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Abstract

We show that for every integer m ≥ 2 and large n, every properly edge-coloured graph on n

vertices with at least n(log n)53 edges contains a rainbow subdivision of Km. This is sharp up

to a polylogarithmic factor. Our proof method exploits the connection between the mixing time

of random walks and expansion in graphs.

1 Introduction

The Turán number of a graph H, denoted by ex(n,H), is the maximum possible number of edges

in an n-vertex graph that does not contain a copy of H. In this paper we study a rainbow variant

of Turán numbers, introduced by Keevash, Mubayi, Sudakov and Verstraëte [7]. A proper edge-

colouring of a graph is an assignment of colours to its edges so that edges that share a vertex have

distinct colours. A rainbow subgraph of an edge-coloured graph is a subgraph whose edges have

distinct colours. The rainbow Turán number of a graph H, denoted by ex∗(n,H), is the maximum

possible number of edges in a properly edge-coloured graph on n vertices with no rainbow copy of

H. One can define ex(n,H) and ex∗(n,H) analogously for a family of graphs H.

It was shown in [7] that ex∗(n,H) = (1+o(1)) ex(n,H) for non-bipartite H. Perhaps unsurprisingly,

little is known about rainbow Turán numbers of bipartite graphs. The authors of [7] raised two

problems concerning rainbow Turán numbers of even cycles, one concerning an even cycle of fixed

length 2k and the other concerning the family C of all cycles. For all k ≥ 2, they showed that

ex∗(n,C2k) = Ω(n1+1/k) and conjectured that ex∗(n,C2k) = Θ(n1+1/k). The authors of [7] verified

the conjecture for k ∈ {2, 3}. Following further progress on the conjecture by Das, Lee and Sudakov

[3], Janzer [4] recently resolved the conjecture.
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Regarding the rainbow Turán number of the family C of all cycles, Keevash, Mubayi, Sudakov

and Verstraëte [7] showed that ex∗(n, C) = Ω(n log n), by considering a naturally defined proper

edge-colouring of the hypercube Qk, where k = ⌊log n⌋ (colour the edge uv by colour i if the u

and v differ in the coordinate i; it is easy to see that no cycle can be rainbow in this colouring).

They also showed that ex∗(n, C) = O(n4/3) and asked if ex∗(n, C) = O(n1+o(1)) and furthermore,

if ex∗(n, C) = O(n log n). Das, Lee and Sudakov [3] answered the first question affirmatively, by

showing that ex∗(n, C) ≤ ne(logn)
1
2+o(1)

. In 2022, Janzer [4] improved this bound by establishing that

ex∗(n, C) = O
(
n(log n)4

)
, which is tight up to a polylogarithmic factor. Recently, Jiang, Methuku

and Yepremyan [6] proved the following generalisation of Das, Lee and Sudakov [3] on ex∗(n, C).

Theorem 1.1 (Jiang, Methuku, Yepremyan [6]). For every integer m ≥ 2 there exists a constant

c > 0 such that for every integer n ≥ m the following holds. If G is a properly edge-coloured graph

on n vertices with at least nec
√
logn edges, then G contains a rainbow subdivision of Km, where each

edge is subdivided at most 1300 log2 n times.

The method used in [6] utilises robust expanders in the coloured setting together with a density

increment argument, inspired in part by the method introduced by Sudakov and Tomon [16].

In this paper, we lower the eO(
√
logn) error term in Theorem 1.1 to a polylogarithmic term, which in

conjunction with the above-mentioned Ω(n log n) lower bound on ex∗(n, C) determines the rainbow

Turán number of the family of Km-subdivisions up to a polylogarithmic factor.

Theorem 1.2. Fix an integer m ≥ 2 and let n be sufficiently large. Suppose that G is a prop-

erly edge-coloured graph on n vertices with at least n(log n)53 edges. Then G contains a rainbow

subdivision of Km, where each edge is subdivided at most (log n)6 times.

Theorem 1.2 provides the rainbow analogue of a fundamental (and highly influential) result of

Mader [13] stating that for every integer m ≥ 2, there exists d = d(m) such that every graph with

average degree at least d contains a subdivision of Km. Research on this problem has a long history,

see e.g., Mader [14], Komlós and Szemerédi [9, 10], and Bollobás and Thomason [2].

Our proof of Theorem 1.2 exploits the connection between mixing time of random walks and edge

expansion. This connection is used in conjunction with counting lemmas developed by Janzer in

[4] regarding homomorphisms of cycles in graphs. We also prove a strengthening of Theorem 1.2,

regarding ‘rooted’ rainbow subdivisions of Km in expanders (see Theorem 6.1). For this stronger

version, in addition to the ingredients used for proving Theorem 1.2, we use the framework of [6]

and an additional idea used by Letzter in [11] (see Lemma 3.7).

The rest of the paper is organised as follows. In Section 2, we give a short overview of our proofs,

namely the proof of Theorem 1.2 and a strengthening of it (Theorem 6.1). In Section 3, we mention

various preliminary results, regarding the existence of expanders which are close to being regular

and properties of expanders. In Section 4, we state three lemmas due to Janzer [4] and some

consequences of these lemmas. Section 5 contains the main new ideas of the paper, exploiting a
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connection between the mixing time of a random walk and expansion properties in a graph. In

Section 6, we prove Theorem 1.2 and a strengthening of it regarding rooted subdivisions in almost

regular expanders. We complete the paper with concluding remarks in Section 7.

Throughout the paper, for convenience, we drop floor and ceiling signs for large numbers, and

logarithms are in base 2.

2 Overview of the proofs

Our main idea is to use the connection between the mixing time of random walks, the notion of

‘conductance’ (see Definition 5.3) and our notion of expansion. It is a well-known and very useful

fact that ‘large’ conductance implies ‘small’ mixing time (see, e.g., Lovász [12]). Moreover, our

notion of expansion implies that our expanders have large conductance. Using these facts we show

that if additionally, such expanders are almost regular, then long enough walks are close to being

uniformly distributed. We also use two counting lemmas of Janzer from [4]. Below we describe

these lemmas and the main ideas in more detail.

In a properly edge-coloured graph, say that a closed walk is degenerate if it is either not rainbow or

visits a vertex more than once. The first lemma from [4] implies that in a properly edge-coloured

graph which is close to being regular, the number of degenerate closed 2k-walks is significantly

smaller than the number of closed 2k-walks, provided that k is sufficiently large.

Given two vertices x and y, a closed 2k-walk W is said to be hosted by x and y if it starts at x and

reaches y after k steps. We call a pair of vertices (x, y) good if the number of degenerate closed

2k-walks hosted by x and y is significantly smaller than the number of closed 2k-walks hosted by

x and y. The second lemma from [4] that we use shows that if a pair (x, y) is good then there are

many short pairwise colour-disjoint and internally vertex-disjoint k-paths from x to y.

In fact, we use versions of these lemmas which are applicable to edge-weighted graphs. These

weighted versions can be easily deduced for the original unweighted versions.1 We will later apply

these weighted lemmas with a specific edge-weighting, namely where w(xy) = 1√
d(x)d(y)

. This weight

was chosen so that the weight of a walk W = x0 . . . xk is the probability that a random walk of

length k starting at x0 produces W , times
√

d(xk)
d(x0)

.

Using results about random walks on graphs, which relate mixing time to expansion, we show

that in an expander G on n vertices which is close to being regular, for k suitably large (at least

polylogarithmic in n), the numbers of closed 2k-walks hosted by any two pairs of vertices are within

a suitable polylogarithmic factor (in n) of each other. This, combined with the fact that the number

of degenerate closed 2k-walks is small compared to the total number of closed 2k-walks (due to the

first lemma above), implies that almost all pairs of vertices are good. Thus, using Turán’s theorem,

we find a copy of Km in the graph formed by good pairs. This, together with the fact that there are

1To deduce the weighted version of the first lemma, we actually need a multigraph version of Janzer’s original one,
whose proof is identical to the original version for simple graphs.
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many short colour-disjoint and internally vertex-disjoint rainbow paths between any good pair of

vertices (due to the second lemma above) allows us to greedily build the desired rainbow-subdivision

of Km.

We also prove a stronger version of Theorem 1.2, Theorem 6.1, asserting that in an expander G

which is close to being regular and whose average degree is large enough, for any set S of m vertices,

there exists a rainbow Km-subdivision with the vertices of S being the branching vertices. The main

step in this proof shows that for any two vertices x and y in G there is a short rainbow x, y-path

avoiding a prescribed small set C of vertices and colours. By iterating this over all pairs of vertices

in S, we can build the desired rainbow Km-subdivision.

To show that there is a short rainbow x, y-path in G, we first apply tools due to Jiang, Methuku and

Yepremyan [6] and Letzter [11] to show that there is a set of vertices U of size Ω(n) such that for

each v ∈ U there is such a short rainbow x, v-path P (v) and a short rainbow y, v-path Q(v), both

of which avoid C, such that no colour is used on too many of these paths P (v) and Q(v). It easily

follows that for almost all pairs (u, v) with u, v ∈ U , the paths P (u) and Q(v) are colour-disjoint.

This, combined with the fact that most pairs in U are good (in the sense mentioned earlier), implies

that there exists at least one good pair (u, v) for which P (u) and Q(v) are colour-disjoint. This

allows us to find a suitable short rainbow u, v-path L such that P (u)∪L∪Q(v) is a rainbow x, y-walk

which contains the desired rainbow x, y-path.

3 Preliminaries

Let G be a graph. We denote by d(G) the average degree of G. For a subset S ⊆ V (G), let

e(S) = e(G[S]), and for subsets S, T ⊆ V (G), let e(S, T ) = e(G[S, T ]). We will use the notions of

d-minimality and expanders, defined below, following [6].

Definition 3.1. A graph G is said to be d-minimal if d(G) ≥ d but d(H) < d for every proper

subgraph H ⊆ G.

It is easy to see that every graph G contains a d(G)-minimal subgraph. The following observation

was used in [6]. For completeness, we include its short proof.

Observation 3.2. If G is d-minimal, then every subset S ⊆ V (G) satisfies e(S) + e(S, Sc) ≥ d|S|
2 .

In particular, δ(G) ≥ d
2 .

Proof. Suppose otherwise. Then e(Sc) ≥ d|V |
2 − d|S|

2 ≥ d(|V |−|S|)
2 , contradicting d-minimality.

Definition 3.3. Given d ≥ 1, η ∈ (0, 1) and ε ∈ (0, 12 ], an n-vertex graph G is called a (d, η, ε)-

expander if G is d-minimal, and for every subset S ⊆ V (G) of size at most (1 − ε)n, we have

d(S) ≤ (1− η)d.
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Note that, by definition, for 0 < ε′ ≤ ε ≤ 1
2 and 0 < η ≤ η′ < 1, every (d, η′, ε′)-expander is also

a (d, η, ε)-expander. Also, if G is a (d, η, ε)-expander then it is a (d(G), η, ε)-expander. It will be

useful to note the following ‘edge-expansion’ property of (d, η, ε)-expanders.

Observation 3.4. Let n, d ≥ 1, let η ∈ (0, 1) and let ε ∈ (0, 12 ]. Suppose that G is a (d, η, ε)-

expander on n vertices. Then every S ⊆ V (G) with |S| ≤ (1− ε)n satisfies e(S, Sc) ≥ ηd
2 |S|.

Proof. Let S ⊆ V (G) satisfy |S| ≤ (1−ε)n. Since G is d-minimal and by Observation 3.2, we have

e(S) + e(S, Sc) ≥ d|S|
2 . Since G is a (d, η, ε)-expander, by definition, we also have e(S) = d(S)

2 |S| ≤
(1−η)d

2 |S|. It follows that e(S, Sc) ≥ ηd
2 |S|, as claimed.

Lemma 3.5 (Lemma 2.5 from [6]). Let n, d ≥ 1, let ε ∈ (0, 12 ] and let η = ε
2 logn . Suppose that G

is a graph on n vertices with average degree d. Then G contains a (d′, η, ε)-expander, with d′ ≥ d
2 .

The following lemma from [6] asserts that in a properly edge-coloured expander, one can reach

almost every vertex by a short rainbow path starting at a specified vertex.

Lemma 3.6 (Lemma 2.7 from [6]). Let n, ℓ, d,M ≥ 1, let η ∈ (0, 1), and let ε ∈ (0, 12 ]. Suppose

that ℓ = 4 logn
η and d ≥ 4ℓ+8M

η . Let G be a properly edge-coloured (d, η, ε)-expander on n vertices,

let x ∈ V (G) and let F be a set of vertices and colours of size at most M . Then at least (1 − ε)n

vertices can be reached from x by a rainbow path of length at most ℓ+1 that avoids the vertices and

colours in F .

We will need a stronger version of the previous lemma, where we require that no colour is used

too many times in the short rainbow paths. A similar idea was used in [11] (see Lemma 5) in the

context of tight paths.

Lemma 3.7. Let n, ℓ, d, q,M ≥ 1, let η ∈ (0, 1) and let ε ∈ (0, 12 ]. Suppose that ℓ = 4 logn
η and

d ≥ 20qℓ+8M
η . Let G be a properly edge-coloured (d, η, ε)-expander on n vertices, let x ∈ V (G), and

let F be a set of colours and vertices of size at most M . Then there is a set U ⊆ V (G) of size at

least (1 − ε)n, and a collection P = {P (u) : u ∈ U} where for each u ∈ U , P (u) is a rainbow path

from x to u of length at most ℓ+ 1 that avoids the vertices and colours in F and no colour appears

in more than n
q of the paths in P.

Proof. Let U be a largest set satisfying that for every u ∈ U there is a rainbow path P (u) from

x to u of length at most ℓ + 1 that avoids F , such that no colour appears in more than n
q of the

paths P (u). Say that a colour is bad if it appears on exactly n
q of the paths P (u) with u ∈ U , and

let Cbad be the set of bad colours. Since each path P (u) has length at most ℓ+ 1, we have

|Cbad| ≤
n(ℓ+ 1)

n/q
≤ 2qℓ.

Since d ≥ 20qℓ+8M
η ≥ 4ℓ+8(M+|Cbad)|

η , by Lemma 3.6 with F ∪ Cbad playing the role of F , there is a

set U ′ with |U ′| ≥ (1− ε)n such that for every v ∈ U ′, there is a rainbow path P ′(v) from x to v of
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length at most ℓ+ 1 that avoids the colours and vertices in F ∪Cbad. If |U | < (1− ε)n, then there

is a vertex v ∈ U ′ \U . The set U ∪{v} (along with the paths P (u) for u ∈ U and P ′(v)) contradicts

the maximality of U . It follows that |U | ≥ (1− ε)n, as required.

We would like to work with expanders that are close to regular. For this, we use the following

lemma, which is a slight adaptation of Lemma 3.2 of [15].

Lemma 3.8. Let n ≥ 2 and d ≥ 36 log n. Let G be a bipartite graph on n vertices with minimum

degree at least d. Then there exists a subgraph H of G with average degree at least d
12 logn and

maximum degree at most d.

Proof. Let {A,B} denote a bipartition of G with |A| ≥ |B|. Let G′ be obtained from G by keeping

exactly d edges incident to each vertex in A. Then for each v ∈ A we have dG′(v) = d, and hence

e(G′) = d|A|.

Let m = ⌈log n⌉. For each i ∈ [m], let Bi = {v ∈ B : 2i−1 ≤ dG′(v) < 2i}. Denoting the set of

isolated vertices in B by B0, we have B \ B0 = ∪i∈[m]Bi. By the pigeonhole principle, there exists

an i ∈ [m] for which e(G′[A,Bi]) ≥ e(G′)
m ≥ d|A|

2 logn . Fix such i and let t = 2i−1. Then, by definition,

each v ∈ Bi has degree between t and 2t in G′[A,Bi]. If 2t ≤ d, then G′[A,Bi] has maximum degree

at most d and average degree at least 2e(G′[A,Bi])
|A|+|Bi| ≥ d

2 logn . So the lemma holds. Hence, we may

assume that 2t > d.

Set p = d
4t ; then 0 < p < 1

2 . Now let A′ ⊆ A be chosen by including each vertex in A independently

with probability p. For convenience, write Gi = G′[A,Bi] and G′
i = G′[A′, Bi]. Then

E[e(G′
i)] = p · e(Gi) ≥

pd|A|
2 log n

. (1)

Now, let B′ = {v ∈ Bi : dG′
i
(v) ≤ d}.

For each v ∈ Bi, the degree dG′
i
(v) is binomially distributed with expectation p · dGi(v). Since

t ≤ dGi(v) ≤ 2t, we have d
4 = pt ≤ E[dG′

i
(v)] ≤ 2pt = d

2 . Therefore, using Chernoff’s bound (see,

e.g., Appendix A of [1]), we have

E[|Bi \B′|] =
∑
v∈Bi

P(v ∈ Bi \B′) =
∑
v∈Bi

P
[
dG′

i
(v) ≥ d

]
≤
∑
v∈Bi

P
[
dG′

i
(v) ≥ 2E[dG′

i
(v)]
]

≤
∑
v∈Bi

2 · exp

(
−
E[dG′

i
(v)]

3

)
≤
∑
v∈Bi

2 · exp
(
− d

12

)
≤ n · 2e−3 logn <

1

n
.

This together with the fact that for any A′ and the corresponding B′, e(G′[A′, Bi \B′]) ≤ n|Bi \B′|,
implies

E[e(G′[A′, Bi \B′])] ≤ n · E[|Bi \B′|] ≤ 1. (2)

By (1) and (2),

E[e(G′[A′, B′]) ≥ pd|A|
2 log n

− 1.
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Note that E[|A′|] = p|A|. Also, as t|Bi| ≤ e(G′[A,Bi]) ≤ d|A|, we have |B′| ≤ |Bi| ≤ d
t |A| = 4p|A|.

Hence |A′|+ |B′| ≤ 5p|A|. Let d0 = d
12 logn . We have

E
[
e(G′[A′, B′])− d0(|A′|+ |B′|)

]
≥ pd|A|

2 log n
− 1− 5dp|A|

12 log n
≥ pd|A|

12 log n
− 1 ≥ 0,

where the last inequality used pd|A| = d2|A|
4t ≥ 182(log n)2 ≥ 12 log n which holds since t ≤ |A| and

d ≥ 36 log n. Thus, there is a choice of A′ for which e(G′[A′, B′]) − d0(|A′| + |B′|) ≥ 0. Taking

H = G′[A′, B′], we have d(H) ≥ d0 =
d

12 logn and ∆(H) ≤ d, as desired.

Our final preliminary result combines Lemmas 3.5 and 3.8 to show that every relatively dense graph

contains an expander which is close to regular.

Lemma 3.9. Let n, d ≥ 1 and let ε ∈ (0, 12 ], and suppose that d ≥ 107(log n)3. Suppose that G is

a bipartite graph on n vertices with average degree at least d. Then G has a subgraph H with the

following properties.

1. H is a (d′, η, ε)-expander on n′ vertices, where d′ ≥ d
2500(logn)2

and η ≥ ε
100(logn′)2 ,

2. H has maximum degree at most 2500(log n′)2d′.

Proof. Let G0 = G. We run the following process, generating graphs Gi for i ≥ 0. For each graph

Gi, we write di = d(Gi) and ni = |V (Gi)|.

(a) Let Hi be a subgraph of Gi with average degree at least di
24 logni

and maximum degree at most

di. Such a subgraph Hi exists by Lemma 3.8, using the fact that every graph with average

degree d contains a subgraph with minimum degree at least d
2 . To apply the lemma we need

to verify that di ≥ 72 log ni, which we shall do below.

(b) Write n′
i = |V (Hi)|. Let Gi+1 be a subgraph of Hi which is a (di+1, ηi+1, ε)-expander, where

d(Gi+1) = di+1 ≥ d(Hi)
2 ≥ di

48 logni
and ηi+1 = ε

2 logn′
i
. Such a subgraph exists by Lemma 3.5,

using the observation that if G is a (d, η, ε)-expander then it is a (d(G), η, ε)-expander.

Claim 3.10. If 48 log ni <
√
48 log ni−1 for i ∈ [t] then the graphs G1, . . . , Gt can be defined as

above and are non-empty.

Proof. Notice that to prove the statement, it suffices to show that for t as described, di ≥ 72 log ni

for i ∈ [t− 1].

We prove this by induction. It is easy to check that the statement is true for t = 0 (note that the

condition on t holds vacuously here). Indeed, we just need to check that d0 ≥ 72 log n0, which is

the case as d0 = d, n0 = n and d ≥ 107(log n)3.

Now suppose that 48 log ni <
√
48 log ni−1 for i ∈ [t] and that the inductive statement holds for

t′ ≤ t. This means that the process runs as described for all i ∈ [t], and it remains to show that the
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(t+ 1)-st step can be performed, namely that dt ≥ 72 log nt. By the assumption on t, the following

holds for every i ∈ [t].

48 log ni ≤ (48 log ni−1)
1/2 ≤ . . . ≤ (48 log n0)

2−i
= (48 log n)2

−i
.

Since di ≥ di−1

48 logni−1
for i ∈ [t] (see (b)), it follows that

dt ≥
dt−1

48 log nt−1
≥ . . . ≥ d0

48 log nt−1 · . . . · 48 log n0
≥ d

(48 log n)20+...+2−(t−1)
≥ d

(48 log n)2
. (3)

Using d ≥ 107 log n and n ≥ nt, we find that dt ≥ 103 log n > 72 log nt, as required.

Let ℓ be minimum such that 48 log nℓ ≥
√

48 log nℓ−1. We claim that such ℓ exists. If not, then

by the previous claim the process can be run forever and ni ≥ 1 for all i ≥ 0, implying that

(48 log ni)i≥0 is decreasing, and thus (ni)i≥0 is an infinite decreasing sequence of positive integers,

a contradiction.

We will show that Gℓ satisfies the requirements of Lemma 3.9. Indeed, Gℓ is a (dℓ, ηℓ, ε)-expander.

Using the proof of the above claim, inequality (3) holds for t = ℓ, showing dℓ ≥ d
2500(logn)2

. By

choice of Gℓ, we have ηℓ = ε
2 lognℓ−1

≥ ε
96(lognℓ)2

≥ ε
100(lognℓ)2

(using 48 log nℓ ≥
√
48 log nℓ−1). It

follows that property 1 of the lemma holds. To see property 2, note that Gℓ has maximum degree at

most dℓ−1 and dℓ ≥ dℓ−1

48 lognℓ−1
≥ dℓ−1

(48 lognℓ)2
≥ dℓ−1

2500(lognℓ)2
(again using 48 log nℓ ≥

√
48 log nℓ−1).

4 Counting rainbow cycles in weighted graphs

In this section we state several lemmas regarding (weighted) counts of homomorphic copies of paths

and cycles in weighted graphs G. Three of these are weighted versions of lemmas from Janzer [4],

and we will show how to deduce these from the original, unweighted versions.

First, let us introduce some notation. Let G be a graph with a weighting ω : E(G) → R≥0. We

denote by ωmax, ωmin the maximum and minimum edge weights; that is, ωmax = maxe∈E(G) ω(e)

and ωmin = mine∈E(G) ω(e). The weighted maximum degree of G, denoted ∆ω(G), is

∆ω(G) := max
u∈V (G)

∑
v:uv∈E(G)

ω(uv).

For any t ≥ 1, the weight of a walk P := u0u1 . . . ut is defined as ω(P ) :=
∏t−1

i=0 ω(uiui+1), and the

weight of a closed walk C := u0u1 . . . utu0 is defined as
∏t

i=0 ω(uiui+1), where ut+1 = u0.

In a graph G, denote by Hom(P xy
k ) the family of walks of length k from x to y. Similarly, let

Hom(Cxy
2k ) be the family of closed walks of length 2k that start at x and reach y after k steps. Write

hom(P xy
k ) = |Hom(P xy

k )| and hom(Cxy
2k ) = |Hom(Cxy

2k )|. Given a weighting ω : E(G) → R≥0, we

8



define the weighted homomorphism counts as follows:

homω(P
xy
k ) =

∑
P∈Hom(Pxy

k )

ω(P )

homω(C
xy
2k ) =

∑
C∈Hom(Pxy

k )

ω(C)

The following relation between homω(P
xy
k ) and homω(C

xy
2k ) is very useful.

homω(C
xy
2k ) = (homw(P

xy
k ))2. (4)

We also define homω(C2k) to be the total weight of the homomorphic copies of C2k, namely

homω(C2k) =
∑

x,y∈V (G)

homω(C
xy
2k ).

Similarly, we define homω(Pk) =
∑

x,y∈V (G) homω(P
xy
k ). In a properly edge-coloured graph G,

let Hom∗(Cxy
2k ) be the family of all the closed walks in Hom(Cxy

2k ) that do not form a rainbow

cycle of length 2k. Define hom∗(Cxy
2k ) = |Hom∗(Cxy

2k )|. If the graph is weighted with a weighting

ω : E(G) → R≥0, let hom∗
ω(C

xy
2k ) =

∑
C∈Hom∗(Cxy

2k )
ω(C). Let

Hom∗(C2k) =
⋃

x,y∈V (G)

Hom∗(Cxy
2k ),

and write hom∗(C2k) = |Hom∗(C2k)| and hom∗
ω(C2k) =

∑
x,y∈V (G) hom

∗
ω(C

xy
2k ).

We will make use of the following two lemmas from a recent paper of Janzer [4].

Lemma 4.1 (multigraph version of Lemma 2.2 from [4]). Let k ≥ 2 be an integer and let G = (V,E)

be a multigraph on n vertices. Let ∼ be a symmetric binary relation on V such that for every

u, v ∈ V , there are at most t edges vw (counted with multiplicity) for which u ∼ w. Then the

number of homomorphic 2k-cycles (x1, . . . , x2k) in G such that xi ∼ xj for some i ̸= j is at most

32k3/2t1/2∆(G)1/2n
1
2k hom(C2k)

1− 1
2k .

Note that Lemma 2.2 in [4] is phrased for simple graphs, where the condition was that for every

u, v ∈ V there are at most t neighbours w for which u ∼ w. However, the same proof works for

multigraphs with a modified condition as stated above. Similarly, the next lemma is a multigraph

version of Lemma 2.1 from [4], where again the same proof works.

Lemma 4.2 (multigraph version of Lemma 2.1 from [4]). Let k ≥ 2 be an integer and let G = (V,E)

be a multigraph on n vertices. Suppose that ∼ is a symmetric binary relation on E such that for

every uv ∈ E and w ∈ V , there are at most t edges zw (counted with multiplicity) for which

uv ∼ zw. Then the number of homomorphic 2k-cycles (x1, . . . , x2k) in G such that xixi+1 ∼ xjxj+1

9



for some i ̸= j is at most

32k3/2t1/2∆(G)1/2n
1
2k hom(C2k)

1− 1
2k .

The following lemma is a variant of Lemma 4.2 which is applicable for edge-weighted graphs.

Lemma 4.3. Let k ≥ 2 be an integer and let G = (V,E) be a graph on n vertices with a given

weighting ω : E(G) → R>0. Suppose that ∼ is a symmetric binary relation on E such that for every

uv ∈ E and w ∈ V , there are at most t edges wz for which uv ∼ wz. Let hom∗
ω(C2k) be the sum

of weights of homomorphic 2k-cycles (x1, . . . , x2k) in G such that xixi+1 ∼ xjxj+1 for some i ̸= j.

Then

hom∗
ω(C2k) ≤ 32k3/2t1/2 ·∆ω(G)1/2 · ω1/2

max · n
1
2k · homω(C2k)

1− 1
2k .

We prove this lemma using Lemma 4.2.2

Proof of Lemma 4.3. We start by proving the lemma in the case where all the weights given by

ω are integers. Let G′ be the multigraph on V (G) where, for each edge e in G, we add ω(e) copies

of e to G′. Notice that ∆(G′) = ∆ω(G). Let t′ := t ·ωmax and notice that for every uv ∈ E(G′) and

w ∈ V (G′), there are at most t′ edges zw such that uv ∼ zw. Let h′ = hom(C2k) in G′. Observe

that homω(C2k) in G equals h′, and that hom∗
ω(C2k) in G is the number of homomorphic 2k-cycles

(x1, . . . , x2k) in G′ such that xixi+1 ∼ xjxj+1 for some i ̸= j. Thus, by Lemma 4.2,

hom∗
ω(C2k) ≤ 32k3/2(t′)1/2∆(G′)1/2 · n

1
2k · (h′)1−

1
2k

≤ 32k3/2t1/2∆ω(G)1/2 · ω1/2
max · n

1
2k · homω(C2k)

1− 1
2k .

Now suppose that all weights given by w are rational. Then there exists a positive integer L

such that the weighting Lω : E(G) → R≥0 (defined as Lω(e) = L · ω(e) for every e ∈ E(G)) is

integer-valued. By the previous paragraph,

hom∗
Lω(C2k) ≤ 32k3/2t1/2∆Lω(G)1/2 · ((Lω)max)

1/2 · n
1
2k · homLω(C2k)

1− 1
2k .

Noting that hom∗
Lω(C2k) = L2k · hom∗

ω(C2k), homLω(C2k) = L2k · homω(C2k), ∆Lω(G) = L ·∆ω(G)

and (Lω)max = L · ωmax, we get

hom∗
ω(C2k) ≤ 32k3/2t1/2∆ω(G)1/2 · ω1/2

max · n
1
2k · homω(C2k)

1− 1
2k .

Finally, for a general positive weighting ω, let (ωm) be a sequence of positive and rational weightings

such that limm→∞ ωm(e) = ω(e) for every edge e ∈ E. Then,

hom∗
ωm

(C2k) ≤ 32k3/2t1/2∆ωm(G)1/2 · (ωm)1/2max · n
1
2k · homωm(C2k)

1− 1
2k ,

2Alternatively, one can prove this by following the proof of Lemma 2.1 from [4] and adapting it straightforwardly
to the weighted version.
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for every m. Taking the limits as m tends to infinity, we get

hom∗
ω(C2k) ≤ 32k3/2t1/2∆ω(G)1/2 · ω1/2

max · n
1
2k · homω(C2k)

1− 1
2k .

Similarly, using Lemma 4.1 instead of Lemma 4.2, one can prove the following

Lemma 4.4. Let k ≥ 2 be an integer and let G = (V,E) be a graph on n vertices with a given

weighting ω : E(G) → R>0. Suppose that ∼ is a symmetric binary relation on V such that for every

u, v ∈ V there are at most t edges vw for which u ∼ w. Let hom∗
ω(C2k) be the sum of weights of

homomorphic 2k-cycles (x1, . . . , x2k) in G such that xi ∼ xj for some i ̸= j. Then

hom∗
ω(C2k) ≤ 32k3/2t1/2 ·∆ω(G)1/2 · ω1/2

max · n
1
2k · homω(C2k)

1− 1
2k .

Next we show that in an appropriately weighted almost-regular properly edge-coloured graphs the

number of degenerate homomorphic copies of 2k-cycles is a ‘small’ proportion of all possible copies.

Here by degenerate we mean the copies which are either non-rainbow or are not isomorphic copies

of C2k.

Lemma 4.5. Let n, d, µ, k, S ≥ 1 and let η ∈ (0, 1). Suppose that d ≥ 216µ3k3S2n1/k. Let G be a

properly edge-coloured graph with minimum degree at least d
2 and maximum degree at most µd, and

define ω : E(G) → R≥0 by setting ω(xy) = 1/
√

d(x)d(y) for every edge xy. Then hom∗
ω(C2k) ≤

1
S homω(C2k).

Proof. We first give a lower bound on homω(C2k). For this, note that

homω(Pk) =
∑

W :W=x0...xk

ω(W ) ≥ n ·
(
d

2

)k

(ωmin)
k ≥ n ·

(
1

2µ

)k

,

where in the last inequality we used that ωmin ≥ 1
∆(G) ≥

1
µd . Hence,

homω(C2k) =
∑

x,y∈V (G)

(
homω(P

xy
k )
)2

≥ 1

n2

 ∑
x,y∈V (G)

homω(P
xy
k )

2

=

(
homω(Pk)

n

)2

≥
(

1

2µ

)2k

,

(5)

where the first inequality follows by convexity.

Let ∼e be the binary relation on E(G) where e ∼e f if and only if e and f have the same colour.

Because G is properly edge-coloured, for every edge uv and vertex w, there is at most one edge

wz for which uv ∼e wz. Let ∼v be the binary relation defined on V (G) where u ∼v w if and only

if u = w. Then, trivially, for every u, v ∈ V there is at most one edge vw (namely uv) for which

u ∼v w. Apply Lemmas 4.3 and 4.4 with ∼e, ∼v in place of ∼, respectively (so t is taken to be 1

11



in both lemmas), to obtain the desired upper bound on hom∗
ω(C2k), as follows.

hom∗
ω(C2k) ≤ 64k3/2 · (∆ω(G))1/2 · ω1/2

max · n
1
2k · homω(C2k)

1− 1
2k

≤ 64k3/2 · (2µ)1/2 ·
(
2

d

)1/2

· n
1
2k · (2µ) · homω(C2k)

=
28k3/2µ3/2n

1
2k

d
1
2

· homω(C2k)

≤ 1

S
· homω(C2k).

In the inequalities above we used that ωmax ≤ 1
δ(G) ≤

2
d and ∆ω(G) ≤ ∆(G) ·ωmax ≤ 2µ and finally,

the inequality homω(C2k) ≥
(

1
2µ

)2k
proved in (5).

It would be useful to be able to find many pairwise colour-disjoint and vertex-disjoint paths between

a given pair (x, y) of vertices. To that end, we use Lemma 4.7 which will immediately follow from

Lemma 4.6 stated below, whose proof uses the arguments of Theorem 3.7 in [4]. For a graph G,

and vertices x, y ∈ V (G), and walks P,Q ∈ Hom(Pk), let PQ denote the closed walk in Hom(Cxy
2k )

obtained by concatenating P and the reverse of Q.

Lemma 4.6. Let k, s ≥ 1 be integers. Let G be a graph with a given weighting ω : E(G) → R>0

and let x, y ∈ V (G). Let B be a subfamily of Hom(Cxy
2k ) satisfying

∑
F∈B ω(F ) < 1

s2
homω(C

xy
2k ).

Then there exist walks P1, . . . , Ps ∈ Hom(P xy
k ) such that PiPj /∈ B for every distinct i, j ∈ [s].

Proof. Randomly and independently choose s members P1, . . . , Ps of Hom(P xy
k ), where for each

i ∈ [s] and P ∈ Hom(P xy
k ), we have P(Pi = P ) = ω(P )

homw(Pxy
k )

. Note that this is indeed a probability

distribution, and Hom(Cxy
2k ) = {PQ : P,Q ∈ Hom(P xy

k )}. For any distinct i, j ∈ [s] and any

P,Q ∈ Hom(P xy
k ),

P(Pi = P, Pj = Q) =
ω(P )

homω(P
xy
k )

· ω(Q)

homω(P
xy
k )

=
ω(PQ)

homw(C
xy
2k )

.

Thus, the probability that PiPj ∈ B is
∑

F∈B ω(F )

homω(C
xy
2k )

< 1
s2
. Hence, by the union bound, with positive

probability, PiPj /∈ B for every distinct i, j ∈ [s].

Lemma 4.7. Let k, s ≥ 1 be integers. Let G be a properly edge-coloured graph with a given weighting

ω : E(G) → R>0 and let x, y ∈ V (G). Suppose that hom∗
ω(C

xy
2k ) <

1
s2

homω(C
xy
2k ). Then there are s

pairwise colour-disjoint and internally vertex-disjoint rainbow paths of length k from x to y.

Proof. By Lemma 4.6 applied to B = Hom∗(Cxy
2k ) there exist walks P1, . . . , Ps ∈ Hom(P xy

k ) satis-

fying PiPj /∈ Hom∗(Cxy
k ) for every distinct i, j ∈ [s]. In other words, PiPj is a rainbow copy of C2k

for every distinct i, j ∈ [s]. This means that P1, . . . , Ps are pairwise colour-disjoint and internally

vertex-disjoint paths of length k from x to y, as desired.
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5 Counting walks in expanders

In this section we exploit the connection between the mixing time of a random walk on a graph G

and expansion properties of G. A lot of the notation and results that we use can be found in [12].

Suppose G = (V,E) is a connected graph where V = [n]. Consider a random walk on V (G), where

we start at some vertex v0 and at the i-th step we move from vi to one of its neighbours, denoted by

vi+1, where each neighbour of vi is chosen as vi+1 with probability 1
d(vi)

. The sequence of vertices

(vi)i≥0 defines a Markov chain. Let M be the n×n matrix of transition probabilities of the Markov

chain, namely Mv,u is the probability of stepping from v to u; so Mv,u = 1
d(v) if vu ∈ E(G), and

Mv,u = 0 otherwise. So the probability that a random walk starting at vertex v reaches u in t steps

is (M t)v,u.

Definition 5.1. Let G be a graph on the vertex set [n]. Let D = D(G) denote the diagonal n× n

matrix where Dv,v = 1
d(v) for each v ∈ [n]. Let A = A(G) be the adjacency matrix of G, let

M(G) = DA and let N(G) = D1/2AD1/2. Note that the matrix N(G) is symmetric, so it has n

real eigenvalues. Let λ1(N) ≥ λ2(N) ≥ · · · ≥ λn(N) denote the eigenvalues of N := N(G).

Lemma 5.2. Let G be a bipartite graph, with a bipartition {X,Y }, on the vertex set [n] with m

edges and no isolated vertices. Let M = D(G)A(G) and N = N(G). Then for every v, u ∈ V (G)

and integer k ≥ 1, we have

∣∣∣∣(Mk)v,u − d(u)

2m

(
1 + (−1)k+1(v∈X)+1(u∈X)

)∣∣∣∣ ≤
√

d(u)

d(v)
·
(
λ2(N)

)k
.

Note that Lemma 5.2 says that when k is even and both v, u are in the same part or when k is

odd and v, u are in different parts then
∣∣∣(Mk)v,u − d(u)

m

∣∣∣ ≤ √d(u)
d(v) ·

(
λ2(N)

)k
. Note that when k is

even and v and u are in different parts or when k is odd and v and u are in the same part then

(Mk)v,u = 0.

Proof. For any vector w = (w1, . . . , wn)
T , let w be the vector (w′

1, . . . , w
′
n)

T where w′
i = wi when

i ∈ X and w′
i = −wi when i ∈ Y . It is easy to check that Nw = −Nw. Hence, if w is an

eigenvector of N with eigenvalue λ, then w is an eigenvector of N with eigenvalue −λ. It follows

that λi = −λn+1−i for i ∈ [n]. In particular, |λi| ≤ λ2 for every i ∈ {2, . . . , n− 1}.

One can check that w1, defined as follows, is a unit eigenvector of N with eigenvalue 1.

w1 =
1√
2m

(√
d(1),

√
d(2), . . . ,

√
d(n)

)T
.

By the Frobenius–Perron theorem, since the entries of N are non-negative and the entries of w1 are

positive, we have λ1 = 1. As explained above, it follows that w1 is a unit eigenvector of N with

eigenvalue λn = −1. Write wn = w1, and let wi be a unit eigenvector of N with eigenvalue λi for

i ∈ {2, . . . , n−1}, such that w1, . . . , wn are orthogonal to each other. Note that wi is an eigenvector
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of Nk with eigenvalue (λi)
k, for each i ∈ [n]. Since Nk is a symmetric matrix and {w1, . . . , wn} is

an orthonormal eigenbasis for Nk, we may write Nk in the spectral form as follows (using λ1 = 1

and λn = −1).

Nk =

n∑
i=1

(λi)
kwi(wi)

T = w1(w1)
T + (−1)k w1(w1)

T +

n−1∑
i=2

(λi)
kwi(wi)

T .

We also have D1/2ND−1/2 = DA = M . Therefore,

Mk = D1/2NkD−1/2

= D1/2w1(w1)
TD−1/2 + (−1)kD1/2w1(w1)

TD−1/2 +
n−1∑
i=2

(λi)
kD1/2wi(wi)

TD−1/2

Let Q = D1/2w1(w1)
TD−1/2 + (−1)kD1/2w1(w1)

TD−1/2. Then

Mk = Q+

n−1∑
i=2

(λi)
kD1/2wi(wi)

TD−1/2.

Hence

(Mk)v,u = Qv,u +

n−1∑
i=2

(λi)
kwi,vwi,u

√
d(u)

d(v)
. (6)

Let W be the matrix whose rows are w1, . . . , wn. Then WW T = I, implying W TW = I. For each

v ∈ [n], since (W TW )v,v = 1, we have
∑n

i=1 |wi,v|2 = 1, so
∑n−1

i=2 |wi,v|2 ≤ 1. By the Cauchy-

Schwarz inequality,
∑n−1

i=2 |wi,vwi,u| ≤
√∑n−1

i=2 |wi,v|2
√∑n−1

i=2 |wi,u|2 ≤ 1. Since |λi| ≤ λ2 for every

i ∈ {2, . . . , n− 1}, the inequality in (6) implies

∣∣∣(Mk)v,u −Qv,u

∣∣∣ ≤ n−1∑
i=2

|λi|k|wi,uwi,v| ·

√
d(u)

d(v)
≤ (λ2)

k

√
d(u)

d(v)
.

Finally, a straightforward calculation shows that Qv,u = d(u)
2m

(
1 + (−1)k+1(v∈X)+1(u∈X)

)
for all

v, u ∈ [n], as desired.

Definition 5.3. For a graph G with m edges, let π(v) = d(v)
2m , and for any S ⊆ V (G), let π(S) :=∑

s∈S π(s); observe that π(S) ≤ 1 for every S ⊆ V (G). Define the conductance of a set S, denoted

by Φ(S), as

Φ(S) :=
e(S, Sc)

2m · π(S)π(Sc)
,

and let the conductance of a graph G, denoted by ΦG, be defined as

ΦG := min
S⊆V (G)

Φ(S).
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Theorem 5.4 (Theorem 5.3 in [12]). Let G be a graph and let λ2 = λ2(N(G)). Then λ2 ≤ 1− Φ2
G
8 .

In light of Theorem 5.4 and Lemma 5.6, it will be useful to have a lower bound on ΦG for a

(d, η, ε)-expander G. This is easy to achieve, as can be seen in the following lemma.

Lemma 5.5. Let d ≥ 1, η ∈ (0, 1), ε ∈ (0, 12 ]. Let G be a (d, η, ε)-expander on n vertices. Then

ΦG ≥ η
3 .

Proof. Let S ⊆ V (G). Since Φ(S) = Φ(Sc), we may assume that |S| ≤ n
2 ≤ (1 − ε)n. Obser-

vation 3.4 thus implies e(S, Sc) ≥ 1
2ηd|S|. Let γ be such that e(S, Sc) = γd|S|, so γ ≥ η

2 . By

definition of a (d, η, ε)-expander, G is also d-minimal. Hence e(G[S]) ≤ 1
2d|S|. Hence,

∑
v∈S d(v) =

2e(G[S]) + e(S, Sc) ≤ d|S|+ γd|S|. Also, observe that π(Sc) ≤ 1. Hence

Φ(S) =
e(S, Sc)

2e(G)π(S)π(Sc)
≥ e(S, Sc)∑

v∈S d(v)
≥ γd|S|

d|S|+ γd|S|
≥ γ

1 + γ
≥ η

η + 2
≥ η

3
.

The above inequality thus implies ΦG ≥ η
3 .

Recall that given a graph G and two vertices x, y, the quantity homω(P
xy
k ) denotes the sum of

weights of walks of length k from x to y. The following lemma and its immediate corollary will

allow us to compare the values of homω(P
xy
k ), where w(xy) = 1√

d(x)d(y)
for every edge xy, for

different pairs of vertices (x, y) in G.

Lemma 5.6. Let d ≥ 1, η ∈ (0, 1), ε ∈ (0, 12 ]. Let G be a bipartite (d, η, ε)-expander on n vertices

with bipartition {X,Y }. Define a weighting ω : E(G) → R≥0, such that for each edge xy in G,

ω(xy) = 1√
d(x)d(y)

. The following holds for any two vertices x, y ∈ V (G) and every integer k ≥ 1.

∣∣∣∣∣ homω(P
xy
k )
√

d(y)∑
z∈V (G) homω(P xz

k )
√
d(z)

− d(y)

2e(G)

(
1 + (−1)k+1(x∈X)+1(y∈X)

)∣∣∣∣∣ ≤
√

d(y)

d(x)

(
1− η2

72

)k

.

Proof. Let M = M(G), N = N(G) and let λ2 be the second largest eigenvalue of N . Let x be any

vertex in G. Let Wx
k be a random walk of length k starting at x. For any walk P = x0 . . . xk in G,

where x0 = x,

P[Wx
k = P ] =

1

d(x0)
· . . . · 1

d(xk−1)
.

Note that

ω(P ) =
1√

d(x0)d(x1)
· . . . · 1√

d(xk−1)d(xk)

=

√
d(x0)√
d(xk)

· 1

d(x0) · . . . · d(xk−1)
=

√
d(x0)√
d(xk)

· P[Wx
k = P ].

15



For any vertex y in G, by definition,

P[Wx
k ends at y] =

∑
P :=xx1...xk−1y

P(Wx
k = P ) =

√
d(y)√
d(x)

∑
P :P=xx1...xk−1y

ω(P ) = homω(P
xy
k ) ·

√
d(y)

d(x)
.

On the other hand, notice that

1 =
∑

z∈V (G)

P[Wx
k ends at z] =

∑
z∈V (G)

homω(P
xz
k ) ·

√
d(z)

d(x)
.

Recall from our discussion before Definition 5.1, that the probability that a random walk of length

k starting at x ends at y is exactly (Mk)x,y, thus

(Mk)x,y = P[Wx
k ends at y] =

homω(P
xy
k )
√

d(y)
d(x)∑

z∈V (G) homω(P xz
k )
√

d(z)
d(x)

=
homω(P

xy
k )
√
d(y)∑

z∈V (G) homω(P xz
k )
√

d(z)
.

By Lemma 5.2,∣∣∣∣∣
√

d(y) homω(P
xy
k )∑

z∈V (G)

√
d(z) homω(P xz

k )
− d(y)

2e(G)

(
1 + (−1)k+1(x∈X)+1(y∈X)

)∣∣∣∣∣ ≤
√

d(y)

d(x)
· (λ2)

k. (7)

Theorem 5.4 gives that λ2 ≤ 1− Φ2
G
8 , and by Lemma 5.5 we have ΦG ≥ η

3 . It follows that λ2 ≤ 1− η2

72 .

Combining this inequality with (7), the lemma follows.

Corollary 5.7. Let d ≥ 1, η ∈ (0, 1), ε ∈ (0, 12 ]. Let G be a bipartite (d, η, ε)-expander on n vertices

with a bipartition {X,Y } and with a given weighting ω : E(G) → R>0 such that for each edge xy

in G, ω(xy) = 1√
d(x)d(y)

. The following holds for any two vertices x, y ∈ X and even integer k ≥ 2.

∣∣∣∣∣ homω(P
xy
k )
√

d(y)∑
z∈X homω(P xz

k )
√
d(z)

− d(y)

e(G)

∣∣∣∣∣ ≤ √
n

(
1− η2

72

)k

.

Proof. Let x, y ∈ X be given. Since k is even, for each z ∈ Y , Hom(P xz
k ) = ∅. The claim follows

by applying Lemma 5.6 and the fact that
√

d(y)
d(x) ≤

√
n.

The next lemma contains the main takeaway from our discussion about random walks in almost

regular bipartite expanders. It tells us that for relatively large k, and for the weighting defined by

w(xy) = 1√
d(x)d(y)

, the values of homω(C
xy
2k ) do not differ by much over the range of pairs (x, y)

where x and y are in the largest part of the bipartition.

Lemma 5.8. Let n, d, µ, k ≥ 1 and η ∈ (0, 1), ε ∈ (0, 12 ]. Suppose that k is an even integer satisfying

k ≥ 29 logn
η2

. Let G be a bipartite (d, η, ε)-expander with maximum degree at most µd and with a
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given weighting ω : E(G) → R>0 such that for each edge xy in G, ω(xy) = 1√
d(x)d(y)

. Let {X,Y }
be the bipartition of G and suppose that |X| ≥ n

2 . Let

ρmin = min{homω(C
xy
2k ) : x, y ∈ X}

ρmax = max{homω(C
xy
2k ) : x, y ∈ X}.

Then ρmax ≤ 210µ2 · ρmin.

Proof. By Corollary 5.7, for every x, y ∈ X we have∣∣∣∣∣ homω(P
xy
k )
√
d(y)∑

z∈X homω(P xz
k )
√
d(z)

− d(y)

e(G)

∣∣∣∣∣ ≤ √
n

(
1− η2

72

)k

≤
√
n · exp

(
−kη2

72

)
≤

√
n · exp(−4 log n) ≤ 1

n3
≤ d(y)

2e(G)
.

It follows that
d(y)

2e(G)
≤

homω(P
xy
k )
√

d(y)∑
z∈X homω(P xz

k )
√
d(z)

≤ 2d(y)

e(G)
.

Writing the same for x,w ∈ X we obtain

d(w)

2e(G)
≤

homω(P
xw
k )

√
d(w)∑

z∈X homω(P xz
k )
√
d(z)

≤ 2d(w)

e(G)
.

Hence, every x, y, w ∈ X satisfy

homω(P
xy
k )

homω(P xw
k )

=
homω(P

xy
k )
√
d(y)

homω(P xw
k )

√
d(w)

·

√
d(w)

d(y)
≤ 4d(y)

d(w)
·

√
d(w)

d(y)
= 4

√
d(y)

d(w)
≤ 4
√
2µ,

where the second inequality follows from the fact that the minimum degree of G is at least d
2 (by

Observation 3.2) and the maximum degree is at most µd.

Observe that homω(P
xy
k ) = homω(P

yx
k ) for x, y ∈ X. It follows that, for every x, y, z, w ∈ X,

homω(P
xy
k )

homω(P zw
k )

=
homω(P

xy
k )

homω(P xz
k )

·
homω(P

xz
k )

homω(P zw
k )

≤ 32µ.

Let x, y, z, w ∈ X satisfy ρmax = homω(C
xy
2k ) and ρmin = homω(C

zw
2k ). Then

ρmax

ρmin
=

homω(C
xy
2k )

homω(Czw
2k )

=

(
homω(P

xy
k )

homω(P zw
k )

)2

≤ 210µ2,

proving the lemma.

Recall that, by Lemma 4.7, pairs of vertices (x, y) for which hom∗
ω(C

xy
2k ) is considerably smaller than

17



homω(C
xy
2k ) can be used to build many colour-disjoint and internally vertex-disjoint rainbow paths.

The following lemma shows that for large enough k and d, almost all pairs of vertices in one of the

parts of an almost regular bipartite expander satisfy this property.

Lemma 5.9. Let n, d, µ, k, s, p ≥ 1 and η ∈ (0, 1), ε ∈ (0, 12 ]. Suppose that k is even and satisfies

k ≥ 29 logn
η2

and that d ≥ 238k3µ7s4p2n1/k. Let G be a bipartite (d, η, ε)-expander on n vertices with

maximum degree at most µd and with a given weighting ω : E(G) → R>0 such that for each edge

xy in G, ω(xy) = 1√
d(x)d(y)

. Let {X,Y } be the bipartition of G and suppose that |X| ≥ n
2 . Then

for all but at most n2

p pairs (x, y) with x, y ∈ X the following holds.

hom∗
ω(C

xy
2k ) ≤

1

s2
homω(C

xy
2k ).

Proof. Let S = 211µ2s2p, and let ρmin and ρmax be defined as in the statement of Lemma 5.8.

Then, by the same lemma we have ρmax ≤ 210µ2ρmin. Let A be the collection of (ordered) pairs

(x, y) with x, y ∈ X that satisfy hom∗
ω(C

xy
2k ) ≥

1
s2

homω(C
xy
2k ). Then

hom∗
ω(C2k) ≥

∑
(x,y)∈A

hom∗
ω(C

xy
2k ) ≥

1

s2

∑
(x,y)∈A

homω(C
xy
2k ) ≥

|A| · ρmin

s2
.

Note that
∑

x,y∈X homω(C
xy
2k ) =

∑
x,y∈Y homω(C

xy
2k ), and so homω(C2k) = 2

∑
x,y∈X hom(Cxy

2k ).

Hence, by Lemma 4.5 (which is applicable since d ≥ 216µ3k3S2n1/k),

hom∗
ω(C2k) ≤

1

S
· homω(C2k) =

2

S

∑
x,y∈X

homω(C
xy
2k ) ≤

2n2 · ρmax

S
.

Combining the lower and upper bounds on hom∗
ω(C2k), we obtain the required inequality, as follows.

|A| ≤ 2n2 · s2 · ρmax

S · ρmin
≤ n2 · 211µ2s2

S
=

n2

p
,

as desired.

6 Rainbow paths and subdivisions in expanders

We now prove our first main result about rainbow subdivisions.

Proof of Theorem 1.2. Let G′ be a bipartite subgraph of G with at least e(G)
2 edges. Then

d(G′) ≥ (log n)53. We apply Lemma 3.9 to obtain a subgraph H of G′ with the following properties.

1. H is a (d, η, ε)-expander on n′ vertices, where d ≥ d(G′)
2500(logn)2

≥ (log n)50, ε = 1
2 and η =

ε
100(logn′)2 = 1

200(logn′)2 ,
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2. H has maximum degree at most µd, where µ = 2500(log n′)2.

Denote the bipartition of H by {X,Y }, and suppose that |X| ≥ n′

2 . Next, we aim to apply

Lemma 5.9 to H. With that in mind, we let k be the smallest even integer which is at least 29 logn′

η2
,

so k = Θ
(
(log n′)5

)
. Let s = 2

(
m
2

)
k and p = 8m. Let A be the set of pairs (x, y) with x, y ∈ X that

satisfy hom∗
ω(C

xy
2k ) >

1
s2

homω(C
xy
2k ). Note that 238k3µ7s4p2(n′)1/k = Θ

(
(log n′)49

)
< d and so, by

Lemma 5.9, we have |A| ≤ (n′)2

p = (n′)2

8m < 1
m−1

(|X|
2

)
, noting that n′ is sufficiently large.

Hence by Turán’s theorem, there is a subset Z ⊆ X of size m, such that (x, y) /∈ A for every distinct

x, y ∈ Z. By Lemma 4.7, for any two vertices x and y in Z, there exist s many pairwise colour-

disjoint and internally vertex-disjoint rainbow paths of length k from x to y. By the choice of s,

one can find greedily
(
m
2

)
many paths of length k, which are pairwise colour-disjoint and internally

vertex-disjoint, and are internally vertex-disjoint from Z, each of which connecting a different pair

of vertices in Z. This gives us the desired rainbow subdivision of Km.

Given a set of m vertices in a graph G, a Km-subdivision rooted at Z is a subgraph consisting of(
m
2

)
paths, each joining a different pair of distinct vertices in Z, whose interiors are pairwise vertex-

disjoint and disjoint from Z. By slightly adapting the proof of Theorem 1.2, one can show that any

bipartite (d, η, ε)-expander G (with suitable parameters) contains a rainbow Km-subdivision rooted

at Z for almost all the m-sets Z in V (G) (not just in X). By using some additional tools, we next

show that in a bipartite (d, η, ε)-expander with suitable parameters, in fact, one can find a rainbow

Km-subdivision rooted at Z for every m-set Z in V (G).

Theorem 6.1. Let n,L, d, µ,m ≥ 2, η ∈ (0, 1) and ε ∈ (0, 18 ], and suppose that L = 210 logn
η2

and

d ≥ 2122m8µ7(logn)7

η14
. Let G be a bipartite (d, η, ε)-expander with maximum degree at most µd, and

let Z be a set of m vertices in G. Then there is a rainbow Km-subdivision, rooted at Z, where every

edge is subdivided at most L times.

Proof. Let ℓ = 4 logn
η and let k be the smallest even integer satisfying k ≥ 29 logn

η2
. One can check

that L ≥ 2(ℓ+ 1) + k.

Claim 6.2. Let M be any set of colours and vertices such that |M | ≤ 2
(
m
2

)
(L+ 1). Let x, y be any

two vertices in G. There exists a rainbow x, y-path of length at most L in G that avoids M .

Proof of Claim 6.2. Let q = 256ℓ. By Lemma 3.7 (using d ≥ 20qℓ+8[2(m2 )(L+1)]

η ), there exists a

subset Ux ⊆ V (G) of size at least (1− ε)n and a collection of paths P = {P (u) : u ∈ Ux}, where for

each u ∈ Ux the path P (u) is a rainbow path from x to u of length at most ℓ+1 that avoids M , and

no colour appears in more than n
q of the paths in P. Similarly, there exists a subset Uy ⊆ V (G) of

size at least (1− ε)n and a collection of paths Q = {Q(u) : u ∈ Uy} where for each u ∈ Uy the path

Q(u) is a rainbow path from y to u of length at most ℓ + 1 that avoids M , and no colour appears

in more than n
q of the paths in Q. Write U = Ux ∩ Uy; then |U | ≥ (1− 2ε)n ≥ 3n

4 .
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We call an ordered pair (u, v) with u, v ∈ U colour-bad if there is a colour that appears on both

paths P (u) and Q(v). We next show that the number of colour-bad pairs in U is small compared to

the number of all pairs. Indeed, let H be the auxiliary graph on the vertex set U where uv is an edge

whenever at least one of (u, v) and (v, u) is colour-bad. Note that dH(u) ≤ 2(ℓ+1)n
q , for every u ∈ U ,

since P (u) has length at most ℓ+1 and any colour on P (u) appears at most n
q times in the collection

Q (and similarly with the roles of P and Q reversed). Thus, e(H) ≤ (ℓ+1)n
q |U | ≤ 2ℓn

q |U | ≤ n2

128 .

Let s = |M | + 2(ℓ + 1) + 1; then s ≤ 2
(
m
2

)
(L + 1) + 2ℓ + 3 ≤ 2m2L. Denote the bipartition of

G by {X,Y } and suppose that |X| ≥ n
2 . Call a pair (u, v), with u, v ∈ X, s-bad if hom∗

ω(C
uv
2k ) >

1
s2

hom(Cuv
2k ). Applying Lemma 5.9 with p = 64 and verifying the condition on d (namely, that

d ≥ 238k3µ7s4p2(n)1/k), at most n2

64 ordered pairs (u, v), with u, v ∈ X, are s-bad.

We claim that there is a pair (u, v), with u, v ∈ U ∩ X, which is neither colour-bad nor s-bad.

Indeed, the total number of ordered pairs (u, v) with u, v ∈ U ∩X where (u, v) is either colour-bad

or s-bad is at most n2

128 + n2

64 ≤ n2

32 . Since |U | ≥ 3n
4 and |X| ≥ n

2 , we have |X ∩ U | ≥ n
4 , so the

number of ordered pairs (u, v) with u, v ∈ U ∩X is certainly more than n2

32 . Hence, there is a pair

(u, v) which is neither colour-bad nor s-bad, as claimed. Since (u, v) is not s-bad, by Lemma 4.7

there are s many pairwise colour-disjoint and internally vertex-disjoint rainbow paths of length k

from u to v. By the choice of s, there is at least one such path T (uv) which shares no colours with

the paths P (u) and Q(v) and also avoids M . Since (u, v) is not colour-bad, P (u) and Q(v) are

colour-disjoint. It follows that P (u)T (uv)Q(v) is a rainbow x, y-walk avoiding M which contains a

rainbow x, y-path, as desired.

Let (x1, y1), . . . , (x(m2 )
, y(m2 )

) be an arbitrary ordering of the unordered pairs (x, y) where x, y ∈ Z

and x ̸= y. We iteratively build paths Pi for i ∈ [
(
m
2

)
], as follows. Let P1 be any rainbow x1, y1-path

of length at most L, which exists by Claim 6.2. In general, suppose P1, . . . , Pi have been defined,

where i <
(
m
2

)
. We let Mi denote the set of vertices and colours used in ∪i

j=1Pj and let Pi+1 be a

rainbow xi+1, yi+1-path of length at most L that avoids Mi \{xi+1, yi+1}. Since |Mi| ≤ 2
(
m
2

)
(L+1),

by Claim 6.2 such a path Pi+1 exists. Hence, we are able to find P1, . . . , P(m2 )
as described above.

Now,
⋃(m2 )

i=1 Pi forms a rainbow Km-subdivision rooted at Z in which each edge is subdivided at

most L times.

7 Conclusion

In this paper we showed that there is a constant c ≤ 53 such that for fixed m and sufficiently large

n any n-vertex properly edge-coloured graph G with at least n(log n)c edges contains a rainbow

subdivision of Km. On the other hand, an immediate lower bound is given by the best known

lower bound from [7] on ex∗(n, C), which is Ω(n log n). This shows that our bound is tight up to a

polylogarithmic factor. We pose the following question.
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Question 7.1. Fix m ≥ 2. What is the smallest c such that for all sufficiently large n the following

holds: if G is a properly edge-coloured graph on n vertices with at least Ω(n(log n)c) edges, then it

contains a rainbow subdivision of Km? In particular, is c = 1?

For the clarity of presentation, we did not optimise our arguments to obtain the best possible value

of c. However, to answer Question 7.1, new ideas will be needed. Note that even the correct order

of magnitude of ex∗(n, C) is still unknown. On another note, as mentioned previously, Janzer [4]

proved ex∗(n, C) = O(n(log n)4), using the counting lemmas on closed walks. It is worth to mention

that from our methods, an alternative proof of ex∗(n, C) = O(n(log n)5) can be obtained by using

the basic expansion property of an expander (Lemma 3.7) and a digraph idea used by Letzter [11]

regarding the Turán number of the family of tight cycles.
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