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Majority dynamics on sparse random graphs

Debsoumya Chakraborti∗ Jeong Han Kim† Joonkyung Lee‡ Tuan Tran§

Abstract

Majority dynamics on a graph G is a deterministic process such that every vertex updates
its ±1-assignment according to the majority assignment on its neighbor simultaneously at each
step. Benjamini, Chan, O’Donnell, Tamuz and Tan conjectured that, in the Erdős–Rényi ran-
dom graph G(n, p), the random initial ±1-assignment converges to a 99%-agreement with high
probability whenever p = ω(1/n).

This conjecture was first confirmed for p ≥ λn−1/2 for a large constant λ by Fountoulakis,
Kang and Makai. Although this result has been reproved recently by Tran and Vu and by
Berkowitz and Devlin, it was unknown whether the conjecture holds for p < λn−1/2. We
break this Ω(n−1/2)-barrier by proving the conjecture for sparser random graphs G(n, p), where
λ′n−3/5 logn ≤ p ≤ λn−1/2 with a large constant λ′ > 0.

1 Introduction

Majority dynamics on a graph G is a fundamental example of opinion exchange dynamics that
models human interactions in a society. Formally, every vertex v ∈ V (G) has its opinion st(v) on
Day t, where each st(v) updates simultaneously by the majority opinion on the neighbors at each
day. That is, for t ≥ 1,

st(v) =

{

sgn
∑

u∼v st−1(u) if
∑

u∼v st−1(u) 6= 0,

st−1(v) otherwise

and the initial opinions s0(v) are given. This model has been studied in various areas, including
combinatorics [1, 2, 7, 10, 16], psychology [3] and biophysics [13], since 1940s. For more discussions
on relevant models, we refer the reader to the survey [14].

In the study of majority dynamics, perhaps one of the most natural questions is what happens
after sufficiently many days. For every finite graphs G, Goles and Olivos [10] showed that each
st(v) always converges to a periodic behavior of length at most two, no matter what the initial
opinion s0 is. In other words, the dynamics eventually either alternates between two distinct
states or converges to a single state. Particularly interesting examples of the single state may be an
(1−ε)-proportion agreement or unanimity, i.e., |∑ st(v)| ≥ (1−2ε)n or |∑ st(v)| = n, respectively.
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The next natural question is then under what circumstances majority dynamics converges to
a single state. In particular, when does unanimity (or 99% agreement) appear? In the view
of probabilistic combinatorics, the most popular host graph G may be the Erdős–Rényi random
graph G(n, p), where each edge on the vertex set [n] := {1, 2, · · · , n} exists with probability p
independently at random. The first in-depth study in this direction was done by Benjamini, Chan,
O’Donnell, Tamuz and Tan [1], where they proposed the following intriguing conjecture.

Conjecture 1.1 ([1, Conjecture 1.5]). Let s0(v) be sampled uniformly at random for each v ∈ [n]
and let ε ∈ (0, 1] be given. Then with probability 1 − ε, the vertices in G(n, p) have an (1 − ε)-
proportion agreement |∑v s0(v)| ≥ (1− 2ε)n after sufficiently many days whenever p = ω(1/n).

In [1], the authors also conjectured that the converse of the statement above is true. That is,
given any fixed C > 0, G(n,C/n) eventually oscillates between two states with probability 1− o(1).
They actually gave positive evidences for both conjectures. First, it is proved in [1, Theorem 3] that
a random 4-regular graph never converges to the single state with probability 1−o(1). Second, as a
partial progress towards Conjecture 1.1, [1, Theorem 2] shows that, under the stronger assumption
p ≥ λn−1/2 for a large constant λ, the probability that unanimity appears is at least 0.4. Indeed, the
probability bound here is weaker than the conjectured value 1− ε, whereas unanimity is a slightly
stronger condition than the (1− ε)-proportion agreement. This was strengthened by Fountoulakis,
Kang and Makai [7, Theorem 1.1], who pushed the probability bound 0.4 in [1, Theorem 2] to
1 − ε and confirmed Conjecture 1.1 under the condition p ≥ λn−1/2 instead of p = ω(1/n), where
λ depends on ε.

There are other models with various alternative settings for the initial opinion s0 or the host
graphs G, e.g., on pseudorandom graphs [17], with linear bias on s0 [9], or on grids (or tori) G [8].
One of the most notable variants may be the one suggested by Tran and Vu [16], where s0 is
randomly chosen while the discrepancy between the number of vertices with distinct s0-values is
fixed, i.e., there are ⌈n/2⌉ + C vertices v with s0(v) = +1 for a fixed number C ≥ 0. Note that,
in contrast, the independent random initial assignment gives Ω(

√
n) bias in either direction with

probability 1 − ε, as will be proved in Lemma 3.1. Tran and Vu proved that C = 6 is enough to
force unanimity on the random graph G(n, 1/2) with probability strictly larger than .51 and, in
the same paper, reproved the Fountoulakis–Kang–Makai theorem.

Very recently, Berkowitz and Devlin [2] studied the Tran–Vu model further. They again reproved
the Fountoulakis–Kang–Makai theorem by using their “Central Limit Theorem” and also lowered
the constant discrepancy bound C = 6 by Tran and Vu to C = 2.

Despite these two alternative proofs of the Fountoulakis–Kang–Makai theorem and deeper stud-
ies on somewhat “sharper” models, nobody ever managed to settle Conjecture 1.1 beyond the
barrier p ≥ λn−1/2. To quote very recent work [4] in the area, “the study of majority dynamics
for p = o(n−1/2) imposes immense complications.” Our main result is to confirm Conjecture 1.1 for
sparser random graphs G(n, p) with λ′n−3/5 log n ≤ p ≤ λn−1/2, thereby breaking the barrier for
the first time.

Theorem 1.2. Let s0(v) be sampled uniformly at random for each v ∈ [n] and let ε ∈ (0, 1] and
λ > 0 be given. Then there exist n0 and λ′ such that, with probability at least 1− ε, the vertices in
G(n, p) reach the unanimous state sgn

∑

v s0(v) after six days whenever λ′n−3/5 log n ≤ p ≤ λn−1/2

and n ≥ n0.

Together with the Fountoulakis–Kang–Makai theorem, this extends the range where Conjec-
ture 1.1 is settled further to p ≥ λ′n−3/5 log n. However, the full Conjecture 1.1 still remains
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open and there seem to be a substantial amount of technical obstacles to overcome, which will be
discussed in due course.

Somewhat analogously to [2, 16], our strategy is to analyze the dynamics under the “sharpest”
initial setting carefully. Let r0 be a ±1-assignment on [n] obtained by choosing ⌈n2 ⌉ vertices v
uniformly at random to assign +1 while giving −1 to the remaining ⌊n2 ⌋ vertices and let rt, t > 0,
be the Day t opinion resulting from majority dynamics with the initial opinion r0. Then the
uniform random choice of s0 resembles an alteration of r0 obtained by turning Ω(

√
n) −1’s to +1’s,

which produces more +1’s on Day 1 and hence proves a nontrivial shift on
∑

v s2(v). To chase this
effect of the alteration, we call a vertex v γ-almost-positive if

∑

w∈N(v) r1(w) > −γp3/2n, which are
“potentially positive” vertices in a rough sense. Arguably the following is our key lemma, which
shows that slightly more than a half of the vertices are γ-almost-positive with probability 1− o(1).

Lemma 1.3. For λ > 0, there exists λ′ > 0 such that the following holds: For every γ > 0, there
is α > 0 such that the number of γ-almost-positive vertices in G = G(n, p) with λ′n−3/5 log n ≤ p ≤
λn−1/2 is at least n

2 + αpn3/2 with probability 1− o(1).

This paper is organized as follows. In Section 2, we give some basic definitions and tools,
which may be skipped by experienced readers. The proof of Theorem 1.2 will be given throughout
Sections 3 and 4. In particular, Section 3 contains the main new ideas to analyze the first two days,
including the proof of Lemma 1.3 at the end of the section. In Section 4, the shift of s2 obtained
by using Lemma 1.3 will show that unanimity must appear by Day 6.

2 Preliminaries

An event An that depends on the parameter n occurs with high probability (or briefly, w.h.p.) if
P[An] tends to 1 as n tends to infinity. The notation x = a±bmeans the inequality a−b ≤ x ≤ a+b.
We use the standard asymptotic notation such as O, o,Ω, ω and Θ to avoid carrying numerous
constants when estimating nonnegative functions. For instance, yn = xn ±O(n) means that |yn −
xn| = O(n). In addition, f(n) ≫ g(n) for nonnegative f and g means limn→∞ g(n)/f(n) = 0. The
parameter n that represents the number of vertices in G(n, p) will be assumed to be large enough
whenever necessary. Logarithms will always be understood to be base e. We denote by Bin(n, p)
the binomial distribution with n independent trials of one-probability p.

One of the most frequently used probabilistic tools in what follows is the Chernoff bound, due
to Chernoff [5] and to Okamoto [15]. We use the version stated by Janson [11, Theorem 1].

Lemma 2.1 (The Chernoff bound). Let X =
∑n

i=1 Xi, where Xi are independent Bernoulli variable
with P[Xi = 1] = pi. Let µ = E[X] =

∑n
i=1 pi. Then for t ≥ 0,

(i) P[X ≥ µ+ t] ≤ e
− t2

2µ+2t/3 and

(ii) P[X ≤ µ− t] ≤ e
− t2

2µ .

An easy consequence of the Chernoff bound is the following concentration result.

Lemma 2.2. Let X ∼ Bin(n, p) and let λ > 0. Then there exists a constant C > 0 such that, for
n large enough,

(i) If p ≥ λ/n, then P
[

X = np± C
√
np log n

]

≥ 1− 1/n6 and
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(ii) If p ≤ λ/n, then P[X ≤ C log n] ≥ 1− 1/n3.

Proof. (i) Let t = C
√
np log n in Lemma 2.1. Then for large enough constant C,

P[|X − np| ≥ t] = exp

(

− C2np log2 n

2np+ 2
3C

√
np log n

)

≤ exp

(

− C2
√
λ log2 n

2
√
λ+ 2

3C log n

)

≤ 1/n6.

(ii) Again, for large C,

P[X ≥ C log n] ≤ P[X ≥ np+ (C − λ) log n] ≤ exp

(

− (C − λ)2 log2 n

2λ+ 2
3(C − λ) log n

)

≤ 1/n3.

We use the following version of the Berry–Esseen inequality to estimate possibly non-binomial
distributions.

Theorem 2.3 (see, e.g., [6]). There is a universal constant C0 such that the following holds: Let
X1,X2, . . . ,Xn be independent random variables with zero mean, variances E(X2

i ) = σ2
i > 0, and

the absolute third moments E(|Xi|3) = ρi < ∞. Then

sup
x∈R

∣

∣

∣

∣

P

[∑n
i=1Xi

σX
≤ x

]

− Φ(x)

∣

∣

∣

∣

≤ C0σ
−3
X

n
∑

i=1

ρi,

where σ2
X is the variance of X =

∑n
i=1Xi, i.e., σ

2
X =

∑n
i=1 σ

2
i , and Φ(x) is the cumulative distribu-

tion function of the standard normal variable. In particular, if |Xi| ≤ M for an absolute constant
M > 0 almost surely, then the RHS is O(σ−1

X ).

When using the Berry–Esseen bound, we need some simple facts about the function Φ.

Lemma 2.4. Let Ψ(x) := 1 − Φ(x) be the probability that a standard normal variable takes value
higher than x, i.e., Ψ(x) = 1√

2π

∫∞
x e−t2/2dt. Then

(i) Ψ is a contraction, i.e., |Ψ(x)−Ψ(y)| ≤ |x− y|;

(ii) for x, y with x + y < 0 and |x|+ |y| ≤ c for a constant c, there exists C > 0 only depending
on c such that Ψ(x) + Ψ(y) ≥ 1− C(x+ y).

Proof. (i) |Ψ(x)−Ψ(y)| =
∣

∣

∣

1√
2π

∫ y
x e−t2/2 dt

∣

∣

∣
≤ |x− y|.

(ii) Let C = (2π)−1/2e−c2/2. Then

Ψ(x) + Ψ(y) = 1 +
1√
2π

∫ −y

x
e−t2/2 dt ≥ 1 +

∫ −y

x
C dt = 1−C(x+ y).

The rest of this section includes various lemmas that approximate binomial variables to one
another. We omit the proof of the first lemma below, which can be found, e.g., in [2, Lemma 9].

Lemma 2.5. Let X ∼ Bin(n, p) and Y ∼ Bin(m, p) be independent. There is a universal constant
C (independent of m,n, and p) such that for all t we have

∣

∣P[X − Y = t+ 1]− P[X − Y = t]
∣

∣ ≤ C

(m+ n)p(1− p)
.
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Lemma 2.6. Let X ∼ Bin(n, p) and Y ∼ Bin(m, p) be independent. Suppose that 1
n ≪ p ≪ 1

logn

and that |n−m| ≤ √
n log n. Then P[X = Y ] = Θ

(

1√
np

)

and P[X ≥ Y ] = 1
2 ±O

(1+|n−m|p√
np

)

.

Proof. Since X − Y has mean (n −m)p and standard deviation σ =
√

(n +m)p(1− p), it follows
from Chebyshev’s inequality that

P [|X − Y − (n−m)p| ≤ 2σ] ≥ 3/4. (1)

Now let r := maxj P[X − Y = j]. Then (1) implies r = Ω( 1σ ) = Ω( 1√
np). The probability mass

function of X − Y is unimodal and attains the maximum at one of the two closest integers to the
mean (n −m)p. Thus, by Lemma 2.5, P[X = Y ] ≥ r − C · |n−m|p+1

(n+m)p(1−p) ≥ r/2. Here C > 0 is the

constant given by Lemma 2.5. The same lower bound r/2 in fact holds for any P[X = Y + j] with
j = (n−m)p± σ

4C . Hence, r = O
(

1
σ

)

= O
(

1√
np

)

. Therefore, P[X = Y ] = Θ(r) = Θ
(

1√
np

)

.

Without loss of generality we may assume that n ≥ m. We write

P[X ≥ Y ] = P[X − Y ≥ (n−m)p] + P[0 ≤ X − Y < (n−m)p].

As maxj P[X − Y = j] = O
(

1√
np

)

, we get P[0 ≤ X − Y < (n − m)p] = O
(1+(n−m)p√

np

)

. Moreover,

Theorem 2.3 gives P[X − Y ≥ (n−m)p] = Φ(0)±O
(

1
σ

)

= 1
2 ±O

(

1√
np

)

. Thus, it follows that

P[X ≥ Y ] =
1

2
±O

(

1 + (n−m)p√
np

)

,

as desired.

Lemma 2.7. Let Z1, Z2,W1,W2 be mutually independent random variables with nonnegative inte-
ger values. For Z := Z1 + Z2 and W := W1 +W2,

−E[W2]max
k

P [Z1 −W1 = k] ≤ P [Z −W ≥ ℓ]− P [Z1 −W1 ≥ ℓ] ≤ E[Z2]max
k

P [Z1 −W = k] .

Proof. Note first that

P[Z −W ≥ ℓ]− P[Z1 −W ≥ ℓ] = P [Z1 + Z2 −W ≥ ℓ and Z1 −W < ℓ]

=

∞
∑

k=1

P[Z1 −W = ℓ− k and Z2 ≥ k]

=

∞
∑

k=1

P[Z1 −W = ℓ− k]P[Z2 ≥ k] , (2)

where the last equality uses independence. An analogous argument also gives

P [Z1 −W1 ≥ ℓ]− P [Z1 −W ≥ ℓ] = P [Z1 −W1 ≥ ℓ and Z1 −W1 −W2 < ℓ]

=
∞
∑

k=1

P[Z1 −W1 = ℓ+ k − 1 and W2 ≥ k]

=
∞
∑

k=1

P[Z1 −W1 = ℓ+ k − 1]P[W2 ≥ k] .
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Substituting this into (2) yields

P [Z −W ≥ ℓ]− P [Z1 −W1 ≥ ℓ]

=

∞
∑

k=1

(

P [Z1 −W = ℓ− k] · P [Z2 ≥ k]− P [Z1 −W1 = ℓ+ k − 1] · P [W2 ≥ k]
)

.

The desired inequalities follow from the fact
∑∞

k=1 P[U ≥ k] = E[U ] for any non negative integer
valued random variable U .

Corollary 2.8. Let X ′, Y ′,X, and Y be mutually independent random variables with Bin(ni, p)
distributions, i = 1, 2, 3, 4, respectively. Then

P[X ′ − Y ′ ≥ ℓ] = P[X − Y ≥ ℓ]±O

(

p∆√
pn0

)

,

where n0 = minni and ∆ := max{|n1 − n3|, |n2 − n4|}.

Proof. As done in (1), it is easy to prove the fact that the maximum probability mass of U1 − U2

is O(1/
√

min{m1,m2}p), where Ui ∼ Bin(mi, p), i = 1, 2, are independent.
Observe that P[X ′−Y ′ ≥ ℓ] is non-decreasing in n1 and non-increasing in n2. So we can assume

w.l.o.g. that n1 ≥ n3 and n2 ≤ n4. We apply Lemma 2.7 twice: First, (Z1,W1) = (X ′, Y ′) and
(Z,W ) = (X ′, Y ) and then (Z1,W1) = (X,Y ) with the same (Z,W ). As both P[X ′ − Y ′ ≥ ℓ] and

P[X − Y ≥ ℓ] are P[X ′ − Y ≥ ℓ]±O
(

p∆√
pn0

)

, the desired estimate holds by triangle inequality.

3 Morning and evening on Day 0 and the next two days

In what follows, s0 always denotes the uniform random ±1-assignment. That is, we sample each
s0(v) uniformly at random from ±1 and s0(v), v ∈ [n], are mutually independent. Our starting
point is to observe that the random initial opinion s0 makes a shift of magnitude

√
n with high

probability. This is in fact a standard anti-concentration result also given in [7, Lemma 3.1], but
we give a proof for completeness.

Lemma 3.1. For ε > 0, there is c > 0 such that P
[

|∑v s0(v)| ≥ 2c
√
n
]

≥ 1− ε.

Proof. The Berry–Esseen bound, Theorem 2.3, gives P
[
∑

v s0(v) ≤ x
√
n/2

]

= Φ(x) ± O (1/
√
n).

Choosing x < 0 such that Φ(x) = 1/2 − ε/3 gives, with c := −x/4,

P

[

∑

v

s0(v) ≤ −2c
√
n
]

≥ Φ(x) +O
(

1/
√
n
)

= 1/2− ε/3 −O
(

1/
√
n
)

.

By symmetry, P
[

|∑v s0(v)| ≥ 2c
√
n
]

= 2P
[
∑

v s0(v) ≤ −2c
√
n
]

≥ 1− 2ε/3 −O (1/
√
n).

Let U be the event that unanimity is achieved after a finite number of days. Since the edges of
G = G(n, p) are sampled independently from the initial opinion s0, U only depends on the value
S0 :=

∑

v s0(v) (and G = G(n, p)) rather than what precisely s0 is. In fact, it only depends on |S0|
by symmetry. Moreover, by monotonicity, if |S0| increases, then U is more likely to occur. Thus,
by Lemma 3.1, for ε > 0 there exists c > 0 such that

P[U ] ≥ P
[

U
∣

∣|S0| ≥ 2c
√
n
]

· P
[

|S0| ≥ 2c
√
n
]

≥ P
[

U
∣

∣|S0| = 2c
√
n
]

− ε, (3)
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where the constant c is chosen to guarantee that c
√
n is an integer. Hence, this “constant” c may

slightly vary depending on n, although within the range of ±1. For brevity, we assume that c is a
constant and c

√
n is an integer throughout this section.

The conditional probability space given |S0| = 2c
√
n can be interpreted by “splitting” the initial

assignment into two steps, namely morning and evening on Day 0. In the morning, we choose ⌈n2 ⌉
vertices v to assign +1 and put −1 to the remaining ⌊n2 ⌋ vertices. That is, r0 defined in the
introduction. We then turn signs of randomly chosen c

√
n vertices v with r0(v) = −1, which we

call swing vertices, from −1 to 1 to obtain a new ±1-assignment s̃0. To distinguish r0 and s̃0 from
the initial opinion s0, we call r0 and s̃0 the morning opinion and the evening opinion, respectively.
We also denote by s̃t, t > 0, the Day t opinion resulting from majority dynamics starting with s̃0.
Then, by (3),

P
[

U
∣

∣|S0| = 2c
√
n
]

= P
[

U
∣

∣s0 = s̃0
]

for each fixed instance of s̃0. Therefore, the following main result implies Theorem 1.2. Note that s̃0
depends on the constant c > 0.

Theorem 3.2. For ε > 0 and λ > 0 there exist c, λ′ > 0 such that P
[

U
∣

∣s0 = s̃0
]

≥ 1− ε whenever

λ′n−3/5 log n ≤ p ≤ λn−1/2.

To summarize, there are three types of random instances:

(1) The edges of G = G(n, p);

(2) The morning opinion r0 chosen uniformly at random among those with exactly ⌈n/2⌉ 1’s;

(3) The c
√
n swing vertices chosen uniformly at random from ⌊n/2⌋ vertices v with r0(v) = −1.

The edges of G = G(n, p) appear independently from (2) and (3). Note that (3) is not independent
from (2), as we turn the signs of those vertices v with r0(v) = −1. The distribution s̃0 depends
on both (2) and (3). We may also say that s̃0 is obtained by “changing” r0 according to (3). The
independence allows us to analyze probability while swapping the order of the random instances.
For example, exposing the events in the order (1), (2) and (3) is the same as exposing some edges
in (1) first, (2) and (3) second and then exposing the rest of the edges.

Our plan is to compare the two parallel consequences of majority dynamics with the morning
opinion r0 and the evening opinion s̃0, respectively. As sketched roughly in the introduction, if
∑

w∈N(v) r1(w) is “almost-positive”, then the vertex v is highly likely to satisfy s̃2(v) = +1. That
is, such a vertex v has “many” neighbors that change their signs on Day 1 by the effect of swing
neighbors and hence, s̃2(v) = +1.

As the number of such almost-positive vertices v is slightly larger than n/2 by Lemma 1.3,
∑

v s̃2(v) evaluates to a non-negligible positive value. This is formalized by Lemma 3.3 below. In
what follows in this section, ε ∈ (0, 1) and λ > 0 are fixed constants and we assume G = G(n, p)
with λ′n−3/5 log n ≤ p ≤ λn−1/2, where λ′ will be suitably chosen in the proofs.

Lemma 3.3. For each c > 0, there exists α > 0 such that
∑

v∈V (G) s̃2(v) ≥ αpn3/2 w.h.p.

Proof. By exposing all the morning opinions r0(v), we may assume that r0 is fixed. We say that a
vertex w is unstable if

∑

u∈N(w) r0(u) = 0. That is, a single swing neighbor is enough to “change”
the value of r1(w). Given v ∈ V (G), let N−(v) and N+(v) be the set of neighbors u of v with
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r0(u) = −1 and r0(u) = +1, respectively. Let Bv be the event that the number of unstable vertices
in N−(v) with a swing neighbor is at most δp3/2n, i.e.,

#
{

w ∈ N−(v)
∣

∣

∣
w is unstable and has a swing neighbor

}

≤ δp3/2n,

where δ > 0 will be chosen later. We claim that P[Bv] ≤ 1/n2. First, we expose the edges incident
to v. Once all the neighbours of v are revealed, we also expose the edges in N(v). Then by the
Chernoff bound (or Lemma 2.2), there exists a constant C > 0 such that with probability at least
1−O(n−3) we have

(i) both |N−(v)| and |N+(v)| are between pn/2± n1/3.

(ii) each w ∈ N(v) has at most C log n neighbors in N(v).

We condition on the above events. For w ∈ N(v), suppose that we expose all the edges incident to w.
Let a(w) :=

∑

u∈N(w)∩N(v) r0(u). Then w is unstable with probability P[Y1−Y2+a(w)+r0(v) = 0],
where Yi ∼ Bin(ni, p) and n1 and n2 are vertices out of {v}∪N(v) with r0 = +1 and −1, respectively.
As |n1−n2| ≤

√
n log n, Lemmas 2.5 and 2.6 give that w is unstable with probability Θ

(

1√
pn

)

. Now

sample the swing vertices. Then

P
[

w has a swing neighbor
∣

∣w is unstable
]

= 1−
(⌊n/2⌋ − |N−(w)|

c
√
n

)/(⌊n/2⌋
c
√
n

)

≥ 1−
(

n/2− pn/3

n/2

)c
√
n

≥ 1− e−(2c/3)p
√
n

≥ min
{

(c/3)p
√
n, 1/4

}

≥ c′p
√
n,

where the first inequality follows from the fact that |N−(w)| ≥ pn/3 and
(x
k

)/(y
k

)

≤ (x/y)k for

k ≤ x ≤ y and the last uses the assumption p ≤ λ√
n
to obtain a constant c′ > 0. Let Xw be the

indicator variable of the event that w is unstable and has a swing neighbor. Then

E[Xw] ≥ c′p
√
n ·Θ

(

1√
pn

)

= ξ
√
p

for some ξ > 0. Moreover, Xw, w ∈ N(v), are mutually independent given the edges in v∪N(v) are
fixed. Indeed, suppose we expose all the swing vertices first and then expose the edges incident to
each w ∈ N(v) that are not contained in N(v). Since each edge appears independently at random
and is also independent from the choice of r0 and the swing vertices, Xw’s are independent too. Let
X ∼ B(pn/3, ξ

√
p). Then

∑

w∈N−(v) Xw stochastically dominates X, i.e., P
[
∑

w∈N−(v) Xw ≤ x
]

≤
P[X ≤ x] for each x ∈ R, since

∑

w∈N−(v) Xw is the sum of at least pn/3 independent Bernoulli
variables with one-probability at least ξ

√
p. Then, by choosing δ = ξ/2, we conclude that

P[Bv] ≤ P





∑

w∈N(v)

Xw ≤ δp3/2n



 ≤ O(n−3) + P[X ≤ δp3/2n]

≤ O(n−3) + e−ξp3/2n/4 ≤ 1/n2.

Indeed, the second inequality follows from conditioning on each edge instance on v ∪ N(v) that
satisfies (i) and (ii). Then the Chernoff bound proves the next inequality.

8



By the claim, with probability at least 1−O(1/n), no Bv occurs. That is, for c′ = ξ/2,

#







w ∈ N−(v)

∣

∣

∣

∣

∣

∑

u∈N(w)

r0(u) = 0, w has a swing neighbor







≥ c′p3/2n (4)

holds for every v ∈ V (G). Lemma 1.3 with the choice γ = c′/2 then implies that w.h.p. there are
at least n

2 + αpn3/2 vertices v that satisfies both (4) and

∑

w∈N(v)

r1(w) > −c′

2
p3/2n. (5)

For these vertices v, s̃2(v) = +1, as all w ∈ N−(v) that is unstable and has a swing neighbor must
turn to s̃1(w) = +1. Thus,

∑

v s̃2(v) ≥ αpn3/2 w.h.p.

Remark. The heuristic introduced in [1] to support Conjecture 1.1 roughly predicts that the bias
|
∑

v st(v)| expands by a factor of
√
np at each step. As |

∑

v s0(v)| = Ω(
√
n) with probability

1 − ε as shown in Lemma 3.1, |∑v s2(v)| should be Ω(pn3/2) according to the prediction. This is
precisely what Lemma 3.3 obtains and hence, we have just verified that the heuristic works up to
Day 2 if λ′n−3/5 log n ≤ p ≤ λn−1/2.

Proof of Lemma 1.3. For a vertex v, let Av denote the event that v is γ-almost-positive. The plan
is to use the second moment method by giving an upper bound for P[Au ∩Av] and an lower bound
for P[Au] and P[Av] for each pair of vertices u and v. The two vertices u and v will be fixed until
these computations are carried out.

We condition on the following high probability events. In fact, the events hold with probability
1−O(n−2). The constant C > 0 below is taken large enough to apply Lemma 2.2 repeatedly.

(i) First expose all the edges incident to u and v. Then both deg(u) and deg(v) are in the interval
[np− C

√
np log n, np+ C

√
np log n].

(ii) The number of vertices in N(u) ∩N(v) is at most C log n.

(iii) Expose r0 in Γ := (N(u) ∪ N(v)) \ {u, v}. The difference between the number of ±1’s in
U := N(u) \ (N(v) ∪ {v}) and in V := N(v) \ (N(u) ∪ {u}) in the morning is at most
C
√
np log n.

(iv) Let U+ and U− be the set of vertices in U with the morning opinion +1 and −1, respectively,
and let m1 := |U+| and m2 := |U−|. Then both m1 and m2 are pn/2± C

√
np log n.

(v) Expose the edges inside Γ. The number of edges in each of N(u) and N(v) is at most 2n2p3.

(vi) For w ∈ Γ, let a(w) be the sum
∑

x∈N(w)∩Γ r0(x). Then |a(w)| ≤ C log n and moreover,

|∑w∈Γ a(w)| ≤ Cnp3/2 log n.

Indeed, (i)–(v) are standard applications of the Chernoff bound and Lemma 2.2. It hence remains
to check (vi). Let Γ+ and Γ− be the vertices in Γ with r0 = +1 and −1, respectively. Indeed,
|Γ+| and |Γ−| are (1 + o(1))np. Given all the conditions (i)–(v), each a(w), w ∈ Γ+ is identically
distributed with Xw − Yw, where Xw ∼ Bin(|Γ+| − 1, p) and Yw ∼ Bin(|Γ−|, p) are independent.
If p2n ≥ 1, then by Lemma 2.2(i), Xw = p|Γ+| ± O(

√

p|Γ+| log |Γ+|) = p2n ± O(p
√
n log n) with

probability 1−1/n2 and use the fact p
√
n ≤ λ. Otherwise, we use Lemma 2.2(ii). The same bound
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also holds for Yw, which proves the estimate for |a(w)|. The proof for the case w ∈ Γ− is almost
identical.

By double counting,
∑

w∈Γ a(w) =
∑

ww′∈E(G[Γ])(r0(w) + r0(w
′)) = 2

(

e(G[Γ+]) − e(G[Γ−])
)

.

This is identically distributed with X − Y , where X ∼ Bin(
(|Γ+|

2

)

, p) and Y ∼ Bin(
(|Γ−|

2

)

, p) are

independent. Again by Lemma 2.2, we have the estimate 1
2n

2p3 ± O(np3/2 log n) for both X and
Y , which completes the proof of (vi).

Let Guv be the subgraph of G(n, p) induced on Γ ∪ {u, v}. What we have exposed so far in
G(n, p) precisely determines what Guv is. Denote by Euv the high probability event that all the
conditions (i)–(vi) hold. In other words, Euv is the collection of the pairs (Guv , r0|Γ) of graph
instances Guv and values of r0 in Γ that satisfy (i)–(vi).

Now expose r0 for the remaining vertices in V (G) \Γ. We first analyze the case r0(u) = r0(v) =
+1. Let n1 and n2 denote the numbers of ±1’s outside {u, v} ∪ Γ. That is, n1 = ⌈n/2⌉ − |Γ+| − 2
and n2 = ⌊n/2⌋− |Γ−|. By (i), (iii) and (iv), both n1 and n2 lies between n

2 −np−C
√
np log n and

n
2 − np+ C

√
np log n. In particular, |n1 − n2| ≤ 2C

√
np log n.

For simplicity, in the proofs of Claims 3.4 and 3.5, we omit the notation that indicates condi-
tioning on fixed (Guv, r0) such that (Guv, r0|Γ) ∈ Euv and r0(u) = r0(v) = +1. In particular, the
mean and the variance throughout Claims 3.4 and 3.5 are functions of Guv and r0.

Claim 3.4.
∣

∣E
[
∑

w∈U r1(w)
]∣

∣ = O(
√
np).

Proof of the claim. There is subtle asymmetry between U+ and U−: the vertices w ∈ U+ turns to
+1 after Day 1 if

∑

x∈N(w) r0(x) ≥ 0, whereas w ∈ U− turns to +1 after Day 1 if
∑

x∈N(w) r0(x) ≥ 1.
The random variable

∑

w∈U+
r1(w) is identically distributed with the random variable

∑

w∈U+
Xw,

where Xw’s are independently distributed as follows: Xw takes +1 with probability P[Y1 + 1 +
a(w) ≥ Y2] and −1 otherwise, where Yi ∼ Bin(ni, p) are independent binomial random variables.
Analogously, for w ∈ U−, Xw takes +1 with probability P[Y1 + a(w) ≥ Y2] and −1 otherwise.

We estimate P[Y1 + a ≥ Y2] for integers a such that |a| = O(log n). Observe first that

P[Y1 + a ≥ Y2] = P[Y1 ≥ Y2] +
a
∑

j=1

P[Y1 + j = Y2] if a > 0 and

P[Y1 + a ≥ Y2] = P[Y1 ≥ Y2]−
−a−1
∑

j=0

P[Y1 − j = Y2] if a < 0.

Lemma 2.5 then allows us to approximate P[Y1 + a ≥ Y2] by P[Y1 ≥ Y2] + aP[Y1 = Y2]. Namely, if
0 ≤ j ≤ C log n, then |P[Y1 + j = Y2]− P[Y1 = Y2]| = O

( logn
np

)

and hence, for |a| = O(log n),

P[Y1 + a ≥ Y2] = P[Y1 ≥ Y2] + a

(

P[Y1 = Y2]±O

(

log n

np

))

. (6)

Almost the same argument also proves

P[Y1 + a+ 1 ≥ Y2] = P[Y1 + 1 ≥ Y2] + a

(

P[Y1 = Y2]±O

(

log n

np

))

. (7)

For brevity, let q = P[Y1 = Y2] and pk = P[Y1 + k ≥ Y2]. By Lemma 2.6, q = Θ
(

1√
np

)

. Let µw

be the expectation of the random variable r1(w) conditioned on (i)–(vi) and r0(u) = r0(v) = +1.
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Then by using (7) and (6) for w ∈ U+ and w ∈ U−, respectively,

µw = 2pa(w)+1 − 1 = 2p1 − 1 + 2a(w)

(

q ±O

(

log n

np

))

for w ∈ U+ and

µw = 2pa(w) − 1 = 2p0 − 1 + 2a(w)

(

q ±O

(

log n

np

))

for w ∈ U−.

Let µ++ :=
∑

w∈U µw to indicate that it is conditioned on r0(v) = r0(u) = +1. Then

µ++ = m1(2p1 − 1) +m2(2p0 − 1) + 2
∑

w∈U
a(w)

(

q ±O

(

log n

np

))

= np(p0 + p1 − 1) +

(

p1 −
1

2

)

(2m1 − np) +

(

p0 −
1

2

)

(2m2 − np) + 2
∑

w∈U
a(w)

(

q ±O

(

log n

np

))

= np(p0 + p1 − 1)±O
(

log2 n
)

. (8)

Indeed, m1 and m2 are np/2±O(
√
np log n) by (iv) and both p0 and p1 are 1

2 ±O
(1+|n1−n2|p√

np

)

. As

|n1−n2| = O(
√
np log n), p0 and p1 are

1
2±O

(

1√
np

)

by Lemma 2.6. Thus, both (p1−1/2)(2m1−np)

and (p0−1/2)(2m2−np) are O(log n). We also use (vi) and the fact q = Θ
(

1√
np

)

to obtain the bound

q
∣

∣

∑

w∈U a(w)
∣

∣ = O(p
√
n log n). Moreover, |a(w)| ≤ log n by (vi), so logn

np

∑

w∈U |a(w)| = O(log2 n).
Overall, |µ++| = O(

√
np).

Claim 3.5. Var
(
∑

w∈U r1(w)
)

= np±√
np log n.

Proof of the claim. For w ∈ U+,

Var(r1(w)) = 1− µ2
w = 1−

(

2p1 − 1 + 2a(w)(1 + o(1))q
)2

= 1− (2p1 − 1)2 + 4a(w)(2p1 − 1)(1 + o(1))q + 4a(w)2(1 + o(1))q2

= 1− (2p1 − 1)2 ±O

(

log2 n

np

)

where the last equality follows from (vi), p1 = 1/2 ± O
(

1√
np

)

and q = Θ
(

1√
np

)

. For w ∈ U−, an

analogous bound holds with p0 instead of p1. Let σ
2
++ be the variance of

∑

w∈U r1(w), conditioned
on the fixed Guv and r0. By

m1(1− (2p1 − 1)2) =
np

2

(

1− (2p1 − 1)2
)

±√
np log n

and a similar bound for m2(1− (2p0 − 1)2), we obtain

σ2
++ = m1(1− (2p1 − 1)2) +m2(1− (2p0 − 1)2)±O(log2 n)

=
np

2

(

2− (2p1 − 1)2 − (2p0 − 1)2
)

±O (
√
np log n)

= np±O(
√
np log n),

as log2 n ≪ √
np log n as p ≫ log2 n/n. Thus, σ++ =

√
np±O(log n).

We now turn to analyze the other cases with different signs of r0 on u and v. Recall that
the high probability event Euv consists of pairs (Guv, r0|Γ) of the graph Guv on Γ ∪ {u, v} and r0
restricted on Γ that satisfy (i)–(vi). For simplicity, we write G∗

uv for the pair (Guv , r0|Γ).
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For fixed Guv and r0 such that G∗
uv ∈ Euv and r0(u) = r0(v) = +1, suppose that only r0(v)

changes from +1 to −1 while everything else remains the same. Then, in the proofs of Claims 3.4
and 3.5, n1 and n2 are very slightly changed: n1 increases by 1 and n2 decreases by 1. However, the
arguments throughout the proofs remain exactly the same. The conditional mean, denoted by µ+−,
in this case can differ from µ++ only very slightly. The only difference is the values of n1 and n2,
which makes p0, p1 and q differ by O(p) by Corollary 2.8. Including this error term in (8) gives
µ++ = µ+− ±O(p2n+ log2 n). As p2n ≪ log2 n, we have µ++ = µ+− ±O(log2 n).

If r0(u) = −1 and r0(v) = +1 in the same setting, the conditional expectation and the con-
ditional variance, denoted by µ−+ and σ−+, respectively, are estimated by the same method with
slightly different parameters. More precisely, n′

1 = ⌈n/2⌉− |Γ+| − 1 and n′
2 = ⌈n/2⌉− |Γ−| − 1. Let

p′0 = P[Y ′
1 − 1 ≥ Y ′

2 ] and p′1 = P[Y ′
1 − 2 ≥ Y ′

1 ], where Y ′
i ∼ Bin(ni, p), i = 1, 2. Similarly to (8), one

then obtains the bound

µ−+ = np(p′0 + p′1 − 1)±O
(

log2 n
)

.

In particular, µ−+ = O(
√
np) and σ−+ =

√
np±O(log n). Indeed, these bounds remain the same if

r0(u) = r0(v) = −1 and the only difference from the case r0(u) = −1 and r0(v) = +1 is the values
of n1 and n2, so µ−+ = µ−− ±O(log2 n). Let µ− := 1

2(µ−+ + µ−−). Then we also have that µ−+ and
µ−− are µ−±O(log2 n). Overall, the bound np±O(

√
np log n) is universal for the variance obtained

in all the four cases. To summarize, we so far have

|µ+− − µ++| = O(log2 n), |µ−+ − µ−−| = O(log2 n) and σ =
√
np±O(log n), (9)

where σ can be σ++, σ+−, σ−+ or σ−−. Despite the estimates above, we only obtained the bound
O(

√
np) for |µ+ + µ−| by Claim 3.4. This is not enough for our purpose, which motivates the

following claim.

Claim 3.6. For every Guv and r0 with G∗
uv ∈ Euv,

∣

∣µ+ + µ−
∣

∣ = O(log2 n).

Proof of the claim. Let Z and Z ′ be i.i.d. variables with the distribution Bin(⌈n/2− np⌉, p). Note
first that n1 and n2 in each of the four cases depending on the signs of r0(u) and r0(v) vary from
⌈n/2 − np⌉ by at most O(

√
np log n) by (iii). Let (p0, p1) and (p′0, p

′
1) be as defined in the cases

r0(u) = r0(v) = +1 and r0(u) = −1, r0(v) = +1 above. Corollary 2.8 then yields

p0 = P[Z ≥ Z ′]±O(p log n), p1 = P[Z + 1 ≥ Z ′]±O(p log n),

p′0 = P[Z ′ − 1 ≥ Z]±O(p log n), and p′1 = P[Z ′ − 2 ≥ Z]±O(p log n).

In particular, p0+p′0 = 1±O(p log n) and p1+p′1 = 1±O(p log n). Therefore, as np2 log n ≪ log2 n,

|µ++ + µ−+| =
∣

∣np(p0 + p1 + p′0 + p′1 − 2)±O
(

log2 n
)∣

∣ = O
(

log2 n
)

.

An analogous coupling argument works for µ+− and µ−−. Hence,

|µ+ + µ−| ≤
1

2

(

|µ++ + µ−+|+ |µ+− + µ−−|
)

= O(log2 n).

Let R++
uv , R

+−
uv , R

−+
uv and R−−

uv be the events that r0(u) and r0(v) take the corresponding signs,
respectively. Then the probability of each of the four events is easily computed as 1/4±O(p) given
G∗

uv ∈ Euv, e.g.,

P[R++

uv|G∗
uv ] =

( n−|Γ|−2
⌈n/2⌉−m1−2

)

( n−|Γ|
⌈n/2⌉−m1

)
=

(⌈n/2⌉ −m1)(⌈n/2⌉ −m1 − 1)

(n− |Γ|)(n − |Γ| − 1)
=

1

4
±O(p). (10)

We are now ready to estimate the variance of
∑

u∈V (G) 1Au .
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Claim 3.7. Var
(

∑

u∈V (G) 1Au

)

=
∑

u,v∈V (G) P[Au ∩Av]− P[Au] · P[Av] = O
(

n3/2 log2 n√
p

)

.

Proof of the claim. Let A±
u be the events that

∑

w∈U r1(w) > −γp3/2n±C log n, respectively with
the corresponding signs. In particular, for Guv ∈ Euv, A+

u implies Au and Au implies A−
u by (ii).

The mutual independence of all r1(w), w ∈ U , given fixed Guv and r0, allows us to apply the
Berry–Esseen bound. For each fixed Guv and r0 such that r0(u) = r0(v) = +1 and G∗

uv ∈ Euv,

P[Au|Guv , r0] ≥ P[A+
u |Guv, r0]

= P

[

∑

w∈U r1(w)− µ++

σ++

>
−γp3/2n+ C log n− µ++

σ++

∣

∣

∣

∣

Guv, r0

]

= Ψ

(

−γp3/2n+ C log n− µ++

σ++

)

±O

(

1√
np

)

≥ Ψ

(

−γp3/2n+ C ′ log2 n− µ+

σ++

)

−O

(

1√
np

)

. (11)

where Ψ(x) := 1 − Φ(x) as in Lemma 2.4 and C ′ > 0 is from the estimate |µ+ − µ++| = O(log2 n)
by (9), which absorbs C log n. By using A−

u , one also obtains the upper bound

P[Au|Guv , r0] ≤ P

[

∑

w∈U r1(w)− µ++

σ++

>
−γp3/2n− C log n− µ++

σ++

∣

∣

∣

∣

Guv, r0

]

≤ Ψ

(

−γp3/2n− C ′ log2 n− µ+

σ++

)

+O

(

1√
np

)

. (12)

Both bounds (11) and (12) can be written as Ψ(x+)±O
( log2 n√

np

)

, where x+ = (−γp3/2n−µ+)/
√
np.

Indeed, by using Lemma 2.4(i), i.e., |Ψ(x)−Ψ(y)| ≤ |x− y|,
∣

∣

∣

∣

∣

Ψ

(

−γp3/2n+ C ′ log n− µ+

σ++

)

−Ψ(x+)

∣

∣

∣

∣

∣

≤ C ′ log2 n

(

1

σ+
+

1√
np

)

+
∣

∣

∣
γp3/2n+ µ+

∣

∣

∣

∣

∣

∣

∣

1

σ++

− 1√
np

∣

∣

∣

∣

≤ 3C ′ log2 n√
np

+O(
√
np) · |σ++ −√

np|
σ++

√
np

= O

(

log2 n√
np

)

,

where we use the estimates σ++ =
√
np ± O(log n) by Claim 3.5 and µ+ = O(

√
np) by Claim 3.4.

The same bound also holds for Ψ
(

−γp3/2n−C′ log2 n−µ+

σ++

)

. Now replace σ++ by σ+− by changing r0(v)

from +1 to −1, while leaving all other values of r0 and Guv the same. Then we again have the

same bound P[Au|Guv, r0] = Ψ(x+) ± O
(

log2 n√
np

)

. Analogously, for r0 with r0(u) = −1, we obtain

P[Au|Guv, r0] = Ψ(x−)±O
(

log2 n√
np

)

, where x− = (−γp3/2n− µ−)/
√
np, by using σ−+, σ−− and µ−.

Given fixed r0 and Guv, A−
u and A−

v are independent as r1(w), w ∈ U ∪ V , are mutually
independent. Hence, for each fixed Guv and r0 such that r0(u) = r0(v) = +1 and G∗

uv ∈ Euv,

P[Au ∩Av|Guv, r0] ≤ P[A−
u ∩A−

v |Guv, r0]

= P[A−
u |Guv, r0] · P[A−

v |Guv, r0] ≤ Ψ(x+)
2 +O

(

log2 n√
np

)

.
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Indeed, one may easily obtain corresponding upper bounds for other values of r0(u) and r0(v), e.g.,

P[Au ∩ Av|Guv , r0] = Ψ(x+)Ψ(x−) + O
(

log2 n√
np

)

if r0(u) = +1 and r0(v) = −1. Combining these

bounds with the weight 1/4±O(p) in (10) gives

P[Au ∩Av|G∗
uv] = E

[

P[Au ∩Av|Guv , r0]
∣

∣G∗
uv

]

≤ 1

4
E

[

Ψ(x+)
2 + 2Ψ(x+)Ψ(x−) + Ψ(x−)

2
∣

∣

∣G∗
uv

]

+O

(

log2 n√
np

)

=
1

4
E

[

(

Ψ(x+) + Ψ(x−)
)2
∣

∣

∣
G∗

uv

]

+O

(

log2 n√
np

)

,

where the O(p) error term in the weight 1/4±O(p) is absorbed by O
( log2 n√

np

)

. Summing this bound

over all G∗
uv ∈ Euv with the corresponding probability weight that G∗

uv appears yields

P[Au ∩Av ∩ Euv] ≤
1

4
E

[

(

Ψ(x+) + Ψ(x−)
)2
1Euv

]

+O

(

log2 n√
np

)

.

Analogously, (11) and its variants give the lower bound

P[Au ∩ Euv] · P[Av ∩ Euv] ≥
1

4
E

[

(Ψ(x+) + Ψ(x−))
2
1Euv

]

−O

(

log2 n√
np

)

.

Summing the above over distinct u, v ∈ V (G) gives

∑

u 6=v

P[Au ∩Av ∩ Euv]− P[Au ∩ Euv] · P[Av ∩ Euv] = O

(

n3/2 log2 n√
p

)

.

Therefore, we estimate the variance of
∑

v∈V (G) 1Au as

∑

u,v∈V (G)

P[Au ∩Av]− P[Au] · P[Av] ≤ n+
∑

u 6=v

P[Au ∩Av]− P[Au] · P[Av]

≤ n+
∑

u 6=v

(

P[Au ∩Av ∩ Euv] + P[Euv]
)

− P[Au ∩ Euv] · P[Av ∩ Euv]

≤ O(n) +
∑

u 6=v

P[Au ∩Av ∩ Euv]− P[Au ∩ Euv] · P[Av ∩ Euv] = O

(

n3/2 log2 n√
p

)

, (13)

where the last inequality uses the bound P[Euv] = O(n−2). This concludes the proof of the claimed
variance estimate.

It remains to bound
∑

u P[Au] from below to use Chebyshev’s inequality. Note first that r0(u)
takes each sign with probability 1/2±O(p) given G∗

uv, which can easily be computed by an analogous
estimate to (10). Recall that, depending on the sign of r0(u), P[Au|Guv, r0] can be estimated as

either Ψ(x+)±O
(

log2 n√
np

)

or Ψ(x−)±O
(

log2 n√
np

)

. Hence, for each G∗
uv ∈ Euv,

P[Au|G∗
uv] = E

[

P[Au|Guv , r0]
∣

∣G∗
uv

]

≥ 1

2
E

[

Ψ(x+) + Ψ(x−)
∣

∣

∣G∗
uv

]

−O

(

log2 n√
np

)

. (14)
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For each fixed Guv and r0 with G∗
uv ∈ Euv, both x+ and x− are O(1), as |µ±|+ γp3/2n = O(

√
np)

by Claim 3.4. Moreover,

x+ + x− = − 2√
np

(

γp3/2n+ µ+ + µ−
)

≤ −γp
√
n < 0,

as |µ+ + µ−| = O(log2 n) ≪ p3/2n by Claim 3.6. Lemma 2.4(ii) then gives a constant C ′′ > 0 such
that

Ψ(x+) + Ψ(x−) ≥ 1−C ′′(x+ + x−) ≥ 1 + C ′′γp
√
n.

Substituting this into (14) and summing over all G∗
uv ∈ Euv gives

∑

u∈V (G)\{v}
P[Au ∩ Euv] ≥

n− 1

2

(

Ψ(x+) + Ψ(x−)
)

−O

(√
n log2 n√

p

)

≥ n

2
+ 3Kγpn3/2

for a constant K > 0, as pn3/2 ≫ log2 n
√

n/p. Thus,

∑

u∈V (G)

P[Au] ≥
∑

u∈V (G)\{v}
P[Au ∩ Euv] ≥

n

2
+ 2Kγpn3/2.

Finally, together with (13), the Chebyshev inequality yields

P

[

∑

u

1Au ≥ n

2
+Kγpn3/2

]

≤ P





∣

∣

∣

∣

∣

∣

∑

u∈V (G)

1Au − E





∑

u∈V (G)

1Au





∣

∣

∣

∣

∣

∣

≥ Kγpn3/2





≤ Var (
∑

u 1Au)
(

Kγpn3/2
)2 = O

(

log2 n

p5/2n3/2

)

,

where the last estimate follows from Claim 3.7. Finally, we have O
(

log2 n
p5/2n3/2

)

= O
(

1√
logn

)

= o(1),

as p ≥ λ′n−3/5 log n.

4 After Day 2

To finish the proof of Theorem 3.2, we use some well-known “pseudorandom” properties of random
graphs G(n, p). By Lemma 2.2, w.h.p. the minimum degree of G(n, p) is at least 0.9np whenever

p ≥ log2 n
n . We say a graph G is (p, β)-jumbled if, for any vertex subsets U, V ⊆ V (G),

∣

∣e(U, V )− p|U ||V |
∣

∣ ≤ β
√

|U ||V |.

The following is a standard fact in the theory of pseudorandomness.

Lemma 4.1 ([12, Corollary 2.3]). For p ≤ 0.99, G(n, p) is w.h.p. (p, β)-jumbled with β = O(
√
np).

Let Pt := {v ∈ [n] : st(v) = +1} and Nt := {v ∈ [n] : st(v) = −1}. We use [17, Lemma 7 and 8]
by Zehmakan. Here we give a short proof, as we need a slightly more general version.

Lemma 4.2. Let δ ∈ (0, 1) and let G be a (p, β)-jumbled graph on n vertices with minimum degree
at least δnp. Then
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(i) if
∑

v st(v) ≥ 8β

p
√
δ
then

∑

v st+1(v) ≥ (1− δ/2)n;

(ii) if
∑

v st(v) ≥ (1− α)n for some α ≤ δ/2, then
∑

v st+1(v) ≥
(

1− α · 16β2

δ2n2p2

)

n.

Proof. (i) Since each vertex v ∈ Nt+1 has at least as many neighbours in Nt as in Pt, we have
e(Nt+1, Nt) ≥ e(Nt+1, Pt). Then by (p, β)-jumbledness,

p|Nt+1||Pt| − β
√

|Nt+1||Pt| ≤ e(Nt+1, Pt) ≤ e(Nt+1, Nt) ≤ p|Nt+1||Nt|+ β
√

|Nt+1||Nt|.

Dividing both ends of the inequality above by
√

|Nt+1| gives

p
√

|Nt+1| (|Pt| − |Nt|) ≤ 2β
(

√

|Nt|+
√

|Pt|
)

≤ 4β
√
n.

Thus,

√

|Nt+1| ≤
4β

√
n

p
∑

v st(v)
≤

√
δn

2
.

Hence, |Nt+1| ≤ δn/4, which means
∑

st+1(v) = n− 2|Nt+1| ≥ (1− δ/2)n.

(ii) Each vertex v ∈ Nt+1 has at least deg(v)/2 neighbours in Nt. As the minimum degree of G is
at least δnp, this means e(Nt, Nt+1) ≥ δnp

2 |Nt+1|. Combining this with (p, β)-jumbledness yields

δnp

2
|Nt+1| ≤ e(Nt, Nt+1) ≤ p|Nt||Nt+1|+ β

√

|Nt||Nt+1|.

As
∑

v st(v) ≥ (1− α)n, it follows that |Nt| ≤ αn/2. Thus,

√

|Nt+1|
(

δnp

2
− p|Nt|

)

≤ β
√

|Nt| ≤ β
√

αn/2.

On the other hand, by α ≤ ε/2 and |Nt| ≤ αn/2,

δnp

2
− p|Nt| ≥

δnp

4
,

which means δnp
4

√

|Nt+1| ≤ β
√

αn/2. Hence,
∑

v st+1(v) = n− 2|Nt+1| ≥
(

1− α · 16β2

δ2n2p2

)

n.

Proof of Theorem 3.2. Choose λ′ such that p ≥ λ′n−3/5 log n according to Lemma 3.3 so that
∑

v s̃2(v) ≥ αpn3/2 with probability at least 1 − ε. On the other hand, by Lemma 4.1, G(n, p) is
w.h.p. a (p, β)-jumbled graph with minimum degree at least δnp, where β = O(

√
np) and δ = 0.9.

As p ≫ n−2/3,

∑

v

s2(v) ≥ αpn3/2 ≫ 8β

p
√
δ
= O

(√

n

p

)

and therefore, Lemma 4.2 (i) proves that
∑

v s3(v) ≥ (1− δ/2)n. Then iterating Lemma 4.2 (ii) for
k times gives

∑

v

sk+3(v) ≥
(

1− δ

2

(

16β2

δ2n2p2

)k
)

n.

If k = 3, then
(

16β2

δ2n2p2

)k
< 1/n and thus, G(n, p) reaches unanimity on Day 6 with probability at

least 1− ε.
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5 Concluding remarks

Why p ≥ n
−3/5 logn? The logarithm appears in the bound because of the Chernoff bound,

which might be a purely technical reason. In fact, the statement of Theorem 1.2 can be easily
strengthened without too much effort. First, p ≥ λ′n−3/5 log4/5 n suffices to guarantee probability
1 − ε for unanimity to occur. Second, in Section 3, one may take c that tends to 0 slowly, e.g.,
c = 1/ log log n, to turn the main theorem into a w.h.p. statement too, while losing (log n)o(1)-factor
in the lower bound for p. We however did not bother leaving the logarithmic factors as simple as
it is, since the exponent −3/5 + o(1) does not seem to be tight even without the o(1)-factor.

The key technical bottleneck in improving the exponent −3/5 + o(1) is the use of Chebyshev’s
inequality to conclude the proof of Lemma 1.3. We believe that our moments estimation is as
accurate as possible except polylogarithmic factors. Thus, as long as one follows our proof outline
and uses the Chebyshev inequality together with the Berry–Esseen bound, it may be difficult to
improve the main term −3/5 in the exponent.

Even if one overcomes such technical obstacles and goes beyond −3/5, the next by far more
challenging problem may be to reach beyond the exponent −2/3. Indeed, there are several points
in our argument that uses p ≫ n−2/3, but most importantly, the shift of magnitude pn3/2 given
in Lemma 1.3 (and the same number in Lemma 3.3 too) becomes void if p ≪ n−2/3. Overall, we
suspect that improving the exponents −3/5 or −2/3 will require a substantially new approach.

The optimal initial bias. In [16], Tran and Vu showed that
∑

v s0(v) = Ω(1/p) is enough
to guarantee unanimity to appear with probability 1− ε in majority dynamics on G(n, p), for any
p ≥ (2+o(1))(log n)/n, which generalizes the Fountoulakis–Kang–Makai theorem. Our result proves
that, for p = Ω(n−3/5+o(1)), the initial bias Ω(

√
n) that can be smaller than 1/p = O(n3/5−o(1))

also suffices to guarantee the same conclusion. Furthermore, it also generalises to

Theorem 5.1. If |∑v s0(v)| = Ω
(

n−1/4p−5/4 log n
)

and log4 n
n ≪ p ≤ λn−1/2, then majority

dynamics on G(n, p) admits unanimity with probability 1− ε.

This improves the Tran–Vu theorem in the suggested range of p and can be seen as a positive
evidence for the conjecture by Berkowitz and Devlin [2, Conjecture 8], which states that the initial
bias can be as small as one whenever p ≥ (1 + o(1))(log n)/n.

Acknowledgements. Part of this work was carried out while the second and the third authors
visited the other authors at IBS Daejeon.
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