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Abstract.  Turbo similarity searching uses information about the nearest neighbours in a 

conventional chemical similarity search to increase the effectiveness of virtual screening, with 

a data fusion approach being used to combine the nearest-neighbour information.  A previous 

paper suggested that the approach was highly effective in operation; this paper further tests 

the approach using a range of different databases and of structural representations.  Searches 

were carried out on three different databases of chemical structures, using seven different 

types of fingerprint, as well as molecular holograms, physicochemical properties, topological 

indices and reduced graphs.  The results show that turbo similarity searching can indeed 

enhance retrieval but that this is normally achieved only if the similarity search that acts as its 

starting point has already achieved at least some reasonable level of search effectiveness.  In 

other cases, a modified version of TSS that uses the nearest-neighbour information for 

approximate machine learning can be used effectively.  Whilst useful for qualitative 

(active/inactive) predictions of biological activity, turbo similarity searching does not appear 

to exhibit any predictive power when quantitative property data is available.   

 

INTRODUCTION 

 

Computer methods for the storage, retrieval and processing of chemical-structure information 

are well established [1] but it is only within the last few years that chemoinformatics (as it is 

now known) has become established as a key component in the search for novel 

agrochemicals and pharmaceuticals [2, 3].  An important aspect of chemoinformatics is 

virtual screening, the computer prioritisation of molecules in order of probability of 

biological activity (where the activity might be, e.g., killing some troublesome aphid in 

agrochemical research or lowering a person’s cholesterol level in pharmaceutical research) so 

that attention can then be focused on those molecules that are most likely to exhibit the 

required activity [4-7].  There are many ways in which this can be achieved: in this paper we 
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focus on one of the most widely used, viz similarity searching [8, 9].  Given a molecule that 

exhibits some biological activity of interest (the reference structure) and a database of 

molecules that have not previously been tested for that activity, a similarity search procedure 

involves computing the similarity between the bioactive reference structure and each database 

structure, using some quantitative measure of structural resemblance.  The database is then 

ranked in decreasing order of the computed similarities, and some fraction (e.g., the top-5%) 

of the ranked database passed on for further consideration, since these top-ranked molecules 

(the nearest neighbours) are expected to have the greatest a priori probabilities of bioactivity.  

Many different types of similarity measure have been discussed in the literature [10] but most 

current systems for lead discovery use measures based on 2D fingerprints and the Tanimoto 

coefficient, where a fingerprint is a binary vector encoding the presence or absence in a 

molecule of (typically a few hundred) small substructural fragments.  Fingerprint-based 

similarity is clearly simple in concept but has proved to be very effective in operation [11-16].  

Much of the popularity of similarity searching derives from the fact that it requires very little 

information for screening, specifically just a single known active, such as a competitor 

compound or a hit from an initial high-throughput screening experiments.  It is thus normally 

used in the very initial stages of lead discovery, with more sophisticated screening procedures 

such as pharmacophore matching, CoMFA, SIMCA etc. becoming the methods of choice as 

training data becomes available in the lead-discovery and lead-optimisation stages.    

 

Hert et al. have described an extension of similarity searching, referred to as turbo similarity 

searching (for reasons described below), that is based on two observations [17].  First, the 

similar property principle states that molecules that are structurally similar are likely to 

exhibit similar activities and properties [18, 19].  If the principle applies to a particular 

biological activity and set of compounds then the nearest neighbours of a bioactive reference 

structure are also expected to possess that activity.  Second, recent studies have demonstrated 

the increased effectiveness of searching that can be obtained if not one but multiple bioactive 

reference structures are available, using a consensus approach called group fusion [16, 20-

23].  Here, each reference structure in turn is used for a similarity search, and then the 

resulting rankings are combined to give a single consensus ranking.  Turbo similarity 

searching (which we shall normally abbreviate to TSS) makes the assumption that the nearest 

neighbours of a reference structure are not just likely to be active (as suggested by the similar 

property principle) but actually are active, in which case these assumed active molecules can 

be used as reference structures in addition to the original reference structure (thus providing 

the multiple reference structures that are required for group fusion).  These additional, 

nearest-neighbour searches are carried out automatically and thus the user of a TSS system 
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need do nothing more than is required for conventional similarity searching, i.e., the input of 

a bioactive reference structure.   

 

The assumption that high-ranked structures are likely to be active has also been used in 

docking studies by Klon et al. [24] and by Fukunishi et al. [25].  It is, of course, only an 

assumption but the general applicability of the similar property principle means that it is 

likely to be a true assumption more often than not, in which case increases in the 

effectiveness of searching (when averaged over multiple searches) can be expected from the 

use of approach.  We emphasise averaging over multiple searches since TSS cannot be 

expected to be superior to conventional similarity searching for each and every one of all the 

searches that might be carried out (as noted by Hert et al. in their original paper [17]).   

 

The approach suggested by Hert et al. involves combining the ranked outputs from the set of 

similarity searches (i.e., searches for the original, active reference structure and for each of 

the additional, assumed actives) using group fusion.  The final, combined search output is 

then expected to yield a better level of enrichment than a conventional similarity search 

(which we shall normally abbreviate to SS) based on just a single reference structure.  

Experiments with the MDL Drug Data Report (MDDR) database (available from Symyx 

Technologies at http://www.mdli.com/products/knowledge/drug_data_report/index.jsp) 

yielded favourable results and it was accordingly suggested that the approach provides a 

simple way of enhancing the effectiveness of current systems for virtual screening [17].  Hert 

et al. subsequently described an alternative form of TSS, in which the group-fusion stage was 

replaced by an approximate machine-learning procedure [26].  The choice of name – turbo 

similarity searching – is justified by analogy with an automobile: a turbocharger increases the 

power of an automobile engine by using the engine’s exhaust gases, and a turbo similarity 

search increases the power of a chemical search engine by using the reference structure’s 

nearest neighbours.   

 

The original TSS experiments used the MDDR database with the molecules represented by 

one particular type of fingerprint (specifically the ECFP_4 Pipeline Pilot fingerprints 

available from SciTegic Inc. at http://www.scitegic.com).  Here, we consider the 

effectiveness of TSS when used with other databases and other types of molecular 

representation to determine the generality of the approach for virtual screening.   
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METHODS 

 

Group fusion   A schematic outline of the basic TSS procedure is shown in Figure 1.  As in a 

conventional similarity search, the user submits a reference structure and receives as output 

the database ranked in decreasing similarity order; however, in TSS the system carries out 

some number of additional similarity searches based on the computed nearest neighbours, and 

then fuses the resulting similarity lists prior to the generation of the final output.  An 

algorithmic formulation of the procedure is shown in Algorithm 1.   

 

Based on our previous studies, the fusion was carried out using the MAX rule.  Assume that 

some database molecule has a similarity to the reference structure (either the original 

reference structure, R, or one of its nearest neighbours) of Sim(i) in the i-th similarity search 

(0 <= i <= k where k is the number of nearest neighbours used).  Then the fused similarity for 

that database molecule is  

MAX{Sim(i)}, 

with the final database ranking being based on the sorting of these fused similarity values in 

order of decreasing numeric value.   

 

Machine learning  We have described previously [26] an alternative approach to TSS, where 

the nearest neighbours from the basic SS search are processed using a machine-learning 

technique, rather than group fusion as discussed thus far.  Machine learning involves the 

analysis of a set of molecules of known activity or inactivity (the training-set) to yield a 

decision rule that can then be applied to molecules of unknown activity (the test-set) [27].  

Hert et al. suggested that the nearest neighbours of the known reference structure could 

comprise the actives in a training-set, with the inactives being obtained by noting that the 

characteristics of inactives are approximated with a high degree of accuracy by the 

characteristics of the entire database that is to be searched [26].  This training-set is then used 

to generate a ranking of the molecules in the database that is the final output of the search.   

 

There are several different methods for machine learning that could be used to generate a 

ranking [27]: based on our previous experiments, we have used substructural analysis (SSA).  

SSA assigns a weight to each bit (or substructure) in a fingerprint that describes that bit’s 

differential occurrence in the active and inactive molecules constituting the training-set.  The 

resulting weights are then used to rank the test database, with the score for a molecule being 

the sum of the weights for its constituent fragments.  The molecules at the top of the resulting 

ranking are then judged as having the highest probabilities of activity.  The weighting scheme 

used was the R2 weight, which has the form  
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Here, Aj and Ij are the numbers of active and inactive training-set molecules with bit j set, and 

NA and NI are the numbers of active and inactive training-set molecules [28].  The resulting 

procedure – referred to subsequently as TSS-SSA – is shown in Algorithm 2.   

 

Evaluation of searches  There is increasing interest in criteria for the evaluation of virtual-

screening experiments [29-31].  Here, we have used a very simple criterion, viz the recall, i.e., 

the percentage of the active molecules that have been retrieved at some cut-off point in the 

ranking.  In most cases, a cut-off of 5% was used so that, for example, a recall of 20% of the 

actives would correspond to a four-fold enrichment of the output as compared with random 

screening of the database.  Some of the experiments additionally used a cut-off of 1%.  Some 

number of the molecules in an activity class were used in turn as the reference structure, and 

the mean search performance averaged over all of the reference molecules for the class; the 

final measure of search effectiveness was then obtained by averaging over the activity classes, 

so that each class contributed equally to the overall performance. 

 

Databases   Several databases have been used in our experiments.  The largest number of 

experiments used the MDDR database mentioned previously.  This database contains the 

structures and pharmacological class information for molecules that have been reported in 

patents, journals and conference proceedings as exhibiting biological activity.  The 

bioactivity data in MDDR is qualitative: a molecule is noted as exhibiting a specific activity, 

and it is assumed to be inactive if that is not the case.  The version used here contained 

102,514 molecules, and searches were carried out for the eleven classes of active compounds 

that were first described by Hert et al. and that have been used in several subsequent studies 

both by ourselves and by others [21].  These activity classes are summarized in Table 1a and 

are collectively referred to subsequently as MDDR-A.  Some of the experiments also used a 

set of ten activity classes that are known to be structurally diverse and that hence provide a 

tougher test of a search method’s ability to discriminate between active and inactive 

molecules [26].  These activity classes are summarized in Table 1b and are collectively 

referred to subsequently as MDDR-B.  Each row of Table 1a or 1b contains an activity class, 

the number of molecules belonging to the class, and an indication of the class’s diversity.  

The diversity figures were obtained by matching each molecule with every other in its 

activity class, calculating similarities using the standard Unity 2D fingerprint (available from 

Tripos Inc. at http://www.tripos.com) and the Tanimoto coefficient and then computing the 

mean intra-set similarity.  It will be seen, e.g., that the renin inhibitors form the most 
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homogeneous class in Table 1a and the cyclooxygenase inhibitors the most heterogeneous 

class; this is also the case for the WOMBAT classes in Table 1c.   

 

Experiments were also carried out using the World Of Molecular Bioactivity database 

(WOMBAT, available from Sunset Molecular Discovery LLC at 

http://sunsetmolecular.com/products/?id=4).  This contains the structures and experimental 

biological activity data for molecules described in several key drug-discovery journals such as 

Journal of Medicinal Chemistry, Bioorganic Chemistry Letters, European Journal of 

Medicinal Chemistry etc.  The bioactivity data here is quantitative: a molecule has an 

associated IC50 etc, and it is assumed to be inactive if that value is too low or if it is absent.  

The WOMBAT activity classes mirror closely the MDDR ones.  Specifically we have chosen 

for each activity that species for which there is the largest number of molecules with a 

measured pIC50 >= 5.0.  These molecules are marked as active for that class; molecules with 

pIC50 <5.0 for that species are removed from the dataset, as are all molecules with the chosen 

activity but tested in species other than the chosen one.  The resulting dataset contained a total 

of 138127 molecules, with the chosen activity classes being summarized in Table 1c.   

 

Both the MDDR and WOMBAT databases have been extensively used for virtual screening 

but they do have one limitation, which is that they contain molecules that have been shown to 

be active in some particular test, call it A.  Molecules that have not been tested in A are 

assumed to be inactive, i.e., the coding of a molecule as inactive represents a lack of 

knowledge as to its activity rather than a knowledge of its inactivity.  The experimental results 

reported here (and in the many other papers that use these two datasets) hence involve some 

level of false negatives.   

 

Further experiments used the NCI AIDS database (available from http://dtp.nci.nih.gov/), 

which contains molecules tested in the US government’s anti-AIDS programme.  The version 

used here contained 41,192 molecules, of which the 393 confirmed active and 1037 

moderately active molecules were taken as the active set that was to be retrieved, i.e., in this 

database, the inactives are known explicitly and there is no counting of false negatives in the 

results.   

 

Finally, experiments were carried out to assess the effectiveness of TSS for quantitative 

property prediction.  The datasets studied here were: a set of 829 molecules with IC50 values 

provided by Janssen Pharmaceutica from a GPCR research programme; a set of 880 CDK2 

inhibitors with IC50 values [32]; a set of 762 HIV protease inhibitors with Ki values [32]; a 
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set of 4449 molecules with melting points [33]; and a set of 927 molecules with aqueous 

solubilities [34].   

 

Structure representations  There are many ways in which the structure of a chemical 

molecule can be represented in machine-readable form.   

 

The most common type of representation for virtual screening is a fingerprint, i.e., a binary 

vector in which bits are set to denote the presence of substructural fragments in a molecule, 

and fingerprints were used in the majority of our experiments.  Two main approaches have 

been developed for selecting the fragments that are encoded in a fingerprint [2, 3, 35].  In a 

dictionary-based approach, there is a pre-defined list of fragments, with normally one 

fragment allocated to each position in the bit-string.  Here, a molecule is checked for the 

presence of each of the fragments in the dictionary, and a bit set (or not set) when a fragment 

is present (or absent).  In a molecule-based approach, hashing algorithms are used to allocate 

multiple fragments to each bit-position.  Here, a generic fragment type is specified, e.g., a 

chain of four connected non-hydrogen atoms, and a note made of all fragments of that type 

that occur in a given molecule.  Each fragment is converted to a canonical form and then 

hashed using several (typically two or three) hashing algorithms to set bits in the fingerprint.   

 

The original TSS studies [17, 26] used the ECFP_4 (for Extended Connectivity Fingerprint 

encoding circular substructures of diameter four bonds) fingerprints from the SciTegic 

Pipeline Pilot software (hashed to a fixed length of 1024 bits) and these fingerprints have also 

been employed here.  In addition, we have used several other types of 2D fingerprints: 

SciTegic FCFP_4 (for Functional-Class Fingerprint encoding circular substructures of 

diameter four bonds) fingerprints (1024 bits), Tripos Unity fingerprints (988 bits), Digital 

Chemistry (formerly Barnard Chemical Information Limited, BCI) fingerprints (1052 bits, 

available from http://www.digitalchemistry.co.uk), Daylight fingerprints (2048 bits, available 

from http://www.daylight.com) and MDL key fingerprints (166 bits, available from 

http:/www.mdli.com).  Of these, the BCI and MDL fingerprints are dictionary-based, the 

Daylight and SciTegic fingerprints are molecule-based (using linear chains and circular 

substructures, respectively), and the Unity fingerprints are based on both approaches, so as to 

cover the full range of commonly-available types of fingerprint.   Details of these types of 2D 

fingerprint are provided by Leach and Gillet [3] while Hert et al. [36] discuss the use of these, 

and other types of fingerprints, for ligand-based virtual screening.   

 

The MDDR and NCI searches were also carried out using a very different type of fingerprint 

generated from a 3D structure and encoding geometric pharmacophores.  These PDT (for 
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pharmacophore distance triplet) fingerprints were obtained by computing CONCORD 

structures, generating 100 conformations for each such structure, and then calculating the 

distances between hydrogen-bond acceptors, hydrogen-bond donors and hydrophobes.  The 

distances were binned from 3Å to 15Å at 1.5Å intervals, and the resulting 91,125-element 

bit-string folded to a length of 10,000 bits for searching.  Similarities between pairs of 

fingerprints (of whatever kind) were computed using the Tanimoto coefficient. 

 

Fingerprints provide a binary (presence/absence) representation of a chemical molecule.  

However, we have also studied three non-binary representations: 12 physicochemical 

properties (e.g., AlogP, logD, molecular weight, volume, and solubility) generated using the 

Pipeline Pilot software (available from SciTegic Inc.); 523 topological indices (e.g., 

molecular connectivity, kappa shape, and electrotopological state indices) generated using the 

Molconn-Z software (available from eduSoft at http://www.eslc.vabiotech.com); and 997-

element molecular holograms generated using the Unity software (available from Tripos Inc.) 

with the default parameter settings, where the holograms denote not just the presence but also 

the frequency of occurrence of a substructural fragment in a molecule.  The Molconn-Z and 

physicochemical data were processed using a Principal Components Analysis routine.  

Similarities between pairs of non-binary representations were computed using the Euclidean 

distance.   

 

Finally, the last few years have seen interest in the use of reduced graphs for similarity 

searching.  A reduced graph provides a summary representation of a molecule, with groups of 

connected atoms of the same type being conflated to single graph-nodes, the types of which 

are chosen to reflect characteristics that are likely to be of importance for biological activity, 

e.g., ring systems, charged groups and hydrogen donors and acceptors.  There are many ways 

in which graph reduction can be carried out: here, we have used the procedures described by 

Barker et al. [37] in which all acidic and basic groups are first identified and in which the 

molecule is then partitioned into cyclic and acyclic fragments.  Ring nodes may be aromatic 

or alicyclic, and are further sub-divided by their donor/acceptor characteristics (or lack 

thereof), as are acyclic feature nodes (with acyclic nodes having no donor/acceptor nature 

being referred to as linkers).  The similarity between a pair of molecules is then computed 

using a Tanimoto-like similarity coefficient based on the maximum common subgraph (MCS) 

between the reduced graphs corresponding to those molecules, with the MCS being computed 

using the Bron-Kerbosch clique-detection algorithm [37].  The study of Barker et al. 

considered several ways in which reduced graphs could be used for virtual screening and we 

have used here that approach which performed best in their experiments (which they refer to 

as MCIS-FC).  
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RESULTS AND DISCUSSION 

 

Initial fingerprint searches  The first set of runs used the BCI, Daylight, ECFP_4, FCFP_4, 

MDL, PDT and Unity fingerprints in searches of the MDDR and NCI databases.  In each set 

of searches, every active molecule in turn was used as the reference structure: 8294 in the 

case of MDDR-A, 8440 in the case of the diverse MDDR-B and 393 (the confirmed actives) 

in the case of the NCI database.  As noted previously, the results were averaged over all the 

molecules within each activity class and then over all the classes.  The results of the runs are 

shown in Tables 2-4, where SS denotes a conventional similarity search and where TSS-x 

denotes a turbo similarity search based on the original reference structure and the x nearest 

neighbours of that reference structure.  The figures listed in these, and subsequent, tables are 

the mean percentages of the actives retrieved in the search. 

 

Inspection of the MDDR searches in Tables 2 and 3 shows that the results obtained are 

analogous to those reported previously for the ECFP_4 fingerprints.  Specifically, when the 

MDDR-A classes are used (Table 2) there is often a noticeable increase in the recall of the 

search, especially for the ECFP_4 fingerprints, as more nearest neighbours are included in a 

TSS, with the maximum recall typically being obtained with 50-100 nearest neighbours.  The 

MDL and PDT fingerprints are different in behaviour, with SS consistently superior to TSS.  

Of the various types of fingerprint, ECFP_4 gives the best results, both in the initial SS and in 

the degree of enhancement when TSS is used: for this fingerprint, the maximum TSS recall 

corresponds to an increase of 15.1% of the recall of the conventional SS.  Table 3 shows the 

results for MDDR-B.  Here, the degree of enhancement is much less notable, even for 

ECFP_4, and for most of the fingerprints there would appear to be no advantage in using 

TSS.  Similar comments apply to the NCI AIDS searches summarized in Table 4; indeed, 

here there is a noticeable decrease for the 3D PDT fingerprints.   

 

The original TSS paper [17] used the ECFP_4 fingerprints on the MDDR database and the 

MDDR-A activity classes, and demonstrated that significant increases in recall could be 

achieved.  The subsequent TSS paper [26] showed that such increases were not observed 

when the activity classes were chosen to be as diverse as possible, in which case the basic SS 

search is poor: the results in Table 3 show that this is also the case for the other types of 

fingerprint studied here.  Indeed, for several of these it is not possible to obtain substantial 

improvements even with the MDDR-A classes in Table 2 (where the ECFP_4 fingerprints 

gave consistently the best performance).  A reasonable conclusion from these observations 

would hence be that the best results will be obtained if the starting point for the TSS, i.e., the 
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basic SS search, is effective: this conclusion is supported by the results in Table 4 for the NCI 

database, where none of the SS or TSS searches are particularly effective. 

 

Turning now to the WOMBAT searches, ten molecules were chosen at random from each 

activity class to be the reference structures for searching.  The results of the WOMBAT 

searches using the top-5% are detailed in Table 5.  Inspection of these figures shows that the 

effectiveness of TSS mirrors that observed in Table 2: there is a substantial increase in the 

effectiveness of the ECFP_4 searches (an increase of over 10% of the SS recall) and (to a 

lesser extent) the FCFP_4 searches, but little or no benefit resulting from the use of TSS with 

the other fingerprint-types.  A similar pattern of behaviour is evident if the evaluation focuses 

on just the top-1% of the ranked outputs, as shown in Table 6.   

 

Taken together, the results in Tables 2-6 suggest that TSS can bring about substantial 

enhancements in virtual-screening performance in some cases.  However, the overall picture 

is rather less favourable to the approach than the initial results that were obtained using the 

ECFP_4 fingerprints on the MDDR-A dataset.    

 

Non-fingerprint searches  The reduced graph searches used a subset of the MDDR 

database obtained from the application of filters based on molecular properties such as 

molecular weight, logP, and number of rotatable bonds, and on SMARTS rules obtained from 

a survey of medicinal chemists at AstraZeneca [38].  In all, this dataset contained 61902 

molecules, of which there were 4713 actives across the MDDR-A activity classes.  The results 

for the TSS searches are listed in Table 7, which again shows the effectiveness of TSS, with 

the best results being obtained from including 20-50 molecules in the second stage of the 

search.  Thus the TSS-30 figures represent increases of 14.4% and 9.2% over the SS figures 

for the cut-offs of 1% and 5%, respectively, providing further evidence of the effectiveness of 

TSS when used on the MDDR-A database.   

 

Given the generally positive results obtained thus far using MDDR-A, the results in Table 8 

for the hologram, physicochemical property and Molconn-Z searches on this dataset came as 

a marked surprise.  Specifically, it will be seen that little or no advantage accrued from the 

use of TSS, and that in many cases the recall decreased when compared with the basic SS.  

Similar negative comments apply to the diverse, MDDR-B results in Table 9.   

 

We have probed this poor performance using a lower-bound and upper-bound analysis of the 

hologram and ECFP_4 searches that is reported in Table 10.  The results here were obtained 
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by carrying out a TSS search based on fusing the rankings generated with either the top-

ranked 100 inactive nearest neighbours as the reference structures (lower-bound) or the top-

ranked 100 active nearest neighbours as the reference structures (upper-bound); full details of 

these bounding procedures are provided by Hert et al. [17].  Inspection of the fingerprint 

results, which are based on the use of the ECFP_4 fingerprints, in Table 10 shows that the 

lower-bound searches (with an average recall of 38.7%) are only slightly worse than the basic 

SS search (with an average recall of 39.2%).  This may appear rather surprising but, as Hert et 

al. note, this simply means that even when inactive molecules are used in TSS, these nearest-

neighbour molecules still contain sufficient relevant substructures in common with the 

reference structure to enable the identification of further active molecules.  However, this will 

only be so if the similarity property principle applies.  Whilst this would indeed appear to be 

the case for the ECFP_4 fingerprints, it is certainly not the case for the holograms, where the 

lower-bound recall (at 16.0%) is much worse than the basic SS search (with an average recall 

of 26.0%).  If we now consider the upper-bound results, the ECFP_4 searches demonstrate 

clearly the performance gains that can be achieved when the principle applies.  Here, the 

average recall increases from 39.2 (for SS) to 68.4 (for TSS), a rise of 74.5% of the SS recall.  

However, the increase is far less noticeable for the histograms: from 26.0 (for SS) to 33.9 (for 

TSS), a rise of 30.4% of the SS recall. 

 

The original TSS paper used ECFP_4 fingerprints and the Tanimoto coefficient and 

concluded by noting that “...there is no reason in principle why this approach could not also 

be used with any other type of similarity measure that satisfies the similar property principle”.  

It is clear that the principle does not hold, or at least does not hold sufficiently well, for the 

holograms that were used, with consequent poor TSS performance.  We presume that the 

Principle also does not hold for the two other non-binary representations (and for some of the 

binary fingerprints) used here.  

 

Use of machine learning  All of the experiments thus far have used the original form of TSS, 

where the nearest neighbours of the original reference structure are used as reference 

structures in their own right as reference structures, and then the multiple rankings combined 

using group fusion.  As noted previously, we have also described an alternative form of TSS 

[26], in which the group-fusion stage is replaced by a machine-learning procedure, 

specifically substructural analysis (SSA) in the experiments reported here (see Algorithm 2).  

The results of using this approach, referred to as TSS-SSA, on the MDDR-A, MDDR-B and 

NCI datasets are shown in Tables 11-13, which are thus comparable to the results in Tables 2-

4 for “normal” TSS.   
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Tables 2 and 3 have demonstrated that TSS can result in substantial increases in recall when 

applied to the eleven activity classes in MDDR-A, but have little or no effect when applied to 

the diverse activity classes in MDDR-B.  Tables 11 and 12 provide a dramatic contrast, with 

TSS-SSA behaving in exactly the opposite way, as there are substantial increases in recall for 

MDDR-B but no effect (or even reductions in recall) for MDDR-A.  This behaviour had been 

observed previously using just the ECFP_4 fingerprints but is clearly more general in scope, 

with some of the effects being extremely large: the MDL TSS-SSA-10 recall with MDDR-A 

(21.9%) is 27.5% less than the SS recall (30.2%); whereas the Unity TSS-SSA-10 recall with 

MDDR-B (25.1%) is 51.2% more than the SS recall (16.6%).  A comparison of Tables 4 and 

13 show the differences for the NCI dataset: the former reveals little or no advantage from the 

use of TSS whereas the latter reveals that three of the fingerprints - ECFP-4, FCFP_4 and 

PDT - benefit greatly from the use of TSS-SSA.  In summary, then, Tables 11-13 support our 

previous conclusions [26] in recommending the use of machine learning, rather than group 

fusion, for TSS when structurally diverse sets of active molecules need to be investigated.  

One final point to note is that there are some inconsistencies in the numbers of nearest 

neighbours required for maximum TSS performance: in particular, compare the TSS-SSA-10 

and TSS-SSA-20 recalls for ECFP_4 and PDT in Table 12 as against those in Table 13. 

 

Overall effectiveness of fingerprint-based TSS  The principal objective of the work reported 

in this paper was to assess the general effectiveness of TSS as a mechanism for virtual 

screening.  However, the use of several different types of fingerprint has also enabled us to 

draw conclusions as to their relative performance.   

 

The results in Tables 2-6 and 11-13 demonstrate very clearly the consistently higher level of 

recall achieved using the ECFP_4 fingerprints.  Previous comparative studies have 

demonstrated their merits for group fusion and conventional SS searches [36], which was 

why we chose this type of fingerprint as the basis for our initial studies of TSS [17, 26].  The 

results obtained here show the (in retrospect) wisdom of this choice, since no other 

fingerprint (with the possible exception of the closely related FCFP_4 fingerprint) responds 

anywhere near as favourably as does ECFP_4 to the use of TSS.  In addition, since our work 

was completed, a very recent comparative study has demonstrated the merits of the ECFP_4 

fingerprint for establishing the similarity of drug targets [39]. 

 

The benefits that can be achieved from using TSS in ECFP_4-based similarity searching have 

been quantified by calculating the percentage increase over the SS recall for the TSS-x search 

with the highest recall (normally, but not consistently, TSS-100 or TSS-200).  These 

increases are: 15.1, 7.7, 6.7, 10.4 and 14.2% for Tables 2-6 respectively, and 7.7, 36.4 and 
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35.2% for Tables 11-13 respectively.  Thus, for this particularly effective fingerprint, it seems 

that a significant increase in the performance of similarity searching can be achieved by the 

use of the TSS approach; moreover, as noted in our previous papers and as is made clear from 

Figure 1, this improved performance is achieved without any effort on the part of the chemist 

carrying out the database search.  

 

In concluding this section, although our experiments have not considered every type of 

fingerprint available, we believe that our findings are of general applicability.  This is because 

the 2D fingerprints studied here include fingerprints based on the use of a fragment 

dictionary, based on hash coding the fragments in a molecule, and based on both types of 

approach; indeed, they include many of the fingerprints in current operational 

chemoinformatics systems.  

 

Quantitative property prediction  All of the experiments thus far have used qualitative, i.e., 

active/inactive, bioactivity data for virtual screening.  The final series of experiments sought 

to evaluate the use of TSS for the prediction of quantitative property values in the five 

datasets mentioned in the Methods section.  The molecules here were represented by ECFP_4 

and FCFP_4 fingerprints (with the exception of the Janssen corporate dataset, which was 

based on ECFP_6 fingerprints).   

 

The basic idea in structure-based property prediction is a leave-one-out procedure in which 

the property value is assumed to be unknown for each of the dataset-molecules in turn. The 

predicted property value for each such molecule X, P(X), is then taken to be the arithmetic 

mean of the observed property values of some number, p, of its nearest neighbours, i.e., those 

molecules that are structurally most similar to it.  This procedure results in the calculation of a 

P(X) value for each of the N structures in a dataset, and an overall figure of merit is then 

obtained by calculating the product moment correlation coefficient between the sets of N 

observed and N predicted values.  Extension of this SS-based method for property prediction 

simply involves fusing k nearest neighbour lists (as detailed in Algorithm 1) and then using 

the p nearest neighbours from the final ranking for computation of the P(X) value.  Thus, k is 

the number of nearest neighbours that are used to produce the combined ranking that is the 

output from the TSS and p is the number of nearest neighbours from that combined ranking 

that are used to calculate the property value.  Experiments were carried out with p set to 1, 2, 

3, 5 and 10, and with k set to 0, 1, 2, 3, 5, and 10.  

 

A typical set of results, for the aqueous solubility dataset, is shown in Table 14.  The table 

lists the squared correlation coefficient values (r2) for the correlation between the sets of 
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observed and predicted solubilities.  The row with k=0 corresponds to the use of normal SS 

for property prediction, and it will be seen that the best correlation between observed and 

predicted solubilities is obtained using the three nearest neighbours (as measured in this case 

using the ECFP_4 fingerprints).  A comparison of the values in this row of the table with the 

corresponding values in the rows for which k>0 shows that TSS brings about a consistent 

decrease in the correlations.  Similar results were obtained for all of the other quantitative 

datasets studied here, and this was also the case when the FCFP_4 fingerprints were used or 

when a different fusion rule (the SUM rule [21]) was used.  We hence conclude that TSS is 

not an appropriate tool for the prediction of quantitative property values. 

 

 

CONCLUSIONS 

 

The computation of inter-molecular structural similarity is a vital component of modern 

approaches to virtual screening.  Chemical similarity searching has normally involved the use 

of just a single bioactive reference structure to screen a database for molecules that have a 

high a priori probability of being active.  In this paper, we have reported a detailed evaluation 

of an alternative approach (turbo similarity searching, or TSS) that additionally makes use of 

the reference structure’s nearest neighbours, i.e., those that are structurally most similar to it, 

in the screening stage.   

 

We have shown here that TSS based on group fusion can provide substantial enhancements in 

screening performance if the normal similarity search provides a good starting point, i.e., if 

the similar property principle holds and if the actives are well clustered using the chosen 

structure representation and similarity measure.  This was particularly the case in the searches 

here that were based on the ECFP_4 fingerprints.  If this is not the case (e.g., the MDDR-B 

and NCI AIDS searches), then an alternative approach to TSS based on an approximate form 

of substructural analysis (TSS-SSA) can provide enhancements in screening performance.  

That said, it must be emphasised that we have not been able to look at all possible 

combinations of dataset and structural representation, and even the results that we have 

obtained do exhibit some minor inconsistencies.  There is no such inconsistency in the 

prediction experiments where TSS appears to be unsuited to the prediction of quantitative 

property values.   

 

In more detail, our conclusions are as follows.  First, the ECFP_4 fingerprints would appear 

to be the structure representation of choice for similarity-based virtual screening, whether 

using SS or TSS.  Second, If the actives are indeed tightly grouped then TSS is likely to 
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provide a level of screening notably greater than does SS; if they are not tightly grouped then 

there is unlikely to be any difference in screening performance screening.  Third, the use of 

TSS-SSA provides an alternative path to the identification of molecules for testing: here, the 

approach is effective for heterogeneous sets of actives, without notably decreasing 

performance when they are homogeneous.  In practice, of course, one does not know the 

nature of the actives, and this hence suggests that both TSS and TSS-SSA searches should be 

carried out when identifying molecules for testing.  Indeed, we hope in the future to study 

how SS, TSS and TSS-SSA outputs can best be combined to give a single output to the user 

who has provided the original reference structure.   

 

Having established the general effectiveness of the TSS approach, our current work seeks to 

establish the best way of using the nearest-neighbour information in the second-stage of the 

search.  Three developments are currently being studied.  First, as noted in the previous 

paragraph we intend to investigate the combination of SS, TSS and TSS-SSA search outputs.  

Second, using the group fusion approach there are many different fusion rules that can be 

used to combine multiple rankings of a database and some of these may be superior to the 

MAX rule used thus far [40].  Third, rather than using, e.g., the 100 nearest neighbours for 

the reference structure; can better results – in particular for scaffold-hopping applications - be 

obtained by taking, e.g., just the ten nearest neighbours and then identifying the ten nearest 

neighbours for each of these?  Other ways of using the reference structure’s nearest 

neighbours include cluster-based approaches and the techniques for virtual screening 

described recently by Wale et al. [41].  This work will be reported shortly. 

 

We conclude by noting the significance of the work reported here for the implementation of 

operational systems for similarity-based virtual screening.  Such systems require the user to 

submit a reference structure, normally a known active, in response to which the system 

returns a list of nearest neighbours that are expected also to be active.  TSS again requires 

only the submission of the reference structure but, as our results show, returns a list of nearest 

neighbours that is often richer in actives than is obtained using conventional similarity 

searching, particularly when the common circular substructure fingerprints are used.  TSS 

hence results in an overall increase in effectiveness (as determined by the number of retrieved 

actives) without any decrease in efficiency (as determined by the degree of user effort); we 

hence believe that it provides an attractive tool for the implementation of ligand-based virtual 

screening.   
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Activity class Active molecules Mean pairwise 

similarity 
5HT3 antagonists  752 0.351 
5HT1A agonists  827 0.343 
5HT reuptake inhibitors  359 0.345 
D2 antagonists  395 0.345 
Renin inhibitors  1130 0.573 
Angiotensin II AT1 antagonists  943 0.403 
Thrombin inhibitors  803 0.419 
Substance P antagonists  1246 0.399 
HIV protease inhibitors  750 0.446 
Cyclooxygenase inhibitors  636 0.268 
Protein kinase C inhibitors  453 0.323 

(a) 
 

Activity class Active 
molecules 

Mean pairwise 
similarity 

Muscarinic (M1) agonists 848 0.206 
NMDA receptor antagonists 1311 0.199 
Nitric oxide synthase inhibitors 377 0.189 
Dopamine beta-hydroxylase inhibitors 95 0.229 
Aldose reductase inhibitors 882 0.232 
Reverse transcriptase inhibitors 519 0.218 
Aromatase inhibitors 513 0.229 
Cyclooxygenase inhibitors 636 0.220 
Phospholipase A2 inhibitors 704 0.224 
Lipoxygenase inhibitors 2555 0.224 

(b) 
 
Activity class (species) Active molecules Mean pairwise 

similarity 
5HT3 antagonists (rat)  220 0.377 
5HT1A antagonists (rat)  592 0.399 
D2 antagonists (rat)  910 0.367 
Renin inhibitors (human) 474 0.592 
Angiotensin II AT1 antagonists (rat)  724 0.443 
Thrombin inhibitors (human)  421 0.418 
Substance P antagonists (human) 558 0.427 
HIV protease inhibitors (human)  1128 0.442 
Cyclooxygenase inhibitors (human)  965 0.324 
Protein kinase C inhibitors (rat)  142 0.565 
Acetylcholine esterase inhibitors (human) 503 0.373 
Factor Xa inhibitors (human) 842 0.394 
Matrix metalloprotease inhibitors (human) 694 0.444 
Phosphodiesterase inhibitors (human) 596 0.359 

(c) 
 
Table 1.  Activity classes used in the virtual screening experiments (a) MDDR-A activity 
classes, (b) MDDR-B activity classes, (c) WOMBAT classes. 
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Fingerprint SS TSS-10 TSS-20 TSS-50 TSS-100 TSS-200 
BCI 32.8 33.8 34.2 34.7 34.9 34.8 
Daylight 31.5 32.4 32.6 33.1 32.8 32.6 
ECFP_4 39.2 41.9 42.9 44.5 45.1 45.1 
FCFP_4 36.1 37.9 38.9 40.1 40.8 41.1 
MDL  30.2 27.9 28.0 28.1 28.2 28.1 
PDT 18.8 17.9 17.4 17.0 16.7 16.6 
Unity 30.2 30.8 30.9 31.0 31.1 30.8 

 
Table 2.  SS and TSS searches of MDDR-A at 5% cut-off using fingerprints.   
 
 

Fingerprint SS TSS-10 TSS-20 TSS-50 TSS-100 TSS-200 
BCI 20.7 20.9 20.6 20.2 19.6 19.6 
Daylight 18.3 18.0 17.4 16.7 16.4 16.0 
ECFP_4 20.9 22.3 22.5 22.5 22.0 21.5 
FCFP_4 20.2 21.1 21.1 20.7 20.1 19.6 
MDL 20.0 20.0 19.5 18.9 18.3 17.8 
PDT 16.6 16.7 15.8 15.4 15.2 15.4 
Unity 16.6 15.8 15.2 14.1 13.8 13.7 

 
Table 3.  SS and TSS searches of MDDR-B at 5% cut-off using fingerprints.   
 
 

Fingerprint SS TSS-10 TSS-20 TSS-50 TSS-100 TSS-200 
BCI 12.1 12.3 12.3 12.5 12.8 12.9 
Daylight 10.4 10.5 10.4 10.2 10.0 10.2 
ECFP_4 10.5 10.3 10.3 10.4 10.7 11.2 
FCFP_4 10.8 10.9 11.1 11.1 11.1 11.1 
MDL Keys 11.9 11.9 12.0 12.1 12.3 12.4 
PDT 13.8 10.3 10.1 10.1 10.1 10.3 
Unity 11.5 11.5 11.6 11.8 11.7 12.0 

 
Table 4.  SS and TSS searches of NCI AIDS at 5% cut-off using fingerprints.  The listed 
figures are the mean percentage of actives retrieved for the confirmed active reference 
structures.  
 
 

Fingerprint SS TSS-10 TSS-20 TSS-50 TSS-100 TSS-200 
BCI 39.0 39.6 39.8 40.0 40.0 39.6 
Daylight 35.1 35.9 36.0 35.6 36.2 35.7 
ECFP_4 47.2 48.6 49.5 50.6 51.9 52.1 
FCFP_4 42.2 43.0 43.9 44.7 45.1 45.6 
MDL Keys 36.6 37.1 37.1 37.2 36.9 37.0 
Unity 36.8 37.3 37.8 37.5 37.4 37.5 

 
Table 5.  SS and TSS searches of WOMBAT at 5% cut-off using fingerprints.    
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Fingerprint SS TSS-10 TSS-20 TSS-50 TSS-100 TSS-200 
BCI 23.6 23.8 24.1 24.4 24.8 24.2 
Daylight 22.9 22.8 22.7 23.0 23.9 23.7 
ECFP_4 31.6 32.5 33.8 34.9 36.1 35.1 
FCFP_4 26.9 27.9 28.6 29.6 30.1 29.4 
MDL Keys 21.3 22.0 22.2 22.6 22.4 22.5 
Unity 22.7 22.8 23.3 23.5 23.2 23.1 

 
Table 6.  SS and TSS searches of WOMBAT at 1% cut-off using fingerprints.   
 
 

Cut-off SS TSS-10 TSS-20 TSS-30 TSS-50 TSS-100 
1% 22.1 24.9 25.1 25.3 25.1 24.6 
5% 38.1 40.9 41.3 41.6 41.1 39.7 

 
Table 7.  SS and TSS searches of a filtered version of MDDR-A at 1% and 5% cut-offs using 
reduced graphs.    
 
 

Representation SS TSS-10 TSS-20 TSS-50 TSS-100 
Holograms 26.0 23.7 22.7 21.9 21.2 
Molconn-Z 18.5 18.7 18.6 17.9 17.5 
Properties 24.1 24.4 24.3 23.9 23.5 

 
Table 8.  SS and TSS searches of MDDR-A at 5% cut-off using non-binary representations. 
 
 

Representation SS TSS-10 TSS-20 TSS-50 TSS-100 
Holograms 24.6 24.7 24.4 21.9 21.2 
Molconn-Z 15.6 15.3 15.1 14.2 13.5 
Properties 24.6 25.2 24.9 24.5 24.2 

 
Table 9.  SS and TSS searches of MDDR-B at 5% cut-off using non-binary representations.   
 



 21 

 
Activity class Top-100 inactive nearest 

neighbours 
Top-100 active nearest 

neighbours 
Holograms Fingerprints Holograms Fingerprints 

5HT3 antagonists 13.5 32.1 31.2 65.7 
5HT1A agonists 10.5 31.9 23.2 55.3 
5HT reuptake inhibitors 11.1 21.7 32.1 62.8 
D2 antagonists 10.8 28.8 27.9 68.6 
Renin inhibitors 40.1 89.8 77.4 96.6 
Angiotensin II AT1 antagonists 40.7 92.2 52.1 95.2 
Thrombin inhibitors 13.5 33.9 32.8 71.6 
Substance P antagonists 7.5 15.8 22.3 53.8 
HIV protease inhibitors 10.0 49.0 25.0 76.1 
Cyclooxygenase inhibitors 8.8 12.0 22.4 49.2 
Protein kinase C inhibitors 9.6 18.3 26.1 58.1 
Average over all classes 16.0 38.7 33.9 68.4 
Average over all classes for SS 26.0 39.2 26.0 39.2 

 
Table 10.  TSS lower-bounds and upper-bounds for recall of MDDR-A at 5% cut-off using 
ECFP_4 fingerprints and using molecular holograms.  The bottom row contains the basic SS 
values for comparison purposes. 
 
 

Fingerprint SS TSS-10 TSS-20 TSS-50 TSS-100 TSS-200 
BCI 32.8 29.2 28.5 28.2 28.5 28.8 
Daylight 31.5 27.1 24.2 23.3 23.9 24.9 
ECFP_4 39.1 37.1 40.2 40.0 40.9 42.1 
FCFP_4 36.1 32.5 35.9 36.6 37.5 38.3 
MDL  30.2 21.9 21.8 21.9 22.1 22.4 
PDT 18.8 14.3 15.6 14.5 14.3 14.3 
Unity 30.2 24.7 23.3 23.3 24.0 24.6 

 
Table 11.  SS and TSS-SSA searches of MDDR-A at 5% cut-off using fingerprints.   
 
 

Fingerprint SS TSS-10 TSS-20 TSS-50 TSS-100 TSS-200 
BCI 20.7 27.1 27.1 26.0 24.8 23.8 
Daylight 18.3 25.0 23.3 21.7 21.0 20.4 
ECFP_4 20.9 21.5 28.5 28.8 27.9 26.7 
FCFP_4 20.2 18.3 24.0 25.9 25.5 24.5 
MDL 20.2 26.5 25.5 24.2 23.4 22.8 
PDT 16.6 15.7 18.7 18.1 17.9 17.6 
Unity 16.6 25.1 23.4 21.1 19.8 18.9 

 
Table 12.  SS and TSS-SSA searches of MDDR-B at 5% cut-off using fingerprints.    
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Fingerprint SS TSS-10 TSS-20 TSS-50 TSS-100 TSS-200 
BCI 12.1 12.9 11.9 11.2 11.5 11.9 
Daylight 10.4 10.7 9.8 9.2 9.5 9.6 
ECFP_4 10.5 14.5 11.8 10.4 10.4 10.6 
FCFP_4 10.8 13.3 11.9 10.9 11.0 11.3 
MDL Keys 11.9 10.9 10.7 10.7 11.0 11.5 
PDT 13.8 18.4 14.4 10.0 9.4 9.5 
Unity 11.5 10.4 9.9 9.8 10.1 10.6 

 
Table 13.  SS and TSS-SSA searches of NCI AIDS at 5% cut-off using fingerprints.   
 
 
K p 
 1 2 3 5 10 
0 0.547 0.612 0.635 0.606 0.570 
1 0.424 0.480 0.538 0.532 0.525 
2 0.381 0.484 0.518 0.524 0.517 
3 0.346 0.470 0.512 0.525 0.496 
5 0.288 0.434 0.474 0.505 0.494 
10 0.167 0.292 0.374 0.441 0.472 
 
Table 14.  Computed r2 values for the correlation between observed and predicted aqueous 
solubilities.  k is the number of nearest neighbours used in TSS (so k=0 is conventional SS) 
and p is the number of nearest neighbours used for the prediction stage 
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Figure 1.  Schematic outline of a turbo similarity search.  The user supplies a Reference 
Structure and receives the Ranked Output as would be the case in a conventional similarity 
search.  However, the internal processing (not italicised in the figure) is more extensive in 
TSS, involving not one but multiple iterations of Similarity Searching and the additional 
Group Fusion step.  The Reference Structure is matched against each of the database 
structures, the similarity computer in each case and the database ranked in decreasing 
similarity order so that the Nearest Neighbours can be identified (Similarity Searching).  
However, instead of outputting the Nearest Neighbours as the result of the search, each one is 
used in turn as the Reference Structure so that for, for k nearest neighbours, k rankings are 
produced (via Similarity Searching) in addition to that resulting from the initial similarity 
search.  The k+1 rankings are combined into a single ranking (Group Fusion) using the MAX 
fusion rule (see text) and it is this fused ranking that is presented to the user (Ranked Output).  
 
 



 24 

 

Input the reference structure R  

Compute the similarity of R with every molecule in the database D  

Rank D in decreasing order of the calculated similarity values to give a sorted 

database SD(0)  

Identify the k nearest neighbours of R from the top of the list SD(0)  

For each such nearest-neighbour, NN(i)  

 Compute the similarity of NN(i) with every molecule in D  

Rank D in decreasing order of the calculated similarity values to give a sorted  

database SD(i)  

Combine the sorted lists SD(0)-SD(k) with a fusion rule to give the final ranking  

 

Algorithm 1.  Turbo similarity searching using group fusion 
 
 

Input the reference structure R 

Compute the similarity of R with every molecule in the database D 

Rank D in decreasing order of the calculated similarity values 

Assume that the k nearest neighbours at the top of the ranking are active, and that all 

the other molecules in D are inactive 

Use R, the k nearest neighbours and the rest of D as the training-set for the 

calculation of R2 weights for each of the fragments in D 

Use these weights to score each molecule in D in turn 

Rank D in decreasing order of the calculated scores to give the final ranking  

 
Algorithm 2.  Turbo similarity searching using substructural analysis 
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