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Abstract

Kemeny’s constant for a connected graph G is the expected time for a random walk to
reach a randomly-chosen vertex u, regardless of the choice of the initial vertex. We extend the
definition of Kemeny’s constant to non-backtracking random walks and compare it to Kemeny’s
constant for simple random walks. We explore the relationship between these two parameters
for several families of graphs and provide closed-form expressions for regular and biregular
graphs. In nearly all cases, the non-backtracking variant yields the smaller Kemeny’s constant.
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1 Introduction

A random walk on a graph G = (V,E) is a Markov chain on V that can model heat flow, games
of chance, and solve combinatorial problems, among other applications. There has been growing
interest in the behavior of non-backtracking random walks, which are Markov chains on E that have
many properties similar to simple random walks. The purpose of this work is to define Kemeny’s
constant for non-backtracking random walks, and to determine some of its properties. Kemeny’s
constant (which we introduce shortly) can be considered as the expected time to mixing for the
random walk on a graph, comparable to the mixing time of a random walk on a graph. It is
well-known that, in many cases, the non-backtracking random walk on a graph has a faster mixing
time than the simple random walk on a graph (see [2, 11]). We explore similar angles here. We
prove in this paper that for regular and biregular graphs, the non-backtracking Kemeny’s constant
is smaller than the value of Kemeny’s constant for the corresponding simple random walk (with
only a few exceptions of small order). This means that the non-backtracking random walk has a
shorter expected time to mixing. We likewise explore other families of graphs and find a significantly
smaller Kemeny’s constant using the non-backtracking random walk.

A smaller Kemeny’s constant indicates a short expected time to mixing, meaning that on av-
erage, hitting times are shorter. Thus our results seem to indicate that, for many graphs, non-
backtracking walks will have shorter average hitting times than their simple random walk counter-
parts. In applications using random-walk-based strategies, graphs with smaller Kemeny’s constant
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tend to have more efficient performance (see for instance [16]). Thus our results suggest that in
applications where random walks are used, and a small Kemeny’s constant is desirable, use of a
non-backtracking random walk may be more efficient. Investigation into replacing simple random
walks with non-backtracking walks in various applications is an area of research receiving increased
attention (see [13, 3]). Our results suggest that this is a potentially important avenue for future
research in applications where Kemeny’s constant plays an important role.

2 Preliminaries

Throughout the paper, G = (V,E) is a connected, undirected graph with n = |V | vertices and
m = |E| edges. Edges are considered to be unordered pairs of distinct vertices {u, v}, and vertices
u and v are said to be adjacent if there is an edge {u, v} ∈ E. We also denote adjacency by u ∼ v.
If u ∼ v, then v is a neighbor of u, and the number of neighbors of u is called the degree of the
vertex u, denoted deg(u). The adjacency matrix of a graph of order n is the n×n matrix A = [aij ]
such that

aij =

{
1 if i ∼ j,
0 otherwise.

A discrete-time, time-homogeneous Markov chain on a finite state space {s1, . . . , sn} models a
system which occupies one of the states si at any fixed time and transitions from one state to another
in discrete time-steps. For any pair of states si, sj , there is a transition probability pij denoting the
probability of transitioning to state sj in a single time-step, given that the system is currently in
state si. Note that this probability does not depend on any states visited previously; this is called
the Markov property. The transition probability matrix P = [pij ] encodes all information regarding
the behavior of the Markov chain; the (i, j)th entry of P k denotes the probability of reaching state
sj in exactly k steps, given that the system starts in state si. The ith row of the matrix P k thus
gives the probability distribution across all states after k time-steps, given that the system starts
in state si. Under certain conditions on the matrix P , these probability distributions converge
to a stationary distribution independent of i; this stationary distribution vector π is determined
by the left eigenvector of P corresponding to the spectral radius 1 (which is in fact an eigenvalue
due to Perron-Frobenius), normalized so that the entries sum to 1. The entry πi of the stationary
distribution may be interpreted as the long-term probability that the Markov chain occupies the
state si.

The (simple) random walk on a graph G = (V,E) is a Markov chain whose states are the vertices
of the graph, labelled in some order v1, . . . , vn. If the random walk occupies vi, the next state is
chosen uniformly at random from the neighbors of vi; that is, the random walker transitions to an
adjacent vertex vj with probability 1/ deg(vi). Thus, the transition matrix of this Markov chain is

P = D−1A,

where D is the diagonal matrix whose ith entry is the deg(vi) and A is the adjacency matrix of the
graph. Note that the stationary distribution vector π has ith entry πi = deg(vi)/2m; that is, the
long-term probability of the random walker being on a vertex is proportional to the degree of that
vertex.

Given a Markov chain, we can also quantify its short-term behavior. The hitting time or mean
first passage time from state si to state sj of a Markov chain, denoted mij , is the expected time it
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takes to reach state sj , given that the system starts in state si. A very interesting measure of the
‘average’ short-term behavior of a Markov chain is known as Kemeny’s constant. Given an initial
state i, define the quantity

κi =

n∑
j=1
j 6=i

mijπj .

where mij is the mean first passage time from si to sj and π is the stationary distribution of the
Markov chain. This quantity may be interpreted as the expected time to reach a randomly-chosen
state sj , given that we start in a fixed state si. Remarkably, this sum is independent of the initial
state, and this quantity is known instead as Kemeny’s constant, and denoted K(P ). Note that the
above expression can be rewritten as follows:

K(P ) =

n∑
i=1

n∑
j=1
j 6=i

πimijπj ,

admitting the interpretation of K(P ) as the expected length of a trip between randomly-chosen
states in the Markov chain (where ‘randomly-chosen’ means with respect to the stationary distri-
bution). In the case that P represents the transition matrix for a simple random walk on a graph
G, we can think of K(P ) as an inherent measure of the ‘connectedness’ of the graph G, and denote
this graph invariant by K(G) instead.

It is shown in [14] that Kemeny’s constant can be expressed in terms of the eigenvalues of the
transition matrix P .

Lemma 2.1 ([14]). Given a Markov chain with transition matrix P with eigenvalues 1 = ρ1 >
ρ2 ≥ ρ2 ≥ · · · ≥ ρn, then

K(P ) =

n∑
i=2

1

1− ρi
.

Hunter gives an interpretation of Kemeny’s constant in [10] as the expected time to mixing of
a Markov chain. This is distinct from (but comparable to) the usual idea of mixing time which
describes the expected time taken for the Markov chain to become ‘close’ to its stationary distri-
bution. It is well-known that the spectral gap 1 − ρ2, or the distance between the spectral radius
of P and its second-largest eigenvalue, bounds the rate of convergence of the Markov chain to the
stationary distribution. If 1− ρ2 is small (i.e. ρ2 is close to 1) the chain converges slowly. We note
that from the eigenvalue expression for Kemeny’s constant, it is clear that if there are eigenvalues
close to 1, that this will result in a large value of Kemeny’s constant and thus indicate a chain
for which the expected length of a random trip between states is relatively large, indicating poor
mixing properties of the chain.

Given a graph G, there is also an expression for K(G) in terms of effective resistance that will
at times be useful. We denote by r(i, j) the effective resistance between vertex i and j, considering
the graph as an electric circuit with each edge representing a unit resistor. This quantity is given
by r(i, j) = (ei − ej)TL†(ei − ej) where ei is the vector with a 1 in the i-th position and zeros
elsewhere and L† is the Moore-Penrose pseudoinverse of the graph Laplacian matrix (see [4]).

Lemma 2.2 (Corollary 1 of [15]). Suppose that G = (V,E) is a simple connected graph, and let R
denote the matrix whose (i, j)th entry is the effective resistance between i and j, d the vector whose
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ith entry is the degree of vertex i, and m = |E|. Kemeny’s constant of the graph is related to the
effective resistance by the identity

K(G) =
dTRd

4m
=

1

4m

∑
i,j∈V

didjr(i, j).

For certain graph families considered in this paper the following definitions will be helpful to
deduce the value of Kemeny’s constant for graphs with sparse structure. Note that moment was
first proposed for trees in [6].

Definition 2.3. Let G = (V,E) be a simple connected graph, R = [r(i, j)] the matrix of effective
resistances in G and d the vector of vertex degrees. Let ev denote the vector with a 1 in the vth

position and zeros elsewhere. The moment of v ∈ V is

µ(G, v) = dTRev =
∑

i∈V (G)

dir(i, v).

Definition 2.4. Let G1, G2 be simple connected graphs, each with a vertex labelled v. The 1-sum
G = G1 ⊕v G2 is the graph created by taking copies of G1, G2, and identifying the copies of v. We
often omit the subscript when the choice and/or labelling of vertices is clear. We say G1⊕v G2 has
a 1-separation, and that v is a 1-separator or cut vertex.

G1 G2
v v

G1 G2
v

Figure 1: The graph G = G1 ⊕v G2 created from G1 and G2

Lemma 2.5 (Theorem 2.1 of [7]). Let G be a graph with a 1-separator v. Let G1, G2 be the two
graphs of the 1-separation so that G = G1 ⊕v G2 and let m1 = |E(G1)| and m2 = |E(G2)|. Then
we have

K(G) =
m1 (K(G1) + µ(G2, v)) +m2 (K(G2) + µ(G1, v))

m1 +m2
.

Proposition 1.2 of [5] gives an expression for Kemeny’s constant in terms of the coefficients of
characteristic polynomial of the normalized Laplacian matrix. This result can be restated in terms
of the transition probability matrix, which will be useful. This is also stated in more general form
(i.e. for any regular Markov chain) in [18].

Lemma 2.6. Let G be a connected graph, and let p(x) be the characteristic polynomial of the
transition probability matrix for the random walk on G. Then if p(1− x) = · · · c2x2 + c1x we have

K(G) = −c2
c1
.

2.1 Non-Backtracking Random Walks

Recently, there has been interest in non-backtracking random walks on graphs [2, 11, 13, 12, 8, 17];
that is, a random walk on a graph where at each step you are not permitted to transition to the
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vertex you were at one step previously. Since the transition probabilities now depend not only on
the current state of the system but also the previous state, a non-backtracking random walk on the
vertex set of a graph will not be a Markov chain and as such, Kemeny’s constant is not defined for
such a walk. However, an equivalent walk can be defined on the directed edges of the graph, which
produces a Markov chain in which we can account for the previous two states of the chain, but still
has the Markov property, (see [11, 8] for instance).

Let G be a graph with vertex set V = {1, 2, . . . , n} and edge set E. The oriented edge set of G
is E′(G) = {(i, j) : {i, j} ∈ E}; each edge {u, v} has been replaced by two directed arcs (u, v) and
(v, u). An arc (i, j) can also be written i → j, and i is referred to as the tail of the arc, and j is
referred to as the head. We define a random walk on the edge space of G as a Markov chain whose
states are the elements of E′(G), with a positive transition probability p(i,j),(k,l) only if j = k. For
the simple random walk on the edge space of G, if the current state is the arc (i, j) the next edge
is chosen at random from the edges incident with the head of that arc. In particular, the transition
probabilities are:

p(i,j),(k,l) =

{
1/ deg(j), if k = j;

0, if k 6= j.

The transition matrix for the random walk on the edge space of a graph can also be defined
using matrices, described in the following definition. See [8] for a more in-depth study of these
matrices.

Definition 2.7. Let G be a graph with vertex set V and edge set E, and let E′ denote the oriented
edge set of G. The startpoint incidence operator of G is the n × 2m matrix T with rows indexed
by V and columns indexed by E′.

T (u, (v, w)) =

{
1, if u = v;

0, otherwise.

The endpoint incidence operator of G is the 2m×n matrix S with rows indexed by E′ and columns
indexed by V .

S((u, v), w) =

{
1, if v = w;

0, otherwise.

The edge reversal operator τ is the 2m × 2m matrix with rows and columns both indexed by E′

that switches a directed edge with its opposite.

τ((u, v), (x, y)) =

{
1, if v = x and u = y;

0, otherwise.

The adjacency matrix of G is A = TS, the edge adjacency matrix is given by C = ST , and the
non-backtracking edge adjacency matrix is B = ST − τ . Let De be the diagonal degree matrix
where the diagonal entry corresponding to a directed edge u → v is deg(v). Then the edge space
transition probability matrix is Pe = D−1e C and the non-backtracking transition probability matrix
is Pnb = (De − I)−1B.

We are now in a position to consider and define the value of Kemeny’s constant for a non-
backtracking random walk on a graph, and compare it with the value of Kemeny’s constant for a
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simple random walk on the same graph. A key concern when comparing these random walks is
that the state space is different for the two Markov chains under consideration. For this reason, we
consider both as random walks on the edge space. The edge Kemeny’s constant of an undirected
graph G, denoted Ke(G), is the value of Kemeny’s constant for the random walk on the directed
edges of the graph, and the non-backtracking Kemeny’s constant, denoted Knb(G), is the value of
Kemeny’s constant for the Markov chain with transition matrix Pnb. To avoid ambiguity from this
point onwards, we also denote by Kv(G) the value of Kemeny’s constant for the simple random
walk on the vertices of G, and refer to it as the vertex Kemeny’s constant.

Our first main result relates the value of Ke(G) with the value of Kv(G) for any graph G. We
first prove a technical lemma.

Lemma 2.8. Let G be a graph with no isolated vertices, and let S be the endpoint incidence
operator, De the degree matrix for the directed edges of the graph, and D the degree matrix for the
vertices. Then

D−1e S = SD−1.

Proof. A computation reveals that

(D−1e S)(u,v),j = (SD−1)(u,v),j =

{
1/ deg(v) if j = v;

0 else.

Theorem 2.9. Let G be a connected graph with |V (G)| = n and |E(G)| = m. Then

Ke(G) = Kv(G) + 2m− n.

Proof. Let S, T,A,D, and De be as in Definition 2.7. Recall that A,D are symmetric matrices, and
we denote by X ∼ Y the condition that X and Y are similar matrices. Note that[

Pe 0
T 0

]
=

[
D−1e ST 0
T 0

]
∼
[

0 0
T TD−1e S

]
(Theorem 1.3.22 of [9])

=

[
0 0
T TSD−1

]
(Lemma 2.8)

=

[
0 0
T AD−1

]
∼
[

0 0
T D−1A

]
=

[
0 0
T P

]
.

Therefore the eigenvalues of Pe are the eigenvalues of P with an additional 2m−n zero eigenvalues.
Suppose that the eigenvalues of Pe are ordered so that ρ1(Pe) = 1 and the first n eigenvalues are
those shared with P . It then follows that

Ke(G) =

2m∑
i=2

1

1− ρi(Pe)
=

n∑
i=2

1

1− ρi(P )
+

2m∑
i=n+1

1

1− 0
= Kv(G) + 2m− n.
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The remainder of the work in this paper explores the relationship between the vertex, edge, and
non-backtracking variants of Kemeny’s constant by analysing and deriving relationships between
these for certain families of graphs. In Section 3, we compare Ke(G) and Knb(G) for regular graphs
by considering the difference and ratio of these quantities, and in Section 4 we explore the same
for biregular graphs. In Section 5 we derive exact results for cycle barbell graphs, a new family
we define to better outline and explore the differences between the non-backtracking and vertex
Kemeny’s constant, in order to develop our intuition around the behavior of Kemeny’s constant
and quantifying how it is affected by imposing non-backtracking conditions on a random walk.

3 Regular Graphs

In this section we consider connected d-regular graphs with d ≥ 3. We do not consider regular
graphs of lower degree as in those cases the non-backtracking Kemeny’s constant will not be well
defined (for d = 2, the matrix Pnb is reducible).

While Theorem 2.9 already gives a nice expression for the edge Kemeny’s constant, we now
write it in terms of the adjacency eigenvalues in the case of regular graphs, which will be useful
to make the comparison between the edge Kemeny’s constant and the non-backtracking Kemeny’s
constant.

Lemma 3.1. Let G be a connected d-regular graph of order n, where d ≥ 3, with adjacency spectrum
d = λ1 > λ2 ≥ · · · ≥ λn. Then

Ke(G) = n(d− 1) +

n∑
i=2

d

d− λi
.

Proof. For a d-regular graph on n vertices, 2|E(G)| − |V (G)| = n(d − 1) and Theorem 2.9 asserts
that Ke(G) = n(d − 1) + Kv(G). Due to the regularity of the graph, the transition matrix P =
D−1A = 1

dA has eigenvalues ρi = λi/d and

Kv(G) =

n∑
i=2

1

1− λi

d

=

n∑
i=2

d

d− λi

as per Lemma 2.1. The statement follows directly.

Theorem 3.2. Let G be a connected d-regular graph of order n, where d ≥ 3. Then

Knb(G) =
(d− 2)Ke(G)

d
+ 2n+

1

d− 2
− n

d
.

Proof. Theorem 5 of [11] states that the spectrum of the non-backtracking transition probability
matrix of a d-regular graph is{(

1

d− 1

)m−n
,

(
−1

d− 1

)m−n
,
λi ±

√
λ2i − 4(d− 1)

2(d− 1)

}
,
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where λi ranges over the eigenvalues of the adjacency matrix. Noting that for λ1 = d, this yields
the eigenvalues of 1 and 1

d−1 , using Lemma 2.1 we obtain:

Knb(G) =
m− n+ 1

1− 1
d−1

+
m− n

1 + 1
d−1

+

n∑
i=2

 1

1− λi+
√
λ2
i−4(d−1)

2(d−1)

+
1

1− λi−
√
λ2
i−4(d−1)

2(d−1)


= (d− 1)

[
nd(d− 2) + 2d+ n(d− 2)2

2d(d− 2)

]
+

n∑
i=2

d− 2 + d− λi
d− λi

= (d− 1)

[
2nd2 − 6nd+ 2d+ 4n

2d(d− 2)

]
+

n∑
i=2

(
1 +

d− 2

d− λi

)

= (d− 1)

[
n(d− 2)(d− 1) + d

d(d− 2)

]
+ (n− 1) + (d− 2)

n∑
i=2

1

d− λi

= (d− 1)

[
n(d− 1)

d
+

1

d− 2

]
+ n− 1 +

(d− 2)

d
(Ke(G)− n(d− 1))

= 2n− n

d
+

(d− 2)Ke(G)

d
+

1

d− 2
.

Now that we have these expressions it is natural to compare them by looking at both the
difference and ratio of them.

Theorem 3.3. Let G be a d-regular graph, d ≥ 3, which is not K4,K5, or K3,3. Then

Ke(G) > Knb(G).

Proof. From Lemma 3.1 and Theorem 3.2 we have the following.

Ke(G)−Knb(G) = Ke(G)−
(

(d− 2)Ke(G)

d
+ 2n+

1

d− 2
− n

d

)
=
n

d
− 2n− 1

d− 2
+ Ke(G)

(
1− d− 2

d

)
=

2Ke(G)

d
− 1

d− 2
− n

(
2− 1

d

)
=

2 (n(d− 1) + Kv(G))

d
− 1

d− 2
− n

(
2− 1

d

)
.

As d ≥ 3, to see when Ke(G)−Knb(G) ≥ 0, we can consider when d(d− 2)(Ke(G)−Knb(G)) ≥ 0.
Simplifying this expression, we have

d(d− 2) (Ke(G)−Knb(G)) = 2n(d− 2)(d− 1) + 2(d− 2)Kv(G)− d− n(d− 2)(2d− 1)

= 2(d− 2)Kv(G)− d− n(d− 2).
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It is known that Kv(G) ≥ Kv(Kn) = (n−1)2
n . Substituting this into the above expression gives the

following inequality:

d(d− 2) (Ke(G)−Knb(G)) ≥ 2(d− 2)(n− 1)2

n
− d− n(d− 2)

= 1
n (2(d− 2)(n− 1)2 − nd− n2(d− 2))

= 1
n (d(n2 − 5n+ 2)− 2(n2 − 4n+ 2))

= 1
n (n2(d− 2) + n(8− 5d) + 2d− 4).

Analyzing the expression we see that it is positive for d = 3 when n ≥ 7 and for d = 4, 5, 6 when
n ≥ 6. For d > 6 the expression will be positive whenever n ≥ 5. Thus Ke(G) > Knb(G) except
for potentially a finite number of graphs. Checking these, we find that there are only three regular
graphs for which Knb(G) ≥ Ke(G), namely K4,K5, and K3,3 with equality holding for K3,3.

Theorem 3.4. Let G be a d-regular graph, d ≥ 3, which is not K4, K5 or K3,3. Then

1− 2

d
<

Knb(G)

Ke(G)
< 1.

Proof. Using Lemma 3.1 and Theorem 3.2 we see that

Knb(G)

Ke(G)
=

d− 2

d
+

2n

Ke(G)
+

1

(d− 2)Ke(G)
− n

dKe(G)

= 1− 2

d
+

2n

Ke(G)
+

1

(d− 2)Ke(G)
− n

dKe(G)
.

The lower bound is easy to see since 2n
Ke(G) + 1

(d−2)Ke(G) −
n

dKe(G) > 0 for all values n, d consistent

with a regular graph. The upper bound follows from Theorem 3.3.

After obtaining these bounds, one might ask how good they are. To investigate this question,
we consider graph families which are extremal or conjectured to be extremal in some way.

Example 1. Complete graphs are known to have the smallest vertex Kemeny’s constant among
graphs of order n. Using the above results it is seen that limn→∞Ke(G) − Knb(G) = 1, and

consequently limn→∞
Knb(G)
Ke(G) = 1.

Example 2. Necklace graphs are families of 3-regular graphs known to have large vertex Kemeny’s
constant. Indeed, it is conjectured in [1, Open Problem 6.14] that the necklace graph on n vertices
is the extremal graph among all regular graphs that maximizes the value of Kv(G).

Figure 2: A necklace graph, as in the figure above, is a 3-regular graph on n = 4k+2 vertices where
there are k subgraphs (referred to as beads) linked in a line, and the two subgraphs on the end are
as shown, distinct from the k − 2 in the middle.
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As these graphs afford many 1-separations, we can use the methods of [7] to obtain an explicit
formula for the vertex Kemeny’s constant. If G is a necklace graph on n vertices, these techniques
give

Kv(G) =
4n3 + 3n2 − 122n+ 216

16n
.

Then applying the previous results gives

Ke(G) =
4n3 + 35n2 − 122n+ 216

16n
Knb(G) =

4n3 + 115n2 − 74n+ 216

48n
.

From these expressions it is then readily seen that limn→∞
Knb(G)
Ke(G) = 1/3. That is, the family of

necklace graphs achieves the lower bound on the ratio given in Theorem 3.4 in the limit.

We remark that, while the upper bound in Theorem 3.4 is approached by complete graphs, if
we fix the degree, we can prove a stronger upper bound.

Theorem 3.5. For a family {Gk} of d-regular graphs with d fixed, d ≥ 3, and |V (Gk)| → ∞ as
k →∞, we have

lim
k→∞

Knb(Gk)

Ke(Gk)
≤ 1− 1

d2
.

Proof. We bound the expression in the proof of Theorem 3.4. Let Gk be a graph from the family
with n vertices and m edges. By Theorem 2.9,

Ke(Gk) = Kv(Gk) + 2m− n = Kv(Gk) + n(d− 1).

Since the complete graph has the smallest vertex Kemeny’s constant for any graph on n vertices
we further get that

Ke(Gk) ≥ Kv(Kn) + n(d− 1)

=
(n− 1)2

n
+ n(d− 1)

= n− 2 +
1

n
+ n(d− 1)

≥ nd− 2.

Then using this bound on Ke(Gk) and taking the limit as n→∞ the ratio is bounded as follows.

lim
n→∞

Knb(Gk)

Ke(Gk)
≤ lim

n→∞

(
1− 2

d
+

2n

nd− 2
+

1

(d− 2)(nd− 2)
− n

d(nd− 2)

)
= 1− 1

d2
.

Example 3. Given any d-regular Ramanujan graph, the ratio of the non-backtracking Kemeny’s
constant to the edge Kemeny’s constant will be close to the upper bound in Theorem 3.5. Recall
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that a graph is a Ramanujan graph if its adjacency eigenvalues have λ2, |λn| ≤ 2
√
d− 1. Using this

bound on the eigenvalues and Lemma 3.1, we can show

Ke(G) ≤ n
(
d− 1 +

d

d− 2
√
d− 1

)
.

Then using Theorem 3.4 leads to the bound

Knb(G)

Ke(G)
≥ 1− 1

d2

(
d+ 2

√
d− 1

d− 2
√
d− 1 + 2

√
d−1
d

)
= 1− 1

d2
−O

(
1

d5/2

)
.

4 Biregular Graphs

In this section, we extend results about regular graphs to the case of biregular graphs. A (c, d)-
biregular graph is a bipartite graph in which every vertex in one part of the bipartition has degree
c and every vertex in the other part has degree d. See Figure 3 for an example.

Figure 3: A (2, 3)-biregular graph on 10 vertices

Lemma 4.1. Kemeny’s constant for a simple random walk on the edge space of a (c, d)-biregular
graph is given by

Ke(G) = 2m− n+

n∑
i=2

√
cd√

cd− λi
.

Proof. As in the regular case, Theorem 2.9 already gives a nice expression for Ke(G). We give this
expression in terms of the adjacency eigenvalues of G to assist the comparison with Knb(G) later.

It is known that for a bipartite biregular graph, the eigenvalues of the transition probability
matrix are of the form λi/

√
cd where λi is an eigenvalue of the adjacency matrix (see proof of

Corollary 2 in [11]). Using Lemma 2.1 gives the result.

Theorem 4.2. Let G be a (c, d)−biregular graph, r be the number of vertices with degree c, and s
the number of vertices with degree d. Without loss of generality suppose that r ≥ s. Then

Knb(G) =
2(m− n+ 1)(c− 1)(d− 1)

(c− 1)(d− 1)− 1
+

2(r − s)(d− 1)

d
+

1

2

+ 2(s− 1) +
cd− c− d

cd

[
Ke(G)− 2m+ n− 1

2
− (r − s)

]
.
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Proof. From [11] we know that the eigenvalues of the non-backtracking transition probability matrix
for a (c, d)-biregular graph G are as follows:

{(±α)m−n, (±iα)r−s,±
√
Ak ±Bk},

where

α =
1√

(c− 1)(d− 1)
;

Ak =
λ2k − (c− 1)− (d− 1)

2(c− 1)(d− 1)
;

Bk =
(λ2k − (c− 1)− (d− 1))2 − 4(c− 1)(d− 1)

4(c− 1)2(d− 1)2
;

for k = 1, . . . , s, and thus λk ranges over the s largest eigenvalues of the adjacency matrix of G.
We calculate Knb(G) using the formula in Lemma 2.1. To this end, some simple computation

and simplification shows that

(m− n)

(
1

1− α
+

1

1 + α

)
=

2(m− n)(c− 1)(d− 1)

(c− 1)(d− 1)− 1

and

(r − s)
(

1

1− iα
+

1

1 + iα

)
=

2(r − s)(d− 1)

d
.

Finally, for fixed k we compute

1

1−
√
Ak +Bk

+
1

1−
√
Ak +Bk

+
1

1 +
√
Ak +Bk

+
1

1 +
√
Ak −Bk

=
4(1−Ak)

(1−Ak)2 −Bk
.

Some tedious simplification gives the expression

2 · (λk −
√

2cd− c− d)(λk +
√

2cd− c− d)

(λk −
√
cd)(λk +

√
cd)

.

In this form it is clear that we must look at the four eigenvalues that come from the adjacency
matrix eigenvalue

√
cd separately. A straightforward computation reveals that the eigenvalue

√
cd

of the adjacency matrix will give rise to the following eigenvalues for the non-backtracking transition
probability matrix:

1,−1,
1√

(c− 1)(d− 1)
,− 1√

(c− 1)(d− 1)
.

Combining everything we have currently gives

Knb(G) =
2(m− n+ 1)(c− 1)(d− 1)

(c− 1)(d− 1)− 1
+

2(r − s)(d− 1)

d
+

1

2

+ 2

s∑
i=2

(λi −
√

2cd− c− d)(λi +
√

2cd− c− d)

(λi −
√
cd)(λi +

√
cd)

.
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However, further work will allow for easier comparison to Ke(G). We begin by rearranging the
summation term.

(λk −
√

2cd− c− d)(λk +
√

2cd− c− d)

(λk −
√
cd)(λk +

√
cd)

= 1 +
cd− c− d

(
√
cd− λk)(

√
cd+ λk)

= 1 + (cd− c− d)

[
1

2
√
cd(
√
cd− λk)

+
1

2
√
cd(
√
cd+ λk)

]
Then, using Lemma 4.1 and the fact that the adjacency spectrum is symmetric about 0 with null
space at least dimension r − s, we get

2

s∑
k=2

(λk −
√

2cd− c− d)(λk +
√

2cd− c− d)

(λk −
√
cd)(λk +

√
cd)

= 2

s∑
k=2

(
1 +

cd− c− d
(
√
cd− λk)(

√
cd+ λk)

)

= 2(s− 1) + 2(cd− c− d)

s∑
k=2

1

(
√
cd+ λk)(

√
cd− λk)

= 2(s− 1) +
cd− c− d√

cd

s∑
k=2

(
1√

cd+ λk
+

1√
cd− λk

)

= 2(s− 1) +
cd− c− d√

cd

[
n∑
k=2

(
1√

cd− λk

)
−
(

1

2
√
cd

+
(r − s)√

cd

)]

= 2(s− 1) +
cd− c− d√

cd

(
Ke(G)− 2m+ n√

cd

)
− cd− c− d√

cd

(
1

2
√
cd

+
r − s√
cd

)
= 2(s− 1) +

cd− c− d
cd

[Ke(G)] +
cd− c− d

cd

[
−2m+ n− 1

2
− (r − s)

]
.

In order to bound Ke(G)−Knb(G) it will be useful to have the following bound.

Lemma 4.3. If G is bipartite, then

Ke(G) ≥ 2m− 3

2

with equality if and only if G is complete bipartite.

Proof. In [6, Prop 4.1] it was shown that Kv(G) ≥ n− 3
2 with equality if and only if G is complete

bipartite. Combining this with Theorem 2.9 gives the result.

Theorem 4.4. Let G be a (c, d)-biregular graph which is not K2,3,K2,4,K2,5, or K3,3. Then
Ke(G) > Knb(G).
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Proof. From Theorem 4.2 one can compute

Ke(G)−Knb(G) = Ke(G)

(
c+ d

cd

)
− 2(m− n+ 1)(c− 1)(d− 1)

(c− 1)(d− 1)− 1
− 1

2
− 2(s− 1)

+(r − s)
[
−2(d− 1)

d
+
cd− c− d

cd

]
+

(2m− n+ 1
2 )(cd− c− d)

cd

= Ke(G)

(
c+ d

cd

)
− 2(m− n+ 1)

(
1 +

1

(c− 1)(d− 1)− 1

)
+

3

2
− 2r +

2(r − s)
d

+

(
1− c+ d

cd

)
(2sd− 2s+

1

2
) (since m = sd and n = r + s)

≥ (2m− 3

2
)

(
c+ d

cd

)
+

(
1− c+ d

cd

)
(2s(d− 1) +

1

2
)

−2(m− n+ 1)

(
1 +

1

(c− 1)(d− 1)− 1

)
+

2(r − s)
d

+
3

2
− 2r (by Lemma 4.3)

= 2

[
n−m− 1

cd− c− d
+
r

d
+
s

c

]
−
(

2

c
+

2

d

)
.

The difference between m,n will be greatest when G = Kc,d; that is, when m = cd and n = c+d.
In that case, n −m − 1 = −(c − 1)(d − 1). Also note that r ≥ d and s ≥ c. Then the expression
above is greater than or equal to

2

[
−(c− 1)(d− 1)

cd− c− d
+
r

d
+
s

c

]
−
(

2

c
+

2

d

)
= 2

[
−
(

1 +
1

(c− 1)(d− 1)− 1

)
+
r

d
+
s

c

]
−
(

2

c
+

2

d

)
≥ 2

[
−1− 1

(c− 1)(d− 1)− 1
+ 1 + 1

]
−
(

2

c
+

2

d

)
= 2− 2

(c− 1)(d− 1)− 1
−
(

2

c
+

2

d

)
.

Note that this expression is nonnegative precisely when

1

(c− 1)(d− 1)− 1
+

1

c
+

1

d
≤ 1.

An easy check shows that if c = 2 then this inequality holds for d ≥ 6.
If c ≥ 3, then this will hold so long as d ≥ 3, with equality when d = 3. Notice that for

G = K2,3,K2,4,K2,5, we have Ke(G) < Knb(G), and if G = K3,3 then Ke(G) = Knb(G). These can
be shown to be the only (c, d)-biregular graphs in which Ke(G) < Knb(G).

Theorem 4.5. Let G be a (c, d)-biregular graph which is not K2,3,K2,4,K2,5, or K3,3. Then

1− c+ d

cd
≤ Knb(G)

Ke(G)
< 1.

Proof. First note that the upper bound is a restatement of Theorem 4.4.
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To prove the lower bound, the following substitutions will be useful. Now consider

Knb(G)

Ke(G)
=

2(m− n+ 1)(c− 1)(d− 1)

Ke(G)[(c− 1)(d− 1)− 1]
+

2(r − s)(d− 1)

Ke(G)d
+

1

2Ke(G)
+

2(s− 1)

Ke(G)
+
cd− c− d

cd

+
cd− c− d
Ke(G)cd

[−2m+ n− 1

2
− r + s]

=
2(m− n+ 1)(c− 1)(d− 1)

Ke(G)[(c− 1)(d− 1)− 1]
+

2(r − s)(d− 1)

Ke(G)d
+

1

2Ke(G)
+

2(s− 1)

Ke(G)
+
cd− c− d

cd

− cd− c− d
Ke(G)cd

[2s(d− 1) +
1

2
]

Notice that Ke(G) > 0. Then the lower bound holds if and only if

Ke(G)

(
Knb(G)

Ke(G)
− 1 +

c+ d

cd

)
≥ 0.

Considering this expression, we can rewrite it as

Ke(G)

(
Knb(G)

Ke(G)
− 1 +

c+ d

cd

)
=

2(m− n+ 1)(c− 1)(d− 1)

(c− 1)(d− 1)− 1
+

2(r − s)(d− 1)

d

+
1

2
+ 2(s− 1)− cd− c− d

cd

(
2s(d− 1) +

1

2

)
=

2(m− n+ 1)(c− 1)(d− 1)

(c− 1)(d− 1)− 1
+

2(d− 1)r

d
+
c+ d

2cd

+s

(
4− 2

c
− 2

s

)
− 2m+ 2r (since m = cr.) (1)

Here, notice that 4− 2
c −

2
s ≥ 2 since both c ≥ 2 and s ≥ 2. Then we get s

(
4− 2

c −
2
s

)
≥ 2s. Recall

also that n = r + s. Applying these observations to (1), we now have

Ke(G)

(
Knb(G)

Ke(G)
− 1 +

c+ d

cd

)
≥ 2(m− n+ 1)(c− 1)(d− 1)

(c− 1)(d− 1)− 1
+

2(d− 1)r

d
+
c+ d

2cd
+ 2n− 2m

=
2(m+ 1)(c− 1)(d− 1)

(c− 1)(d− 1)− 1
− 2n

(c− 1)(d− 1)− 1
+

2(d− 1)r

d
+
c+ d

2cd
− 2m

= 2(m+ 1) +
2(m+ 1)− 2n

(c− 1)(d− 1)− 1
+

2(d− 1)r

d
+
c+ d

cd
− 2m

= 2 +
2(m− n+ 1)

(c− 1)(d− 1)− 1
+

2(d− 1)r

d
+
c+ d

2cd
.

This expression is positive, and so it holds that

Knb(G)

Ke(G)
≥ 1− c+ d

cd
.

Note that when c = d this is the same lower bound for the ratio obtained in the regular graph
case above, Theorem 3.4.
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5 Cycle Barbells

As these expressions for Kemeny’s constant in the edge space depend on both the number of vertices
and the number of edges, the question arises, “What comparisons are meaningful comparisons?”.
One method for ensuring meaningful comparisons of edge Kemeny’s constant between graphs is to
compare only graphs that have the same number of both vertices and edges. A natural starting
place for where the non-backtracking Kemeny’s constant will be defined is the family of graphs with
n vertices and n+ 1 edges.

Using SageMath, we compute the values of the edge and non-backtracking Kemeny’s constants
for all graphs with minimum degree 2 on n vertices and n+1 edges, up to order n = 20. These com-
putations suggest that, for both Knb and Ke, the largest Kemeny’s constant with these constraints
occurs for graphs that we will call “cycle barbells.”

We give a definition of cycle barbells and then proceed to calculate Knb and Ke for these graphs.

Definition 5.1. The cycle barbell G = CB(k, a, b) = Ca ⊕ Pk ⊕ Cb is the 1-sum of an a-cycle, a
path on k vertices, and a b-cycle. Note |V (G)| = a+ b+ k − 2 and |E(G)| = a+ b+ k − 1.

Figure 4: The graph CB(3,4,6).

Theorem 5.2. For a cycle barbell G = CB(k, a, b), the vertex Kemeny’s constant is given by

Kv(G) =
1

a+ b+ k − 1
·
[

(a+ 1)(a− 1)

6
(a+ 2(b+ k − 1)) +

(b+ 1)(b− 1)

6
(b+ 2(a+ k − 1))

+(a+ b)(k − 1)2 +
(k − 1)(2k2 − 4k + 3)

6
+ 2ab(k − 1)

]
.

Proof. Since the cycle barbell is a 1-sum of two cycles and a path, we can use Lemma 2.5 to give the
result, relying on known expressions for the resistance distances in paths and cycles. In particular,
using methods from Chapter 10 of [4], it can be shown that in a cycle Cn the resistance distance

between two vertices i, j is rCn
(i, j) = d(i,j)(n−d(i,j))

n , where d(i, j) is the shortest path distance
from i to j. In addition, for trees, r(i, j) = d(i, j). From here the vertex Kemeny’s constant and
moment expressions are easily calculated using Lemma 2.2 and Definition 2.3, and combined using
Lemma 2.5 to give the result.

The edge Kemeny’s constant for a cycle barbell follows easily from Theorem 5.2 and Theorem
2.9.

Corollary 5.3. For a cycle barbell G = CB(k, a, b), the edge Kemeny’s constant is given by

Ke(G) =
1

a+ b+ k − 1
·
[

(a+ 1)(a− 1)

6
(a+ 2(b+ k − 1)) +

(b+ 1)(b− 1)

6
(b+ 2(a+ k − 1))

+(a+ b)(k − 1)2 +
(k − 1)(2k2 − 4k + 3)

6
+ 2ab(k − 1)

]
+ a+ b+ k.

16



In order to find the non-backtracking Kemeny’s constant for the cycle barbells we will find the
characteristic polynomial of the non-backtracking transition probability matrix, and apply Lemma
2.6 to calculate Knb(G). For G = CB(k, a, b), this matrix is given by

Pnb(G) =



Ĉa 0 0 0 0 1
2Sa

0 Ĉa 0 0 0 1
2Sa

0 0 Ĉb 0 1
2Sb 0

0 0 0 Ĉb
1
2Sb 0

1
2Ra

1
2Ra 0 0 Jk−1(0) 0

0 0 1
2Rb

1
2Rb 0 Jk−1(0)


where Sa is the a× (k − 1) matrix that is all 0’s except for a 1 in the bottom left entry, Ra is the
(k−1)×a matrix that is all 0’s except for a 1 in the bottom left entry, Jk−1(0) is a (k−1)× (k−1)

Jordan block with 0 on the diagonal, and Ĉa is an a× a matrix with 1’s on the super diagonal, 1/2
in the bottom left entry, and 0’s everywhere else.

Lemma 5.4. Let G = CB(k, a, b). Then Pnb(G) has characteristic polynomial

p(t) = (2ta − 1)(2tb − 1)[(2ta − 1)(2tb − 1)t2(k−1) − 1].

Proof. We will determine eigenvectors of Pnb. Suppose 2λa − 1 = 0. Let x = [λ λ2 · · · λa]T . Then
computation reveals that [xT − xT 0 0 0]T is an eigenvector for Pnb corresponding to λ.

Suppose 2λb − 1 = 0. A similar construction of x will give [0 0 xT − xT 0]T as an eigenvector
for Pnb.

Suppose that λ is a solution to (2ta− 1)(2tb− 1)t2(k−1)− 1 = 0. Let x, y, f, g, α, β be as follows.

x = [λk−1 . . . λa+k−2]T y = β[λk . . . λb+k−1]T

f = [1λ . . . λk−2]T g = α[λk . . . λ2(k−1)]T

α =
2λa − 1

λ
β =

1

2λb+k − λk
.

Note that β is well-defined since if 2λb+k − λk = 0 then λ cannot be a root of (2ta − 1)(2tb −
1)t2(k−1) − 1.

Computation reveals that

Pnb


x
x
y
y
f
g

 = λ


x
x
y
y
f
g

 .

It is easily verified that this forms a complete set of linearly independent eigenvectors.

Theorem 5.5. The non-backtracking Kemeny’s constant for a cycle barbell G = CB(k, a, b) is
given by

Knb(G) =
2(a+ b+ k − 1)2 + 3(a+ b)2 + 2ab+ 4(a+ b)(k − 1)− (a+ b+ k − 1)

2(a+ b+ k − 1)
.
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Proof. This follows from computation using Lemma 5.4 and Lemma 2.6.

In these next results we show which barbells are the maximizers for the variants of Kemeny’s
constant among barbells on n vertices. It is especially interesting that the non-backtracking Ke-
meny’s constant has a different maximizer than the edge Kemeny’s constant.

Theorem 5.6. The edge Kemeny’s constant for a cycle barbell on a fixed number of vertices is
maximized when a = b = 3, and the path has all the remaining vertices; that is, the extremal graph
is CB(n− 4, 3, 3). Moreover,

Ke(CB(n− 4, 3, 3)) =
2n3 + 12n2 − 51n+ 101

6(n+ 1)
.

Proof. Let G = CB(k, a, b) and m = |E(G)| and n = |V (G)|. Since for a fixed number of vertices
2m− n is a constant, we can optimize the vertex Kemeny’s constant. We begin by noticing that if
m = a+ b+ k − 1 then we can rewrite the expression in Theorem 5.2 as

Kv(G) =
1

6m
·
[
m3 −m2 +m+ k3 − 2k2 + 4 + 3(a+ b)(k2 − 1)− k((a+ b) + 3)((a+ b) + 1)

−a2(b− 2)− b2(a− 2) + 4ab(2k − 1)
]

Using this expression we see the only nonconstant terms are

k3 − 2k2 + 3(a+ b)(k2 − 1)− k(a+ b+ 3)(a+ b+ 1)− a2(b− 2)− b2(a− 2) + 4ab(2k − 1).

Now suppose that k is fixed. Then since n is fixed, a+ b is also fixed. Thus the only nonconstant
terms are

4ab(2k − 1)− a2(b− 2)− b2(a− 2). (2)

Say a + b = R. Then we can reduce this expression to a function of a single variable by replacing
a = R− b and we obtain

4b(R− b)(2k − 1)− (R− b)2(b− 2)− b2(R− b− 2) = b2(R− 8(k − 1))− bR(R− 8(k − 1)) + 2R2.

As a function of b this expression has a critical value at b = R/2 (hence when a = b). This is a
maximum if R < 8(k−1), a minimum if R > 8(k−1), and is constant with value 2R2 if R = 8(k−1).

If R > 8(k − 1) then Equation (2) will be largest when a (or b) is as small as possible (i.e.
b = 3). In this case one shows that Equation (2) is less than 2R2. If R < 8(k − 1) one can show
that Equation (2) is greater than 2R2. Thus we see for fixed k, the cycle barbell will have largest
vertex Kemeny’s constant when a = b and R < 8(k − 1).

Now let a = b. We will optimize letting k vary. The expression of interest in this case becomes

k3 − 2k2 + 6b(k2 − 1)− k(2b+ 3)(2b+ 1)− 2b3 + 4b2 + 4b2(2k − 1).

This is seen to be strictly increasing for 0 ≤ k ≤ n− 4.
Therefore, the cycle barbell on n vertices with maximal vertex Kemeny’s constant—and hence

maximal edge Kemeny’s constant—is when a = b = 3 and the path is as long as can be.
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We remark that in the proof above, when the order of the graph is fixed and a+ b = 8(k−1) for
some fixed k, the expression for the edge Kemeny’s constant (and thus also the vertex Kemeny’s
constant) is independent of the choice of a and b. Thus surprisingly, for that particular length of
path, it does not matter how balanced the two cycles are.

Theorem 5.7. The non-backtracking Kemeny’s constant for a cycle barbell on a fixed number of
vertices n is maximized at CB(2, dn/2e, bn/2c). Moreover, for n even we have

Knb(CB(2, n/2, n/2)) =
11n2 + 14n+ 2

4(n+ 1)

and for n odd

Knb(CB(2, (n+ 1)/2, (n− 1)/2)) =
11n2 + 14n+ 1

4(n+ 1)
.

Proof. Let G = CB(k, a, b). For a fixed number of vertices n, a cycle barbell also has a fixed
number of edges m. Thus the only non constant terms of the expression for Knb given by Theorem
5.5 will be

3(a+ b)2 + 2ab+ 4(a+ b)(k − 1).

We first show that for fixed k, this is maximized when a = b. This is easily seen since if k fixed and
n is fixed, then so is a+ b. Thus this comes down to optimizing 2ab which is largest when a = b.

Now consider a = b and constant n. We find the maximum value here. The expression of
interest becomes

3(2a)2 + 2a2 + 4(2a)(k − 1) = 14a2 + 8a(k − 1).

Notice that 2a+ k − 2 = n and so k = n+ 2− 2a. Substituting this in yields

−2a2 + 8(n+ 1)a.

Simple analysis shows us that this will attain it’s maximum at a = 2(n+ 1), but a ≤ n/2 and since
the expression is increasing for a < 2(n + 1) the barbell will be maximized when a is as large as
possible. In the case that n is even this is the graph CB(2, n/2, n/2). For odd n, computation
shows that Knb(CB(2, a+ 1, a)) > Knb(CB(3, a, a)).

We end with some discussion of open questions and avenues of research. Theorems 5.6 and 5.7
exhibit interesting differences in behavior between a simple random walk and a non-backtracking
random walk. For cycle barbells, the simple random walk Kemeny’s constant is largest when there
was a large path and small cycles, whereas in the non-backtracking random walk Kemeny’s constant
was largest when there was a small path with large cycles. Also note that the edge Kemeny’s
constant is an order of magnitude larger than the non-backtracking Kemeny’s constant even when
both are compared at G = CB(2, n/2, n/2) (the maximizer for the non-backtracking walk, and
minimizer for the simple walk); see Figure 5. In particular Knb(G) = O(n) and Ke(G) = O(n2).
This suggests that, while long paths will tend to lead to a large Kemeny’s constant for the simple
walk, large cycles make more of a difference for the non-backtracking walk. It would be interesting
to further investigate more generally what graph properties lead to large or small simple walk
Kemeny’s constant versus a large non-backtracking walk Kemeny’s constant.

Note that from Theorem 3.4, for regular graphs, the simple walk and non-backtracking walk
Kemeny’s constants have the same order of magnitude. It is an interesting open question to de-
termine for what graphs these orders of magnitude will be the same, and for what graphs they

19



Figure 5: A comparison of the values of Ke(G) and Knb(G), where G is a cycle barbell of order
n = 30, with k varying from 2 to 26, and a = b = 1

2 (n− k + 2).

are different, and by how much they can differ. Moreover, it is known that for the simple walk
Kemeny’s constant on the vertices, Kemeny’s constant is at most on the order of O(n3) where n is
the number of vertices, and there are examples where this order of magnitude is achieved (see [5]).
In all examples from this work, the largest non-backtracking Kemeny’s constant that we have seen
is on the order of O(n2) (but again, the comparison based on size of the graph is a more subtle
matter since the state space of the Markov chain is now the number of directed edges). It would
be of interest to determine if this is the largest possible order of magnitude.

Finally, in nearly all results from this paper, the non-backtracking Kemeny’s constant is smaller
than the simple edge Kemeny’s constant. The only exceptions to this have only a few vertices.
Indeed, we have done computations on all connected graphs with minimum degree at least 2 that
are not cycles on up to 10 vertices. We have found that for n = 4 vertices there are 2 graphs
with Knb(G) ≥ Ke(G), on n = 5 vertices there are 10 graphs with Knb(G) ≥ Ke(G), on n = 6
vertices there are 18 graphs with Knb(G) ≥ Ke(G), on n = 7 vertices there are 7 graphs with
Knb(G) ≥ Ke(G), on n = 8 vertices there are 3 graphs with Knb(G) ≥ Ke(G), and on n = 9 and
n = 10 vertices, there are no graphs with Knb(G) ≥ Ke(G). We conjecture that, for all graphs with
sufficiently many vertices, the non-backtracking Kemeny’s constant will be smaller.
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