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Abstract

For a graph G, let ck(G) be the number of spanning trees of G with maximum degree at

most k. For k ≥ 3, it is proved that every connected n-vertex r-regular graph G with r ≥ n
k+1

satisfies
ck(G)1/n ≥ (1− on(1))r · zk

where zk > 0 approaches 1 extremely fast (e.g. z10 = 0.999971). The minimum degree require-

ment is essentially tight as for every k ≥ 2 there are connected n-vertex r-regular graphs G

with r = bn/(k + 1)c − 2 for which ck(G) = 0. Regularity may be relaxed, replacing r with the

geometric mean of the degree sequence and replacing zk with z∗k > 0 that also approaches 1,

as long as the maximum degree is at most n(1− (3 + ok(1))
√

ln k/k). The same holds with no

restriction on the maximum degree as long as the minimum degree is at least n
k (1 + ok(1)).

AMS subject classifications: 05C05, 05C35, 05C30
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1 Introduction

For a graph G, let ck(G) be the number of spanning trees of G with maximum degree at most

k and let c(G) be the number of spanning trees of G. Computationally, these parameters are

well-understood: Determining c(G) is easy by the classical Matrix-Tree Theorem which says that

c(G) is equal to any cofactor of the Laplacian matrix of G, while determining ck(G) is NP-hard for

every fixed k ≥ 2. In this paper we look at these parameters from the extremal graph-theoretic

perspective. The two extreme cases, i.e. c(G) and c2(G), are rather well-understood. As for c(G),

Grone and Merris [9] proved that c(G) ≤ (n/(n− 1))n−1d(G)/2m where n and m are the number

of vertices and edges of G respectively, and d(G) is the product of its degrees. Note that this upper

bound is tight for complete graphs. Alon [1], extending an earlier result of McKay [11], proved that

if G is a connected r-regular graph, then c(G) = (r−o(r))n. Alon’s method gives meaningful results

already for r = 3, where the proof yields (1 − on(1))c(G)1/n ≥
√

2. Alon’s result was extended

by Kostochka [10] to arbitrary connected graphs with minimum degree r ≥ 3. He proved that

c(G) ≥ d(G)r−nO(ln r/r) and improved the aforementioned case of 3-regular graphs showing that
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(1 − on(1))c(G)1/n ≥ 23/4 and that the constant 23/4 is optimal. We mention also that Greenhill,

Isaev, Kwan, and McKay [8] asymptotically determined the expected number of spanning trees in

a random graph with a given sparse degree sequence.

The case c2(G) (the number of Hamilton paths) has a significant body of literature. All of the

following mentioned results hold, in fact, for counting the number of Hamilton cycles. First, we

recall that there are connected graphs with minimum degree n/2− 1 for which c2(G) = 0, so most

results concerning c2(G) assume that the graph is Dirac, i.e. has minimum degree at least n/2.

Dirac’s Theorem [6] proves that c2(G) > 0 for Dirac graphs. Significantly strengthening Dirac’s

theorem, Sárközy, Selkow, and Szemerédi [12] proved that every Dirac graph contains at least cnn!

Hamilton cycles for some small positive constant c. They conjectured that c can be improved to

1/2 − o(1). In a breakthrough result, Cuckler and Kahn [4] settled this conjecture proving that

every Dirac graph with minimum degree r has at least (r/e)n(1 − o(1))n Hamilton cycles. This

bound is tight as shown by an appropriate random graph. Bounds on the number of Hamilton

cycles in Dirac graphs expressed in terms of maximal regular spanning subgraphs were obtained

by Ferber, Krivelevich, and Sudakov [7]. Their bound matches the bound of Cuckler and Kahn for

graphs that are regular or nearly regular.

In this paper we consider ck(G) for fixed k ≥ 3. Observe first that ck(G)1/n ≤ c(G)1/n < d(G)1/n

(by simple counting or by the aforementioned result [9]). Thus, we shall express the lower bounds

for ck(G)1/n in our theorems in terms of constant multiples of d(G)1/n. Notice also that if G is

r-regular, then d(G)1/n = r.

Our first main result concerns connected regular graphs. It is not difficult to prove that every

connected r-regular graph with r ≥ n/(k + 1) has ck(G) > 0 (this also holds for k = 2 [3]). We

prove that ck(G) is, in fact, already very large under this minimum degree assumption. To quantify

our lower bound we define the following functions of k.

fk = 1− 1

e

k−3∑
i=0

1

i!
, gk =

2

e(k − 1)!
.

zk =


0.0494, for k = 3

0.1527, for k = 4

(1− (k + 1)(fk + gk))
gk(1− gk)1−gkgkgk , for k ≥ 5 .

It is important to observe that zk approaches 1 extremely quickly, as Table 1 shows.

Theorem 1.1. Let k ≥ 3 be given. Every connected n-vertex r-regular graph G with r ≥ n
k+1

satisfies

ck(G)1/n ≥ (1− on(1))r · zk .

The requirement on the minimum degree in Theorem 1.1 is essentially tight. In Subsection 4.3 we
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k 5 6 7 8 9 10 11

zk 0.843148 0.962200 0.991935 0.998565 0.999783 0.999971 0.999997

Table 1: The value of zk for some small k.

show that for every k ≥ 2 and for infinitely many n, there are connected r-regular graphs G with

r = bn/(k + 1)c − 2 for which ck(G) = 0. In light of this construction, it may be of some interest

to determine whether Theorem 1.1 holds with n/(k + 1)− 1 instead of n/(k + 1). Furthermore, as

our proof of Theorem 1.1 does not work for k = 2, we raise the following interesting problem.

Problem 1.2. Does there exist a positive constant z2 such that every connected n-vertex r-regular

graph G with r ≥ n
3 satisfies

c2(G)1/n ≥ (1− on(1))r · z2 .

One may wonder whether the regularity requirement in Theorem 1.1 can be relaxed, while

still keeping the minimum degree at n/(k + 1). It is easy to see that a bound on the maximum

degree cannot be entirely waved. Indeed, consider a complete bipartite graph with one part of

order (n − 2)/k. It is connected, has minimum degree (n − 2)/k > n/(k + 1), maximum degree

n − (n − 2)/k but it clearly does not have any spanning tree with maximum degree at most k.

However, if we place just a modest restriction on the maximum degree, we can extend Theorem

1.1. Let

z∗k =

(
1− 1

7k

)1− 1
7k
(

1

9k

) 1
7k

.

It is easy to see that z∗k approaches 1. For example, z∗20 > 0.956.

Theorem 1.3. There exists a positive integer k0 such that for all k ≥ k0 the following holds.

Every connected n-vertex graph G with minimum degree at least n
k+1 and maximum degree at most

n(1− 3
√

ln k/k) satisfies

ck(G)1/n ≥ (1− on(1))d(G)1/n · z∗k .

Finally, we obtain a lower bound on ck(G) where we have no restriction on the maximum degree

of G. Analogous to Dirac’s theorem, Win [13] proved that every connected graph with minimum

degree (n−1)/k has ck(G) > 0 (see also [5] for an extension of this result). Clearly, the requirement

on the minimum degree is tight as the aforementioned example of a complete bipartite graph shows

that there are connected graphs with minimum degree (n − 2)/k for which ck(G) = 0. We prove

that for all k ≥ k0, if the minimum degree is just slightly larger, then ck(G) becomes large.

Theorem 1.4. There exists a positive integer k0 such that for all k ≥ k0 the following holds. Every

3



connected n-vertex graph G with minimum degree at least n
k (1 + 3

√
ln k/k) satisfies

ck(G)1/n ≥ (1− on(1))d(G)1/n · z∗k .

Using Szemerédi’s regularity lemma, it is not too difficult to prove a version of Theorem 1.4

that works already for k ≥ 3 and where ck(G) is exponential in n. However, the bound we can

obtain by that method, after taking its n-th root, is not a positive constant multiple of d(G)1/n.

We do conjecture that the error term in the minimum degree assumption can be eliminated.

Conjecture 1.5. Let k ≥ 3. There is a constant z†k > 0 such that every connected n-vertex graph

G with minimum degree at least n
k satisfies

ck(G)1/n ≥ (1− on(1))d(G)1/n · z†k

where limk→∞ z
†
k = 1.

All of our theorems are based on two major ingredients. The first ingredient consists of proving

that G has many spanning forests, each with only a relatively small number of component trees,

and each having maximum degree at most k. However, the proof of this property varies rather

significantly among the various theorems and cases therein. We combine the probabilistic model

of Alon [1] for showing that there are many out-degree one orientations with certain properties,

together with a novel nibble approach to assemble edges from several out-degree one orientations.

The second ingredient consists of proving that each of the large spanning forests mentioned above

has small “edit distance” from a spanning tree with maximum degree at most k. Once this is

established, it is not difficult to deduce that G has many spanning trees with maximum degree at

most k.

In Section 2 we prove the edit-distance property. In Section 3 we introduce out-degree one

orientations and the multi-stage model which is the basis for our nibble approach. In Section 4 we

consider regular graphs and prove Theorem 1.1. In Section 5 we prove Theorems 1.3 and 1.4.

Throughout the paper we assume that the number of vertices of the host graph, always denoted

by n, is sufficiently large as a function of all constants involved. Thus, we refrain from repeatedly

mentioning this assumption. We also ignore rounding issues (floors and ceilings) whenever these

have no effect on the final statement of our results. We use the terminology G-neighbor of a vertex

v to refer to a neighbor of v in G, as opposed to a neighbor of v in spanning tree or a spanning

forest of G. The notation d(v) always denotes the degree of v in G. Other notions that are used

are standard, or defined upon their first use.
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2 Extending a bounded degree forest

The edit distance between two graphs on the same vertex set is the number of edges in the symmetric

difference of their edge sets. In this section we prove that the edit distance between a bounded

degree spanning forest and a bounded degree spanning tree of a graph is proportional to the

number of components of the forest, whenever the graph is connected and satisfies a minimum

degree condition.

Lemma 2.1. Let k ≥ 3 and let G be a connected graph with n vertices and minimum degree at least

n/(k + 1). Suppose that F is a spanning forest of G with m < n − 1 edges and maximum degree

at most k. Furthermore, assume that F has at most t vertices with degree k where t ≤ n/(6.8k).

Then there exists a spanning forest F ∗ of G with m+ 1 edges that contains at least m− 3 edges of

F . Furthermore, F ∗ has maximum degree at most k and at most t+ 4 vertices with degree k.

Proof. For a forest (or tree) with maximum degree at most k, its W-vertices are those with degree

k and its U-vertices are those with degree less than k. Denote the tree components of F by

T1, . . . , Tn−m. Let Ui 6= ∅ denote the U-vertices of Ti and let Wi denote the W-vertices of Ti. We

distinguish between several cases as follows:

(a) There is some edge of G connecting some ui ∈ Ui with some uj ∈ Uj where i 6= j.

(b) Case (a) does not hold but there is some Ti with fewer than n/(k + 1) vertices.

(c) The previous cases do not hold but there is some edge of G connecting some ui ∈ Ui to a vertex

in a different component of F .

(d) The previous cases do not hold.

Case (a). We can add to F the edge uiuj obtaining a forest with m + 1 edges which still has

maximum degree at most k. The new forest has at most t + 2 W-vertices since only ui and uj

increase their degree in the new forest.

Case (b). Let ui be some vertex with degree 1 or 0 in Ti (note that it is possible that Ti is a

singleton so that the degree of its unique vertex is indeed 0 in Ti). Since Ti has fewer than n/(k+1)

vertices, and since ui has minimum degree at least n/(k+ 1) in G, we have that ui has at least two

G-neighbors that are not in Ti. Let w1, w2 denote such neighbors. Notice that w1, w2 are W-vertices

of F as we assume Case (a) does not hold.

Assume first that w1, w2 are adjacent in F (in particular, they are in the same component of

F ). Let F ∗ be obtained from F by adding both edges uiw1 and uiw2 and removing the edge w1w2.

Note that F ∗ has m+ 1 edges, has m− 1 edges of F , and has maximum degree at most k. It also

has at most t + 1 W-vertices as only ui may become a new vertex of degree k (in fact, the degree

of ui in F ∗ is at most 3 so if k > 3 we still only have t W-vertices in F ∗).

We may now assume that w1, w2 are independent in F . Removing both of them from F further

introduces at least 2k−1 component trees denoted L1, . . . , Ls where s ≥ 2k−1. To see this, observe

first that if we remove w1, we obtain at least k nonempty components since w1 has degree k. If
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Ti

ui

Some other component of F

w1 w2u

L1

z

u’

Figure 1: Constructing F ∗ from F in Case (b) of Lemma 2.1 (here we use k = 3). The figure
depicts the component Ti containing ui and some other component containing w1 (and w2 in this
example). The red ovals depict the various Lj ’s obtained when removing w1 and w2. The denoted
L1 contains a vertex u of degree 1 in L1 (and degree smaller than 3 in F ) which has a neighbor u′

in G that also has degree smaller than 3 in F . The blue edges represent edges of G that are not
used in F . To obtain F ∗ we add uiw1, add uu′ and remove the edge w1z.

we then remove w2, we either obtain an additional set of k components (if w2 is not in the same

component of w1 in F ) or an additional set of k − 1 components (if w2 is in the same component

of w1 in F ).

Each Lj , being a tree, either has at least two vertices of degree 1, or else Lj is a singleton, in

which case it has a single vertex with degree 0 in Lj . If Lj is a singleton, then its unique vertex

has degree at most 2 in F as it may only be connected in F to w1 and w2. If Lj is not a singleton,

then let v1, v2 be two vertices with degree 1 in Lj . It is impossible for both v1, v2 to have degree

at least 3 in F as otherwise they are both adjacent to w1, w2 in F , implying that F is not a forest

(has a K2,2). In any case, we have shown that each Lj (whether a singleton or not) has a vertex

which is a U-vertex of F .

Consider now an Lj with smallest cardinality, say L1. Its number of vertices is therefore at

most
n

s
≤ n

2k − 1
. (1)

Let u be a vertex of L1 which is a U-vertex of F . By our minimum degree assumption on G, u has

at least n/(k + 1)− (|V (L1)| − 1) neighbors in G that are not in L1. By (1) we have that

n

k + 1
− (|V (L1)| − 1) ≥ n

k + 1
− n

2k − 1
>

n

6.8k
≥ t . (2)

It follows that u has a G-neighbor u′ not in L1 which is a U-vertex of F . Notice that u and u′

must be in the same component of F since we assume Case (a) does not hold. Since u′ is not in

L1, adding uu′ to F introduces a cycle that contains at least one of w1, w2. Assume wlog that the

cycle contains w1 and that z is the neighbor of w1 on the cycle (possibly z ∈ {u, u′}). We can now
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obtain a forest F ∗ from F by adding uu′, adding uiw1 and removing w1z. The obtained forest has

m+ 1 edges, has m−1 edges of F , has maximum degree at most k, and at most t+ 2 W-vertices as

only u, u′ can increase their degree in F ∗ to k. Figure 1 visualizes ui, u, u
′, w1, z, L1 and the added

and removed edges when going from F to F ∗.

Case (c). In this case, Ti has at least n/(k+1) vertices. Let wj ∈Wj be a G-neighbor of ui in a

different component Tj of F . Removing wj from Tj splits Tj\wj into a forest with k component trees

L1, . . . , Lk. So at least one of these components, say L1, has at most (n−|V (Ti)|−1)/k < n/(k+1)

vertices. Obtain a forest F ∗∗ from F be adding the edge uiwj and removing the unique edge of

Tj connecting wj to L1. The new forest also has m edges and has m − 1 edges of F . It also has

at most t + 1 W-vertices as only ui may become a new vertex of degree k. But in F ∗∗, there is a

component, namely L1, with fewer than n/(k + 1) vertices. Hence, we arrive at either Case (a) or

Case (b) for F ∗∗. So, applying the proofs of these cases to F ∗∗ (and observing that the number of

W-vertices in F ∗∗ is only t+ 1 so (2) still holds because of the slack in the sharp inequality of (2)),

we obtain a forest F ∗ with m + 1 edges, at least m − 2 edges of F , maximum degree at most k,

and at most t+ 3 W-vertices.

Case (d). Since G is connected, we still have an edge of G connecting some vertex wi ∈ Wi

with some wj ∈Wj . Without loss of generality, |V (Tj)| ≤ n/2. Removing wj from Tj splits Tj \wj
into a forest with k component trees L1, . . . , Lk. So at least one of these components, say L1, has

at most |V (Tj)|/k ≤ n/(2k) vertices. Let u be a vertex of L1 of degree 1 in F . So, u has at least

n/(k+ 1)−n/(2k) > n/(6.8k) ≥ t neighbors not in L1. It follows that u has a G-neighbor u′ which

is a U-vertex of F . Also notice that u′ ∈ Tj since we assume Case (a) does not hold. Now, let

F ∗∗ be obtained from F by adding the edge uu′ and removing the unique edge of Tj connecting

wj to L1. The new forest also has m edges and has m − 1 edges of F . It also has at most t + 1

W-vertices as only u′ may become a new vertex of degree k. But observe that in F ∗∗ the degree

of wj is only k − 1. Since wj has a G-neighbor (namely wi) in a different component of F ∗∗, we

arrive in F ∗∗ at either Case (a) or Case (b) or Case (c). So, applying the proofs of these cases to

F ∗∗ (and observing that the number of W-vertices in F ∗∗ is only t+ 1 so (2) still holds because of

the slack in the sharp inequality of (2)), we obtain a forest F ∗ with m + 1 edges, at least m − 3

edges of F , maximum degree at most k, and at most t+ 4 W-vertices.

By repeated applications of Lemma 2.1 where we start with a large forest and repeatedly increase

the number of edges until obtaining a spanning tree, we immediately obtain the following corollary.

Corollary 2.2. Let k ≥ 3 and let G be a connected graph with n vertices and minimum degree at

least n/(k+1). Suppose that F is a spanning forest of G with n−O(lnn) edges and maximum degree

at most k. Furthermore, assume that F has at most t vertices with degree k where t ≤ n/(7k). Then

there exists a spanning tree of G with maximum degree at most k where all but at most O(lnn) of

its edges are from F .
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3 From out-degree one orientations to bounded degree spanning

trees

Let G be a graph with no isolated vertices. An out-degree one orientation of G is obtained by letting

each vertex v of G choose precisely one of its neighbors, say u, and orient the edge vu as (v, u)

(i.e from v to u). Observe that an out-degree one orientation may have cycles of length 2. Also

note that an out-degree one orientation has the property that each component1 contains precisely

one directed cycle and that all cycles in the underlying graph of an out-degree one orientation are

directed cycles. Furthermore, observe that the edges of the component that are not on its unique

directed cycle (if there are any) are oriented “toward” the cycle. In particular, given the cycle, the

orientation of each non-cycle edge of the component is uniquely determined. Let H(G) denote the

set of all out-degree one orientations of G. Clearly, |H(G)| = d(G).

Most of our proofs use the probabilistic model of Alon [1]: Each v ∈ V (G) chooses independently

and uniformly at random a neighbor u and the edge vu is oriented (v, u). In this way we obtain a

uniform probability distribution over the sample space H(G). We let ~G denote a randomly selected

element of H(G) and let Γ(v) denote the chosen out-neighbor of v.

We focus on certain parameterized subsets of H(G). Let Hk,s(G) be the subset of all elements

of H(G) with maximum in-degree at most k − 1 and with at most s vertices of in-degree k − 1. If

s = n (i.e. we do not restrict the number of vertices with in-degree k − 1) then we simply denote

the set by Hk(G). Let H∗` (G) be the subset of all elements of H(G) with at most ` directed cycles

(equivalently, at most ` components). Our proofs are mostly concerned with establishing lower

bounds for the probability that ~G ∈ Hk,s(G) ∩H∗` (G). Hence we denote

Pk,s,`(G) = Pr[~G ∈ Hk,s(G) ∩H∗` (G)] .

Lemma 3.1. Let k ≥ 3 be given. Suppose that G is a connected graph with minimum degree at

least n/(k + 1). Then:

ck(G)1/n ≥ (1− on(1))d(G)1/nPk,n/(7k),lnn(G)1/n .

Proof. Let p = Pk,n/(7k),lnn(G). By the definition of p, we have that

|Hk,n/(7k)(G) ∩H∗lnn(G)| ≥ d(G)p .

Consider some ~G ∈ Hk,n/(7k)(G) ∩H∗lnn(G). As it has at most lnn directed cycles (and recall that

these cycles are pairwise vertex-disjoint as each belongs to a distinct component), it has at most

lnn edges that, once removed from ~G, turn it into a forest F with at least n−O(lnn) edges. Viewed

1A component of a directed graph is a component of its underlying undirected graph.
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as an undirected graph, F has maximum degree at most k (since the in-degree of each vertex of ~G

is at most k − 1 and the out-degree of each vertex of ~G is precisely 1). Thus, we have a mapping

assigning each ~G ∈ Hk,n/(7k)(G) ∩ H∗lnn(G) an undirected forest F . While this mapping is not

injective, the fact that ~G only has at most lnn components implies that each F is the image of at

most nO(lnn) distinct ~G. Indeed, given an undirected F , suppose it has t ≤ lnn components of sizes

s1, . . . , st. To turn it into an element of H(G), we must first add a single edge to each component

to give a cycle, and then choose the orientation of each cycle in each component, which implies

the orientation of non-cycle edges. Hence, the number of possible ~G obtained from F is at most∏t
i=1(2s

2
i ) ≤ nO(lnn). Furthermore, since ~G has at most n/(7k) vertices with in-degree k − 1, it

follows that F has at most n/(7k) vertices with degree k. By Corollary 2.2, there exists a spanning

tree T of G with maximum degree at most k where all but at most O(lnn) of its edges are from F .

Thus, we have a mapping assigning each ~G ∈ Hk,n/(7k)(G) ∩H∗lnn(G) a spanning tree T of G with

maximum degree at most k. While this mapping is not injective, the fact that the edit distance

between T and F is O(lnn) trivially implies that each T is the image of at most nO(lnn) distinct

F . Hence, we obtain that

ck(G) ≥ d(G)pn−O(lnn) .

Taking the n’th root from both sides of the last inequality therefore concludes the lemma.

We also require an upper bound for the probability that ~G has many components. The following

lemma is proved by Kostochka [10] (see Lemma 2 in that paper, applied to the case where the

minimum degree is at least n/(k + 1), as we assume).

Lemma 3.2. [10] Let G be a graph with minimum degree at least n/(k+ 1). The expected number

of components of ~G is at most (k + 1) lnn.

For ~G ∈ H(G), let B
~G
i denote the set of vertices with in-degree i. We will omit the superscript

and simply write Bi whenever ~G is clear from context.

We define the following K-stage model for establishing a random element of H(G). This model

is associated with a positive integer K and a convex sum of probabilities p1 + · · · + pK = 1. In

the first part of the K-stage model, we select uniformly and independently (with replacement) K

elements of H(G) as in the aforementioned model of Alon. Denote the selected elements by ~Gc for

c = 1, . . . ,K. Let Γc(v) denote the out-neighbor of v in ~Gc. In the second part of the K-stage

model, we let each vertex v ∈ V (G) choose precisely one of Γ1(v), . . . ,ΓK(v) where Γc(v) is chosen

with probability pc. Observe that the resulting final element ~G consisting of all n = |V (G)| selected

edges is also a uniform random element of H(G). Also note that for any given partition of V (G)

into parts V1, . . . , VK , the probability that all out-edges of the vertices of Vc are taken from ~Gc for

all c = 1, . . . ,K is precisely
∏
p
|Vc|
c .

As mentioned in the introduction, most of our proofs for lower-bounding ck(G) contain two

major ingredients. The first ingredient consists of using the K-stage model for a suitable K in

9



Theorem or case thereof K nibble step completion step combination

1.1, k ≥ 5 2 Lemma 4.4 Lemma 4.5 Lemma 4.6

1.1, k = 4 5 Lemma 4.8 Lemma 4.9 Lemma 4.10

1.1, k = 3 20 Lemma 4.8 Lemma 4.9 Lemma 4.10

1.3 2 Lemma 5.2 Lemma 5.3 Lemma 5.4

Table 2: A roadmap for the proofs of Theorems 1.1, 1.3, 1.4.

order to establish a lower bound for Pk,s,`(G) (with ` = lnn). This first ingredient further splits

into several steps:

a) The nibble step where we prove that with nonnegligible probability, there is a forest with a

linear number of edges consisting of edges of ~G1, . . . , ~GK−1 and which satisfies certain desirable

properties.

b) The completion step where we prove that given a forest with the properties of the nibble step

we can, with nonnegligible probability, complete it into an out-degree one orientation with certain

desirable properties using only the edges of ~GK .

c) A combination lemma which uses (a) and (b) above to prove a lower bound for Pk,s,`(G).

The second ingredient uses Lemma 3.1 applied to the lower bound obtained in (c) to yield the final

outcome of the desired proof. Table 2 gives a roadmap for the various lemmas used for establishing

steps steps (a) (b) (c), and the value of K used.

4 Proof of Theorem 1.1

In this section we assume that G is r-regular with r ≥ n/(k + 1). We will consistently be referring

to the notation of Section 3. When k ≥ 5 we will use the two-stage model (K = 2) and when

k ∈ {3, 4} (dealt with in the next subsection) we will need to use larger K (see Table 2).

4.1 The case k ≥ 5

We first need to establish several lemmas (the first lemma being straightforward).

Lemma 4.1. Let G be an r-regular graph with r ≥ n/(k + 1). For 0 ≤ i ≤ n, the probability that

v ∈ Bi (i.e., that v has in-degree i in ~G) is

Pr[v ∈ Bi] =

(
r

i

)
1

ri

(
1− 1

r

)r−i
≤ (1 + on(1))

1

i!e
.
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Furthermore, the in-degree of v in ~G is nearly Poisson as for all 0 ≤ i ≤ k,

Pr[v ∈ Bi] =
(
1±O(n−1)

) 1

i!e
.

Lemma 4.2. Let G be an r-regular graph with r ≥ n/(k+ 1). For all 0 ≤ i ≤ k and for any set X

of vertices of G it holds that

Pr

[ ∣∣∣∣|X ∩Bi| − |X|i!e
∣∣∣∣ > n2/3

]
<

1

n2
.

Proof. Consider the random variable |X ∩ Bi|. By Lemma 4.1, its expectation, denoted by X0, is

X0 = (1±O( 1
n)) |X|i!e = |X|

i!e ±On(1). Now, suppose we expose the edges of ~G one by one in n steps

(in each step we choose the out-neighbor of another vertex of G), and let Xj be the expectation of

|X ∩ Bi| after j steps have been exposed (so after the final stage we have Xn = |X ∩ Bi|). Then

X0, X1, . . . , Xn is a martingale satisfying the Lipschitz condition (each exposure increases by one

the in-degree of a single vertex), so by Azuma’s inequality (see [2]), for all λ > 0,

Pr
[
||X ∩Bi| −X0| > λ

√
n
]
< 2e−λ

2/2 .

Using, say, λ = n1/10 the lemma immediately follows.

Lemma 4.3. Let G be an r-regular graph with r ≥ n/(k+1). For all 3 ≤ t ≤ k the following holds:

With probability at least 1
10 , ~G has a set of at most 5.9n

3et! edges, such that after their removal, the

remaining subgraph has maximum in-degree at most t− 1.

Proof. Let

Q ~G,t =

n∑
i=t

(i− t+ 1)|Bi|

be the smallest number of edges we may delete from ~G in order to obtain a subgraph where all

vertices have in-degree at most t− 1. We upper-bound the expected value of Q ~G,t. By Lemma 4.1

we have that

E[Q ~G,t] =

n∑
i=t

(i− t+ 1)E[|Bi|] ≤ (1 + on(1))
n

e

(
n∑
i=t

(i− t+ 1)
1

i!

)
.

Now, for all t ≥ 4, each term in the sum
∑n

i=t(i− t+ 1) 1
i! is smaller than its predecessor by at least

a factor of 2.5, which means that for all n sufficiently large

E[Q ~G,t] ≤
5.3n

3et!
.

11



It is easily verified that for t = 3, the last inequality also holds since
∑∞

i=3
i−2
i! < 5.3/18. By

Markov’s inequality, we therefore have that with probability at least 1
10 , for t ≥ 3 it holds that

Q ~G,t ≤
5.9n

3et!
.

Thus, with probability at least 1
10 , we can pick a set of at most 5.9n

3et! edges of ~G, such that after

their removal, the remaining subgraph has maximum in-degree at most t− 1.

Lemma 4.4. Let G be an r-regular graph with r ≥ n/(k + 1). With probability at least 1
20 , ~G has

a spanning forest F such that:

(a) F has maximum in-degree at most k − 2.

(b) F has at least n− 2n
e(k−1)! edges.

(c) The number of vertices of F with in-degree at most k − 3 is at least (1− on(1))ne
∑k−3

i=0
1
i! .

Proof. By Lemma 4.3, with probability at least 1
10 we can remove at most 5.9n

3e(k−1)! edges from ~G,

such that after their removal, the remaining subgraph has maximum in-degree at most k − 2.

By Lemma 3.2, with probability at most 1
40 we have that ~G has more than 40(k + 1) lnn

components. Recalling that in ~G each component can be made a tree by removing a single edge

from its unique directed cycle, with probability at least 1− 1
40 we have that ~G can be made acyclic

by removing at most 40(k + 1) lnn edges.

By Lemma 4.2 applied to X = V (G), with probability at least 1 − (k − 1)/n2 > 1 − 1/40

we have that for all 0 ≤ i ≤ k − 3, the number of vertices of ~G with in-degree i is at least

n/(i!e) − n2/3 ≥ (1 − on(1))n/(i!e). Thus, with probability at least 1 − 1/40 there are at least

(1− on(1))ne
∑k−3

i=0
1
i! vertices of ~G with in-degree at most k − 3.

We therefore obtain that with probability at least 1
10 −

1
40 −

1
40 = 1

20 , the claimed forest exists

and has at least n− 5.9n
3e(k−1)! − 40(k + 1) lnn ≥ n− 2n

e(k−1)! edges.

Using the two-stage model, consider ~G1 and ~G2 as denoted in Section 3. We say that ~G1 is

successful if it has a spanning forest as guaranteed by Lemma 4.4. By that lemma, with probability

at least 1
20 , we have that ~G1 is successful. Assuming ~G1 is successful, designate a spanning forest F1

of it satisfying the properties of Lemma 4.4. Let X1 ⊂ V (G) be the set of vertices with out-degree

0 in F1. Thus, we have by Lemma 4.4 that |X1| ≤ 2n
e(k−1)! = ngk.

Now, consider the set of edges of ~G2 emanating from X1, denoting them by E2 = {(v,Γ2(v)) | v ∈
X1}. By adding E2 to F1 we therefore obtain an out-degree one orientation of G, which we denote

(slightly abusing notation) by E2 ∪ F1.

Lemma 4.5. Suppose that k ≥ 5. Given that ~G1 is successful, and given the corresponding forest

F1, the probability that (E2 ∪ F1) ∈ Hk−1(G) ∩H∗lnn(G) is at least

(1− (k + 1)(fk + gk)− on(1))ngk .
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Proof. Fix an arbitrary ordering of the vertices of X1, say v1, . . . , v|X1|. We consider the edges

(vi,Γ2(vi)) one by one, and let E2,i ∪ F1 be the graph obtained after adding to F1 the edges

(vj ,Γ2(vj)) for 1 ≤ j ≤ i. Also let E2,0 = ∅. We say that E2,i∪F1 is good if it satisfies the following

two properties:

(i) The in-degree of each vertex in E2,i ∪ F1 is at most k − 2.

(ii) Every component of E2,i ∪ F1 with fewer than n/ lnn vertices is a tree.

Trivially, E2,0 ∪ F1 = F1 is good, since F1 is a forest where the in-degree of each vertex is at

most k − 2. We estimate the probability that E2,i+1 ∪ F1 is good given that E2,i ∪ F1 is good.

Consider vertex vi+1. By Property (c) of Lemma 4.4, vi+1 has at most (1+on(1))nfk neighbors

with in-degree k − 2 in F1 (recall that fk = 1 − 1
e

∑k−3
i=0

1
i!). Thus, there is a subset S of at least

r − fk(1 + on(1))n− i neighbors of vi+1 in G which still have in-degree at most k − 3 in E2,i ∪ F1.

Now, if the component of vi+1 in E2,i∪F1 has fewer than n/ lnn vertices, then further remove from

S all vertices of that component. In any case, |S| ≥ r−fk(1+on(1))n− i−n/ lnn. The probability

that Γ2(vi+1) ∈ S is therefore at least

r − fk(1 + on(1))n− i− n
lnn

r
= 1−

fk(1 + on(1))n+ i+ n
lnn

r

≥ 1−
fk(1 + on(1))n+ 2n

e(k−1)! + n
lnn

n/(k + 1)

= 1− (k + 1)(fk + gk)− on(1) .

Now, to have Γ2(vi+1) ∈ S means that we are not creating any new components of size smaller than

n/ lnn, so all components of size at most n/ lnn up until now are still trees. It further means that

E2,i+1 ∪ F1 still has maximum in-degree at most k − 2. In other words, it means that E2,i+1 ∪ F1

is good. We have therefore proved that the final E2 ∪ F1 is good with probability at least

(1− (k + 1)(fk + gk)− on(1))|X1| ≥ (1− (k + 1)(fk + gk)− on(1))ngk .

Finally, observe that for E2∪F1 to be good simply means that it belongs to Hk−1(G)∩H∗lnn(G).

Lemma 4.6. Let k ≥ 5. Then,

Pk,0,lnn(G)1/n ≥ (1− on(1))zk .

Proof. Using the two-stage model, we have by Lemma 4.4 that ~G1 is successful with probability at

least 1
20 . Thus, by Lemma 4.5, with probability at least

1

20
(1− (k + 1)(fk + gk)− on(1))ngk

13



the following holds: There is an out-degree one orientation ~G consisting of x ≥ n − 2n
e(k−1)! edges

of ~G1, and hence at most n − x ≤ ngk edges of ~G2, which is in Hk−1(G) ∩ H∗lnn(G) (observe that

being in Hk−1(G) is the same as being in Hk,0, i.e. there are zero vertices with in-degree k−1 since

every vertex has maximum in-degree at most k − 2).

Assuming that this holds, let X be the set of vertices whose out-edge in ~G is from ~G1. Now let

p1 +p2 = 1 be the probabilities associated with the two-stage model where we will use p2 <
1
2 . The

probability that in the second part of the two-stage model, each vertex v ∈ X will indeed choose

Γ1(v) and each vertex v ∈ V (G) \X will indeed choose Γ2(v) is precisely

px1p2
n−x ≥ (1− p2)n−ngkp2ngk .

Optimizing, we will choose p2 = gk. Recalling that the final outcome of the two-stage model is a

completely random element of H(G), we have that

Pk,0,lnn(G) ≥ 1

20
(1− (k + 1)(fk + gk)− on(1))ngk(1− gk)n−ngkgkngk .

Taking the n’th root from both sides and recalling that zk = (1− (k+1)(fk+gk))
gk(1−gk)1−gkgkgk

yields the lemma.

Proof of Theorem 1.1 for k ≥ 5. By Lemma 4.6 we have that Pk,0,lnn(G)1/n ≥ (1 − on(1))zk. As

trivially Pk,0,lnn(G) ≤ Pk,n/(7k),lnn(G) we have by Lemma 3.1 that

ck(G)1/n ≥ (1− on(1))d(G)1/n(1− on(1))zk = (1− on(1))r · zk .

4.2 The cases k = 3 and k = 4

Lemma 4.5 doesn’t quite work when k ∈ {3, 4} as the constant 1− (k + 1)(fk + gk) is negative in

this case (f4 = 1− 2/e and g4 = 1/(3e)). To overcome this, we need to make several considerable

adjustments in our arguments. Among others, this will require using the K-stage model for K

relatively large (K = 20 when k = 3 and K = 5 when k = 4 will suffice). Recall that in this model

we have randomly chosen out-degree one orientations ~G1, . . . , ~GK . Define the following sequence:

qi =

1
e , for i = 1

qi−1

eqi−1 , for i > 1 .

Slightly abusing notation, for sets of edges F1, . . . , Fi where Fj ⊂ E(~Gj) we let ∪ij=1Fj denote the

graph whose edge set is the union of these edge sets.

14



Definition 4.7. For 1 ≤ i ≤ K − 1 we say that ~Gi is successful if ~Gi has a subset of edges Fi such

that all the following hold:

(a) i = 1 or ~Gi−1 is successful (so the definition is recursive).

(b) F1, . . . , Fi are pairwise-disjoint and ∪ij=1Fj is a forest.

(c) The maximum in-degree and maximum out-degree of ∪ij=1Fj is at most 1.

(d) ∪ij=1Fj has (1± on(1))nqi vertices with in-degree 0.

(e) For all v ∈ V (G) the number of G-neighbors of v having in-degree 0 in ∪ij=1Fj is (1±on(1))rqi.

(f) For all v ∈ V (G) the number of G-neighbors of v having out-degree 0 in ∪ij=1Fj is (1±on(1))rqi.

Lemma 4.8. For all 1 ≤ i ≤ K − 1, ~Gi is successful with probability at least 1
2i

.

Proof. We prove the lemma by induction. Observe that for i ≥ 2, it suffices to prove that, given

that ~Gi−1 is successful, then ~Gi is also successful with probability 1
2 . For the base case i = 1

it just suffices to prove that items (b)-(f) in Definition 4.7 hold with probability 1
2 without the

preconditioning item (a), so this is easier than proving the induction step; thus we shall only prove

the induction step. In other words, we assume that ~Gi−1 is successful and given this assumption,

we prove that ~Gi is successful with probability 1
2 .

For notational convenience, let F = ∪i−1j=1Fj . Let Xi−1 be the set of vertices with out-degree 0

in F . Since ~Gi−1 is successful we have that |Xi−1| = (1± on(1))nqi−1 (in a digraph with maximum

in-degree 1 and maximum out-degree 1, the number of vertices with in-degree 0 equals the number

of vertices with out-degree 0). Consider the set of edges of ~Gi emanating from Xi−1, denoting

them by Ei = {(v,Γi(v)) | v ∈ Xi−1}. By adding Ei to F we therefore obtain an out-degree one

orientation of G, which we denote by Ei ∪ F . We would like to prove that by deleting just a small

amount of edges from Ei, we have a subset Fi ⊂ Ei such that Fi ∪ F satisfies items (b)-(f) of

Definition 4.7. Fix some ordering of Xi−1, say v1, . . . , v|Xi−1|. Let Ei,h ∪ F be the graph obtained

after adding to F the edges (vj ,Γi(vj)) for 1 ≤ j ≤ h. Also let Ei,0 = ∅.
We start by taking care of Item (b). For 0 ≤ h < |Xi−1|, we call vh+1 friendly if the component

of vh+1 in Ei,h∪F has at most
√
n vertices and Γi(vh+1) belongs to that component. The probability

of being friendly is therefore at most
√
n/r, so the expected number of friendly vertices is at most

|Xi−1|
√
n/r ≤ (1 ± on(1))nqi−1

√
n/(n/5) < n2/3 (recall that we assume that r ≥ n/(k + 1) and

that k ∈ {3, 4} so r ≥ n/5). By Markov’s inequality, with probability p(b) = 1 − on(1), there are

at most n3/4 friendly vertices. But observe that removing from Ei ∪ F the edges of Ei emanating

from friendly vertices results in a digraph with maximum out-degree 1 in which every component

with at most
√
n vertices is a tree. Thus, with probability p(b) = 1 − on(1) we can remove a set

E∗i ⊂ Ei of at most n3/4 + n/
√
n = n3/4 +

√
n < 2n3/4 edges from Ei such that (Ei \ E∗i ) ∪ F still

constitutes a forest (recall that F is a forest since ~Gi−1 is successful).

We next consider Item (c). While trivially the maximum out-degree of Ei ∪ F is one (being

an out-degree one orientation), this is not so for the in-degrees. It could be that a vertex whose
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in-degree in F is 0 or 1 has significantly larger in-degree after adding Ei. So, we perform the

following process for reducing the in-degrees. For each v ∈ V (G) whose in-degree in Ei∪F is t > 1,

we randomly delete precisely t− 1 edges of Ei entering v thereby reducing v’s in-degree to 1 (note:

this means that if v’s in-degree in F is 1 we remove all edges of Ei entering it and if v’s in-degree

in F is 0 we just keep one edge of Ei entering it, and the kept edge is chosen uniformly at random).

Let E∗∗i be the edges removed from Ei by that process. Then we have that (Ei \ E∗∗i ) ∪ F has

maximum in-degree at most 1 and maximum out-degree at most 1.

We next consider Item (d). For u ∈ V (G), let Wu denote the G-neighbors of u in Xi−1. Since
~Gi−1 is successful, we have that |Wu| = (1 ± on(1))rqi−1. Let Z be the number of vertices with

in-degree 0 in Ei ∪ F . Suppose u has in-degree 0 in F . In order for u to remain with in-degree 0

in Ei ∪ F it must be that each vertex v ∈ Wu has Γi(v) 6= u. The probability of this happening is

precisely (1− 1/r)|Wu| = (1− 1/r)(1±on(1))rqi−1 . Since ~Gi−1 is successful, there are (1± on(1))nqi−1

vertices u with in-degree 0 in F . We obtain that

E[Z] = (1± on(1))nqi−1

(
1− 1

r

)(1±on(1))rqi−1

= (1± on(1))nqi .

We can prove that Z is tightly concentrated around its expectation as we have done in Lemma 4.2

using martingales. Let Z0 = E[Z] and let Zh be the conditional expectation of Z after the edge

(vh,Γi(vh)) of Ei has been exposed, so that we have Z|Xi−1| = Z. Then, Z0, Z1, . . . , Z|Xi−1| is a

martingale satisfying the Lipschitz condition (since the exposure of an edge can change the amount

of vertices with in-degree 0 by at most one), so by Azuma’s inequality, for every λ > 0,

Pr [ |Z − E[Z]| > λ|Xi−1|] < 2e−λ
2/2 .

In particular, Z = (1±on(1))nqi with probability p(d) = 1−on(1) (the on(1) term in the probability

can even be taken to be exponentially small in n).

We next consider Item (e) whose proof is quite similar to the proof of Item (d) above. Let Zv

denote the number of G-neighbors of v with in-degree 0 in Ei ∪ F . Since ~Gi−1 is successful, there

are (1± on(1))rqi−1 G-neighbors of v with in-degree 0 in F so the expected value of Zv is

E[Zv] = (1± on(1))rqi−1

(
1− 1

r

)(1±on(1))rqi−1

= (1± on(1))rqi .

As in the previous paragraph, we apply Azuma’s inequality to show that Zv = (1± on(1))rqi with

probability 1− on(1/n), so for all v ∈ V (G) this holds with probability p(e) = 1− on(1).

We finally consider Item (f) which is somewhat more delicate as we have to make sure that

after removal of E∗∗i , the vertices of Xi−1 that remain with out-degree 0 are distributed roughly

equally among all neighborhoods of vertices of G. Fix some u ∈ V (G), and consider again Wu,
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the G-neighbors of u in Xi−1, recalling that |Wu| = (1± on(1))rqi−1. Suppose v ∈ Wu. We would

like to estimate the probability that (v,Γi(v)) /∈ E∗∗i . For this to happen, a necessary condition

is that Γi(v) has in-degree 0 in F . As there are (1 ± on(1))rqi−1 G-neighbors of v with in-degree

0 in F , this occurs with probability qi−1(1 ± on(1)). Now, given that Γi(v) has in-degree 0 in F ,

suppose that Γi(v) has t in-neighbors in Ei. Then, the probability that (v,Γi(v)) /∈ E∗∗i is 1/t. As

the probability that Γi(v) has t in-neighbors in Ei (including v) is(
s− 1

t− 1

)
1

rt−1

(
1− 1

r

)s−t
= (1± on(1))

qt−1i−1
(t− 1)!eqi−1

where s = (1± on(1))rqi−1 is the number of G-neighbors of Γi(v) in Xi−1 \ {v}. We therefore have

that

Pr[(v,Γi(v)) /∈ E∗∗i ] = (1± on(1))qi−1

∞∑
t=1

1

t
·

qt−1i−1
(t− 1)!eqi−1

= (1± on(1))
(
1− e−qi−1

)
.

Since |Wu| = (1±on(1))rqi−1, we have from the last equation that the expected number of neighbors

of u with out-degree 0 in F ∪ (Ei \ E∗∗i ) is

(1± on(1))rqi−1e
−qi−1 = (1± on(1))rqi .

Once again, using Azuma’s inequality as in the previous cases, we have that the number of neighbors

of u with out-degree 0 in F ∪ (Ei \E∗∗i ) is (1± on(1))rqi with probability 1− o(1/n), so this holds

with probability p(f) = 1− on(1) for all u ∈ V (G).

Finally, we define Fi = Ei \ (E∗i ∪E∗∗i ) so items (b)-(f) hold for Fi ∪F with probability at least

1− (1− p(b))− (1− p(d))− (1− p(e))− (1− p(f)) > 1
2 (recall that |E∗i | = o(n) so its removal does

not change the asymptotic linear quantities stated in items (d),(e),(f)).

By Lemma 4.8, with probability at least 1
2i

, we have that ~Gi is successful. Assuming that ~Gi

is successful, let F1, . . . , Fi satisfy Definition 4.7. Let Xi be the set of vertices with out-degree 0 in

∪ij=1Fj . Since ~Gi is successful we have that |Xi| = (1±on(1))nqi. Consider the set of edges of ~Gi+1

emanating from Xi, denoting them by Ei+1 = {(v,Γi+1(v)) | v ∈ Xi}. By adding Ei+1 to ∪ij=1Fj

we therefore obtain an out-degree one orientation of G, which we denote by Ei+1 ∪ (∪ij=1Fj).

Lemma 4.9. Let i ≥ 4 2. Given that ~Gi is successful, and given the corresponding forest ∪ij=1Fj,

the probability that (Ei+1 ∪ (∪ij=1Fj)) ∈ H3,nqi(1±on(1))(G) ∩H∗lnn(G) is at least

(1− 5qi − on(1))nqi .

2We require this assumption so that the value 1−5qi used in the lemma, is positive. Indeed, already q4 = 0.162038...
satisfies this (observe also that qi = qi−1/e

qi−1 is monotone decreasing).
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Proof. Fix an arbitrary ordering of the vertices of Xi, say v1, . . . , v|Xi|. We consider the edges

(vh,Γi+1(vh)) one by one, and let Ei+1,h ∪ (∪ij=1Fj) be the graph obtained after adding to ∪ij=1Fj

the edges (v`,Γi+1(v`)) for 1 ≤ ` ≤ h. Also let Ei+1,0 = ∅. We say that Ei+1,h ∪ (∪ij=1Fj) is good if

it satisfies the following properties:

(i) The in-degree of each vertex of Ei+1,h ∪ (∪ij=1Fj) is at most 2.

(ii) Every component of Ei+1,h ∪ (∪ij=1Fj) with fewer than n/ lnn vertices is a tree.

(iii) The number of vertices with in-degree 2 in Ei+1,h ∪ (∪ij=1Fj) is at most h.

Trivially, Ei+1,0 ∪ (∪ij=1Fj) = ∪ij=1Fj is good, since by Definition 4.7, ∪ij=1Fj is a forest where

the in-degree of each vertex is at most 1. We estimate the probability that Ei+1,h+1 ∪ (∪ij=1Fj) is

good given that Ei+1,h ∪ (∪ij=1Fj) is good.

So, consider now the vertex vh+1. Since Ei+1,h ∪ (∪ij=1Fj) is assumed good, vh+1 has at most

h neighbors with in-degree 2 in Ei+1,h ∪ (∪ij=1Fj). Thus, there is a subset S of at least r − h G-

neighbors of vh+1 which still have in-degree at most 1 in Ei+1,h∪(∪ij=1Fj). If the component of vh+1

in Ei+1,h∪(∪ij=1Fj) has fewer than n/ log n vertices, then also remove all vertices of this component

from S. In any case we have that |S| ≥ r − h − n/ lnn. The probability that Γi+1(vh+1) ∈ S is

therefore at least

r − h− n
lnn

r
= 1−

h+ n
lnn

r
≥ 1−

nqi(1± on(1)) + n
lnn

n/5
= 1− 5qi − on(1) .

Now, to have Γi+1(vh+1) ∈ S means that we are not creating any new components of size smaller

than n/ lnn, so all components of size at most n/ lnn up until now are still trees and furthermore,

Ei+1,h+1 ∪ (∪ij=1Fj) still has maximum in-degree at most 2 and at most one additional vertex,

namely Γi+1(vh+1), which may become now of in-degree 2, so it has at most h + 1 vertices with

in-degree 2. Consequently, Ei+1,h+1 ∪ (∪ij=1Fj) is good. We have therefore proved that the final

Ei+1 ∪ (∪ij=1Fj) is good with probability at least

(1− 5qi − on(1))|Xi| ≥ (1− 5qi − on(1))nqi(1±on(1)) = (1− 5qi − on(1))nqi .

Finally, notice that the definition of goodness means that (Ei+1 ∪ (∪ij=1Fj)) ∈ H3,nqi(1±on(1))(G) ∩
H∗lnn(G).

Lemma 4.10. Let K ≥ 5 be given.

P4,0,lnn(G)1/n ≥ P3,nqK−1(1±on(1)),lnn(G)1/n

≥ (1− on(1))
(1− 5qK−1)

qK−1

K
.

Proof. The first inequality is trivial since an out-degree one orientation with maximum-in degree

at most 3 has zero vertices with in-degree 4 or larger. So, we only prove the second inequality.
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Consider the K-stage model, and let i = K − 1 ≥ 4. By Lemma 4.8, with probability at least 1
2i

,
~Gi is successful. Thus, by Lemma 4.9 and Definition 4.7, with probability at least

1

2i
(1− 5qi − on(1))nqi

the following holds: There is an out-degree one orientation ~G consisting of edges of ~Gj for j =

1, . . . ,K, at most nqi(1±on(1)) of which are edges of ~GK , which is in H3,nqi(1±on(1))(G)∩H∗lnn(G).

Assuming that this holds, for j = 1, . . . ,K let Xi be the set of vertices whose out-edge in ~G

is from ~Gj . Now, let p1, . . . , pK with p1 + · · · + pK = 1 be the probabilities associated with the

K-stage model. The probability that in the second part of the K-stage model, each vertex v ∈ Xj

will indeed choose Γj(v) is precisely
K∏
j=1

p
|Xj |
j .

Using pj = 1
K for all pj ’s and recalling that the final outcome of the K-stage model is a completely

random element of H(G), we have that

P3,nqi(1±on(1)),lnn(G)1/n ≥ 1

2i
(1− 5qi − on(1))nqi

(
1

K

)n
.

Taking the n’th root from both sides yields the lemma.

Proof of Theorem 1.1 for k ∈ {3, 4}. Consider first the case k = 4 where we will use K = 5. A

simple computation gives that qK−1 = q4 = 0.162038... so we have by Lemma 4.10 that

P4,0,lnn(G)1/n ≥ (1− on(1))
(1− 5q4)

q4

5
= (1− on(1))0.1527... .

As trivially P4,0,lnn(G) ≤ P4,n/28,lnn(G) we have by Lemma 3.1 that

c4(G)1/n ≥ (1− on(1))d(G)1/n(1− on(1))0.1527... = (1− on(1))d · 0.1527... .

Consider now the case k = 3 where we will use K = 20. A simple computation gives that qK−1 =

q19 = 0.045821... so we have by Lemma 4.10 that

P3,n/21,lnn(G)1/n ≥ P3,nq19(1±on(1)),lnn(G)1/n

≥ (1− on(1))
(1− 5q19)

q19

20
= (1− on(1))0.0494... .

We now have by Lemma 3.1 that

c3(G)1/n ≥ (1− on(1))d(G)1/n(1− on(1))0.0494... = (1− on(1))d · 0.0494... .

19



It is not too difficult to prove that if we additively increase the minimum degree requirement

in Lemma 2.1 by a small constant, then we can allow for many more vertices of degree k in that

lemma. This translates to an increase in the constants z3 and z4. For example, in the case k = 4 a

minimum degree of n/5 + 2 already increases z4 to about 0.4 (instead of z4 = 0.1527... above) and

in the case k = 3 a minimum degree of n/4 + 17 increases z3 to about 0.2 (instead of z3 = 0.0494...

above). However, we prefer to state Theorem 1.1 in the cleaner form of minimum degree exactly

n/(k + 1) for all k ≥ 3.

4.3 Regular connected graphs with high minimum degree and ck(G) = 0

In this subsection we show that the requirement on the minimum degree in Theorem 1.1 is essentially

tight. For every k ≥ 2 and for infinitely many n, there are connected r-regular graphs G with

r = bn/(k + 1)c − 2 for which ck(G) = 0. We mention that a construction for the case k = 2 is

proved in [3].

Let t ≥ k + 4 be odd. Let G0, . . . , Gk be pairwise vertex-disjoint copies of Kt. Designate three

vertices of each Gi for 1 ≤ i ≤ k where the designated vertices of Gi are vi,0, vi,1, vi,2. Also designate

k + 2 vertices of G0 denoting them by v0,0, . . . , v0,k+1. We now remove a few edges inside the Gi’s

and add a few edges between them as follows. For 1 ≤ i ≤ k, remove the edges vi,0vi,1 and vi,0vi,2

and remove a perfect matching on the t− 3 undesignated vertices of Gi. Notice that after removal,

each vertex of Gi has degree t− 2, except vi,0 which has degree t− 3. Now consider G0 and remove

from it all edges of the form v0,0v0,j for 1 ≤ j ≤ k + 1. Also remove a perfect matching on the

remaining t− k − 2 undesignated vertices of G0. Notice that after removal, each vertex of G0 has

degree t − 2, except v0,0 which has degree t − k − 2. Finally, add the edges v0,0vi,0 for 1 ≤ i ≤ k.

After addition, each vertex has degree precisely t − 2. So the obtained graph G is connected, has

n = (k+1)t vertices, and is r-regular for r = n/(k+1)−2. However, notice that any spanning tree

of G must contain all edges v0,0vi,0 for 1 ≤ i ≤ k and must also contain at least one edge connecting

v0,0 to another vertex in G0. Thus, v0,0 has degree at least k + 1 in every spanning tree.

Suppose next that k ≥ 2 is even and suppose that t ≥ k + 5 be odd. We slightly modify the

construction above. First, we now take G0 to be Kt+1. Now, there are k+ 3 designated vertices in

G0, denoted by v0,0, . . . , v0,k+2. The removed edges from the Gi for 1 ≤ i ≤ k stay the same. The

removed edges from G0 are as follows. We remove all edges of the form v0,0v0,j for 1 ≤ j ≤ k + 2.

We remove a perfect matching on the vertices v0,1, . . . , v0,k+2. We also remove a Hamilton cycle on

the t − k − 2 undesignated vertices of G0. Finally, as before, add the edges v0,0vi,0 for 1 ≤ i ≤ k.

After addition, each vertex has degree precisely t − 2. So the obtained graph G is connected, has

n = (k + 1)t+ 1 vertices, and is r-regular for r = (n− 1)/(k + 1)− 2 = bn/(k + 1)c − 2. However,

notice that as before, v0,0 has degree at least k + 1 in every spanning tree.
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5 Proofs of Theorems 1.3 and 1.4

In this section we prove Theorems 1.3 and 1.4. As their proofs are essentially identical, we prove

them together. We assume that k ≥ k0 where k0 is a sufficiently large absolute constant satisfying

the claimed inequalities. Although we do not try to optimize k0, it is not difficult to see from the

computations that it is a moderate value.

Consider some ~G ∈ H(G). An ordered pair of distinct vertices u, v ∈ V (G) is a removable edge

if Γ(u) = v (so in particular uv ∈ E(G)) and the in-degree of v in ~G is at least k − 1.

Lemma 5.1. Suppose that k ≥ k0. Let G be a graph with minimum degree at least δ = n/(k + 1)

and maximum degree at most ∆ = n(1−3
√

ln k/k). Then with probability at least 1
2 , ~G has at most

n/(14k) removable edges. The same holds if G has minimum degree at least δ∗ = n
k (1 + 3

√
ln k/k)

and unrestricted maximum degree.

Proof. Consider some ordered pair of distinct vertices u, v ∈ V (G) such that uv ∈ E(G). For

that pair to be a removable edge, it must hold that: (i) Γ(u) = v, and (ii) v has at least k − 2

in-neighbors in N(v)\u. As (i) and (ii) are independent, and since Pr[Γ(u) = v] = 1/d(u), we need

to estimate the number of in-neighbors of v in N(v) \ u, which is clearly at most v’s in-degree in
~G. So let Dv be the random variable corresponding to v’s in-degree in ~G. Observe that Dv is the

sum of independent random variables Dv =
∑

w∈N(v)Dv,w where Dv,w is the indicator variable for

the event Γ(w) = v.

Consider first the case where G has minimum degree at least δ and maximum degree at most

∆. In particular, Dv ≤ X where X ∼ Bin(∆, 1/δ).

E[X] =
∆

δ
= (k + 1)(1− 3

√
ln k/k) = k(1− ok(1)) .

Now let a = k − 2− E[X] = 3
√
k ln k(1− ok(1)). Then by Chernoff’s inequality (see [2] Appendix

A) we have that for sufficiently large k,

Pr[Dv ≥ k − 2] ≤ Pr[X ≥ k − 2] = Pr[X − E[X] ≥ a]

≤ e−a2/(2E[X])+a3/(2(E[X])2)

≤ e−(1−ok(1))9k ln k/(2k)+(1+ok(1))27k
3/2 ln3/2 k/(2k2)

≤ 1

k4
(3)

where the last inequality holds for k ≥ k0. It follows that the probability that u, v is a removable

edge is at most (1/d(u))/k4 ≤ 1/(δk4) ≤ 1/(nk2).

Consider next the case where G has minimum degree at least δ∗. In particular, Dv ≤ X where
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X ∼ Bin(n, 1/δ∗).

E[X] =
n

δ∗
=

k

1 + 3
√

ln k/k
= k(1− ok(1)) .

Now let a = k−2−E[X] = 3
√
k ln k(1−ok(1)). So as in (3), we obtain that Pr[Dv ≥ k−2] ≤ 1/k4.

It follows that the probability that u, v is a removable edge is at most 1/(δ∗k4) ≤ 1/(nk2).

As there are fewer than n2 ordered pairs to consider, the expected number of removable edges

is in both cases is at most n/k2. By Markov’s inequality, with probability at least 1
2 , ~G has at most

2n/k2 ≤ n/(14k) removable edges.

Lemma 5.2. Suppose that k ≥ k0. Let G be a graph with minimum degree at least δ = n/(k + 1)

and maximum degree at most ∆ = n(1− 3
√

ln k/k). With probability at least 1
4 , ~G has a spanning

forest F such that:

(a) F has maximum in-degree at most k − 2.

(b) F has at least n− n/(7k) edges.

The same holds if G has minimum degree at least δ∗ = n
k (1+3

√
ln k/k) and unrestricted maximum

degree.

Proof. By Lemma 3.2, with probability at most 1
4 we have that ~G has more than 4(k + 1) lnn

components. Recalling that in ~G each component can be made a tree by removing a single edge

from its unique directed cycle, with probability at least 3
4 we have that ~G can be made acyclic by

removing at most 4(k + 1) lnn edges. By Lemma 5.1, with probability at least 1
2 , ~G has at most

n/(14k) removable edges. So, with probability at least 3
4 −

1
2 = 1

4 we have a forest subgraph of ~G

with at least n− 4(k+ 1) lnn−n/(14k) ≥ n−n/(7k) edges in which all removable edges have been

removed. But observe that after removing the removable edges, each vertex has in-degree at most

k − 2.

Using the two-stage model, consider the graphs ~G1, ~G2 as denoted in Section 3. For a given

k ≥ k0, we say that ~G1 is successful if it has a spanning forest as guaranteed by Lemma 5.2. By

that lemma, with probability at least 1
4 , we have that ~G1 is successful. Assuming it is successful,

designate a spanning forest F1 of it satisfying the properties of Lemma 5.2. Let X1 ⊂ V (G) be the

set of vertices with out-degree 0 in F1. Thus, we have by Lemma 5.2 that |X1| ≤ n/(7k). Consider

the set of edges of the ~G2 emanating from X1, denoting them by E2 = {(v,Γ2(v)) | v ∈ X1}. By

adding E2 to F1 we therefore obtain an out-degree one orientation of G, which we denote by E2∪F1.

The following lemma is analogous to Lemma 4.5.

Lemma 5.3. Given that ~G1 is successful, and given the corresponding forest F1, the probability

that (E2 ∪ F1) ∈ Hk,n/(7k)(G) ∩H∗lnn(G) is at least (56)n/(7k).

Proof. Fix an arbitrary ordering of the vertices of X1, say v1, . . . , v|X1|. We consider the edges

(vi,Γ2(vi)) one by one, and let E2,i ∪ F1 be the graph obtained after adding to F1 the edges

22



(vj ,Γ2(vj)) for 1 ≤ j ≤ i. Also let E2,0 = ∅. We say that E2,i∪F1 is good if it satisfies the following

two properties:

(i) The in-degree of each vertex in E2,i ∪ F1 is at most k − 1.

(ii) Every component of E2,i ∪ F1 with fewer than n/ lnn vertices is a tree.

(iii) The number of vertices in E2,i ∪ F1 with in-degree k − 1 is at most i.

Note that E2,0 ∪ F1 = F1 is good, since F1 is a forest where the in-degree of each vertex is at

most k − 2. We estimate the probability that E2,i+1 ∪ F1 is good given that E2,i ∪ F1 is good. By

our assumption, vi+1 has at most i neighbors with in-degree k − 1 in E2,i ∪ F1. Thus, there is a

subset S of at least d(vi+1) − i neighbors of vi+1 in G which still have in-degree at most k − 2 in

E2,i ∪ F1. As in Lemma 4.5, we may further delete at most n/ lnn vertices from S in case the

component of vi+1 in E2,i ∪ F1 has fewer than n/ lnn vertices so that in any case we have that

|S| ≥ d(vi+1)− i− n/ lnn. The probability that Γ2(vi+1) ∈ S is therefore at least

d(vi+1)− i− n
lnn

d(vi+1)
≥ 1−

i+ n
lnn
n
k+1

≥ 1−
n
7k + n

lnn
n
k+1

≥ 5

6

(note that d(vi+1) ≥ n/(k + 1) trivially holds also in the assumption of Theorem 1.4). To have

Γ2(vi+1) ∈ S means that we are not creating any new components of size smaller than n/ lnn and

that E2,i+1 ∪ F1 has at most i + 1 vertices with in-degree k − 1. In other words, it means that

E2,i+1 ∪ F1 is good. We have therefore proved that the final E2 ∪ F1 is good with probability at

least (
5

6

)|X1|
≥
(

5

6

)n/(7k)
.

Finally, note that the goodness of E2 ∪ F1 means that it is in Hk,n/(7k)(G) ∩H∗lnn(G).

Lemma 5.4.

Pk,n/(7k),lnn(G)1/n ≥ (1− on(1))

(
1− 1

7k

)1− 1
7k
(

1

9k

) 1
7k

= (1− on(1))z∗k .

Proof. Considering the two-stage model, we have by Lemma 5.2 that with probability at least 1
4 ,

~G1 is successful. Thus, by Lemma 5.3, with probability at least

1

4

(
5

6

)n/(7k)
the following holds: There is an out-degree one orientation ~G consisting of x ≥ n − n/(7k) edges

of ~G1 and hence at most n/(7k) edges of ~G2, which is in Hk,n/(7k)(G) ∩ H∗lnn(G). Assuming that

this holds, let X be the set of vertices whose out-edge in ~G is from ~G1. Now, let p1 + p2 = 1 be the

probabilities associated with the two-stage model where we assume p2 <
1
2 . The probability that
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in the second part of the two-stage model, each vertex v ∈ X will indeed choose Γ1(v) and each

vertex v ∈ V (G) \X will indeed choose Γ2(v) is precisely

px1p
n−x
2 ≥ (1− p2)n−n/(7k)p2n/(7k) .

Optimizing, we will choose p2 = 1/(7k). Recalling that the final outcome of the two-stage model

is a completely random element of H(G), we have that

Pk,n/(7k),lnn(G) ≥ 1

4

(
5

6

) n
7k
(

1− 1

7k

)n− n
7k
(

1

7k

) n
7k

≥ 1

4

(
1− 1

7k

)n− n
7k
(

1

9k

) n
7k

.

Taking the n’th root from both sides yields the lemma.

Proof of Theorems 1.3 and 1.4. Combining Lemma 5.4 and Lemma 3.1 we have that

ck(G)1/n ≥ (1− on(1))d(G)1/nz∗k .
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