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ON THE THRESHOLD OF CHAOS IN RANDOM BOOLEAN

CELLULAR AUTOMATA

JAMES F. LYNCH

Abstract. A random boolean cellular automaton is a network of boolean
gates where the inputs, the boolean function, and the initial state of each
gate are chosen randomly. In this article, each gate has two inputs. Let a

(respectively c) be the probability the the gate is assigned a constant function
(respectively a non-canalyzing function, i.e., equivalence or exclusive or).
Previous work has shown that when a > c, with probability asymptotic to 1,
the random automaton exhibits very stable behavior: almost all of the gates
stabilize, almost all of them are weak, i.e., they can be perturbed without
affecting the state cycle that is entered, and the state cycle is bounded in size.
This article gives evidence that the condition a = c is a threshold of chaotic
behavior: with probability asymptotic to 1, almost all of the gates are still
stable and weak, but the state cycle size is unbounded. In fact, the average
state cycle size is superpolynomial in the number of gates.

1. Introduction

A topic of current interest in the theory of complex systems is the existence of
sharp boundaries between highly ordered and chaotic behavior. Evidence for this
phenomenon has been provided by computer simulations, where some parameter is
varied. As the parameter passes through a certain critical region, the behavior of
the system rapidly changes between the two extremes of stability and chaos [5]. In
this article, we examine one of the simplest, yet most intensively studied, models of
complex systems — the random boolean cellular automaton. We present analytic
results proving that there is such a threshold for these systems.

Boolean cellular automata were introduced by Kauffman in [3]. He was interested
in determining the conditions when complex systems exhibit stable behavior. Three
ways of measuring the stability are:

1. The proportion of gates that stabilize, i.e. eventually stop changing.
2. The proportion of weak gates, i.e., gates that can be perturbed without af-

fecting the state cycle that is entered.
3. The size of the state cycle that the system eventually enters.

The second and third of these measures are finite discrete analogues of criteria that
are used to characterize chaos in dynamical systems. A small proportion of weak
gates is similar to sensitivity to initial conditions, and a large state cycle is similar
to nonperiodicity.

Computer simulations, beginning with those described in [3], have suggested that
certain classes of randomly constructed boolean cellular automata possess all three
forms of stability with high probability. The basic random model is where each gate
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has two inputs, and the inputs, the boolean functions assigned to the gates, and
the initial state are all chosen with uniform probability distributions. In particular,
for each gate, each of the 16 boolean functions of two arguments has probability
1/16 of being assigned to the gate.

In spite of extensive experimental work on these automata, comparatively little
has actually been proven about them. The first article containing formal proofs of
stability in the basic model is by  Luczak and Cohen [6]. They show that as n → ∞,
for almost all random boolean cellular automata with n gates, the number of stable
gates and the number of weak gates is asymptotic to n. They also give a nontrivial
upper bound on the state cycle size. In Lynch [8], it was shown that by giving a
slight bias to the probability of certain of the boolean functions assigned to the gates
(on the order of log logn/ logn), for almost all random boolean cellular automata
with n gates, the state cycle size can be bounded above by nγ , for some γ. However,
the proof failed when the bias was reduced to 0, i.e. for the basic random model.
This suggested two lines of research. First, a more extensive analysis of random
boolean cellular automata with nonuniform probabilities of the boolean functions
might be possible. This could be a step toward understanding more realistic models
of complex systems. Also, the breakdown of the proof at the uniform distribution
hinted at a threshold phenomenon.

Treating all 16 of the two argument boolean functions individually seems to be a
complex undertaking. A classification of the boolean functions due to Kauffman [4]
has proven useful. He referred to certain boolean functions as canalyzing. We will
define this precisely in the next section, but for now it suffices to note that among
the canalyzing functions are the constant functions; i.e. the function that outputs
0 regardless of its inputs and its negation that always outputs 1. Further, among
the two-argument boolean functions, there are only two non-canalyzing functions:
the equivalence function that outputs 1 if and only if both of its inputs have the
same value, and its negation the exclusive or.

Let a (respectively c) be the probability that the boolean function assigned to a
gate is constant (respectively noncanalyzing). In Lynch [9] it was shown that when
a > c, with probability asymptotic to 1, the random boolean cellular automaton is
very stable in all three senses: almost all of the gates are stable and weak, and the
state cycle size is bounded.

In this article, we investigate the case a = c 6= 0. This includes the basic model
as the special case a = c = 1/8. We prove that the first two kinds of stability
still hold (although the bounds here are not as tight), but the state cycle size is
unbounded for almost all automata. In fact, the average state cycle size is greater
than any polynomial in n. Thus, the automaton still appears to be stable when
viewed locally, i.e. at the level of a typical gate, but large state cycles are a global
symptom of the beginning of instability. In a future article, we will describe the
behavior when a < c. At present, it is known that the proportion of weak gates is
less than n by a nontrivial factor.

2. Definitions

Let n be a natural number. A boolean cellular automaton B with n gates is a
triple 〈D,F, x〉 where D is a directed graph with vertices 1, . . . , n (referred to as
gates), F = (f1, . . . , fn) is a sequence of boolean functions, and x = (x1, . . . , xn) ∈
{0, 1}n (the set of 0-1 sequences of length n). In this article, each gate will have
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indegree two, and each boolean function will have two arguments. We say that
gate j is an input to gate i if (j, i) is an edge of D. B is a finite state automaton
with state set {0, 1}n and initial state x. The pair 〈D,F 〉 defines the transition
function of B in the following way. For each i = 1, . . . , n let ji < ki be the inputs
of i. Given y = (y1, . . . , yn) ∈ {0, 1}n, B(y) = (f1(yj1 , yk1), . . . , fn(yjn , ykn)). That
is, the state of B at time 0 is x, and if its state at time t is y ∈ {0, 1}n, then its
state at time t + 1 is B(y).

Our first set of definitions pertains to the aspects of stability that will be studied.

Definitions 2.1. Let B = 〈D,F, x〉 be a boolean cellular automaton.

1. We put Bt(x) for the state of B at time t, and f t
i (x) for the value of its ith

component, or gate, at time t.
2. Since the number of states is finite, i.e. 2n, there exist times t0 < t1 such

that Bt0(x) = Bt1(x). Let t1 be the first time at which this occurs. Then
Bt+t1−t0(x) = Bt for all t ≥ t0. We refer to the set of states {Bt(x) : t ≥ t0} as
the state cycle of B, to distinguish it from a cycle of D in the graph-theoretic
sense.

3. Gate i stabilizes in t steps if for all t′ ≥ t, f t′

i (x) = f t
i (x).

4. Gate i is weak if, letting xi be identical to x except that its ith component is
1 − xi,

∃t0∃d∀t(t ≥ t0 ⇒ Bt(x) = Bt+d(xi)).

That is, changing the state of i does not affect the state cycle that is entered.

The next definitions describe a property of boolean functions that plays a key
role in the characterization of the threshold between order and chaos.

Definitions 2.2. Let f(x1, x2) be a boolean function of two arguments.

1. We say that f depends on argument x1 if for some v ∈ {0, 1}, f(0, v) 6= f(1, v).
A symmetric definition applies when f depends on x2. Similarly, if 〈D,F, x〉
is a boolean cellular automaton, fi = f , and the inputs of gate i are ji1 and
ji2, then for m = 1, 2, i depends on jim if f depends on xm.

2. The function f is said to be canalyzing if there is some m = 1 or 2 and
some values u, v ∈ {0, 1} such that for all x1, x2 ∈ {0, 1}, if xm = u then
f(x1, x2) = v. Argument xm of f is said to be a forcing argument with
forcing value u and forced value v. Likewise, if 〈D,F, x〉 is a boolean cellular
automaton and fi is a canalyzing function with forcing argument xm, forcing
value u and forced value v, then input jim is a forcing input of gate i. That
is, if the value of jim is u at time t, then the value of i is guaranteed to be v
at time t + 1.

All of these definitions generalize immediately to boolean functions of arbitrar-
ily many arguments. In the case of two argument boolean functions, the only
non-canalyzing functions are equivalence and exclusive or. The two constant
functions f(x, y) = 0 and f(x, y) = 1 are trivially canalyzing, as are the four
functions that depend on only one argument:

f(x, y) = x,

f(x, y) = ¬x,

f(x, y) = y, and

f(x, y) = ¬y.



4 JAMES F. LYNCH

The remaining eight boolean functions of two arguments are canalyzing, and they
are all similar in the sense that both arguments are forcing with a single value, and
there is one forced value. A typical example is the or function. Both arguments
are forcing with 1, and the forced value is 1.

The notion of forcing, defined next, is a combinatorial condition that is useful in
characterizing stability. It depends on D and F , but not on x.

Definition 2.3. Again, 〈D,F, x〉 is a boolean cellular automaton. Using induction
on t, we define what it means for gate i to be forced to a value v in t steps.

If fi is the constant function f(x1, x2) = v, then i is forced to v in t steps for all
t ≥ 0.

If the inputs ji1 and ji2 of i are forced to u1 and u2 respectively in t steps, then
i is forced to fi(u1, u2) in t + 1 steps.

If fi is a canalyzing function with forcing argument xm, forcing value u, and
forced value v, and jim is forced to u in t steps, then i is forced to v in t + 1 steps.

By induction on t it can be seen that if i is forced in t steps, then it stabilizes
for all initial states x in t steps.

The following combinatorial notions will be used in characterizing forcing struc-
tures. We assume the reader is familiar with the basic concepts of graph theory
(see e.g. Harary [2]). Unless otherwise stated, path and cycle shall mean directed
path and cycle in the digraph D.

Definitions 2.4. 1. For any gate i in D with inputs ji1 and ji2, let

S−
0 (i) = {i} and

S−
d+1(i) = S−

d (ji1) ∪ S−
d (ji2).

2. Then

N−
d (i) =

⋃

c≤d

S−
c (i).

That is, N−
d (i) is the set of all gates that are connected to i by a path of

length at most d.
3. If I is a set of gates, then N−

d (I) = ∪i∈IN
−
d (i).

4. In a similar way we define S+
d (i) and N+

d (i), the set of all gates reachable
from i by a path of length at most d.

Note that whether i is forced in d steps is completely determined by the restric-
tion of D and F to N−

d (i).
We will examine the asymptotic behavior of random boolean cellular automata.

For each boolean function f of two arguments, we associate a probability af ∈ [0, 1],
where

∑

f af = 1. The random boolean cellular automaton with n gates is the result
of three random processes. First, a random digraph where every gate has indegree
two is generated. Independently for each gate, its two inputs are selected from the
(

n
2

)

equally likely possibilities. Next, each gate is independently assigned a boolean

function of two arguments, using the probability distribution 〈af : f : {0, 1}2 →
{0, 1}〉. Lastly, the initial state x is chosen using the uniform distribution on {0, 1}n.

We will use B̃ = 〈D̃, F̃ , x̃〉 to denote a random boolean cellular automaton generated
as above. For any properties P and Q pertaining to boolean cellular automata, we
put pr(P , n) for the probability that the random boolean cellular automaton on n
gates has property P and pr(P|Q, n) for the conditional probability that P holds,
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given that Q holds. Usually, we will omit the n in these expressions since it will be
understood. Some of the properties we will investigate depend only on D and F . In
that case, the expression describing P will involve 〈D̃, F̃ 〉 instead of B̃, and pr can

be regarded as the probability measure on random 〈D̃, F̃ 〉. Similar notation will be
used for properties that depend only on D. Random variables will be denoted by
boldface capital letters, and E(X) will be the expectation of X.

We classify the two argument boolean functions as follows:

1. A contains the two constant functions.
2. B1 contains the four canalyzing functions that depend on one argument.
3. B2 contains the eight canalyzing functions that depend on both arguments.
4. C contains the two non-canalyzing functions.

Then the probabilities that a gate is assigned a function in each of the categories
are:

a =
∑

f∈A

af

b1 =
∑

f∈B1

af

b2 =
∑

f∈B2

af

c =
∑

f∈C

af

Lastly, we put B = B1 ∪ B2 and b = b1 + b2, the probability that a gate is assigned
a nonconstant canalyzing function. Throughout the rest of the article, we assume
the following symmetry conditions on our distributions:

af(x,y) = af(y,x) for all f ∈ B1

af(x,y) = af(¬x,¬y) for all f ∈ B2

af(x,y) = a¬f(x,y) for all f ∈ C.

Also, log shall always mean log2, and ln is the natural logarithm.

3. Local Stability

A key idea, first stated in [6], is that almost all of the gates have sufficiently
large neighborhoods that are trees. We will use the following version of this fact.

Lemma 3.1. For any positive α and unbounded increasing function ω(n),

lim
n→∞

pr(D̃ has at most ω(n)(log n)3n2α

gates i such that N−
α log n(i) is not a tree) = 1.

The same is true for N+
α log n.

Proof. For each gate i, let Xi be the indicator random variable that is 1 if and only
if N−

α logn(i) is not a tree, and let X =
∑n

i=1Xi. If Xi = 1, then there exists a
path P of length p ≤ α logn beginning at some gate k and ending at i and another
path Q of length q, 1 ≤ q ≤ α log n, beginning at k, disjoint from P except at k
and its other endpoint, which must be in P . There are no more than np ways of
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choosing P and no more than nq−1 × p ways of choosing Q. The probability of any
such choice is bounded above by (2/n)p+q. Therefore

E(Xi) ≤

α logn
∑

p=0

α logn
∑

q=1

2p+qpn−1

≤ (α logn)3n2α−1.

Then E(X) ≤ (α logn)3n2α, and the Lemma follows by Markov’s inequality. A
similar argument applies to N+

α logn.

Another result we will need, from [9], is a recurrence relation for the probability
that a gate is forced, given that its in-neighborhood is treelike.

Lemma 3.2. For d ≥ 0 and v ∈ {0, 1} let

pd(v) = pr(gate i is forced to v in d steps |N−
d (i) is a tree) and

pd = pd(0) + pd(1).

Then

pd(0) = pd(1)

and pd satisfies the following recurrence.

p0 = a and

pd+1 = a + bpd + cp2d. (3.3)

The fixed points of the recursion (3.3) are a/c and 1. Consequently, when a ≥ c,
pd converges to 1. We will prove this for a = c, but Figure 1 gives a graphical
explanation of this fact. Part (a) illustrates a typical case when a > c. In this case,
as proven in [9], the convergence is geometric. The convergence when a = c, shown
in Part (b), is not as rapid, but is still sufficiently fast.

Lemma 3.4. Let d be a natural number. Then

pd ≥ 1 −
1

ad
.

Proof. Let qd = 1 − pd. Then from (3.3), the recurrence for qd is

qd+1 = qd − aq2d (3.5)

Letting rd = 1/qd and using induction on d, we will finish the proof by showing
that rd ≥ ad. When d = 0, this is evident. By (3.5),

1

rd+1
=

1 − a/rd
rd

and so

rd+1 =
rd

1 − a/rd
≥ rd + a,

which establishes the induction step.

Our two main results on local stability are essentially generalizations of similar
results in [6]. Theorem 3.8 also improves the lower bound on the number of weak
gates that was given in [6].
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FIGURE 1. Examples of the convergence of pd. The dotted line ···· indicates the
successive iterations of (3.3) from p0 = a towards 1.

(a) a = 1/2, c = 1/4.

(b) a = c = 1/4.
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Theorem 3.6. Let α < 1/2 and ω(n) be any unbounded increasing function. Then

lim
n→∞

pr(〈D̃, F̃ 〉 has at least n(1 − ω(n)/ logn)

gates that are forced in α logn steps) = 1.

Proof. Let Y be the random variable that counts the number of gates i in 〈D̃, F̃ 〉
such that N−

α logn(i) is a tree and i is not forced in α logn steps. By Lemma 3.4,

E(Y) ≤
n

aα logn
.

By Markov’s inequality,

pr

(

Y ≥
nω(n)

aα logn

)

≤
1

ω(n)

→ 0.

Therefore, together with Lemma 3.1, with probability asymptotic to 1, there are at
most

ω(n)

[

n

aα logn
+ (logn)3n2α

]

= O

(

nω(n)

logn

)

gates not forced in α logn steps.

Recalling that the notion of forcing is stronger than stability, we have

Corollary 3.7. Let α < 1/2 and ω(n) be any unbounded increasing function. Then

lim
n→∞

pr(〈D̃, F̃ 〉 has at least n(1 − ω(n)/ logn)

gates that stabilize in α logn steps) = 1.

Theorem 3.8. Let ω(n) be any unbounded increasing function. Then

lim
n→∞

pr(B̃ has at least n(1 − ω(n)/ logn) weak gates) = 1.

Proof. We will use the following fact from [6].

Fact . For any gate i and natural number r,

pr(|S+
1 (i)| = r) =

2r

r!
e−2

(

1 + O
( r

n

))

.

Thus, for r > logn,

pr(|S+
1 (i)| = r) = O

(

(2e)r

rr

)

= O(2−r log r/2)

= o(n−2)

and the probability that there exists some gate with |S+
1 (i)| > logn is asymptotic

to 0. For r ≤ logn,

pr(|S+
1 (i)| = r) =

2r

r!
e−2 + o(n−1/2).

By Lemma 3.1, this remains true even when the probability is conditioned on
N+

α logn(i) being a tree, α < 1/4.

For any gate i and natural number d ≤ α log n, assuming N+
α logn(i) is a tree, let

φd be the probability that there is some gate j ∈ N+
d (i) whose value is affected at
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step d, if the value of i is changed at step 0. That is, taking xi as in Definitions
2.1 (4), fd

j (xi) 6= fd
j (x). We will show by induction on d = 1, . . . , α logn that

φd ≤ 4/d. Clearly φ1 ≤ 1. Assuming N+
α log n(i) is a tree, let j ∈ S+

1 (i) and ρ be the

probability that a change to i affects j in step 1. Since N+
d+1(i) is a tree, for any

k ∈ N+
d (j), a change to i affects k in step d+ 1 if and only if a change to i affects j

in step 1 and a change to j affects k in step d. Therefore, assuming |S+
1 (i)| ≤ log n,

φd+1 = 1 −

⌊logn⌋
∑

r=0

pr(|S+
1 (i)| = r) × [(1 − ρ) + ρ(1 − φd)]r. (3.9)

We show that ρ = 1/2. The three possibilities to consider are that fj ∈ B1,
fj ∈ B2, and fj ∈ C. Let k be the other input of j. Assuming fj ∈ B1, two out of
the four functions in B1 result in i affecting j in step 1. That is, if i < k they are
f(x, y) = x and f(x, y) = ¬x, and similarly for k < i. Altogether, the probability
of the first case is b1/2 by the symmetry property af(x,y) = af(y,x). Now suppose
fj ∈ B2, and say i < k and xk = 0. (The cases when k < i or xk = 1 are similar.)
Then fj(0, 0) 6= fj(1, 0). But fj is canalyzing on both inputs, so fj(0, 1) = fj(1, 1).
Four out of the eight functions in B2 satisfy these conditions, and the sum of their
probabilities is b2/2 by the symmetry property af(x,y) = af(¬x,¬y). The probability
of the third case is c, so altogether ρ = b/2 + c = 1/2. Therefore by the Fact and
Equation (3.9),

φd+1 = 1 − e−2

⌊logn⌋
∑

r=0

(2 − φd)r

r!
+ o(n−1/2 logn)

= 1 − e−φd + o(n−1/2 logn)

≤ φd −
φ2
d

2
+

φ3
d

6
+ o(n−1/2 logn).

If φd ≤ 1/(logn)2, then φd+1 ≤ 4/(α logn) ≤ 4/(d + 1). If φd > 1/(logn)2, then
φd+1 ≤ φd − φ2

d/4, and using the same argument that was applied to Equation
(3.5), φd+1 ≤ 4/(d + 1).

Now let Y be the random variable that counts the number of gates i in B̃ such
that N+

α logn(i) is a tree and i is not weak. Then by what we have just shown,

E(Y) ≤
4n

α logn
.

The rest of the proof proceeds as in Theorem 3.6.

4. Lower Bounds on Average State Cycle Size

4.1. Main Results. Let the random variable C denote the size of the state cycle
of B̃.

Theorem 4.1. For any constant γ and sufficiently large n,

E(C) > nγ .

In the next theorem, E(C|〈D̃, F̃〉) is the expected state cycle size of a random

〈D̃, F̃ 〉 averaged over all x ∈ {0, 1}n.
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Theorem 4.2. There is a constant γ > 0 such that

lim
n→∞

pr(E(C|〈D̃, F̃〉) ≥ nγ) = 1.

These theorems will follow from a key result (Lemma 4.15) on the probability of

existence of certain kinds of structures in 〈D̃, F̃ 〉. We first define these structures
and prove some basic facts about them. Let α be a fixed real number such that
0 < α < 1/2. In the following we will put m for ⌈α logn⌉.

4.2. Vortices.

Definition 4.3. Let B = 〈D,F, x〉 be a boolean cellular automaton on n gates. A
vortex of circumference d consists of two disjoint subsets of gates R = {r0, . . . , rd−1}
and S = {s0, . . . , sd−1} satisfying the following conditions for 0 ≤ i < d.

1. (ri, ri+1 (mod d)) ∈ D.
2. (si, ri) ∈ D.
3. si is forced in m steps.
4. The value that si is forced to is not a forcing value for fri .

We refer to it as a vortex on R,S or simply R ∪ S if we do not need to distinguish
R and S.

An example is given in Figure 2.
The essential characteristics of such a vortex are captured by the directed labeled

graph
V = 〈R ∪ S,D ↾ (R ∪ S), F ↾ R, v0, . . . , vd−1〉

where vi is the value that si is forced to, for i = 0, . . . , d− 1. That is, V is simply
the restriction of 〈D̃, F̃ 〉 to R∪S, with the functions labeling the gates in S replaced
by their forced values. The isomorphism class of V is called a vortex type.

For any such vortex type τ , and any V ∈ τ as above, we put λ(τ) for the size

of the automorphism group on V and π(τ) for
∏d−1

i=0 afri . Clearly λ(τ) and π(τ)
do not depend on the choice of V ∈ τ . The significance of these two quantities is
that (2d)!/λ(τ) is the number of distinct labelings of the gates in any V ∈ τ , and
π(τ) is the conditional probability that two disjoint subsets R and S, each of size
d, form a vortex of type τ , given that conditions (1)–(3) in Definition 4.3 hold. The
following two facts will be used later in the combinatorial analysis of vortices. Let
T be the set of all vortex types of circumference d.



THE THRESHOLD OF CHAOS IN RANDOM BOOLEAN NETS 11

FIGURE 2. A schematic diagram of a vortex of circumference 8. Shaded circles
are members of S, and unshaded circles are in R. The enlargement shows a typical
(si, ri) pair. In this example, si is forced to 0 while fri = ∨ (the or function).
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Lemma 4.4. There exists ρ ∈ (0, 1) such that
∑

τ∈T
λ(τ)>1

π(τ) ≤ dρd/2.

Proof. The only nontrivial automorphisms of V ∈ τ are those that take each ri to
ri+p (mod d), where 1 ≤ p < d. But this implies

fri = fri+p (mod d)
for i = 0, . . . , d− 1. (4.5)

We may assume p is the minimal number satisfying (4.5), and therefore p|d, so
p ≤ d/2. Let ρ = max{af : f /∈ A}, q = d/p, and Tp be the set of vortex types
satisfying (4.5). Then

∑

τ∈Tp

π(τ) ≤ (ρp)q−1

= ρd−p

≤ ρd/2.

The factor d in the Lemma is a crude upper bound on the number of divisors of
d.

Lemma 4.6. We have

1 − d2−d/2 ≤
∑

τ∈T

π(τ) ≤ 1.

Proof. For any sequence v = (v0, . . . , vd−1) ∈ {0, 1}d, let Tv be the set of all vortex
types in T such that the labeling of S is isomorphic to v. Let U consist of all
sequences v ∈ {0, 1}d that do not have any nontrivial cyclic permutations, and let
T ′ = T−∪v∈UTv. Then, using the same methods as in Lemma 4.4, |U | ≥ 2d−d2d/2.
Since

∑

τ∈T

π(τ) =
∑

v∈U

∑

τ∈Tv

π(τ) +
∑

τ∈T ′

π(τ),

we will be done by showing that for all v ∈ {0, 1}d

∑

τ∈Tv

π(τ) = 2−d. (4.7)

For every i = 0, . . . , d − 1, vi does not force fri . Therefore one of the following
possibilities must hold.

1. fri ∈ B1, and the input on which ri depends is ri−1 (mod d).
2. fri ∈ B2, and vi is not a forcing value for fri .
3. fri ∈ C.

Case (1) has probability b1/2 by the symmetry property af(x,y) = af(y,x), Case (2)
has probability b2/2 by the symmetry property af(x,y) = af(¬x,¬y), and Case (3)
has probability c. Therefore, given that si is labeled with vi, the probability that
one of the three cases above holds is 1/2, and (4.7) follows.

The existence of vortices of sufficiently large prime circumference will be used
to prove the lower bounds on average state cycle size. This is the relevance of the
next two basic facts. When we refer to the state of a vortex, we simply mean the
state of B restricted to R ∪ S.
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Lemma 4.8. A vortex enters its state cycle in at most m steps. Its state cycle is

completely determined by the initial state of R ∪N−
m(S).

Proof. After m steps, for each i = 0, . . . , d− 1, si is forced to some value v. Since
v is not a forcing value for fri , assuming si < ri−1 (mod d) (the case when si >
ri−1 (mod d) is symmetric), fri(v, y) = y or ¬y. Let us use the notation fri(v, y) =
gi(y) where gi(y) = y or ¬y, depending on which case holds.

In other words, after m steps, the vortex is equivalent to a cycle of 1-input gates,
none of which are constants. Let u = (u0, . . . , ud−1) be the state of these gates
after m steps. We need only show that u reoccurs.

Suppose there is an even number of gates ri such that gi(y) = ¬y. Then after
m + d steps, the state of each ri will be ui. If there is an odd number, then the
state of each ri after m + 2d steps will again be ui. In either case, the state cycle
has been reentered in not more than 2d steps.

Lemma 4.9. If the circumference of the vortex is prime, then the size of its state

cycle is 1, 2, d, or 2d.

Proof. From the proof of Lemma 4.8, we know that the state repeats every 2d steps,
and thus the state cycle size is a factor of 2d.

To simplify calculations in the remainder of the proofs, we condition all events
on the following two properties. Let β > α be fixed.

1. There are no distinct vortices on R,S and R′, S′ respectively of circumference
less than or equal to 2β logn such that

(R ∪N−
m(S)) ∩ (R′ ∪N−

m(S′)) 6= ∅.

2. For every vortex of circumference less than or equal to 2β logn on any R,S,
for all s, s′ ∈ S,

N−
m(s) is a tree,

N−
m(s) ∩N−

m(s′) = ∅, and

N−
m(s) ∩R = ∅.

A boolean cellular automaton satisfying these conditions is said to be simple. By the
next lemma, this will not affect the asymptotic probabilities that will be computed.

Lemma 4.10. We have

pr(〈D̃, F̃ 〉 is simple) = 1 − n−Ω(1).

Proof. One way that a boolean cellular automaton can fail Condition (1) above is if
there exist distinct vortices on R,S and R′, S′ such that R∩R′ 6= ∅. Then there are
gates ri, rj ∈ R (possibly the same) and a path of gates in R′ beginning at ri and
ending at rj , disjoint from R except at the endpoints. If the circumference of R is
d and the length of the path is l, then p = d+ l− 2 is the number of gates in R and
the path. Letting κ range over all choices of (d, l, i, j, C) such that d, l ≤ 2β log n,
0 ≤ i, j < d, and C is a subset of {1, . . . , n} of size p, we put Xκ for the indicator
random variable that is 1 if and only if the gates in C form a cycle R and a path
as above. Then X =

∑

κ Xκ is an upper bound on the expected number of pairs
of vortices such that R ∩R′ 6= ∅.
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Now

E(Xκ) ≤ p! ×
1
(

n
2

) ×

(

n− 1
(

n
2

)

)p−1

×

(

1

2

)p

=
p!

(n− 1)np

because p! is an upper bound on the number labelings of C, 1/
(

n
2

)

is the probability

that Condition (1) of Definition 4.3 holds for rj , (n − 1)/
(

n
2

)

is the probability
that Condition (1) holds for all other gates in C, and 1/2 is the probability that
Condition (4) holds for a gate, given that Condition (3) holds. There are O((log n)4)
choices for d, l, i, and j, and for each of these choices, there are

(

n
p

)

choices for C.

Therefore

E(X) = O((log n)4n−1)

= n−Ω(1).

On the other hand, if R∩R′ = ∅, but Condition (1) of simplicity is still violated,
then there exists a gate g and two paths P and P ′ of lengths p, p′ ≤ m+1 beginning
at g and disjoint everywhere else, one path ending in R and the other in R′. There
are at most n ways of chosing g, (m+ 2)2 ways of choosing p and p′, and np+p′−2×
(2β logn)2 ways of choosing the remaining gates in P and P ′. The probability of

such a choice is bounded above by (2/n)p+p′

. Therefore, by Markov’s inequality,
the probability that P and P ′ exist is bounded above by

np+p′−1 × (m + 2)2 × (2β logn)2 ×

(

2

n

)p+p′

= O((log n)422α lognn−1)

= n−Ω(1).

A similar proof enables us to show that Condition (2) holds with probability
1 − n−Ω(1).

One final condition on vortices that will be needed is that they should enter a
large (relative to their circumference) state cycle from many initial states. This is
formalized by the next definition.

Definition 4.11. A vortex of circumference d is strong if for at least 1/2 of the
initial states of B, the state cycle of the vortex is greater than or equal to d.

Lemma 4.12. If B̃ is simple, then for any vortex V of circumference d ≥ m + 2
where d is prime, the probability that V is strong is greater than or equal to 1/2 −
o(1).

Proof. If at least 1/2 of the initial states take V to a state cycle of size ≥ d, then
we are done. Otherwise, by Lemma 4.9, at least 1/2 of the inputs take V to a fixed
point or a 2-cycle.

Since d ≥ m + 2, with probability ≥ 1 − o(1), V has at least one i such that
fri ∈ C. Without loss of generality, let us assume fr0 ∈ C, and let x be any input
that takes V to a fixed point or 2-cycle. Let V ′ be the vortex obtained from V
by changing fr0 to ¬fr0 . Using the notation of Lemma 4.8, this has the effect of
changing g0 to ¬g0.
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Let w0 and w1 be the values of rm+1 in V at times m and m + 1 respectively.
Then, by Condition (2) in the definition of simplicity, w0 and w1 are also the values
of rm+1 in V ′ at those times. Since V enters a fixed point or 2-cycle from x, the
sequence of values of rm+1 beginning at time m must be w0, w1, w0, w1, . . . (possibly
w0 = w1). If V ′ also enters a fixed point or 2-cycle, then the sequence of values of
rm+1 beginning at m is also w0, w1, w0, w1, . . . . In particular, assuming m is even,
its state at time 2m + 2 is w0. If m is odd, a similar argument applies.

For j = 0, . . . ,m+1, let uj (respectively u′
j) be the value of rj in V (respectively

V ′) at time m + j + 1. Then by induction on j, u′
j = ¬uj . But then w0 = u′

m+1 =

¬um+1 = ¬w0, contradiction. Therefore V ′ must enter a state cycle of size ≥ d
when started in state x.

To summarize, we have shown that with probability 1− o(1), there is some gate
in R, say r0, such that fr0 ∈ C, and V is strong when r0 is assigned one of the
functions in C. By symmetry, the two choices are equally likely, and the Lemma
follows.

4.3. Combinatorial Lemmas. We now derive lower bounds on the probability
of existence of sets of vortices of various circumference. Let Dn ⊆ [β logn, 2β log n]
and |Dn| = k(n) for each positive integer n. Our goal is to find an asymptotic

estimate for the probability that B̃ has strong vortices of circumference d, for all
d ∈ Dn. The approach is based on sieve methods that are extensions of Ch. Jordan’s
formula and Bonferroni’s inequality. The monograph of Bollobás [1] contains an
exposition of these formulas. The extensions that we will use are described in full
generality in Lynch [7].

Fixing n, put k = k(n) and index the elements of Dn by d1, . . . , dk. For each
i = 1, . . . , k let Bi be an indexed set of all subsets of {1, . . . , n} of size 2di, say
Bi = {Cij : 1 ≤ j ≤

(

n
2di

)

}. For each Cij let Pij be the property “B has a strong
vortex of circumference di on Cij .”

Take any family of sets

~S = {Si : 1 ≤ i ≤ k}

such that Si ⊆ Bi. Let

E≥(~S) =

k
⋂

i=1

(

⋂

Cij∈Si

Pij

)

.

That is, E≥(~S) is the set of boolean cellular automata on n gates that have strong
vortices on Cij for each Cij ∈ Si, i = 1, . . . , k. Let ~s = 〈si : 1 ≤ i ≤ k〉 be a
sequence of positive integers and

L(~s) =
∑

~S
|Si|=si

pr(E≥(~S)|B̃ is simple).

We put
∑

(~s) for
∑k

i=1 si and 〈r〉k for 〈r, . . . , r〉, the sequence of k r’s, for any
real number r. We use ~s ≥ 〈r〉k to mean si ≥ r for i = 1, . . . , k. The next two
lemmas are applications of the extensions of Ch. Jordan’s formula and Bonferroni’s
inequality mentioned earlier.
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Lemma 4.13. We have

pr

(

k
∧

i=1

B̃ has a strong vortex of circumference di|B̃ is simple

)

=
∑

~s≥〈1〉k

(−1)Σ(~s)−kL(~s).

Lemma 4.14. For any K ≥ k
∑

~s≥〈1〉k

Σ(~s)≥K

(−1)Σ(~s)−KL(~s) ≥ 0.

The main result of this subsection is the next lemma.

Lemma 4.15. Let pm be as given in Lemma 3.2, k(n) = O(log n/ log logn), and
σi be the probability that a vortex of circumference di is strong, for i = 1, . . . , k(n).
Then

pr

(

k
∧

i=1

B̃ has a strong vortex of circumference di ∧ B̃ is simple

)

= (1 − n−Ω(1))
k
∏

i=1

(

1 − e−p
di
mσi

)

+ n−Ω(log logn).

Proof. We will show that

pr

(

k
∧

i=1

B̃ has a strong vortex of circumference di|B̃ is simple

)

= (1 − n−Ω(1))

k
∏

i=1

(

1 − e−p
di
mσi

)

+ n−Ω(log logn).

The Lemma will follow by Lemma 4.10. For i = 1, . . . , k let Ti be the set of all

vortex types of circumference di. Take any ~S = {Si : 1 ≤ i ≤ k} such that each
Si ⊆ Bi, |Si| = si, and Cgh ∩ Cij = ∅ for all (g, h) 6= (i, j), Cgh ∈ Sg, Cij ∈ Si. By
Lemma 3.2,

pr(E≥(~S)|B̃ is simple) =

k
∏

i=1





∑

τ∈Ti

(2di)!

λ(τ)
×

(

1
(

n
2

)

)di

×
(pm

2

)di

× π(τ) × σi





si

.

By Lemmas 4.4 and 4.6, this is

k
∏

i=1

[

(1 − n−Ω(1))

(

pm
n(n− 1)

)di

× (2di)! × σi

]si

.

Then, using the falling factorial power notation nk =
∏k−1

i=0 (n− i),

L(~s) =
nΣ2disi

∏k
i=1((2di)!)sisi!

×
k
∏

i=1

[

(1 − n−Ω(1))

(

pm
n(n− 1)

)di

× (2di)! × σi

]si

.
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Let us approximate L(~s) when
∑

(~s) ≤ (log n)2. Since 1 − x = e−x−O(x2) for

x → 0,
(

1 − n−Ω(1)
)Σ(~s)

= 1 − n−Ω(1). Then, using Stirling’s formula,

L(~s) =
(

1 − n−Ω(1)
)

k
∏

i=1

(pdi
mσi)

si

si!
.

The number of sequences ~s such that ~s ≥ 〈1〉k and
∑

(~s) = (logn)2 is bounded
above by

(

(logn)2

k − 1

)

= lognO(log n/ log logn) = nO(1).

For any such ~s, there is some i such that si ≥ logn. Therefore

∑

~s≥〈1〉k

Σ(~s)=(logn)2

L(~s) =
nO(1)

(log n)!

= n−Ω(log logn).

By Lemmas 4.13 and 4.14 (taking K = (log n)2),

pr

(

k
∧

i=1

B̃ has a strong vortex of circumference di|B̃ is simple

)

=
(

1 − n−Ω(1)
)











∑

~s≥〈1〉k

Σ(~s)≤(logn)2

(−1)Σ(~s)−k
k
∏

i=1

(pdi
mσi)

si

si!











+ n−Ω(log logn)

=
(

1 − n−Ω(1)
)

[

∑

〈1〉k≤~s≤〈(logn)2〉k

(−1)Σ(~s)−k
k
∏

i=1

(pdi
mσi)

si

si!

]

+ n−Ω(log logn)

=
(

1 − n−Ω(1)
)

k
∏

i=1

(

∑

1≤s≤(logn)2

(−1)s−1 (pdi
mσi)

s

s!

)

+ n−Ω(log log n)

=
(

1 − n−Ω(1)
)

k
∏

i=1

(

1 − e−p
di
mσi

)

+ n−Ω(log log n).

Corollary 4.16. If k(n) = O(log n/ log logn), then

pr

(

k
∧

i=1

B̃ has a vortex of circumference di ∧ B̃ is simple

)

= n−o(1).

Proof. By Lemma 3.4

pdi
m ≥

(

1 −
1

aα logn

)2β logn

∼ e−2β/(aα),
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and by Lemma 4.12, σi ≥ 1/2 − o(1). Therefore

k
∏

i=1

(

1 − e−p
di
mσi

)

≥
k
∏

i=1

pdi
mσi

2

≥ (e−2β/(aα)/5)O(logn/ log logn) (any constant > 4 will do)

= n−o(1).

4.4. Completion of Proofs.

Proof of Theorem 4.1. For each n let Dn be the set of primes in [β logn, 2β logn].
By the Prime Number Theorem [10],

k(n) ∼
β logn

ln logn
.

Therefore by Corollary 4.16,

pr

(

k
∧

i=1

B̃ has a strong vortex of circumference di ∧ B̃ is simple

)

= n−o(1).

Take any B̃ satisfying the above condition. Since B̃ is simple, with probability ≥
2−k(n) = n−o(1), a random starting state takes each strong vortex of circumference
di, i = 1, . . . , k(n), to a state cycle of size di or 2di. That is, for such a starting

state, B̃ enters a state cycle of size greater than or equal to

(β logn)k(n) = e(1−o(1))β logn

= nβ log e−o(1).

Thus, with probability ≥ n−o(1), B̃ enters a state cycle larger than nβ log e−o(1). By
Markov’s inequality,

E(C) ≥ nβ .

Since β was arbitrarily large, the Theorem follows.
Proof of Theorem 4.2. Take Dn as in the previous proof. Fixing n, for i = 1, . . . , k(n)

let Xi be the indicator random variable that is 1 if and only if B̃ has a strong vortex

of circumference di, and X =
∑k(n)

i=1 Xi. Then, still assuming simplicity, by Lemma
4.15,

E(Xi) =
(

1− n−Ω(1)
)

(

1− e−p
d
i

mσi

)

+ n−Ω(log logn).

Since k(n) = Θ(logn/ log logn) and 1 − e−p
di
mσi ≥ e−2β/(aα)/5,

E(X) ∼

k(n)
∑

i=1

1 − e−p
di
mσi

→ ∞.
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Similarly,

E(X2) =

k(n)
∑

i=1

E(Xi) + 2
∑

1≤i<j≤k(n)

E(XiXj)

∼

k(n)
∑

i=1

1 − e−p
di
mσi + 2

∑

1≤i<j≤k(n)

(

1 − e−p
di
mσi

)

(

1 − e−p
dj
m σj

)

∼ (E(X))2.

Therefore by Chebyshev’s inequality, for any δ < 1,

pr(X ≤ δE(X)|B̃ is simple) ≤
E(X2) − (E(X))2

(1− δ)2(E(X))2

→ 0.

That is, almost all B̃ have at least δk(n)e−2β/(aα)/5 strong vortices of distinct
prime circumferences in [β logn, 2β logn]. For all such automata, with probability

≥ 2−δk(n)e−2β/(aα)/5 = n−o(1), the starting state leads to a state cycle larger than
or equal to

(β logn)δk(n)e
−2β/(aα)/5 ≥ eβδe

−2β/(aα) logn/5

= nβδe−2β/(aα) log e/5.

By Markov’s inequality,

E(C|〈D̃, F̃〉) ≥ nβδe−2β/(aα) log e/5−o(1),

and we can take any γ < βδe−2β/(aα) log e/5. In fact, as noted in Corollary 4.16,
the 5 can be replaced by 4.

Note that βe−2β/(aα) has a unique maximum when β = aα/2. Therefore, since
the only restrictions on α, β, and δ are that α < 1/2, α < β, and δ < 1, the γ in
Theorem 4.2 can be arbitrarily close to e−2/a log e/8.

5. Discussion

As mentioned in the Introduction, there have been many computer simulations
of random boolean cellular automata, specifically the uniform distribution model
where a = c = 1/8. The results indicate a rather slow, even sublinear, growth rate
of the average state cycle size as a function of the number of gates. At first glance,
the superpolynomial average size of state cycles given by Theorem 4.1 seems to
contradict the experimental evidence. There are two possible resolutions to this.
First, a = c is the border were large state cycles are just beginning to appear.
This may not be noticeable until the number of gates is quite large. Perhaps the
simulated automata were not large enough.

Second, our proof shows that the large average state cycle size is due to a small
fraction of the automata that have very large state cycles. It may be that most of
the automata have relatively small state cycles. Our other main result (Theorem
4.2) is consistent with this. It gives a nγ lower bound on state cycle size averaged
over all inputs, for almost all networks 〈D,F 〉. The exponent γ is quite small. For
a = c = 1/8, it is less than 2 × 10−8. Two relevant open problems are to improve
the lower bound in Theorem 4.2 and the upper bound for state cycle size in [6].
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Other computer experiments indicate that systems on the edge of chaos show
complex computational capability. To formalize this notion in terms of the model in
this article, we should consider random boolean cellular automata with inputs and
outputs. Then, instead of looking at stability measures, we should try to determine
the conditions that result in substructures that compute complex functions. If
the experimental evidence is correct, then the a = c threshold is the region where
these substructures arise. The techniques used here to prove the existence of large
vortices may be applicable.

The model studied in this article is essentially a metaphore for complex biological
systems. Future work in this area will inevitably lead to models with more biological
detail and accuracy. Whether such models will be mathematically tractable cannot
be answered now, but there are some simple generalizations of our model that may
be pertinent to this question. One example is random boolean cellular automata
where the probabilities of the functions assigned to gates do not necessarily satisfy
any symmetry conditions. An immediate question is whether the results of [9] and
this article extend to non-symmetric probabilities. Another generalization is to
random boolean cellular automata whose gates need not have exactly two inputs.
One-input gates are just a special type of two-input gates, but the population
of three-input gates seems quite different because of the large proportion of non-
canalyzing functions.

Lastly, two technical problems are to analyze the stability of random boolean
cellular automata without constant gates, i.e., a = 0 and those where a < c. Results
on the proportion of weak gates indicate that a < c is the chaotic region, but the
proportion of stable gates and nontrivial bounds on state cycle size are not known.
We make the following conjectures:

1. If a < c then asymptotically a/c of the gates are stable. Recall that in this
case, a/c is the smaller of the fixed points of the recurrence (3.3).

2. As a− c increases, stability of the system increases. That is, the proportions
of stable and weak gates increase, and the size of the state cycle decreases.
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