starting from 0. The number of those that
end at x can be bounded as follows. First we observe that the first |x| coordinates of x must flip an odd
number of times (each at least once), whereas the remaining coordinates must flip an even number of
times (possibly zero). Let δ be the total number of coordinates that do flip. Since the first |x| coordinates
flip at least once and the remaining δ− |x| flip at least twice, it must be the case that |x|+ 2(δ− |x|) ≤ i,
which implies that δ−|x| ≤ 1

2(i−|x|). The number of ways to choose which of the N−|x| coordinates are

the δ−|x| coordinates that flip a positive even number of times is at most (N−|x|)δ−|x| ≤ N (i−|x|)/2. Since
the number of i-step walks that flip δ specific coordinates is δi, we find that the transition probability
obeys the inequality

D∗i(x) ≤ 1

N i

i
∑

δ=|x|
N (i−|x|)/2δi ≤ 1

N (i+|x|)/2 (i + 1)ii. (4.4)

When i is even the factor N−(i+|x|)/2 on the right-hand side is at most N−i/2 (since |x| ≥ 0), whereas for
i odd it is at most N−(i+1)/2 (since |x| must also be odd so at least 1). This completes the proof of (4.1).

Next we consider (4.2). By the Cauchy–Schwarz inequality,

1

V

∑

k∈QN :k 6=0

|D̂(k)i|
[1 − tD̂(k)]j

≤





1

V

∑

k∈QN :k 6=0

D̂(k)2i





1/2 



1

V

∑

k∈QN :k 6=0

1

[1 − tD̂(k)]2j





1/2

. (4.5)

The first factor on the right-hand side is at most a multiple of N−i/2 by (4.1) (applied just for x = 0), so
it suffices to prove that for any j ≥ 1 (the case j = 0 is clear)

1

V

∑

k 6=0

1

[1 − tD̂(k)]j
≤ cj (4.6)

for some positive cj . Since D̂(k) ∈ [−1, 1] the left-hand side is bounded above by 2j if t ∈ [0, 12 ]. For the
more substantial case of t ∈ [12 , 1] we have

1 − tD̂(k) = 1 − t +
2t|k|
N

≥ |k|
N

(4.7)

and therefore in this case

1

V

∑

k 6=0

1

[1 − tD̂(k)]j
≤ N j 1

V

∑

k 6=0

1

|k|j = N j 1

V

N
∑

m=1

(

N

m

)

1

mj
. (4.8)

We divide the sum over m according to whether m ≤ 1
4N or m > 1

4N . For the second case we use

N j 1

V

N
∑

m=N/4

(

N

m

)

1

mj
≤ N j 4j

N j
= 4j . (4.9)
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For the first case, with XN a random variable with Bin(N, 12) distribution, we have

N j 1

V

N/4
∑

m=1

(

N

m

)

1

mj
≤ N j 1

V

N/4
∑

m=0

(

N

m

)

= N jP(XN ≤ N/4) ≤ N je−N/8, (4.10)

where we used the Chernoff bound P(XN ≤ a) ≤ exp[−(N − 2a)2/(2N)] for 2a < N in the last step (see,
e.g, [4]). Since the right-hand side is bounded by a j-dependent constant, the proof is complete.

5 Convergence of the lace expansion

In this section we prove the convergence of the lace expansion, using the strategy of [45, Section 5.2]
which itself is based on the strategy used in [7]. Like most lace expansion convergence proofs, we use a
bootstrap argument. The bootstrap argument is presented in Section 5.2. The fact that we are working
on the hypercube makes for considerable simplification and this convergence proof is simpler than that
in [7, 45] (for a different kind of simplification see [48] for weakly self-avoiding walk on Zd for d > 4).

5.1 Preparation

We recall from (3.34) the definition

fk(x) = (1 − (−1)k·x)f(x). (5.1)

In particular, f0(x) = 0 for all f . The Fourier transform of fk is

f̂k(ℓ) =
∑

x∈QN

(1 − (−1)k·x)f(x)(−1)ℓ·x = f̂(ℓ) − f̂(k + ℓ) (k, ℓ ∈ QN ). (5.2)

In particular, f̂k(0) = f̂(0)− f̂(k), and we will use bounds on f̂k(ℓ) to control differences of this type (see
(5.32)–(5.33) and (5.38)–(5.39)).

For x ∈ QN , let wn(x) denote the number of n-step walks (not necessarily self-avoiding) from 0 to x.
Then wn(x) = NnD∗n(x) and ŵn(k) = [ND̂(k)]n. For p ∈ [0, 1/N) we define the generating function

Cp(x) =
∞
∑

n=0

wn(x)pn. (5.3)

The Fourier transform of Cp is (recall (3.4))

Ĉp(k) =
1

1 − pND̂(k)
=

1

1 − pN + 2p|k| . (5.4)

If we evaluate the above right-hand side at p = 1/N then it becomes N/(2|k|), and the zero mode (namely
the case k = 0) is divergent. This is a symptom of the recurrence of simple random walk on the hypercube.
The zero mode was excluded in (4.2) where the denominator is zero for k = 0 if t = 1. The zero mode
will play an important role in the bootstrap argument and also subsequently in Section 6.

For later use, we observe that for p ∈ [0, 1/N) it follows from (5.2) with f = Cp and from (5.4) that

Ĉp,k(ℓ) = pN [D̂(ℓ) − D̂(k + ℓ)]Ĉp(ℓ)Ĉp(k + ℓ)

≤ [1 − D̂(k)]Ĉp(ℓ)Ĉp(k + ℓ)

= C̄p(k, ℓ), (5.5)

where the last equality defines C̄p(k, ℓ).

22



t

1
1−tN χN (t)

1

z1
N

pz

Figure 3: The definition of pz, illustrated for z > 1/N .

5.2 The bootstrap argument

The following lemma is the basis for the bootstrap argument.

Lemma 5.1. Let a < b, let f be a continuous function on the interval [z1, z2], and assume that f(z1) ≤ a.
Suppose for each z ∈ (z1, z2] that if f(z) ≤ b then in fact f(z) ≤ a. Then f(z) ≤ a for all z ∈ [z1, z2].

Proof. By hypothesis, f(z) cannot lie in the interval (a, b] for any z ∈ (z1, z2]. Since f(z1) ≤ a, it follows
by continuity that f(z) ≤ a for all z ∈ [z1, z2].

For z ∈ [0,∞), we define pz ∈ [0, 1/N) as in Figure 3 by

Ĝz(0) = χN (z) =
1

1 − pzN
= Ĉpz(0). (5.6)

Equivalently, from (3.10) we see that

pzN = 1 − 1

χN (z)
= 1 − FN (z) = zN + Π̂z(0). (5.7)

Our choice of f in Lemma 5.1 is motivated by the intuition that Ĝz(k) and Ĉpz(k) are comparable in size,
not just for k = 0 where they are equal by definition but also for all k ∈ QN . We also anticipate that
Ĝz,k(ℓ) and Ĉpz,k(ℓ) should be comparable, but it is convenient and also sufficient to compare instead

Ĝz,k(ℓ) and the upper bound C̄pz(k, ℓ) for Ĉpz,k(ℓ) from (5.5).
We will apply Lemma 5.1 with z1 = 0, z2 = zN , a = 2, b = 4, and

f(z) = max{f1(z), f2(z), f3(z)}, (5.8)

where

f1(z) = zN, f2(z) = max
k∈QN

|Ĝz(k)|
Ĉpz(k)

, f3(z) = max
k∈QN\{0}

max
l∈QN

|Ĝz,k(ℓ)|
C̄pz(k, ℓ)

. (5.9)

The omission of k = 0 in the definition of f3 avoids the ratio 0
0 . By definition p0 = 0, and since

Ĝ0(k) = Ĉ0(k) = 1, it follows that f1(0) = 0, f2(0) = 1, f3(0) = 0 and hence f(0) = 1 ≤ 2. The
continuity of f on [0, zN ] also follows easily from the continuity of z 7→ pz and the continuity (for fixed k)
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of Ĝz(k) and Ĉp(k) in z and p. We will verify that the remaining and substantial bootstrap hypotheses
of Lemma 5.1 holds when zN = zN (λ) is defined with a λ that is sufficiently small. From this, we can
conclude that f(z) ≤ a = 2 uniformly in z ∈ [0, zN ].

Once we conclude that f(z) ≤ 2 we of course also know that f(z) ≤ 4 and hence all the conclusions
of Lemmas 5.2, 5.4, 5.5 and Remark 5.3, which are initially conditional on f(z) ≤ 4, in fact hold uncon-
ditionally. One of those conclusions, in the proof of Lemma 5.5, is that the ratio Ĝz(k)/Ĉpz (k) is close
to 1 without the absolute value taken in the definition of f2. In particular Ĝz(k) ≥ 0; absolute values
are included in f2 since this is not obvious a priori. The upper bound Ĝz(k) ≤ 2Ĉpz(k) is an example of
what is known as an infrared bound, so named to place emphasis on its significance for k near zero (low
frequency).

We define

βz =
1

N
+

χN (z)2

V
. (5.10)

If we assume that z ≤ zN with zN = zN (λ) defined by some λ > 0 in (1.2), then for all z ∈ [0, zN ] we
have βz ≤ N−1 + λ2. Thus we can use βz as a small parameter, assuming (as we will) that N−1 + λ2 is
indeed small by demanding that λ ∈ (0, λ0] for sufficiently small λ0.

For p ∈ [1,∞), we use the norms ‖f̂‖p̂ = [V −1
∑

k∈QN |f̂(k)|p]1/p for the Fourier transform as well as

‖f‖p = [
∑

x∈QN |f(x)|p]1/p for untransformed functions, so it is necessary to notice hats with norms to
distinguish between the presence or not of the volume factor. We also use ‖f‖∞ = maxx∈QN |f(x)|. The

bound ‖f‖∞ ≤ ‖f̂‖1̂ follows from (3.2). The Parseval relation asserts that ‖f‖2 = ‖f̂‖2̂. The convolution
(f ∗ g)(x) =

∑

y∈QN f(x − y)g(y) obeys ‖f ∗ g‖∞ ≤ ‖f‖2‖g‖2 by the Cauchy–Schwarz inequality, and

f̂ ∗ g = f̂ ĝ.

Lemma 5.2. Fix z ∈ (0, zN ] and assume that f of (5.8) obeys f(z) ≤ K. Then there is a constant cK ,
independent of z, such that

‖Hz,k‖∞ ≤ cK(1 + λ2)[1 − D̂(k)], ‖Hz‖22 ≤ cKβz, ‖Hz‖∞ ≤ cKβz. (5.11)

Proof. Special attention is required for the zero mode, which is the origin of the term V −1χN (z)2 in βz.
Since f3(z) ≤ K, it follows from the definition of C̄p(k, ℓ) in (5.5) and the Cauchy–Schwarz inequality

that

‖Hz,k‖∞ = ‖Gz,k‖∞ ≤ ‖Ĝz,k‖1̂ ≤ K‖C̄pz(k, ·)‖1̂ ≤ K[1 − D̂(k)]‖Ĉpz‖22̂. (5.12)

Now we apply the definition of pz, Lemma 4.1, and the fact that z ≤ zN (so χN (z) ≤ λV 1/2) to see that

‖Ĉpz‖22̂ =
1

V

∑

k∈QN

Ĉpz(k)2 =
1

V
Ĉpz(0)2 +

1

V

∑

k 6=0

1

(1 − pzND̂(k))2

=
χN (z)2

V
+ O(1) ≤ λ2 + O(1). (5.13)

This proves the first bound of (5.11).
To estimate ‖Hz‖22, we first use submultiplicativity in the form of the inequality cn(x) ≤ (c1∗cn−1)(x) =

N(D ∗ cn−1)(x), along with f1(z) ≤ K, to obtain

Hz(x) ≤ zN(D ∗Gz)(x) ≤ K(D ∗Gz)(x). (5.14)

With the Parseval relation and f2(z) ≤ K, this implies that

‖Hz‖22 ≤ K2‖D ∗Gz‖22 = K2‖D̂Ĝz‖22̂ ≤ K4‖D̂Ĉpz‖22̂. (5.15)
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Then we estimate the right-hand side by extracting the zero mode and using Lemma 4.1 for the nonzero
k, as we did above. This gives

‖D̂Ĉpz‖22̂ =
1

V
Ĉpz(0)2 +

1

V

∑

k 6=0

D̂(k)2

(1 − pzND̂(k))2
=

χN (z)2

V
+ O(N−1) ≤ O(βz), (5.16)

which proves the second bound of (5.11), for a suitable constant cK .
Iteration of (5.14) using Gz(x) = δ0,x +Hz(x) gives Hz(x) ≤ KD(x) +K2(D ∗D ∗Gz)(x). Therefore,

‖Hz‖∞ ≤ K‖D‖∞ + K2‖D̂2Ĝz‖1̂ ≤ KN−1 + K3‖D̂2Ĉpz‖1̂, (5.17)

where we used D(x) ≤ N−1 and our assumption f2(z) ≤ K to bound ‖D̂2Ĝz‖1̂. The norm on the
right-hand side is equal to

χN (z)

V
+

1

V

∑

k 6=0

D̂(k)2

1 − pzND̂(k)
≤ χN (z)2

V
+ O(N−1) ≤ O(βz), (5.18)

where we used the inequality (4.2) of Lemma 4.1 (with i = 2 and j = 1) to bound the sum in the last
line. This proves the third bound of (5.11).

Remark 5.3. As mentioned below (5.9), once the bootstrap proof is complete, statements that follow
from the assumption f(z) ≤ K with K = 4 in fact will then be known to hold unconditionally with
K = 2. In particular, we can conclude from (5.11) (together with the fact that Hz(0) = 0 by definition)
that for any z ∈ [0, zN ] the bubble diagram

‖Gz‖22 = 1 + ‖Hz‖22 (5.19)

is bounded above by 1 +O(βz). When z = zN , this is a statement of a bubble condition analogous to the
triangle condition for percolation on a finite graph studied in [6].

Lemma 5.4. Fix z ∈ (0, zN ], and suppose that f of (5.8) obeys f(z) ≤ K. Then there is a constant c̄K
(independent of z) such that if λ ∈ (0, λ0] with λ0 sufficiently small (independent of z) then

‖Πz‖1 ≤ c̄Kβz, ‖Πz,k‖1 ≤ c̄Kβz[1 − D̂(k)]. (5.20)

Proof. From Proposition 3.6 we have that Π
(1)
z,k(x) = 0 and

‖Π(1)
z ‖1 ≤ zN‖Hz‖∞, (5.21)

and, for M ≥ 2, also that

‖Π(M)
z ‖1 ≤ ‖Hz‖∞‖Hz ∗Gz‖M−1

∞ , (5.22)

‖Π
(M)
z,k ‖1 ≤ ⌊M/2⌋‖Hz,k‖∞‖Hz ∗Gz‖M−1

∞ . (5.23)

Since Hz ∗Gz = Hz + (Hz ∗Hz) by definition, the Cauchy–Schwarz inequality and Lemma 5.2 give

‖Hz ∗Gz‖∞ ≤ ‖Hz‖∞ + ‖Hz ∗Hz‖∞ ≤ ‖Hz‖∞ + ‖Hz‖22 ≤ 2cKβz. (5.24)

Since zN ≤ K by assumption,

‖Πz‖1 ≤
∞
∑

M=1

‖Π(M)
z ‖1 ≤ c̄Kβz. (5.25)
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For the second bound of (5.20), we similarly use

‖Πz,k‖1 ≤
∞
∑

M=2

⌊M/2⌋‖Hz,k‖∞‖Hz ∗Gz‖M−1
∞

≤
∞
∑

M=2

⌊M/2⌋cK(1 + λ2)[1 − D̂(k)](2cKβz)M−1 ≤ c̄Kβz[1 − D̂(k)]. (5.26)

Here we have taken λ0 sufficiently small to control the geometric sum over M (and we always consider
large N).

The next lemma completes the bootstrap argument by establishing the substantial hypothesis of
Lemma 5.1 for small λ0.

Lemma 5.5. Fix z ∈ (0, zN ] and suppose that f(z) ≤ 4. For λ ∈ (0, λ0] with λ0 sufficiently small
(independent of z), it is in fact the case that f(z) ≤ 1 + cβz for some c > 0 independent of z.

Proof. We consider f1, f2, f3 in that order.

Bound on f1(z). For f1(z), we simply note that χN (z) > 0 and hence also

χN (z)−1 = 1 − zN − Π̂z(0) > 0. (5.27)

Therefore, by Lemma 5.4 and the fact that any function h obeys |ĥ(k)| ≤ ‖h‖1 for all k (including the
present case of k = 0),

f1(z) = zN < 1 − Π̂z(0) ≤ 1 + c̄4βz, (5.28)

assuming λ0 is sufficiently small.

Bound on f2(z). For f2, we first recall (3.9) and write

F̂z(k) =
1

Ĝz(k)
= 1 − zND̂(k) − Π̂z(k) (5.29)

(this gives an alternate notation F̂z(0) for the reciprocal FN (z) of the susceptibility), so that

Ĝz(k)

Ĉpz(k)
=

1 − pzND̂(k)

F̂z(k)
= 1 + Êz(k), Êz(k) =

1 − pzND̂(k) − F̂z(k)

F̂z(k)
. (5.30)

We will show that Êz(k) = O(βz), which implies that f2(z) = 1 + O(βz). By (5.7), pzN = 1 − F̂z(0) =
zN + Π̂z(0), and thus by (3.9) the numerator of Êz(k) is

1 − pzND̂(k) − F̂z(k) = −Π̂z(0)D̂(k) + Π̂z(k) = Π̂z(0)[1 − D̂(k)] − Π̂z,k(0). (5.31)

We can now use our bound on Π̂z,k(0) = Π̂z(0) − Π̂z(k). Indeed, by (5.20) (again with |ĥ(k)| ≤ ‖h‖1)

|Êz(k)| ≤ 2c̄4βz
1 − D̂(k)

|F̂z(k)|
. (5.32)

For z ≤ 1
2N , we can use the crude bound c

(N)
n ≤ Nn to see that |Ĝz(k)| ≤ χN (z) ≤ Ĉz(0) ≤ 2 and hence

that |Êz(k)| ≤ 8c̄4βz. For 1
2N ≤ z ≤ zN , we use

|F̂z(k)| = |F̂z(0) + [F̂z(k) − F̂z(0)]|
= |F̂z(0) + zN [1 − D̂(k)] + Π̂z,k(0)|

≥ F̂z(0) +
1

2
[1 − D̂(k)] − c̄4βz[1 − D̂(k)]

≥ 1

4
[1 − D̂(k)]. (5.33)
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Therefore |Êz(k)| ≤ 16c̄4βz (for small λ0), and we have proved that f2(z) = 1 + O(βz).

Bound on f3(z). Although we only need a bound for k 6= 0, the following applies in fact for all k ∈ QN .
We write

ĝz(k) = zND̂(k) + Π̂z(k), (5.34)

so that

Ĝz(k) =
1

1 − ĝz(k)
. (5.35)

By (5.2), for all k, ℓ ∈ QN ,

|Ĝz,k(ℓ)| = |Ĝz(ℓ)| |Ĝz(k + ℓ)| |ĝz(ℓ) − ĝz(k + ℓ)|
≤ |Ĝz(ℓ)| |Ĝz(k + ℓ)|

∑

x∈QN

[1 − (−1)k·x]|gz(x)|, (5.36)

where
gz(x) = zND(x) + Πz(x) (5.37)

is the inverse Fourier transform of ĝz(k) (recall (3.2)). Since f2(z) ≤ 1 +O(βz), we can bound each factor
of |Ĝz | by [1+O(βz)]Ĉpz . With f1(z) = zN ≤ 1+O(βz), and with the definition of the Fourier transform
in (3.1), we obtain

∑

x∈QN

[1 − (−1)k·x]|gz(x)| ≤
∑

x∈QN

[1 − (−1)k·x][zND(x) + |Πz(x)|]

≤ (1 + O(βz))[1 − D̂(k)] +
∑

x∈QN

[1 − (−1)k·x]|Πz(x)|. (5.38)

In the last term the absolute values inside the sum prevent a direct application of (5.20), but the proof
of (5.20) bounds the sum over M absolutely, so (5.20) also holds for the above sum and we see that

∑

x∈QN

[1 − (−1)k·x]|gz(x)| ≤ [1 + O(βz)][1 − D̂(k)]. (5.39)

Together, for all k, ℓ ∈ QN these bounds give

|Ĝz,k(ℓ)| ≤ [1 + O(βz)][1 − D̂(k)]Ĉpz (ℓ)Ĉpz(k + ℓ) = [1 + O(βz)]C̄pz(k, ℓ) (5.40)

which implies that f3(z) ≤ 1 + O(βz).

This completes the proof that f(z) ≤ 1 + O(βz).

6 Consequences of lace expansion convergence

In this section, we first prove Theorems 1.4 and 1.5, which follow from a well-known differential inequality
together with the bubble condition discussed in Remark 5.3. We also complete the proofs of Theorems 1.1
and 1.2 by proving Propositions 2.1, 2.4 and 2.5 which we have seen in Section 2 imply Theorems 1.1
and 1.2. The proofs of Propositions 2.4 and 2.5 make use of fractional derivatives. Once this has been
accomplished only Theorem 1.3 remains; its proof is given in Section 7.

Note that FN (z) which was natural notation in Section 2 is identical to F̂z(0) which is natural in
the context of the lace expansion where we also used the Fourier transform F̂z(k) (recall (5.29)). In this
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section, we favour the notation FN (z) since the Fourier transform reappears only within the proof of
Lemma 6.5.

Our concern is with small positive values of the parameter λ used to define zN = zN (λ) by χN (zN ) =
λV 1/2. By definition of βz in (5.10), we see that for z ∈ [0, zN ] we have

βz ≤ N−1 + λ2. (6.1)

We take λ ∈ (0, λ0] where λ0 will be chosen to be sufficiently small.

6.1 Proof of Theorems 1.4 and 1.5

To prove Theorems 1.4 and 1.5, we recall a differential inequality from [10] which we state here as
in [45, Theorem 2.3] (or [37, Lemma 1.5.2]), namely

1

B(z)
χN (z)2 ≤ ∂z[zχN (z)] ≤ χN (z)2 (6.2)

where
B(z) = ‖Gz‖22 (6.3)

is the bubble diagram introduced in Remark 5.3. The upper bound is a very elementary consequence of
submultiplicativity, as we discuss below (6.11). Both inequalities in (6.2) hold on any finite or infinite
transitive graph, but for the lower bound to be useful it is necessary to have control of the bubble diagram.

Proof of Theorem 1.5. Let z ∈ [0, zN ]. By (6.2), the definition (1.15) of the expected length, and the
monotonicity of the bubble diagram,

1

B(zN )
χN (z) ≤ E(N)

z L ≤ χN (z). (6.4)

This gives the upper bound claimed in (1.16), and the lower bound follows from the fact that ‖GzN ‖22 =
1 + ‖HzN ‖22 = 1 + O(βzN ) (see Remark 5.3).

Proof of Theorem 1.4. The inequality (6.2) can equivalently be written in terms of the reciprocal FN of
χN as

1

B(z)
− FN (z) ≤ −z∂zFN (z) ≤ 1 − FN (z). (6.5)

Integration of the upper bound over the interval [z, w] with w > z > 0 leads to

log

(

1 − FN (w)

1 − FN (z)

)

≤ log
(w

z

)

, (6.6)

which rearranges to the general lower bound

χN (z) ≥ 1

χN (w)−1z/w + 1 − z/w
. (6.7)

The choice w = zN , together with replacement of z/w by 1 for the first ratio in the denominator to give
a further lower bound, proves the lower bound of (1.13).

For the lower bound of (6.5), for z ∈ [z′, zN ] we observe that

− zN∂zFN (z) ≥ 1

B(zN )
− FN (z′) (6.8)
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and integrate to obtain

zN (FN (z′) − FN (zN )) ≥
( 1

B(zN )
− FN (z′)

)

(zN − z′). (6.9)

After replacement of z′ by z, this rearranges to

(2zN − z)FN (z) ≥ zNFN (zN ) +
1

B(zN )
(zN − z) (6.10)

which is equivalent to the upper bound on χN of (1.13) since B(zN ) = 1 + O(βzN ).

6.2 First derivative of Π

Next, we prove a bound on the z-derivative ∂zΠ̂z(k). For the proof of Proposition 2.5 we will also consider
fractional derivatives in Section 6.5.

We begin with the observation that for any z ≥ 0 and j ∈ N,

zj∂j
zHz(x) ≤ j!(H∗j

z ∗Gz)(x). (6.11)

A proof can be found in [37, Lemma 6.2.8] and we illustrate the idea for j = 1 as follows (we will only
use j = 1, 2). For j = 1,

z∂zHz(x) =
∞
∑

n=1

nc(N)
n (x)zn =

∞
∑

n=1

n
∑

i=1

c(N)
n (x)zn ≤

∞
∑

n=1

n
∑

i=1

(c
(N)
i ∗ c(N)

n−i)(x)zizn−i, (6.12)

since c
(N)
n (x) ≤ (c

(N)
i ∗ c(N)

n−i)(x) follows by relaxing the self-avoidance constraint between the first i and
last n− i steps. After interchange of sums, the right-hand side rearranges to (Hz ∗Gz)(x). This is in fact
the essential step in the proof of the upper bound of (6.2).

Lemma 6.1. There is a λ0 > 0 such that for any λ ∈ (0, λ0], and for all z ∈ C with |z| ≤ zN and for all
k ∈ QN ,

|∂zΠ̂z(k)| ≺ Nβ|z|. (6.13)

Proof. As in (3.32), it suffices to prove that there is a constant c such that, for all real z ∈ [0, zN ],

∞
∑

M=1

‖∂zΠ(M)
z ‖1 ≤ cNβz. (6.14)

Since δ1z = z∂z , it follows from Proposition 3.6 with ǫ = 1 that for z ≥ 0 and M = 1,

‖∂zΠ(1)
z ‖1 ≤ N‖∂z(zHz)‖∞, (6.15)

and for z ≥ 0 and M ≥ 2,

‖∂zΠ(M)
z ‖1 ≤ (2M − 1)‖∂zHz‖∞‖Hz ∗Gz‖M−1

∞

≤ (2M − 1)‖∂zHz‖∞(2c2βz)M−1. (6.16)

where we used the bound ‖Hz ∗Gz‖∞ ≤ 2c2βz from (5.24) (with K = 2) for the last inequality.
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By (6.11) and Lemma 5.2,

∂z(zHz(x)) = Hz(x) + z∂zHz(x) ≤ Hz(x) + (Hz ∗Gz)(x) ≺ βz , (6.17)

and with (6.16) this gives an O(Nβz) bound for the M = 1 term in (6.14).
For M ≥ 2, a slight manoeuvre is needed to deal with small z due to the fact that we desire a bound

on ∂zHz whereas (6.11) provides a bound on z∂zHz. Suppose that z ∈ [0, 1
2N ]. In this case, as in (5.14) we

use Hz(x) ≤ zN(D ∗Cz)(x). This inequality in fact holds term-by-term as power series, so it is preserved
upon differentiation and

∂zHz(x) ≤ N(D ∗ Cz)(x) + zN∂z(D ∗ Cz)(x). (6.18)

Since Cz(x) = δ0,x + zN(D ∗Cz)(x), and since Ĉz(k) ≤ Ĉz(0) ≤ 2 for z ≤ 1
2N , the first term on the above

right-hand side obeys

N(D ∗ Cz)(x) ≤ N
(

D(x) + zN(D ∗D ∗ Cz)(x)
)

≤ 1 +
1

2
N‖D̂(k)2Ĉz(k)‖1̂ ≺ 1 + N‖D̂(k)2‖1̂ ≺ Nβz, (6.19)

since the norm on the right-hand side is of order N−1 by Lemma 4.1. Similarly, with (5.4) we see that

zN∂z(D ∗ Cz)(x) = zN
1

V

∑

k∈QN

ND̂(k)2(−1)k·x

[1 − zND̂(k)]2
≺ N

V
+ N ·N−1 ≺ Nβz, (6.20)

where we separated the k = 0 term and used Lemma 4.1 to bound the sum over nonzero k. On the other
hand, for z ∈ [ 1

2N , zN ] it follows from (6.17) that

∂zHz(x) ≤ 2Nz∂zHz(x) ≺ Nβz. (6.21)

Thus, using the above bound Nβz for the M = 1 term, together with the above considerations to bound
‖∂zHz‖∞ by Nβz when M ≥ 2, altogether we find from (6.16) that

∞
∑

M=1

‖∂zΠ(M)
z ‖1 ≺ Nβz + Nβz

∞
∑

M=2

M (2c2βz)M−1 ≺ Nβz , (6.22)

where we used small λ0 to bound the last sum.

We can now easily prove (1.6), as follows. As a first and elementary observation, since the generating
function for self-avoiding walks is smaller than the generating function for all walks, we have χN (z) ≤
Ĉz(0) = (1−zN)−1 for z < 1

N , and hence zN is larger than the value pzN = N−1(1−λ−1V −1/2) for which

(1 − pzNN)−1 = λV 1/2 (recall Figure 3). This shows that zN ≥ 3
4N

−1 (we take V large depending on λ)
and therefore

3

4
N−1 ≤ zN ≤ 2N−1 (6.23)

since we have seen in Lemma 5.5 that zNN ≤ 2.
Since FN (zN (λ)) = λ−1V −1/2, the chain rule and the formula for FN (z) in (3.10) give

z′N (λ) =
1

−F ′
N (zN (λ))

V −1/2 1

λ2
=

1

N + ∂zΠ̂z(0)|zN (λ)

V −1/2 1

λ2
. (6.24)
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The first fraction on the right-hand side is at most 2N−1 (for small λ0) by Lemma 6.1, so for λ′ ≤ λ1 <
λ2 ≤ λ0,

zN (λ2) − zN (λ1) =

∫ λ2

λ1

z′N (λ) dλ ≺ V −1/2

N

∫ λ2

λ1

1

λ2
dλ =

V −1/2

N

λ2 − λ1

λ1λ2
(6.25)

and hence, as claimed in (1.6),

zN (λ2)

zN (λ1)
− 1 ≺ V −1/2

NzN (λ1)

λ2 − λ1

λ1λ2
≺ λ2 − λ1

λ1λ2
V −1/2. (6.26)

In the last step, we used the lower bound of (6.23). As usual, the constant in (6.26) deteriorates as λ1, λ2

decrease, so depends on λ′.

6.3 Proofs of Propositions 2.1 and 2.4

We are now in a position to prove Propositions 2.1 and 2.4. The following proposition concerns the
susceptibility in the complex plane.

Proposition 6.2. There is a λ0 > 0 such that for any λ ∈ (0, λ0], and for any wN ∈ C with |wN | ≤ zN
and limN→∞ V 1/2|1 − wN/zN | = ∞,

|χN (wN )| ≍ 1

|1 −wN/zN | . (6.27)

In addition, for z ∈ C with |z| ≤ zN , if N is large then

|χN (z)| ≤ 2

|1 − z/zN | . (6.28)

Proof. Let |z| ≤ zN . By the Fundamental Theorem of Calculus and (3.10),

FN (z) = FN (zN ) + zNN(1 − z/zN ) +

∫ zN

z
∂wΠ̂w(0) dw, (6.29)

with the integral along the line segment joining z to zN . By Lemma 6.1, the integral on the right-hand
side is O[NβzN |zN − z|] = O[(N−1 + λ2)|1 − z/zN |], since zN ≤ 2N−1. This gives

FN (z) = λ−1V −1/2 + zNN(1 − z/zN ) + O[(N−1 + λ2)|1 − z/zN |]. (6.30)

Since zNN ≥ 3
4 , the last term is comparable to the middle term but with much smaller prefactor. When

we set z = wN with the assumption that limN→∞ V 1/2|1 − wN/zN | = ∞, the term λ−1V −1/2 becomes
negligible and (6.27) follows.

Also, it follows from (6.30) that, with ǫ = (zNNλV 1/2)−1,

|FN (z)| ≥ zNN
∣

∣ǫ + 1 − z/zN
∣

∣−O[(N−1 + λ2)|1 − z/zN |]
≥ zNN |1 − z/zN | −O[(N−1 + λ2)|1 − z/zN |], (6.31)

with the first inequality a consequence of the triangle inequality and the second due to the geometric fact
that any point z/zN in the unit disk is closer to 1 than it is to 1 + ǫ. Since zNN ≥ 3

4 , this gives (6.28)
and completes the proof.

The proofs of Propositions 2.1 and 2.4 now follow easily.
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Proof of Proposition 2.1. This is an immediate consequence of (6.23) (for the bound NzN ≤ 2), of (6.28)
(for the lower bound on |FN (z)| in the disk |z| ≤ zN ), and of the fact that F ′

N (z) = −N − ∂zΠ̂z(0)

together with Lemma 6.1 which implies that |∂zΠ̂z(0)| ≺ NβzN ≺ 1 +Nλ2 uniformly in |z| ≤ zN (for the
bound |F ′

N (z)| ≤ 2N).

Proof of Proposition 2.4. Let p ∈ (0, 12) and recall that ζp = zN (1 − V −p). Proposition 2.4 asserts that

ζp = N−1[1 + O(N−1)], FN (ζp) ≍ V −p, F ′
N (ζp) = −N + O(1). (6.32)

For the second of these three statements, we first observe that by definition V 1/2(1− ζp/zN ) = V 1/2−p →
∞. It then follows from (6.27) that

χN (ζp) ≍ V p, (6.33)

which is equivalent to the desired relation FN (ζp) ≍ V −p. By the definition of βz in (5.10), this also
implies that

βζp ≺ V 2p−1 + N−1 ≺ N−1. (6.34)

By (3.10)
χN (ζp)−1 = 1 −Nζp − Π̂ζp(0), (6.35)

so by Lemma 5.4, (6.33) and (6.34),

ζp = N−1[1 − Π̂ζp(0) − χN (ζp)−1] = N−1[1 + O(N−1)], (6.36)

which proves the first statement of (6.32). Finally, since

F ′
N (ζp) = −N − ∂zΠ̂z(0)

∣

∣

z=ζp
, (6.37)

the third statement of (6.32) follows from Lemma 6.1 and (6.34).

6.4 Fractional derivatives

The proof of Proposition 2.5 uses the fractional derivative methods introduced in [26] (see also [37,
Section 6.3]), and we begin with a summary of what is needed from that theory.

The fractional derivative δǫzf(z) =
∑∞

n=1 n
ǫanz

n defined in (3.35) converges absolutely at least strictly
within the circle of convergence of f(z). For ρ > 0 and for j = 1, 2 we define

A
(ǫ)
j (ρ) =

∞
∑

n=j

nǫ|an|ρn. (6.38)

The following lemma provides an error estimate analogous to the error estimate in Taylor’s theorem. It is

a restatement of [37, Lemma 6.3.2], apart from the replacement of A
(ǫ)
1 (ρ) in [37, Lemma 6.3.2] by A

(ǫ)
2 (ρ)

in (6.40). The replacement is justified since the terms a0 + a1z in f(z) cancel on the left-hand side of
(6.40) and hence we can assume a0 = a1 = 0 there.

Lemma 6.3. Let ǫ ∈ (0, 1), f(z) =
∑∞

n=0 anz
n, and ρ > 0. If A

(ǫ)
1 (ρ) < ∞ (so in particular f(z)

converges for |z| ≤ ρ), then for any z ∈ C with |z| ≤ ρ,

|f(z) − f(ρ)| ≤ 21−ǫA
(ǫ)
1 (ρ)|1 − z/ρ|ǫ. (6.39)

If A
(1+ǫ)
2 (ρ) < ∞ (so in particular f ′(z) =

∑∞
n=1 nanz

n−1 converges for |z| ≤ ρ), then for any z ∈ C with
|z| ≤ ρ,

|f(z) − f(ρ) − f ′(ρ)(z − ρ)| ≤ 21−ǫ

1 + ǫ
A

(1+ǫ)
2 (ρ)|1 − z/ρ|1+ǫ. (6.40)
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For ǫ ∈ (0, 1), the following elementary lemma provides an integral formula for δǫzf in terms of f ′.
The statement and proof of the lemma involve the Gamma function Γ(x) =

∫∞
0 tx−1e−t dt.

Lemma 6.4. Let f(z) =
∑∞

n=0 anz
n have radius of convergence at least ρ. Let ǫ ∈ (0, 1) and γǫ =

1/Γ(1 − ǫ). For any z ∈ [0, ρ) (and also for z = ρ if an ≥ 0 for all n),

δǫzf(z) = γǫz

∫ ∞

0
f ′(ze−t)e−tt−ǫ dt. (6.41)

Proof. It is proved in [37, Lemma 6.3.1] that

δǫzf(z) = Cǫ z

∫ ∞

0
f ′(ze−λ1/(1−ǫ)

)e−λ1/(1−ǫ)
dλ (6.42)

with Cǫ = [(1 − ǫ)Γ(1 − ǫ)]−1. We make the change of variables t = λ1/(1−ǫ) to obtain (6.41).

6.5 Fractional derivatives of Π: proof of Proposition 2.5

We now prove Proposition 2.5. The proof is based on an estimate for the (1 + a)th derivative of Π̂z at
z = ζp. This in turn requires a fractional-derivative bound on Hz and we begin with the crucial lemma
that provides this bound. The proof of Lemma 6.5 requires delicate attention to the zero mode. Constants
in estimates are permitted to depend on p and a as well as on λ.

Lemma 6.5. There is a λ0 > 0 such that for any λ ∈ (0, λ0], and for any p ∈ (0, 12 ) and a ∈ (0, 1),

N‖δ1+a
z |z=ζp(zHz)‖∞ ≺ N−1 + V (2+a)p−1, (6.43)

‖δ1+a
z |z=ζpHz‖∞ ≺ N−1 + V (2+a)p−1. (6.44)

Proof. The values of p ∈ (0, 12) and a ∈ (0, 1) are fixed throughout the proof. To simplify the notation,
we will write simply Hz in place of Hz(x); all upper bounds are uniform in x ∈ QN . Also, all derivatives
∂z and δz are with respect to z. Since we need to evaluate these derivatives at both ζp and at ζpe

−t, to
lighten the notation we write ∂ζp and δζp for derivatives evaluated at ζp, and we introduce ηt = ζpe

−t and
similarly write ∂ηt and δηt .

For (6.43) we use the general fact that δ1+a
z f(z) = δaz [z∂zf(z)] and then (6.41) to see that

δ1+a
ζp

(zHz) = δaζp [z∂z(zHz)] = γaζp

∫ ∞

0
∂ηt [z∂z(zHz)]e−tt−a dt. (6.45)

The derivative on the right-hand side satisfies

∂z[z∂z(zHz)] = Hz + 3z∂zHz + z2∂2
zHz

= c
(N)
1 (x)z + 3c

(N)
1 (x)z + z2

∞
∑

n=2

(1 + 3n + n(n− 1))c(N)
n (x)zn−2, (6.46)

and hence since c
(N)
1 (x) ≤ 1, and since ηt ≤ ζp ∼ N−1 by (6.32),

∂ηt [z∂z(zHz)] ≺ N−1 + N−2∂2
ηtHz. (6.47)

Therefore, by (6.45) and again using ζp ≺ N−1, we have the preliminary estimate

Nδ1+a
ζp

(zHz) ≺ N−1 + N−2

∫ ∞

0
∂2
ηtHz e

−tt−a dt. (6.48)
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For (6.44), and for z ≤ ζp ≺ N−1, as above and with (6.21) we have

∂z(z∂zHz) = ∂zHz + z∂2
zHz ≺ 1 + z∂2

zHz ≺ 1 + N−1∂2
zHz, (6.49)

so again (with ζp ≺ N−1) we find that

δ1+a
ζp

Hz|z=ζp = δaζp(z∂zHz) = γaζp

∫ ∞

0
∂ηt(z∂zHz)e−tt−a dt

≺ N−1 + N−2

∫ ∞

0
∂2
ηtHz e

−tt−a dt. (6.50)

To complete the proof of (6.43)–(6.44), it therefore suffices to prove that
∫ ∞

0
∂2
ηtHze

−tt−a dt ≺ N + N2V (2+a)p−1. (6.51)

We consider small t and large t separately. The delicate part is small t.
For z ≤ 1

2N , we first observe that since the number of n-step self-avoiding walks is bounded above
by the number of n-step simple random walks, we have ∂2

zHz(x) ≤ ∂2
zCz(x). We rewrite Cz(x) using the

inverse Fourier transform (3.2) in conjunction with the formula for Ĉz(k) in (5.4), and thereby obtain

∂2
zHz(x) ≤ ∂2

zCz(x) = ∂2
z

1

V

∑

k∈QN

(−1)k·x

1 − zND̂(k)

=
2N2

V

∑

k∈QN

D̂(k)2(−1)k·x

(1 − zND̂(k))3
≤ 2N2

V

∑

k∈QN

D̂(k)2

(1 − 1
2)3

≺ N, (6.52)

where we used zN |D̂(k)| ≤ zN ≤ 1
2 in the penultimate step and used (4.1) (with x = 0) in the last step.

Thus in (6.51) the integral over t such that ηt ≤ 1
2N is bounded by N as required. Such t include those

for which e−t ≤ 1
4 since Nζp ≤ 2. It therefore suffices to prove that

∫ log 4

0
∂2
ηtHz t

−a dt ≺ N + N2V (2+a)p−1, (6.53)

where we have neglected a now unimportant exponential factor in the integrand using e−t ≤ 1.
The derivative in the integrand of (6.53) can be bounded using (6.11), with the result that

∫ log 4

0
∂2
ηtHz(x) t−a dt ≺

∫ log 4

0
(ζpe

−t)−2(Hηt ∗Hηt ∗Gηt)(x) t−a dt

≺ N2

∫ log 4

0
(Hηt ∗Hηt ∗Gηt)(x) t−a dt. (6.54)

Now we use ‖f‖∞ ≤ ‖f̂‖1̂ to see that

(Hηt ∗Hηt ∗Gηt)(x) ≤ 1

V

∑

k∈QN

Ĥηt(k)2Ĝηt(k). (6.55)

Recall from (5.29) that we write F̂z(k) = 1/Ĝz(k). As in (5.34), we define ĝz(k) by

Ĥz(k) = Ĝz(k) − 1 =
zND̂(k) + Π̂z(k)

F̂z(k)
=

ĝz(k)

F̂z(k)
= ĝz(k)Ĝz(k). (6.56)
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For z ≤ ζp, since zN ≺ 1 and |Π̂z(k)| ≺ βζp ≺ N−1 (recall (6.34)),

ĝz(k)2 ≺ D̂(k)2 + Π̂z(k)2 ≺ D̂(k)2 + N−2. (6.57)

We know from the bootstrap proof in Section 5.2 that f2(z) ≤ 2 for all z ≤ zN , so

Ĝz(k) ≤ 2Ĉpz(k) =
2

1 − pzND̂(k)
. (6.58)

The sum over nonzero k in (6.55) is therefore at most

1

V

∑

k 6=0

ĝηt(k)2Ĝηt(k)3 ≺ 1

V

∑

k 6=0

D̂(k)2

[1 − pηtND̂(k)]3
+

1

V

∑

k 6=0

N−2

[1 − pηtND̂(k)]3

≺ N−1 + N−2 ≺ N−1, (6.59)

where we used Lemma 4.1 for the second line. When we insert this into the right-hand side of (6.54) the
result is N+1 which is consistent with (6.53).

It remains to consider the zero mode. The k = 0 term in the sum in (6.55) is

1

V
ĝηt(0)2χN (ηt)

3 ≺ 1

V

(

1 + N−2
)

χN (ηt)
3, (6.60)

so it now suffices to prove that
∫ log 4

0
χN (ηt)

3t−a dt ≺ V (2+a)p. (6.61)

By (6.28) and the fact that ηt = zN (1 − V −p)e−t by definition, for t ≤ log 4 we have

χN (ηt) ≤
2

1 − ηt/zN
=

2

V −pe−t + 1 − e−t
≺ 1

V −p + t
. (6.62)

It follows that (with the change of variables t = sV −p)

∫ log 4

0
χN (ηt)

3t−a dt ≺
∫ log 4

0

1

(V −p + t)3
t−a dt ≺ 1

(V −p)2+a

∫ ∞

0

1

(1 + s)3
s−a ds ≺ V (2+a)p. (6.63)

This completes the proof.

Corollary 6.6. There is a λ0 > 0 such that for any λ ∈ (0, λ0], and for any p ∈ (0, 12 ) and a ∈ (0, 1),

∞
∑

M=1

‖δ1+a
ζp

Π(M)
z ‖1 ≺ N−1 + V (2+a)p−1. (6.64)

Proof. It was shown in Proposition 3.6 that for z ≥ 0 and ǫ ≥ 1 we have

‖δǫzΠ(1)
z ‖1 ≤ N‖δǫz(zHz)‖∞, (6.65)

and for M ≥ 2,

‖δǫzΠ(M)
z ‖1 ≤ (2M − 1)ǫ‖δǫzHz‖∞‖Hz ∗Gz‖M−1

∞ . (6.66)

Also, by (5.24),
‖Hz ∗Gz‖∞ ≤ 2cKβz. (6.67)

Then the desired result follows by using Lemma 6.5 to estimate the fractional derivatives of Hz, with
small λ0 used to control the sum over M .
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We are now ready to prove Proposition 2.5 which we restate here for convenience as Proposition 6.7.
Recall that by definition

FN (z) = ΦN (z) + RN (z) (6.68)

where ΦN (z) is the linear function

ΦN (z) = FN (ζp) + F ′
N (ζp)(z − ζp). (6.69)

Proposition 6.7. There is a λ0 > 0 such that for any λ ∈ (0, λ0], and for any p ∈ (0, 12), any a ∈ (0, 1),
and any z ∈ C with |z| ≤ ζp,

|RN (z)| ≺ (N−1 + V (2+a)p−1)|1 − z/ζp|1+a, (6.70)

|R′
N (z)| ≺ (1 + NV (2+a)p−1)|1 − z/ζp|a. (6.71)

Proof. For (6.70) we apply the fractional Taylor error estimate (6.40) to

f(z) = FN (z) = 1 − zN − Π̂z(0) (6.72)

with ǫ = a and ρ = ζp. The linear part 1 − zN on the right-hand side does not contribute to A
(1+a)
2 (ζp)

defined by (6.38), which therefore only involves Π̂ζp(0) and according to Corollary 6.6 is bounded by

N−1 + V (2+a)p−1. Thus the claimed bound on RN (z) follows from (6.40).
For (6.71), we first use the definition of RN (z) to see that

R′
N (z) = F ′

N (z) − F ′
N (ζp) = ∂ζpΠ̂z(0) − ∂zΠ̂z(0). (6.73)

Since

∂zΠ̂z(0) =

∞
∑

m=1

(m + 1)
∑

x∈QN

πm+1(x)zm, (6.74)

by (6.39) it suffices to have the upper bound

∞
∑

m=1

ma(m + 1)‖πm+1‖1ζmp ≺ N

∞
∑

m=1

(m + 1)1+a‖πm+1‖1ζm+1
p ≺ 1 + NV (2+a)p−1, (6.75)

which follows from Corollary 6.6. This completes the proof.

7 1/N expansion: proof of Theorem 1.3

In this section we prove Theorem 1.3, which in particular states that for m ≥ 1 and c > 0 (independent
of N but possibly depending on m), and for any z such that χN (z) ∈ [cNm, λ0V

1/2], there are integers
an, which are universal constants that are independent of the particular choice of z, such that

z =

m
∑

n=1

anN
−n + O(N−m−1) as N → ∞. (7.1)

As usual, λ0 is assumed to be sufficiently small. The constant in the error term depends on m,λ0, c, but
does not depend otherwise on z. Theorem 1.3 also includes a similar statement concerning an asymptotic
expansion for the amplitude AN , and identifies the first five coefficients in each expansion.
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7.1 Independence of z

We first establish the independence of z for the coefficients an, assuming they exist.

Proposition 7.1. Let c > 0, and let λ0 > 0 be sufficiently small. Let m ≥ 1. If z obeys (7.1) for some z
such that χN (z) ∈ [cNm, λ0V

1/2], then (7.1) is valid for every such z.

Proof. Let z′ and zN be the solutions to χN (z′) = cNm and χN (zN ) = λ0V
1/2. For large N , z′ ≤ zN . It

suffices to prove that
zN − z′ ≤ O(N−m−1). (7.2)

By (6.28),

1 − z′/zN ≤ 2

χN (z′)
=

2

cNm
, (7.3)

and therefore, since zN ≤ 2N−1 by (6.23),

zN − z′ ≤ zN
2

cNm
≤ 4

cNm+1
. (7.4)

This completes the proof.

7.2 Lace expansion estimates

To simplify the notation, for k ≥ 2 and M ≥ 1 we define

π
(M)
k =

∑

x∈QN

π
(M)
k (x). (7.5)

Thus π
(M)
k counts the number of k-step M -loop lace graphs depicted in Figure 2, with no restriction to

end at a specific vertex x and with the mutual avoidance of subwalks dictated by the compatible edges
in (3.19).

The following proposition prepares two estimates for the proof of Theorem 1.3. Its first inequality
will be used to see that we can neglect large M in the computation of the asymptotic expansions of
Theorem 1.3 to a certain order, and the second says that for small M we can neglect large k.

Proposition 7.2. Let λ0 > 0 be sufficiently small and let p ∈ (0, 12) and ζp = zN (λ0)(1−V −p). For each
j ≥ 1 there is a constant Cj, independent of N , such that

∞
∑

k=2

∞
∑

M=j

kπ
(M)
k ζkp ≤ CjN

−j. (7.6)

For each j ≥ 2 and M ≥ 1, there is a constant CM,j, independent of N , such that

∞
∑

k=j

kπ
(M)
k ζkp ≤ CM,jN

−⌈j/2⌉. (7.7)

Proof. The inequality (7.6) follows from the proof of Lemma 6.1, together with the facts that here we

have an extra factor ζp ≺ N−1 compared to ∂zΠ
(M)
z and that βζp ≺ N−1 by (6.34). Indeed, the inequality

(6.22) is a term-by-term bound which gives

‖∂zΠ(M)
z ‖1 ≺ NβzM(2c2βz)M−1, (7.8)
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and hence (with j-dependent constants)

∞
∑

k=2

∞
∑

M=j

kπ
(M)
k ζkp =

∞
∑

M=j

ζp‖∂zΠ(M)
z ‖1 ≺ ζpβ

j−1
ζp

≺ N−j. (7.9)

It remains to prove (7.7). Constants are permitted to depend on M and j in the rest of the proof.
For (7.7), we first obtain preliminary estimates using Lemma 4.1. The bound on the random walk

transition probability from (4.1) asserts that for any integer i ≥ 0 we have

‖D∗i‖∞ ≤ ciN
−⌈i/2⌉. (7.10)

To avoid a notational clash, we temporarily write the value pz defined by (5.7) as qz. Then, by using the
bound Ĝζp(k) ≤ 2Ĉqζp

(k) obtained from the bootstrap estimate f2(z) ≤ 2 (recall (5.9)), we see that

‖D̂iĜζp‖22̂ ≤ 4‖D̂iĈqζp
‖2
2̂
. (7.11)

By extracting the zero mode, we can conclude from the fact that Ĉqζp
(0) = χN (ζp), together with (6.33)

and the second bound of Lemma 4.1 that, for any integer i ≥ 0,

‖D̂iĜζp‖22̂ ≤
4

V
χN (ζp)

2 +
4

V

∑

k 6=0

D̂(k)2i

[1 − qζpND̂(k)]2
≺ 1

V 1−2p
+ N−i ≺ N−i. (7.12)

Consider first the case M = 1 of (7.7). Recall that Π
(1)
z (x) is nonzero only for x = 0, in which case it

is the generating function for self-avoiding returns to the origin. We are interested in returns that take
k ≥ j steps, and the factor k in (7.7) counts the number of ways to label the distinct k vertices of the
walk forming the return. By relaxing the avoidance constraint for the first j steps, and also the avoidance
between the remaining two parts of the walk separated by the labelled vertex (in the worst case that it
is not among the first j steps) then we see that

∞
∑

k=j

kπ
(M)
k ζkp ≤ ((ζpND)∗j ∗Gζp ∗Gζp)(0). (7.13)

One contribution to the right-hand side arises from the zero-step walks in each factor of Gζp , and in other
contributions there is at least one step from those factors, so (as in (5.14))

∞
∑

k=j

kπ
(M)
k ζkp ≤ (ζpND)∗j(0) + ((ζpND)∗(j+1) ∗Gζp ∗Gζp)(0). (7.14)

By (7.10) and the fact that ζpN ≺ 1, the first term is of order N−⌈j/2⌉. Via the inverse Fourier transform
and the Cauchy–Schwarz inequality, by (7.12) the second term is at most

(ζpN)j+1‖D∗(j+1) ∗Gζp ∗Gζp‖∞ ≺ ‖D̂j+1Ĝζp‖2̂‖Ĝζp‖2̂ ≺ N−(j+1)/2 ≺ N−⌈j/2⌉, (7.15)

and this proves (7.7) for the case M = 1.
For M ≥ 2, by (6.16) and (6.11) we have

∞
∑

k=2

kπ
(M)
k zk = ‖z∂zΠ(M)

z ‖1 ≤ (2M − 1)‖z∂zHz‖∞‖Hz ∗Gz‖M−1
∞

≤ (2M − 1)‖Hz ∗Gz‖M∞ . (7.16)
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The effect of the restriction k ≥ j on this bound is to require that the factors ‖Hz ∗Gz‖∞ become modified
to ensure that at least j steps are taken in total, so there is a restriction that the ith factor must take at
least ji steps with j1 + · · · jM ≥ j. As in the case M = 1, with this restriction the ith factor of ‖Hz ∗Gz‖∞
can be replaced via an upper bound by ‖D∗ji ∗ Gz ∗ Gz‖∞. Then, as in (7.14)–(7.15), we find that the
unrestricted upper bound is replaced by

∞
∑

k=j

kπ
(M)
k ζkp ≤ CM,jN

−
∑M

i=1⌈ji/2⌉ ≤ CM,jN
−⌈j/2⌉. (7.17)

This completes the proof.

7.3 Asymptotic expansion to all orders

We now prove the part of Theorem 1.3 concerning existence of the asymptotic expansions for µN and AN

to all orders with integer coefficients. The numerical computation of coefficients is deferred to Section 7.4.

Theorem 7.3. Let λ0 > 0 be sufficiently small. Let m ∈ N, fix c > 0 (independent of N but possibly
depending on m), and suppose that z obeys χN (z) ∈ [cNm, λ0V

1/2]. Then there are integers an for n ∈ N,
which are universal constants that do not depend on the particular choice of z, such that

z =

m
∑

n=1

anN
−n + O(N−m−1). (7.18)

The constant in the error term depends on m,λ0, c, but does not depend otherwise on z. The same is true
for the amplitude AN .

Proof. We first consider the expansion for z. Fix p ∈ (0, 12 ). By Proposition 7.1, since χN (ζp) ≍ V p

by Proposition 2.4, it suffices to prove that ζp has an asymptotic expansion to all orders with integer
coefficients. By (3.10) we have

Nζp = 1 − Π̂ζp(0) + O(V −p). (7.19)

The last term on the right-hand side is negligible compared to any fixed inverse power of N so it plays
no role.

We follow the basic approach of [27] but incorporate the significant simplifications used in [12]. To
lighten the notation we write s = N−1. We will prove by induction on m ≥ 1 that there are integers an
such that

ζp =

m
∑

n=1

ans
n + O(sm+1). (7.20)

The integers an will be shown to be universal constants. The starting point is

ζp = s[1 − Π̂ζp(0)] + O(sV −p) = s

[

1 −
∞
∑

M=1

(−1)M
∞
∑

i=2

π
(M)
i ζ ip

]

+ O(sV −p). (7.21)

Since Π̂ζp(0) = O(s) (e.g., by (7.6) with j = 1), (7.21) gives the base case m = 1 for the induction, with
a1 = 1.

To advance the induction, we assume now that (7.20) holds for some m ≥ 1 and we will prove that it
holds for m + 1. It follows from Proposition 7.2 that for j ≥ 1,

∞
∑

k=2

∞
∑

M=j

π
(M)
k ζkp ≤ Cjs

j, (7.22)
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and that for j ≥ 2 and M ≥ 1,
∞
∑

k=j

π
(M)
k ζkp ≤ CM,js

⌈j/2⌉. (7.23)

(We do not yet need the factor k included in the sums of Proposition 7.2 to advance this induction,
that factor is needed only later for AN . Of course the bounds remain valid without that factor since the
left-hand sides are smaller without it.) With (7.22)–(7.23), we see from (7.21) that

ζp = s

[

1 −
m
∑

M=1

(−1)M
2m
∑

k=2

π
(M)
k ζkp

]

+ O(sm+2) = s

[

1 −
2m
∑

k=2

bN,kζ
k
p

]

+ O(sm+2), (7.24)

with

bN,k =
m
∑

M=1

(−1)Mπ
(M)
k . (7.25)

We classify contributions to π
(M)
k according to the total number δ of dimensions explored by a k-step

walk ω. Let π
(M)
k,δ denote the contribution to π

(M)
k due to walks starting at 0 which explore exactly δ

dimensions, with the first step taken with the first coordinate, the first subsequent step involving a new
coordinate taken with the second coordinate, the first subsequent step with a new coordinate taken with
the third coordinate, and so on. Then, because the number of dimensions cannot exceed k − 1 (because
the last step must close a loop), it follows by symmetry that

π
(M)
k =

k−1
∑

δ=1

π
(M)
k,δ

δ−1
∏

j=0

(N − j). (7.26)

By definition, π
(M)
k,δ is a nonnegative integer which is independent of N , a universal number which counts

certain lace diagrams. With (7.25), we find that

bN,k =
k−1
∑

q=1

βq,kN
q (7.27)

with integer coefficients βq,k which are independent of N .
By the induction hypothesis (7.20),

ζkp =

[ m
∑

n=1

ans
n + O(sm+1)

]k

= sk
[m−1
∑

n=0

γn,ks
n + O(sm)

]

(7.28)

with N -independent integer coefficients γn,k. With (7.24) and (7.27), this gives

ζp = s

(

1 −
2m
∑

k=2

k−1
∑

q=1

βq,ks
−qsk

[m−1
∑

n=0

γn,ks
n + O(sm)

]

)

+ O(sm+2). (7.29)

The only term in the above product which can give rise to an non-integer power or coefficient is the O(sm)
term. However this term is multiplied by s1−q+k ≤ s2, and hence gives rise to a contribution which is
O(sm+2). Therefore

ζp =

m+1
∑

n=1

dns
n + O(sm+2), (7.30)

40



with integer coefficients dn, which must agree with an for n ≤ m. This gives (7.20) with m replaced by
m + 1, so the induction is advanced and the proof of (7.18) is complete.

Recall that the amplitude

AN =
1

FN (ζp) − ζpF ′
N (ζp)

=
1

FN (ζp) + ζpN + ζp∂zΠ̂ζp(0)
(7.31)

was defined in the proof of Corollary 2.6. The existence of the expansion for AN then follows similarly
from (7.6)–(7.7) (now we do need their factor k), by substitution of the expansion for ζp into

1

AN
= ζpN +

2m
∑

k=2

m
∑

M=1

(−1)Mkπ
(M)
k ζkp + O(N−m−1). (7.32)

Again the coefficients in the expansion are universal integers.

7.4 Coefficient computation

The expansion coefficients for z in (7.18) (equivalently, for ζp) can be computed from (7.24) and (7.26)

once suitably many of the lace graph counts π
(M)
k,δ are known. To compute to within an error of order

s6, only M ≤ 4 and k ≤ 8 are needed, by the first equality of (7.24). Also, we can restrict to k − δ ≤ 4

because in a term π
(M)
k,δ ζkp the largest possible contribution is of order N δsk = sk−δ and if k − δ ≥ 5 then

this contributes to ζp only at order s6, due to the prefactor s in (7.24).
To discuss the enumeration of lace graphs, we elaborate on the definition of an M -loop diagram as

follows. Recall the definition of compatible edges from Definition 3.3. If the 2M − 1 subwalks in the
M -loop diagram of Figure 2 are labelled in the order they occur in a walk as 1, 2, . . . , 2M − 1, then
the subwalks are mutually avoiding (apart from the required intersections) due to the compatible edges,
with the following patterns: [123] for M = 2; [1234], [345] for M = 3; [1234], [3456], [567] for M = 4.
This means, e.g., for M = 4, that subwalks 1, 2, 3, 4 are mutually avoiding apart from the enforced
intersections explicitly depicted in Figure 2, as are subwalks 3, 4, 5, 6 and subwalks 5, 6, 7. However,
subwalks not grouped together are permitted to intersect, e.g., for M = 4, subwalks 1, 2 are permitted to
intersect subwalks 5, 6, 7, and subwalks 3 and 4 can intersect subwalk 7.

Extensive computer assisted enumerations of lace graphs for Zd are given in [13]. Lace graphs on the
hypercube are a subset of those on Zd. The relevant nonzero counts are found to be:

π
(1)
2,1 = 1, π

(1)
4,2 = 1, π

(1)
6,3 = 4, π

(1)
8,4 = 27, (7.33)

π
(2)
3,1 = 1, π

(2)
5,2 = 3, π

(2)
7,3 = 15, π

(3)
4,1 = 1, π

(3)
6,2 = 5, π

(4)
5,1 = 1. (7.34)

These numbers arise by inspection from Tables 18, 20, 22, 24 of [13] by discounting configurations which

are possible on Zd but not on QN , as well as from the trivial counts π
(M)
k,1 = δk,M+1. E.g., π

(1)
6,2 = 3

on Zd but it is zero on QN where the 2-dimensional subspace contains only 4 vertices. With computer
assistance, it would be possible to enumerate more lace graphs on QN and thereby compute more terms
in the asymptotic expansion for zN .

To compute the expansion coefficients for zN = zN (λ0) (recall Proposition 7.1), as in (7.24) we use

zN = s

[

1 −
m
∑

M=1

(−1)M
2m
∑

k=2

π
(M)
k zkN

]

+ O(sm+2) (7.35)
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iteratively with

π
(M)
k =

k−1
∑

δ=1

π
(M)
k,δ

δ−1
∏

j=0

(N − j) (7.36)

as follows. We insert zN = s + O(s2) into (7.35) with m = 1 and obtain

zN = s
[

1 − (−1)1π
(1)
2 z2N

]

+ O(s3)

= s
[

1 + N · 1 · s2
]

+ O(s3) = s + s2 + O(s3). (7.37)

Another iteration gives

zN = s
[

1 − (−1)1(π
(1)
2 z2N + π

(1)
4 z4N ) − (−1)2π

(2)
3 z3N

]

+ O(s4)

= s
[

1 + (N · 1 · (s + s2)2 + N(N − 1) · 1 · s4) −N · 1 · s3
]

+ O(s4)

= s + s2 + 2s3 + O(s4). (7.38)

Continuing in this way, we find that

zN = s + s2 + 2s3 + 7s4 + 39s5 + O(s6). (7.39)

Now we can simply substitute the expansion for zN into (7.32) to get the expansion for A−1
N (and

hence for AN ) up to and including terms of order s4. The result is

AN = 1 + s + 4s2 + 26s3 + 231s4 + O(s5). (7.40)
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