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Mining Maximal Quasi-Bicliques: Novel Algorithm
and Applications in the Stock Market and Protein

Networks
Kelvin Sim, Jinyan Li, Vivekanand Gopalkrishnan, and Guimei Liu

Abstract— Several real world applications require mining of
bicliques, as they represent correlated pairs of data clusters.
However, the mining quality is adversely affected by missing
and noisy data. Moreover, some applications only require strong
interactions between data members of the pairs, but bicliques
are pairs that display complete interactions. We address these two
limitations by proposing maximal quasi-bicliques. Maximal quasi-
bicliques tolerate erroneous and missing data, and also relax the
interactions between the data members of their pairs. Besides,
maximal quasi-bicliques do not suffer from skewed distribution
of missing edges that prior quasi-bicliques have. We develop an
algorithm MQBminer, which mines the complete set of maximal
quasi-bicliques from either bipartite or non-bipartite graphs. We
demonstrate the versatility and effectiveness of maximal quasi-
bicliques to discover highly correlated pairs of data in two diverse
real world datasets. Firstly, we propose to solve a novel financial
stocks analysis problem by using maximal quasi-bicliques to co-
cluster stocks and financial ratios. Results show that the stocks
in our co-clusters usually have significant correlations in their
price performance. Secondly, we use maximal quasi-bicliques
on a mining protein network problem and we show that pairs
of protein groups mined by maximal quasi-bicliques are more
significant than those mined by maximal bicliques.

I. INTRODUCTION

Biclique subgraphs have been mined in diverse applications
such as finding large interacting pairs of protein groups
[1], discovering web communities which contain a group of
webpages and a group of users [2], words and documents co-
clustering [3], etc. A biclique subgraph consists of two disjoint
vertex sets, where all vertices from one set are connected to
every vertex from the other. To reduce the redundancies in the
biclique subgraphs of a graph, Li et al. [4] and Alexe et al.
[5] proposed to mine biclique subgraphs that are maximal. A
biclique subgraph of a graph is maximal if and only if it is not
a proper subset of any other biclique subgraph of the graph.

However, maximal biclique subgraphs exhibit two weak-
nesses. Firstly, real world data are prone to contain erroneous
or missing values. These missing or erroneous values have an
adverse effect on the quality of maximal biclique subgraphs
mined. Secondly, the all-to-all (complete) relation between the
two vertex sets of maximal biclique subgraphs may be too
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Fig. 1. (a) Vertices labeled with {Stock A, B, C} and {FR2(2, 2), FR3(-4,
-6), FR4(10, 11)} form a maximal quasi-biclique subgraph. (b) A skewed
quasi-biclique graph where missing edges are not balanced.

strict, as some applications may require most-to-most relation
instead.

In this paper, we propose to overcome these two weaknesses
by introducing maximal quasi-biclique subgraphs. A maximal
quasi-biclique subgraph consists of two disjoint set of vertices,
X and Y , such that every vertex in X is allowed to disconnect
with up to ε vertices in Y and vice versa. ε is the error tolerant
threshold defined by the user. For example in Figure 1(a),
vertices labeled with {Stock A, B, C} and {FR2(2, 2), FR3(-
4, -6), FR4(10, 11)} are two disjoint vertex sets forming a
maximal quasi-biclique subgraph at ε = 1. In this subgraph,
every vertex is disconnected with up to one vertex from the
other vertex set.

This simple, yet elegant definition of maximal quasi-
biclique subgraphs can be used to effectively overcome the
two weaknesses of maximal biclique subgraphs. Firstly, the
attempt to reduce the negative impact of missing or erroneous
data is achieved by using ε, as each vertex in a maximal
quasi-biclique subgraph can tolerate up to ε number of errors.
Secondly, varying ε allows the user to control the strictness
of the most-to-most relation of the maximal quasi-biclique
subgraphs.

Biclique subgraphs tolerating missing or erroneous data
have been studied recently [6]–[9]. However, their definitions
do not have a good constraint on the vertices to have a
balanced error tolerance, thus they have a skewed distribution
of the missing edges. For example, Figure 1(b) is a quasi-
biclique subgraph qualified in [6], [7], [9], but the vertices
v5, · · · , v8 each has a very low connectivity compared to the
other vertices. By our definition of maximal quasi-biclique
subgraphs, this skewness can be avoided, as the error tolerance
is required to be evenly distributed in the subgraph. A detailed



Fig. 2. A financial ratios dataset. FR1 to FR6 are financial ratios, e.g. FR1
can be Return on Equity. There are two overlapping co-clusters, {Stock A,
B, C} {FR2, FR3, FR4} and {Stock B, C, D} {FR4, FR5, FR6}

comparison between the competing approaches is presented in
Section 3.

We develop an algorithm MQBminer to enumerate the
complete set of maximal quasi-biclique subgraphs, which is
shown to be more efficient and scalable than our previous
algorithm CompleteQB [10]. Our algorithm can take either
a bipartite graph or non-bipartite graph as input.

To demonstrate the strength and versatility of maximal
quasi-biclique subgraphs, we apply them in two radically dif-
ferent real world applications. The first application is proposed
by us to solve a long standing financial problem.

Application 1: Co-clustering stocks and financial ratios
for fundamental analysis. Careful examination on the finan-
cial ratios of the companies is an integral part of fundamental
analysis [11], [12]. Financial ratios reflect the “health” status
of the stock issuing company, hence if a company possesses
a healthy status of financial ratios, it is often believed that
its fundamentals are strong and it has a high potential to be
profitable. Therefore, the price of the company’s stock would
rise in the long run [11], [12].

Fundamental analysts usually group companies (and con-
sequently, stocks) that have similar financial health status by
clustering them based on their financial ratios [13]–[15]. Once
clusters are obtained, it is useful to understand which financial
ratios the cluster of stocks have close similarities in, so that
analysts can investigate the reasons behind it.

Figure 2 shows a financial ratios dataset, with the financial
ratios labeled from FR1 to FR6. In this dataset, stocks A, B, C
have high similarity in FR2, FR3, FR4, while stocks B, C, D
have high similarity in FR4, FR5, FR6. We can consider them
as co-clusters of stocks and financial ratios, {Stock A, B, C}
{FR2, FR3, FR4} and {Stock B, C, D} {FR4, FR5, FR6}.
Subspace clustering algorithms [16] can be used to co-cluster
the stocks and financial ratios but the co-clusters found do not
overlap, hence co-cluster {Stock A, B, C} {FR2, FR3, FR4}
in Figure 2 may become {Stock A, B, C} {FR2, FR3} due
to its overlapping with {Stock B, C, D} {FR4, FR5, FR6},
resulting in information loss. Co-clustering algorithms [17],
[18] can also be used to co-cluster the stocks and financial
ratios. However, neither subspace clustering algorithms nor
co-clustering algorithms tolerate missing or erroneous data.
Therefore, they are unable to discover these two co-clusters,
assuming that FR2 of Stock C is missing and FR4 of Stock
D is erroneous.

We propose to use maximal quasi-biclique subgraphs to co-
cluster stocks and financial ratios for fundamental analysis.
In our method, stocks and their financial ratio values are

represented by a bipartite graph. A bipartite graph consists
of two disjoint sets of vertices, and edges exist only between
pairs of vertices spanning the two disjoint sets. Here we use
one set of the vertices to represent the stocks, and the other
set to represent the financial ratio values. An example of this
representation is shown in Figure 1(a). Since the financial ratio
values are continuous, we propose to use hierarchical cluster-
ing algorithm with a new scoring function iir (intra-inter ratio)
for the discretization of financial ratios into intervals, which
are then represented by vertices. An edge exists between a
stock vertex s and a financial ratio vertex r range, if the
financial ratio value for the stock s falls in the interval r range
of this financial ratio. We call such a bipartite graph a StoR
graph.

Maximal quasi-biclique subgraphs are then used to mine
co-clusters of stocks and financial ratios from the StoR graph.
Thus a maximal quasi-biclique subgraph of an StoR graph
corresponds to a co-cluster of stocks and financial ratios.
It can be seen that the stocks are clustered based on their
similarities in financial ratios and concurrently, these financial
ratios are implicitly clustered according to their occurrences
in the stocks.

Application 2: Mining protein networks. Li et al.
[1] transform the protein-protein interactions (ppi) dataset into
a non-bipartite graph, where the proteins are represented by
vertices and an edge connects two proteins if they have inter-
action. Maximal biclique subgraphs are then mined from the
ppi dataset, and interacting pairs of protein groups represented
by maximal biclique subgraphs are shown to be biologically
significant.

However, Li et al. [1] observe two important characteristics
of current ppi datasets that impede the usage of maximal
biclique subgraphs. (1) Not all pairs of protein groups exhibit
all-to-all interactions. Using maximal bicliques to mine pairs
of protein groups will filter off significant pairs of protein
groups that exhibit most-to-most interactions. In fact, pairs
of protein groups generally exhibit most-to-most interactions
and those exhibiting all-to-all interactions are rarities [19]. (2)
ppi datasets are incomplete, are constantly updating, and are
known to be noisy and of low quality [20]. Thus, the quality of
pairs of protein groups mined by maximal biclique subgraphs
suffers.

Thus, we propose to mine maximal quasi-biclique subgraphs
from ppi dataset and we show that pairs of protein groups
mined from maximal quasi-biclique subgraphs are more sig-
nificant than those mined from maximal biclique subgraphs.

The rest of the paper is organized as follows. Section 2 gives
a formal definition of our maximal quasi-biclique subgraphs.
Section 3 discusses the related work. Section 4 presents the
algorithm MQBminer and the discretization method. Section
5 reports the experiment results and Section 6 concludes the
paper.

II. PROBLEM DEFINITION

An undirected graph G consists of a set of vertices denoted
by V (G) and a set of edges denoted by E(G) = {{u, v}|u �=
v ∧ u, v ∈ V (G)}. Vertices u, v ∈ V (G) are adjacent to each
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Fig. 3. (a) A bipartite graph G, which contains a maximal quasi-biclique
subgraph g, with V (g) = {{v1, v2, v3}, {v5, v6, v7}}, at ms = 3, ε = 1.
(b) A bipartite graph G containing a maximal quasi-biclique subgraph G′ that
does not contain any maximal biclique subgraphs.

other if there is an edge {u, v} connecting them. Throughout
the rest of the paper, we assume that all graphs are undirected.

The neighborhood of v in a graph G is denoted as Γ(v) =
{u|{v, u} ∈ E(G) ∧ u ∈ V (G)}. Let V ⊂ V (G) and v be a
vertex in V (G) \ V . We denote the set of vertices in V that
is adjacent to v as ΓV (v) = {u|{v, u} ∈ E(G) ∧ u ∈ V }.

A graph g is a subgraph of a graph G if V (g) ⊆ V (G)
and E(g) ⊆ E(G). Graph g is a proper subgraph of G if g is
a subgraph of G, and g �= G. A graph G is a bipartite if its
vertex set consists of two disjoint subsets of vertices Vx and
Vy , and its edge set E(G) consists of only those edges {v, u},
where v ∈ Vx and u ∈ Vy . A bipartite graph is complete
if E(G) = {{v, u}|∀v ∈ Vx ∧ ∀u ∈ Vy}. For brevity, a
complete bipartite graph (or subgraph) is also called a biclique
(or biclique subgraph). A complete bipartite subgraph of a
graph G is maximal if it is not a proper subgraph of any other
complete bipartite subgraphs of G. Next, we introduce our
definition of maximal quasi-biclique subgraphs.

Definition 1 (Quasi-biclique): A bipartite graph G is a
quasi-biclique if V (G) consists of two disjoint sets of vertices
Vx and Vy such that ∀v ∈ Vx, |Vy| − |ΓVy(v)| ≤ ε, and ∀v ∈
Vy , |Vx| − |ΓVx(v)| ≤ ε, where the error tolerant threshold ε
is an integer.

Definition 2 (Maximal quasi-biclique): A quasi-biclique
subgraph g of an undirected graph G is maximal if and only
if there does not exist a quasi-biclique subgraph g ′ of G such
that g is a proper subgraph of g ′.

Small maximal quasi-biclique subgraphs may not be prac-
tically useful, and enumerating all of them may be computa-
tionally expensive since there are potentially a large number of
them. Thus, it is desirable to enumerate only maximal quasi-
biclique subgraphs whose sizes are larger than a minimum
size threshold ms, with the requirement that ms > ε. That is,
a maximal quasi-biclique g with V (g) = {Vx, Vy} is of our
interest if |Vx| ≥ ms, |Vy| ≥ ms.

Figure 3(a) shows a bipartite graph G with V (G) =
{Vx, Vy}, Vx = {v1, . . . , v4} and Vy = {v5, . . . , v9}. At
ε = 1 and ms = 3, there is a maximal quasi-biclique
subgraph g in G, with V (g) = {X, Y }, X = {v1, v2, v3}
and Y = {v5, v6, v7}. We can see that ∀v ∈ Y , v satisfies the
constraint |X | − |ΓX(v)| ≤ ε, as |ΓX(v5)| = 2, |ΓX(v6)| =
2, |ΓX(v7)| = 2. Similarly ∀v ∈ X , v satisfies the con-
straint |Y | − |ΓY (v)| ≤ ε, as |ΓY (v1)| = 2, |ΓY (v2)| =

2, |ΓY (v3)| = 2.
As the error tolerant threshold ε is an integer, it nicely sets

an upper bound on the number of missing edges each vertex in
a maximal quasi-biclique can tolerate with respect to the size
of the maximal quasi-biclique. For example, if ms = 3, ε = 1,
then each vertex in a maximal quasi-biclique can tolerate up
to 33.33% of missing edges that connect it to its counterpart
vertex set.

Note that one subset of Vx may form quasi-bicliques with
more than one subsets of Vy . For example, in Figure 3(a),
X = {v1, v2, v3} can form a maximal quasi-biclique with
Y1 = {v5, v6, v7} and Y2 = {v6, v7, v8} respectively, but X
cannot form a maximal quasi-biclique with the union of Y 1

and Y2 because v2 is disconnected to both v5 and v8.

III. COMPARISON TO LITERATURE WORK

A. Graph

On the error tolerance of quasi-bicliques, we use two
notions, symmetrical and balanced, to characterize them. The
error tolerance is symmetrical in a biclique if vertices in the
both sides of the quasi-biclique can tolerate missing edges. It is
balanced, if every vertex in the quasi-biclique can tolerate up to
the same threshold of missing edges. The rationale of defining
a quasi-biclique whose error tolerance is symmetrical and
balanced is to ensure that each vertex is closely related to all
vertices in the counterpart vertex set. Without this constraint,
the error distribution will be skewed as roughly explained in
the Introduction section.

The definition of quasi-bicliques by Abello et al. [6] is den-
sity based—A subgraph H is dense if all edges in H divided
by the total number of vertices in H exceeds a threshold.
Therefore, the error tolerance is not balanced though sym-
metrical. Mishra et al. [8] defined ε-bicliques in a way such
that its error tolerance is neither symmetrical nor balanced.
Specifically, a bipartite subgraph G with V (G) = {Vl, Vr}
suffices to be a ε-biclique if every vertex in Vr is adjacent to
(1 − ε) of the vertices in Vl. But every vertex in Vl is not
required to be adjacent to at least (1 − ε) of the vertices in
Vr, thus the error tolerance of ε-biclique is not balanced. The
error tolerance of ε-biclique is not symmetrical as there is no
error tolerant requirement on vertices in V l. Using Figure 1(b)
as an example, at ε = 0.6, G is a ε-biclique subgraph where
V (G) = {{v1, . . . , v4}, {v7, . . . , v12}}. Thus, the concept of
ε-bicliques is prone to skewed error distributions.

Yan et al. [9] introduced α-quasi-bicliques, which are maxi-
mal and their error tolerance is symmetrical, but not balanced.
An α-quasi-biclique has V (G) = {Vl ∪ Ve1, Vr ∪ Ve2} where
{Vl, Vr} forms a maximal biclique and {Ve1, Ve2} its maximal
α−extension. Every vertex in Ve1 is adjacent to at least α%
of the vertices in Vr and every vertex in Ve2 is adjacent to at
least α% of the vertices in Vl. We can see that the tolerance
is relative to Vl or Vr , but not relative to the vertex sets of the
α-quasi-biclique, therefore its error tolerance is not balanced.
For example at α = 0.25, Figure 1(b) shows an α-quasi-
biclique with V (G) = {Vl∪Ve1, Vr∪Ve2}, Vl = {v1, . . . , v4},
Vr = {v10, v11, v12}, Ve1 = {v5, v6}, Ve2 = {v7, v8, v9}.

To enumerate the complete set of α-quasi-bicliques, all
maximal biclique subgraph are first enumerated by using any



Definition Type Symmetrical Balanced Algorithm
Ours Maximal Yes Yes Complete
γ-biclique [6] Density Yes No Greedy
Bu et al. [7] Non-

maximal
Yes Yes Heuristic

ε-biclique [8] Non-
maximal

No No Greedy

α-quasi-biclique [9] Maximal Yes No Complete

TABLE I

COMPARISON OF DIFFERENT TYPES OF QUASI-BICLIQUES AND THEIR

ALGORITHMIC APPROACH

v1

v2

v3

v6

v4

v5

v7

(a)

v1 v2 v3 v4 v5 v6 v7
Γ(v1) 0 1 0 1 0 1 0
Γ(v2) 1 0 1 1 1 1 1
Γ(v3) 0 1 0 0 1 1 1
Γ(v4) 1 1 0 0 0 0 0
Γ(v5) 0 1 1 0 0 0 0
Γ(v6) 1 1 1 0 0 0 0
Γ(v7) 0 1 1 0 0 0 0

(b)

Fig. 4. (a) A non-bipartite graph G which contains two maximal quasi-
bicliques, g1, with V (g1) = {{v1, v2, v3}, {v4, v5, v6}} and g2, with
V (g2) = {{v1, v2, v3}, {v4, v6, v7}}, when ms = 3, ε = 1. (b) The binary
matrix representation of the non-bipartite graph.

algorithm of [4], [5], [21], and then every maximal biclique
subgraph (deemed as a ‘core’) is expanded to obtain α-
quasi-bicliques. However, this approach cannot enumerate the
complete set of our defined maximal quasi-bicliques. We use
the graph G in Figure 3(b) to illustrate the reason. The two
vertex sets {v1, v2} and {v5, v6} in G form a maximal quasi-
biclique subgraph g ′ where ε = 1. However, g ′ does not
contain any maximal biclique subgraphs since the only two
maximal biclique subgraphs in the graph are not a subset
of g′—one maximal biclique subgraph has vertex sets {v1}
and {v4, v5, v6}, and the other has vertex sets {v6} and
{v1, v2, v3}. Thus a maximal quasi-biclique subgraph may not
always contain a maximal biclique subgraph.

Bu et al. [7] mine quasi-biclique subgraphs in the ppi data
set, where each vertex of its quasi-biclique can be disconnected
up to a certain percentage of vertices in its counterpart vertex
set. Hence, its noise tolerance is balanced and symmetrical.
However, their quasi-biclique subgraphs are not maximal.
Bu et al. [7] use spectral analysis to mine quasi-bicliques,
but it is not clear how their algorithm works, since only a
general description of it is given. To mine quasi-bicliques, the
eigenvectors of the adjacency matrix of the input graph are
calculated, and each eigenvector corresponds to a vertex of the
graph that is an ‘intrinsic characteristic of interactions’ [7], but
this claim is not proven. The top 10% of the vertices in the
graph with the highest negative eigenvectors are selected, and
quasi-bicliques are mined from them. Thus, they are using a
heuristic approach which does not mine the complete set of
their defined quasi-bicliques.

Table I summarizes the differences among the various
types of quasi-bicliques, and the different types of algorithmic
approaches (fifth column in the table) to mine them. In fact,
if the application requires unbalance error tolerance in quasi-
bicliques, our maximal quasi-bicliques can easily handle it by

setting error tolerance of one side of the quasi-biclique to be
large and the other side to be small.

In [22], we introduce an alternate version of maximal quasi-
biclique whose error tolerance is percentage based. As this
alternate version does not have anti-monotone property, there
is no efficient algorithm to mine it.

B. The “Quasi” Concept

Recently, Pei et al. [23] proposed cross-graph quasi-
clique, which is a set of graphs and each graph has vertex set
V . In each graph, each vertex connects to at least γ.(|V | − 1)
other vertices in V , thus, their error tolerance is balanced.
Although the “quasi” concept is used, their error tolerance is
percentage based, while maximal quasi-biclique’s is absolute
based. Besides this difference, our graph of interests are
also different. Cross-graph quasi-clique is a set of closely
connected vertices (representing entities of one kind) across
a set of non-bipartite graphs, while maximal quasi-biclique
subgraph is two sets of closely connected vertices (represent-
ing entities of two kinds, e.g. stocks and financial ratios) in a
bipartite graph.

Another area related to maximal quasi-bicliques is frequent
itemsets that tolerate errors. Yang et al. [24] raised the idea
of mining error tolerant frequent itemsets (ETIs). ETIs and
its variants [25], [26] are a general form of frequent itemsets,
which allow some errors in the frequent itemsets.

Approximate frequent itemset (AFI) [26] is a stricter vari-
ation of ETI, as it has error tolerant constraint on both the
itemset and its transaction set. One may misunderstood that
the problem of mining maximal quasi-biclique can be solved
by considering the binary matrix representation of the graph
as a transaction dataset, and using the AFI mining algorithm
to mine AFIs, where each AFI and its transaction set form a
quasi-biclique subgraph. To clear this misunderstanding, we
need to explain in details the main differences between these
two works.

(1) We mine maximal quasi-biclique subgraphs
from both bipartite and non-bipartite graph. Figure
4(a) shows an example of a non-bipartite graph G
which has two maximal quasi-biclique subgraphs g1,
with V (g1) = {{v1, v2, v3}, {v4, v5, v6}} and g2, with
V (g2) = {{v1, v2, v3}, {v4, v6, v7}}, when ms = 3, ε = 1.
The binary matrix of this graph G is shown in 4(b),
and if we mine AFIs with minimum support of 0.4 and
εr = εc = 1/3 from it, the following AFIs will be generated:
{v2, v3}, {v2, v4, v5}, {v2, v4, v6}, {v2, v5, v6}, {v2, v6, v7},
{v4, v5, v6}, {v4, v6, v7}, {v2, v4, v5, v6}, {v2, v4, v6, v7}.
These are useful error tolerant frequent itemsets, but they do
not represent quasi-biclique subgraphs.

(2) A closed itemset and its transaction set form a biclique
[21], but a AFI and its transaction set do not form a quasi-
biclique, due to its error tolerance characteristic. For example,
AFI {v2, v4, v5} with its transaction set {Γ(v1), Γ(v2), Γ(v3)}
do not form a quasi-biclique.

(3) AFIs are not maximal, so it is possible that exponential
number of AFIs which are subsets of each other are generated.
For example in the result of Figure 4(b), 4 AFIs are subsets
of {v2, v4, v5, v6}.



(4) The error tolerance of ETI and AFI are percentage-
based, which means they do not have anti-monotone property.
This poses a critical issue in efficient mining of ETIs and
AFIs, and currently there are no existing algorithms that mine
the complete set of ETIs or AFIs. For example, the AFI
breadth-first mining algorithm [26] does not mine some cases
of AFIs. In Figure 4(b), AFI {v1, v2, v3} with transaction set
{Γ(v2), Γ(v4), Γ(v5), Γ(v6)} is not mined although it satis-
fies the settings mentioned above. The algorithm considers
{Γ(v2), Γ(v4), Γ(v5), Γ(v6), Γ(v7)} as the transaction set of
{v1, v2, v3}, as each transaction in the transaction set fulfills
the εr constraint, but this transaction set fails the εc constraint.

Besson et al. [27] introduced error tolerance into formal
concepts by proposing DR-bi-sets, which are bi-sets tolerating
errors. DR-bi-sets are defined by two properties: a dense prop-
erty and a relevant property. Although maximal quasi-bicliques
and DR-bi-sets are from two different fields, both approaches
can obtain the same output under certain constraints—when
the graph (which is represented by a binary matrix) does not
contain any self-loops and the relevant property of DR-bi-sets
is disregarded.

C. Subspace Clustering and Co-Clustering

Due to the curse of dimensionality, subspace clustering is
proposed to discover clusters within different subspaces of
high dimensional datasets [16]. On the other hand, Cheng and
Church [17] proposed to co-cluster (also known as bicluster)
genes and conditions, where in a co-cluster, the set of genes
have similar set of conditions. Although subspace clustering
[16] and co-clustering [17] are motivated by different prob-
lems, they are actually solving similar problems. A co-cluster
containing a set of genes and a set of conditions can be viewed
as a subspace cluster defined by the same set of genes and the
same set of conditions.

Subspace clustering and co-clustering algorithms thus can
be applied to the stocks and financial ratios dataset, where
the stocks are the objects and the financial ratios are the
dimensions. However, none of the existing subspace and co-
clustering algorithms tolerate missing or erroneous data, which
are common in financial datasets.

D. Self-Organising Map (SOM)

Self-organizing maps (SOMs) [13]–[15] have been previ-
ously proposed to group stocks based on their financial ratios.
SOM is a visualization tool which allows users to see how
entities are clustered together, but it is hard for users to define
clear clusters of entities because the boundaries of the clusters
are difficult to distinguish. A recent method called clustering
on SOM [28], [29] can be used to remedy this problem, where
some well-defined hierarchical or partitive clusters can be
obtained. However, the clusters of stocks are determined by
the whole set of financial ratios, so analysts cannot determine
specifically which financial ratios a cluster of stocks are highly
similar in.

{}
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Fig. 5. The search space tree (VX = {v1, v2, v3, v4})

IV. MINING MAXIMAL QUASI-BICLIQUE SUBGRAPHS:
MQBminer

In this section, we present our maximal quasi-biclique
subgraphs mining algorithm MQBminer. We first describe
the algorithm in the context of bipartite graphs, and then
discuss how to handle non-bipartite graphs.

Given a bipartite graph G with two disjoint vertex sets
Vx and Vy , any subset of Vx (Vy) may form maximal quasi-
biclique subgraphs with one or more subsets of Vy (Vx), so the
search space is the power set of Vx and Vy . MQBminer picks
one vertex set as the primary enumeration vertex set, let it be
Vx, and enumerates the subsets of Vx that have the potential to
form quasi-clique subgraphs. Then for each generated subset
of Vx, denoted as X , MQBminer enumerates the subsets of
Vy that can form quasi-biclique subgraphs with X . The main
challenge here is how to identify and prune those subsets of
Vx and Vy that cannot form maximal quasi-biclique subgraphs.
Note that once one side of a quasi-biclique subgraph is fixed,
the search space of the other side is greatly limited. Therefore,
the size of the primary enumeration vertex set has a bigger
impact on the efficiency of the algorithm than that of the other
vertex set. MQBminer always picks the smaller vertex set
as the primary vertex set. In the remaining of this section, we
assume that Vx is picked as the primary enumeration vertex
set.

The power set of Vx can be represented as a set-enumeration
tree. Figure 5 shows the set-enumeration tree when Vx =
{v1, v2, v3, v4}. Each node in the tree represents a subset
of Vx. The vertices in the set-enumeration tree are sorted
according to some order. For every vertex set X in the tree,
only vertices after the last vertex of X can be used to extend
X . This set of vertices are called candidate extensions of
X , denoted as cand exts(X). For example, in Figure 5,
vertices are sorted based on their subscripts, so vertex v4 is in
cand exts({v1, v3}), but vertex v2 is not a candidate extension
of {v1, v3} because vertex v2 is before vertex v3 in the order.
MQBminer explores the set-enumeration tree in depth-first
order. It first enumerates all the vertex sets containing v1,
and then enumerates all the vertex sets containing v2 but not
containing v1, and so on. The vertex set {v4} is enumerated
last.

Given a subset X of Vx, we use N(X) to denote the set of
vertices in Vy that are connected to at least |X |− ε vertices in
X , that is, N(X) = {u|u ∈ Vy ∧ΓX(u) ≥ |X |− ε}. It is easy
to see that if X and Y can form a quasi-biclique subgraph,
then we have Y ⊆ N(X). During the mining process, for



every X explored, MQBminer maintains its N(X), and uses
the following lemmas to prune the search space.

Lemma 1: Given a vertex v and two vertex sets Y and Y ′

such that Y ⊆ Y ′, we have |Y | − |ΓY (v)| ≤ |Y ′| − |ΓY ′(v)|.
Proof |Y ′| − |ΓY ′(v)| = |Y | + |Y ′ − Y | − (|ΓY (v)| +
|ΓY ′−Y (v)|) = |Y | − |ΓY (v)| + (|Y ′ − Y | − |ΓY ′−Y (v)|) ≥
|Y | − |ΓY (v)|.

Lemma 2: Given a vertex set X ⊆ Vx, if |N(X)| < ms,
then for every superset X ′ of X , we have |N(X ′)| < ms.
Proof For every vertex u ∈ N(X ′), we have |X |−|ΓX(u)| ≤
|X ′| − |ΓX′(u)| ≤ ε based on Lemma 1. Thus we have
u ∈ N(X), which implies that N(X ′) ⊆ N(X). Therefore,
if |N(X)| < ms, then we have |N(X ′)| < ms.

The above lemma states that subsets of Vx have the anti-
monotone property. For every subset X of Vx, MQBminer
checks whether |N(X)| < ms is true, if it is, then there is no
need to extend X further. The proof of the above lemma shows
that N(X ′) is a subset of N(X) if X ⊂ X ′. MQBminer
utilizes this property to save mining cost by generating N(X ′)
from N(X).

Lemma 3: Let {X, Y } be a quasi-biclique subgraph with
respect to ε, and |X | ≥ ms, |Y | ≥ ms. For every vertex
v ∈ X , we have |ΓN(X)(v)| ≥ ms − ε.
Proof Based on the definition of quasi-biclique, for every
vertex v ∈ X , we have |ΓY (v)| ≥ |Y | − ε ≥ ms − ε. Since
Y ⊆ N(X), we have |ΓN(X)(v)| ≥ |ΓY (v)| ≥ ms − ε.

Based on the above lemma, MQBminer removes a vertex
v from cand exts(X) if |ΓN(X)(v)| < ms − ε because v
cannot appear in any valid quasi-biclique subgraph containing
X . MQBminer also checks whether there exists a vertex
v ∈ X such that |ΓN(X)(v)| < ms − ε. If such v exists, then
there is no need to extend X further because no quasi-biclique
subgraphs can be generated from X .

Lemma 4: Let {X, Y } be a quasi-biclique subgraph with
respect to ε, and |X | ≥ ms, |Y | ≥ ms. For every pair of
vertices v1, v2 ∈ X , we have |ΓN(X)(v1)

⋂
ΓN(X)(v2)| ≥

ms − 2ε.
Proof Based on the definition of quasi-biclique subgraphs,

for every vertex v ∈ X , we have |ΓY (v)| ≥ |Y | − ε.
Therefore, |ΓY (v1)

⋂
ΓY (v2)| = |ΓY (v1)| + |ΓY (v2)| −

|ΓY (v1)
⋃

ΓY (v2)| ≥ |ΓY (v1)| + |ΓY (v2)| − |Y | ≥ 2(|Y | −
ε) − |Y | = |Y | − 2ε ≥ ms − 2ε. Since Y ⊆ N(X), we have
|ΓN(X)(v1)

⋂
ΓN(X)(v2)| ≥ ms − 2ε.

Based on the above lemma, MQBminer checks every pair
of vertices v1, v2 ∈ X . If |ΓN(X)(v1)

⋂
ΓN(X)(v2)| < ms −

2ε, then there is no need to extend X further. MQBminer
also removes from cand exts(X) those vertices u such that
there exists vertex v ∈ X and |ΓN(X)(u)

⋂
ΓN(X)(v)| <

ms − 2ε.
Algorithm 1 shows the pseudo code of MQBminer. When

Algorithm 1 is first called on graph G with vertex sets Vx and
Vy , X is set to {}, N(X) is set to Vy and cand exts(X) is set
to Vx. At line 4, MQBminer generates N(X ′) from N(X)
based on the anti-monotone property. Before extending vertex
set X ′, MQBminer first checks whether X ′ is extendable
based on Lemma 3 and Lemma 4 (line 5). When generating
cand exts(X ′), MQBminer also uses Lemma 3 and Lemma

Algorithm 1 Algorithm MQBminer

Input:
X is a subset of Vx that is currently being explored;
N(X) is the set of vertices in Vy that are connected to at least
|X| − ε vertices in X;
cand exts(X) is the set of candidate extensions of X;
ms is the minimum size threshold;
ε is the error tolerant value;

Description:
1: for all v ∈ cand exts(X) do
2: X′ = X ∪ {v};
3: cand exts(X) = cand exts(X) − {v};
4: N(X′) = {u|u ∈ N(X) ∧ |ΓX′(u)| ≥ |X ′| − ε};
5: if |N(X′)| ≥ ms AND for every v ∈ X′, |ΓN(X′)(v)| ≥

ms − ε AND for every pair of vertices v1, v2 ∈ X ′,
|ΓN(X′)(v1)

⋂
ΓN(X′)(v2)| ≥ ms − 2ε then

6: if |X′| ≥ ms then
7: Generate all Y ⊆ N(X′) such that |Y | ≥ ms and

{X ′, Y } is a maximal quasi-biclique subgraph;
8: cand exts(X′) = {u|u ∈ cand exts(X)∧|ΓN(X′)(u)| ≥

ms− ε∧∀v ∈ X ′, |ΓN(X′)(u)
⋂

ΓN(X′)(v)| ≥ ms−2ε};

9: if |X′| + |cand exts(X ′)| ≥ ms then
10: MQBminer(X′, N(X ′), cand exts(X ′), ms, ε);

4 to remove those vertices that cannot be added to X ′ to form
quasi-biclique subgraphs (line 8).

A. Generating maximal quasi-biclique subgraphs and maxi-
mality checking

For every vertex set X ⊆ Vx explored during the mining
process, all the vertices in N(X) satisfy the error constraint
with respect to X , but it is possible that some of the vertices
in X do not satisfy the error constraint with respect to
N(X). That is, there exists some vertex v ∈ X such that
|N(X)| − |ΓN(X)(v)| > ε. In this case, MQBminer needs
to search for the subsets of N(X) that can form quasi-biclique
subgraphs with X (line 7), and these subsets of N(X) must
be maximal with respect to X . Here we say a subset Y of
N(X) is maximal if there does not exist another vertex set
Y ′ ⊆ N(X) such that Y ⊂ Y ′ and {X, Y ′} is also a quasi-
clique.

MQBminer generates the maximal subsets of N(X) that
can form quasi-biclique subgraphs with X as follows. It first
identifies the set of vertices in X that do not satisfy the error
constraint with respect to N(X), denoted as X̄ = {v|v ∈
X ∧|N(X)|− |ΓN(X)(v)| > ε}. Then MQBminer identifies
the set of vertices in N(X) that are connected to all the
vertices in X̄ , denoted as Ȳ = {u|u ∈ N(X) ∧ ∀v ∈
X̄, u is connected to v}. Vertex set Ȳ should be included in
all the maximal subsets of N(X) that can form quasi-biclique
subgraphs with X .

Lemma 5: Given Y ⊆ N(X), if {X, Y } is a quasi-biclique
subgraph, then {X, Y

⋃
Ȳ } is also a quasi-biclique subgraph.

Proof For every vertex u ∈ Y
⋃

Ȳ , u satisfies the error
constraints based on the definition of N(X). For every vertex
v ∈ X , there are two cases. The first case is that v ∈ X̄ .
In this case, |Y ⋃

Ȳ | − |ΓY
⋃

Ȳ (v)| = |Y ⋃
Ȳ | − |ΓY (v)| −

|ΓȲ −Y (v)| = |Y ⋃
Ȳ |−|ΓY (v)|−|Ȳ −Y | = |Y |−|ΓY (v)| ≤

ε. The other case is that v ∈ X − X̄ . In this case, we have



|N(X)|− |ΓN(X)(v)| ≤ ε based on the definition of X̄ . Since
Y

⋃
Ȳ ⊆ N(X), we have |Y ⋃

Ȳ |−|ΓY
⋃

Ȳ (v)| ≤ |N(X)|−
|ΓN(X)(v)| ≤ ε based on Lemma 1. Therefore {X, Y

⋃
Ȳ } is

a quasi-biclique subgraph.
Now the problem is reduced to finding the subsets Y of

N(X)− Ȳ such that {X, Y ∪ Ȳ } is a quasi-biclique subgraph,
and Y ∪ Ȳ is maximal. The subsets of N(X)− Ȳ can also be
represented as a set-enumeration tree, and MQBminer uses
the depth-first order to explore the set-enumeration tree. The
subsets of N(X) also have the anti-monotone property. Based
on this property, MQBminer extends a subset of N(X)− Ȳ
only if the subset can form a quasi-biclique subgraph with X .

Lemma 6: If X cannot form a quasi-biclique subgraph with
Y , then for every superset Y ′ of Y , X cannot form a quasi-
biclique subgraph with Y ′.
Proof The only reason that X cannot form a quasi-biclique
subgraph with Y is that there exists v ∈ X such that |Y | −
|ΓY (v)| > ε. Since Y ⊆ Y ′, we have |Y ′| − |ΓY ′(v)| ≥
|Y | − |ΓY (v)| > ε based on Lemma 1. Therefore, X cannot
form a quasi-biclique subgraph with Y ′.

The remaining problem is how to check the maximality of
Y with respect to X and the maximality of X with respect
to Y . There are two typical existing approaches. One is to
store all the quasi-biclique subgraphs that have been previously
generated, and then for each newly generated quasi-biclique
subgraph g, we check whether there exists an existing quasi-
biclique subgraph g ′ such that g′ is a super graph of g. The
drawback of this approach is that the stored quasi-biclique
subgraphs can be very large, which not only consumes lot
of memory, but also slows down the checking operation. The
other approach is to utilize the graph itself to check whether
g is maximal.

Here we adopt the second approach. To check whether
Y is maximal with respect to X , we check whether there
exists a vertex u ∈ (N(X) − Y ) such that {X, Y ∪ {u}}
is a quasi-biclique subgraph. If such u exists, then Y is not
maximal. If Y is maximal with respect to X , then we check
whether X is maximal with respect to Y by checking whether
there exists some vertex v ∈ exts(X) such that v can be
added to X to form a quasi-biclique subgraph with Y , where
exts(X) = {v|v ∈ Vx − X ∧ |ΓN(X)(v)| ≥ ms − ε ∧ ∀u ∈
X, |ΓN(X)(u)

⋂
ΓN(X)(v)| ≥ ms − 2ε}}, and it is derived

based on Lemma 3 and Lemma 4.

B. Example

We use the example graph shown in Figure 3(a) to demon-
strate how MQBminer mines maximal quasi-biclique sub-
graphs from a bipartite graph. In the example graph, V x =
{v1, v2, v3, v4}, Vy = {v5, v6, v7, v8, v9}. The mining param-
eters are set as follows: ms = 3 and ε = 1. Figure 6 shows
how MQBminer traverses the search space of G.

Step 1: MQBminer starts from vertex set X = {v1}. Here
N(X) = Vy and cand exts(X) = {v2, v3, v4}.

Step 2: MQBminer extends X by adding v2 to X .
Vertex v9 is removed from N(X) because it is disconnected
from more than one vertex in X . Vertex v4 is pruned from
cand exts(X) as it is connected to only one vertex in N(X),
which is less than ms − ε=2.

X = {v1}
N(X) = {v5,v6,v7,v8,v9}
cand_exts(X) = {v2,v3,v4}

X = {v1,v2,v3}
N(X) = {v5,v6,v7,v8}
cand_exts(X) = {}
g1, V(g1) = {{v1,v2,v3}, {v5,v6,v7}}
g2, V(g2) = {{v1,v2,v3}, {v6,v7,v8}}

X = {v2}
N(X) = {v5,v6,v7,v8,v9}
cand_exts(X) = {v3,v4}

X = {v2,v3}
N(X) = {v5,v6,v7,v8,v9}
cand_exts(X) = {v4}

X = {v1,v2}
N(X) = {v5,v6,v7,v8}
cand_exts(X) = {v3}

root
Step: 1

Step: 2

Step: 3

Step: 6

Step: 7

X = {v1,v3,v4}
N(X) = {v5,v8,v9}
cand_exts(X) = {}
g3, V(g3) = {{v1,v3,v4}, {v5,v8,v9}}

X = {v1,v3}
N(X) = {v5,v6,v7,v8,v9}
cand_exts(X) = {v4}

Step: 4

Step: 5

X = {v2,v3,v4}
N(X) = {v7,v8,v9}
cand_exts(X) = {}

Step: 8

Fig. 6. The traversal of the search space by MQBminer on graph shown
in Figure 3(a).

Step 3: MQBminer adds v3 to X , and no vertices in N(X)
can be removed. The size of X satisfies the size constraint.
However, |X | cannot form a valid quasi-biclique subgraph
with N(X) because v2 is disconnected from both v5 and v8.
MQBminer needs to search for the subsets of N(X) to form
quasi-biclique subgraphs with X . It first identifies X̄ and Ȳ
and gets X̄ = {v2}, and Ȳ = {v6, v7}, then it enumerates the
subsets of N(X) − Ȳ = {v5, v8} and add them to Ȳ . Two
quasi-biclique subgraphs are generated. There is no need to
extend X further because cand exts(X) = {}.

Step 4: MQBminer backtracks to step 1, and extends X to
X = {v1, v3}. Now N(X) = Vy and cand exts(X) = {v4}.

Step 5: MQBminer adds v4 to X . Vertices v6 and v7 are
removed from N(X). Here both X and N(X) satisfy the size
constraint and the error constraint. A maximal quasi-biclique
subgraph is generated.

Step 6: MQBminer returns to the root and starts to
enumerate vertex sets not containing v1 but containing v2.

Step 7: MQBminer extends X to X = {v2, v3}. N(X)
is still equal to Vy .

Step 8: MQBminer adds v4 to X . Vertices v5 and v6

are removed from N(X). Both X and N(X) satisfy the size
constraint, but vertex v2 ∈ X is connected to only one vertex
in N(X). Hence no maximal quasi-biclique subgraphs are
generated in this step.

Step 9: MQBminer returns to root and stops as |X | +
|cand exts(X)| < ms.

C. Mining Maximal Quasi-Biclique Subgraphs from Non-
Bipartite Graphs

In the case that graph G is not a bipartite graph, every
vertex in V (G) can be on either side of a maximal quasi-
biclique subgraph. In Algorithm 1, Vx and Vy are replaced by
V , and in N(X), we remove vertices that are in X . This may
result in duplicated maximal quasi-biclique subgraphs being
enumerated. A simple post-processing step is implemented to
remove the duplicates.
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Fig. 7. Two examples of how the values of a financial ratio can be clustered
into intervals. Each dot on the line indicates the value of a stock financial
ratio. The desired intervals are shown on the first line and equidepth binning
method is applied with three values in an interval.

D. Discretization of Data Containing Continuous Values

In our previous work [10], we apply a simple discretization
technique known as equidepth binning [30] to partition the
range of continuous values into intervals such that each
interval has n number of value, where n is set by the user.
The weakness of this technique is apparent in Figure 7, which
shows an example of discretization of the continuous values
of a financial ratio into intervals. The range is from 0 to 100.
Applying equidepth binning with n = 3 results in the intervals
shown on Figure 7 second line, which are of poor quality
because many values far apart are in the same intervals.

The desired intervals are shown on the first line of Figure 7,
where values close together in relative to the range are in the
same intervals. We attempt to achieve this ‘natural’ partitions
with minimum user interference, by adopting the agglomera-
tive hierarchical clustering (AGNES) algorithm [31]. AGNES
consists of a series of iterations. At each iteration, two closest
clusters are merged together based on the unweighted pair-
group average method. The algorithm starts with singletons as
clusters and ends with all values in one cluster. By applying
AGNES on the continuous values, a cluster corresponds to an
interval and each iteration of AGNES gives a discretization
result.

We then introduce a scoring method intra-inter ratio (iir)
to score the clusters obtained in each iteration of AGNES,
and the iteration that minimizes the score is selected as the
best discretization result. iir uses the same concept as the
multi representation clustering validity index [29], [32]. In
this index, the quality of the partitioning is based on the intra
distance of the clusters and the inter distance between clusters.
Optimum partition is achieved by minimizing the intra distance
of the clusters and maximizing the inter distance between
clusters. However, the formulation of iir is much simpler than
the multi representation clustering validity index. iir is defined
as

iir(C) = min
Cs∈C

(
Intra(Cs)
Inter(Cs)

)
where C is the complete set of clusters obtained from the

iterations of AGNES on the continuous values. Cs is the set of
clusters obtained from an iteration of AGNES. The functions
Intra(Cs) and Inter(Cs) are defined as

Intra(Cs) =
∑

ci∈Cs

f(ci)/|ci|

f(ci) =

⎧⎨⎩
1 if |ci| = 1∑
x∈ci

|x − μci |
|ci| otherwise

Inter(Cs) =
∑

ci∈Cs

⎛⎝ ∑
cj∈Cs,ci �=cj

|μci − μcj |
|Cs| − 1

⎞⎠ /|Cs|

where ci is a cluster in Cs, μci is the centroid of cluster ci.
Silhouette Coefficient [31] and SSE [33] are two alternative

scoring methods but they are sensitive to outliers. When
outliers exist in the data, the optimal score obtained from them
normally coincide to a discretization result where the number
of partitions can be very large or small. iir is a heuristic
method proposed with the aim of obtaining the ‘natural’
partitions and to reduce the sensitivity towards outliers. Using
AGNES may be computationally slow when the dataset is
large and there may be lack of memory space to handle
it. In such situation, we can use the memory-constrained
UPGMA algorithm [34] instead of AGNES, which handles
large datasets.

V. EXPERIMENTAL RESULTS

We conducted six experiments on maximal quasi-bicliques:
(1) We compared three different scoring methods for the
AGNES discretization method. (2) We evaluated the quality of
different quasi-bicliques mined from noisy data, by comparing
how well they are able to recover maximal bicliques mined
from the original data. (3) We investigated the efficiency of
the algorithm MQBminer by testing it on 3 graph datasets.
(4) We conducted case studies on the real stock market to
examine the usefulness of maximal quasi-bicliques. (5) We
explored the potential of using maximal quasi-bicliques as
input vectors and dimensions selection for SOM. (6) We used
maximal quasi-bicliques to mine the protein networks, and
show that their results are better than maximal bicliques. Our
experiments were performed on Windows XP environment,
using Intel Xeon CPU 3.4GHz with 2GB RAM. MQBminer
was coded in C++.

A. Graph datasets used

We used five graph datasets for our experiments. The first
dataset contains the financial ratios belonging to 470 stocks
of S&P 500 [35] from year 2001. This dataset was obtained
from Compustat [36], and it contains 12 financial ratios of
the 470 stocks. Table II shows the financial ratios, which
are categorized into five different types of ratios. The growth
ratios were obtained by calculating the percentage change from
previous year’s value to current year’s value.

The second dataset is the yeast ppi (protein-protein interac-
tion) dataset. The yeast ppi was downloaded from the protein
information repository DIP (database of interacting proteins)
[37]. This dataset is modeled by a non-bipartite graph with
4,919 vertices and 17,163 edges. The vertices of the graph
are proteins and an edge between two vertices exists if the



Type Ratio

Liquidity Ratio Current Ratio (Cur)
Finance Ratio Debt to Equity Ratio (DE)

Profitability Ratio
Return on Assets (ROA)
Return on Equity (ROE)

Investment Ratio

Dividend Yield (DY)
Price to Earnings Ratio (PE)

Price to Book Ratio (PB)
Price to Cashflow Ratio (PC)

Price to Sales (PS)

Growth Ratio
Net Income Growth (NIG)

Earnings Before Interest and Tax Growth (EBITG)
Sales Growth (SG)

TABLE II

FINANCIAL RATIOS USED IN OUR DATASET.

# of intervals by
Financial ratio # of values SSE Silhouette Coefficient iir

Cur 380 4 379 4
ROA 380 6 378 41
ROE 387 3 385 11
DE 437 2 436 41
DY 340 4 339 15
PB 463 5 462 4
PC 357 4 356 28
PE 398 3 396 21
PS 460 4 459 7

NIG 205 3 203 17
SG 293 4 292 14

EBITG 232 4 225 13

TABLE III

OPTIMAL NUMBER OF PARTITIONS BASED ON DIFFERENT SCORING

METHODS.

two corresponding proteins interact with each other. All self-
looping edges are removed as they are superfluous for our
purpose.

The third dataset is a benchmark dataset c-fat200-1, which
was obtained from the 2nd DIMACS Challenge benchmarks
[38]. It is a non-bipartite graph with 200 vertices and 1,534
edges.

The fourth dataset is a synthetic bipartite graph containing
10,000 vertices in each of its disjoint vertex set. We embedded
this graph with 50 maximal biclique subgraphs, where each
maximal biclique subgraph contains 10 vertices in each of
its disjoint vertex set. Thus, this synthetic bipartite graph has
5,000 edges. The fifth dataset is similar to the fourth dataset,
but we randomly added 5,000 extra edges as noise in the
dataset.

B. Discretization of the financial ratio dataset

The financial ratio values are in continuous values and every
fundamental analyst has his own preference on how each
ratio is to be partitioned. Hence, we adopted an unsupervised
approach by using the AGNES algorithm with iir to partition
the financial ratio values into intervals. This discretization
method was applied separately to positive values and negative
values, as generally there is a clear distinction between positive
and negative values in fundamental analysis.

After discretization of the financial ratios, we represented
the dataset as a StoR graph which contains 686 vertices
(470 stocks and 216 financial ratio value intervals). In this

dataset, 3.71% of the financial ratio values are either missing
or unavailable, so there are only 5,431 edges (not 470× 12 =
5640 edges) in this graph.

We also compared iir with the other two scoring methods
used in discretization of continuous vales; SSE and silhouette
coefficient. Table III shows the number of positive values
in each financial ratio, and the optimal number of clusters
(which corresponds to the number of partitions) obtained
by the three scoring methods. For the SSE, the SSE values
obtained from each iteration of AGNES was plotted in a
graph. The iteration that produces a distinct knee in the graph
is selected as the optimal number of clusters [33]. For the
silhouette coefficient, the iteration of AGNES that maximizes
the silhouette coefficient is selected as the optimal number of
clusters [30].

We can see that the SSE scoring method is biased towards
a very small number of clusters, whereas the silhouette coef-
ficient scoring method is biased towards a very large number
of clusters and most of the clusters are singletons. For the iir
scoring method, its optimal number of clusters is not skewed
towards a large or small number, thus it is more robust towards
outliers.

C. Evaluation of the quality of different models of quasi-
bicliques

We evaluated how good the different models of quasi-
bicliques are in tolerating errors. The evaluation procedure
was conducted as follows: (1) We mined complete sets of
maximal biclique subgraphs from different graphs using the
algorithm in [4]. (2) Errors were introduced to the graphs by
removing edges from the graphs randomly. Each edge in a
graph has a probability p of been removed. (3) Different types
of quasi-bicliques were mined from the erroneous graphs. (4)
The different models of quasi-bicliques were evaluated on how
well they are able to recover the original maximal biclique
subgraphs.

Assume that there is a set of maximal biclique subgraphs
B = {b1, . . . , b|B|} mined from a graph, and a set of quasi-
biclique subgraphs Q = {q1, . . . , q|Q|} mined from the graph
with errors. The following measures were used to evaluate the
quality of the quasi-bicliques, which were modified from the
error tolerant itemset evaluation measures proposed by Gupta
et al. [39].

1) Recoverability: Recoverability measures the ability of
recovering the original maximal bicliques based on a set of
quasi-biclique subgraphs. Let V (b) = {X, Y } and |V (b)| =
|X | + |Y |. Let r(b) = max{|X ∩ X ′| + |Y ∩ Y ′||V (b) =
{X, Y }, V (q) = {X ′, Y ′}, q ∈ Q}. r(b) is the largest number
of common vertices found in a quasi-biclique subgraph q and
a maximal biclique subgraph b. The recoverability of a set of
quasi-biclique subgraphs Q is

Recoverability R =
∑
b∈B

r(b)
|V (b)|

2) Spuriousness: Quasi-biclique subgraphs may have high
recoverability because they are large to the extend that they
contain all vertices of the maximal biclique subgraphs by
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Fig. 8. Maximal quasi-bicliques, ε-bicliques and α-quasi-bicliques are mined from erroneous graphs, and they are used to recover maximal bicliques of
these graphs without errors. The quality of the recovery is evaluated by the significance measure.

chance. So spuriousness is used to measure how many spurious
or redundant vertices are in the quasi-biclique subgraphs.

To measure the spuriousness of a quasi-biclique q, we find
a maximal biclique subgraph b such that both q and b have
the most number of common vertices. We then count the
number of vertices in q which is not in b, which quantifies
the spuriousness of q. Let s(q) = |V (q)| − max{|X ∩ X ′| +
|Y ∩ Y ′||V (q) = {X ′, Y ′}, V (b) = {X, Y }, b ∈ B}. The
spuriousness of a set of quasi-bicliques Q is

Spuriousness S =
∑
q∈Q

s(q)
|V (q)|

3) Significance: Significance measures the trade-off be-
tween the recoverability and spuriousness of a set of quasi-
biclique subgraphs Q,

Significance =
2R(1 − S)

R + (1 − S)

The higher the significance of Q, the closer is the quality
of Q to the set of maximal biclique subgraphs B.

We set ms to 5, 12, 6, 10, 10 and obtained 7, 4, 6469, 50,
50 maximal biclique subgraphs from the StoR, yeast ppi, c-
fat200-1, synthetic and synthetic with 5000 extra edges graphs
respectively. ms was set at the highest level which maximal
biclique subgraphs can still be found from the graph. The error
probability p is varied from 0.1 to 0.5 in each graph.

In this experiment, we compared our maximal quasi-
bicliques with α-quasi-bicliques [9] and ε-bicliques [8]. We
used the algorithm in [4] to mine maximal bicliques which
are the ‘cores’ used to obtain α-quasi-bicliques, and we coded
the approximate maximum biclique algorithm [8] which mines
ε-bicliques.

As each quasi-biclique model has its own parameter set-
tings, we need to find their optimal parameter settings, so that
high quality quasi-bicliques can be mined. Let us assume that
we are finding their optimal parameter settings to mine quasi-
biclique subgraphs from a graph G with error probability p.
For these three quasi-biclique models, we tried to set their
error tolerant thresholds close to the noise probability p of
the graph G. For maximal quasi-bicliques, we set the same
ms used in mining the maximal biclique subgraphs from
the graph G without errors. We also set two error tolerant
thresholds εl, εu, such that εl

ms ≤ p < εu

ms . For example,
when ms = 12 and p = 0.5, we set εl = 6, εu = 7, so
that εl

ms ≤ p < εu

ms ⇒ 6
12 ≤ 0.5 < 7

12 .

For the α-quasi-bicliques [9], we set α = p and p + 0.1.
We need to mine maximal biclique subgraphs from the graph
G, which are the ‘cores’. These ‘cores’ are smaller than the
original maximal biclique subgraphs mined from G without
errors, since these ‘cores’ are mined from G with errors. We
set ms of these ‘cores’ at the highest level where the number of
‘cores’ is at least as much as the number of original maximal
biclique subgraphs.

The ε-biclique [8] model requires more effort in finding its
optimal settings. The approximate maximum biclique algo-
rithm randomly picks vertices to form three vertex sets that
are used to find ε-bicliques and it requires users to define the
sizes of these three vertex sets, which are denoted as m̂, m
and t. To find the appropriate settings, Mishra et al. state
that analysis has to be conducted to determine them [8]. After
trying different settings, we set m̂ = 2, m = 20, t =size of
the graph, which gives us good results in reasonable time.
Approximate maximum algorithm also requires the user to
define the number of ε-bicliques to be mined and we set it



to the number of original maximal biclique subgraphs mined
from the graph G without errors. Lastly, we set ε = p and
p + 0.1. However, in the synthetic graph with 5000 edges, no
ε-biclique subgraphs can be found for this ε setting, so we
increase ε to p + 0.1 and p + 0.2.

Figure 8 presents the significance measures of the different
models of quasi-bicliques. There were no results for some
experiments as they could not finish running within six hours
(we limit each experiment running time to six hours) or no
quasi-bicliques were mined from these experiments. Across
the five graphs, our maximal quasi-bicliques have the highest
significance in all settings, except in the StoR graph at p = 0.3
and yeast ppi graph at p = 0.1. This demonstrates the strength
of maximal quasi-bicliques in recovering the original maximal
biclique subgraphs from the graphs, even when the error
probability p in the graphs is as high as 0.5. However, careful
selection of ε is required as a ±1 difference in ε can lead to
fluctuations in the significance scores, as shown in Figure 8(c).

For the α-quasi-bicliques, their quality drops drastically as
p increases. α-quasi-bicliques are highly dependent on their
‘cores’, and since the ‘cores’ are not noise tolerant, the quality
of α-quasi-bicliques drops as p increases. The quality of ε-
bicliques is lower than those of maximal quasi-bicliques in
most of the experiments across the five graphs, which could be
due to its noise tolerance being not symmetrical and balanced.
Moreover, there are many experiments which the α-quasi-
biclique model could not complete running after six hours,
as the randomness nature of approximate maximum algorithm
restricts its efficiency.

From these experiments, we can see that setting ε of
maximal quasi-biclique at a threshold where εl

ms ≤ p < εu

ms
gives good quality maximal quasi-bicliques, provided that the
noise probability p of the dataset is known. If p is unknown,
then the user should set the appropriate ms and ε to generate
the required number of maximal quasi-bicliques.

D. Efficiency of MQBminer

We compared the performance of our proposed algorithm
MQBminer with CompleteQB. The existing algorithms
[6]–[9] were not evaluated because they are incapable of
finding our defined maximal quasi-bicliques. The efficiency
of MQBminer was evaluated on the StoR, yeast ppi and
c-fat200-1 graphs.

The sub figures in the first row of Figure 9 show the number
of maximal quasi-biclique subgraphs mined from the three
graphs, and the sub figures in the second row show the time
taken by MQBminer and CompleteQB to generate them.

From Figure 9, we can see that MQBminer outperforms
CompleteQB in all situations, except in the StoR graph, at
ms = 6, 7 and ε = 1, but the difference in their running time
is only less than 10 seconds. This clearly demonstrates that
MQBminer is highly efficient in traversing the search space
of the graph. In some cases where ms are low, CompleteQB
could not even complete the mining task within 24 hours.
Although CompleteQB also exploits the anti-monotone prop-
erty of maximal quasi-bicliques to perform the mining task,
our experiment results show that this is not sufficient, and

aggressive pruning techniques of MQBminer are needed to
speed up the running time.

We studied three factors that affect the running time of
MQBminer, namely the minimum size threshold ms, the
error tolerant threshold ε and the density of the graphs.

1) Effect of minimum size threshold (ms): On the same
graph, we compared the running time and the number of
maximal quasi-biclique subgraphs mined to study the effect
of ms. Observe that the running time of MQBminer scales
up in a polynomial way when ms decreases across the three
graphs; meanwhile, the number of maximal quasi-biclique
subgraphs also scales up almost in the same polynomial way.
This indicates that the running time of MQBminer is roughly
linear to the number of maximal quasi-biclique subgraphs
mined.

2) Effect of error tolerant threshold (ε): We noted that the
number of maximal quasi-biclique subgraphs increases when
the error tolerant threshold rises. In fact, the running time
of MQBminer increases at an even higher rate when we in-
crease ε but decrease ms. Therefore, it is computationally very
expensive to mine small maximal quasi-biclique subgraphs
that allow large number of errors.

3) Effect of density of graph: The density of the graph af-
fects the number of maximal quasi-biclique subgraphs mined,
which in turn affects the running time of MQBminer. In a
graph, we calculate the ratio between the number of maximal
quasi-biclique subgraphs at a ms level over the number of
maximal quasi-biclique subgraphs at the ms + 1 level. We
then took the average of the ratios of each graph. At ε = 1,
the average ratios for the StoR, yeast ppi and c-fat200-1 graphs
are 32.94, 8.87 and 20.67 respectively. And the edge density 1

for these graphs are 2.16%, 0.142% and 0.77% respectively.
We can see that for graphs with higher density, the number
of maximal quasi-bicliques increases more considerably as
ms decreases. And since the running time of MQBminer
is roughly linear to the number of maximal quasi-biclique
subgraphs, therefore, for a dense graph, the running time will
increase substantially as ms decreases.

Summarizing our results, MQBminer runs approximately
linear to the number of maximal quasi-bicliques enumerated,
which means that MQBminer is sensitive to the number of
outputs. To reduce the running time of MQBminer, user
can select a high ms and low ε, so that a small number of
maximal quasi-bicliques are generated, which will result in
faster running time.

E. Mining Co-clusters from the Stock Market

In stock picking, a widely accepted assumption is that prices
of stocks will rise in the long run if the stocks possess superior
financial ratios [11], [12]. We generalize this hypothesis by
studying whether stocks having similar financial ratios will
have similar price performances in the stock market. Since
stocks in a co-cluster have similarities in the financial ratios
of the co-cluster, we examine if the price performances of the
stocks in a co-cluster are similar. This study was conducted

1Edge density = (number of edges in the graph)/(n(n − 1)/2) for an n-
vertex graph.
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Fig. 9. Running time and the number of maximal quasi-biclique subgraphs mined from the graphs.

with a limited data of 12 financial ratios and 470 stocks, as this
is the largest amount of data we managed to obtain. Hence,
part of our future work is to use a bigger set of data.

We used maximal quasi-bicliques, α-quasi-bicliques and ε-
bicliques to mine co-clusters from the StoR graph. For the α-
quasi-bicliques, we mined maximal biclique subgraphs from
StoR graph at ms = 4 and used them as the ‘cores’. For the
ε-bicliques, we used the same parameter settings described in
Section V-C but we varied α. Under different α, we ran the
approximate maximum biclique algorithm [8] and outputted
its result after six hours.

In a co-cluster C, we calculated the price performance
of each stock s in C, which is denoted as d(s) =
p(s,2002)−p(s,2001)

p(s,2001) , where p(s, 2001) and p(s, 2002) are the
closing prices of s in 31st December 2001 and 2002 respec-
tively. We then calculate the standard deviation of the price
performances of stocks in co-cluster C, denoted as

σ(C) =

√
1
|C|

∑
s∈C

(d(s) − μ(C))2

where μ(C) = 1
|C|

∑
s∈C d(s) is the mean price performance

of stocks in co-cluster C.
The standard deviation of the price performance of stocks

in a co-cluster (for brevity, we termed it as standard deviation
of the co-cluster) measures the dispersion of the price perfor-
mance of the stocks. Thus, a low standard deviation means
that the price performance of these stocks are highly similar.

Table IV shows the number of co-clusters mined by the
different quasi-biclique models and the average standard de-
viation of the co-clusters. The two highest average standard
deviations of co-clusters were obtained by using maximal
quasi-bicliques with ms = 4, ε = 1 and ms = 5, ε = 2.
A large number of co-clusters were mined using these two
settings, so there is a high possibility that erroneous co-clusters
that do not contain stocks with similar price performances
were also mined. Hence, the average standard deviations of
these two sets of co-clusters are higher. However, the average

TABLE IV

STANDARD DEVIATIONS OF THE PRICE PERFORMANCES OF THE CLUSTERS

OF STOCKS OBTAINED BY DIFFERENT TYPES OF QUASI-BICLIQUES

Types of quasi-biclique Num Standard deviation
Maximal quasi-biclique (ms = 4, ε = 1) 3528 0.389
Maximal quasi-biclique (ms = 5, ε = 1) 34 0.278
Maximal quasi-biclique (ms = 6, ε = 2) 387 0.306
Maximal quasi-biclique (ms = 5, ε = 2) 72950 0.37
α-quasi-bicliques (ms = 3, α = 0.1) 190 0.354
α-quasi-bicliques (ms = 3, α = 0.2) 190 0.354
α-quasi-bicliques (ms = 3, α = 0.3) 190 0.354
α-quasi-bicliques (ms = 4, α = 0.1) 11 0.328
α-quasi-bicliques (ms = 4, α = 0.2) 11 0.328
α-quasi-bicliques (ms = 4, α = 0.3) 11 0.345
ε-biclique (ε = 0.1) 11 0.345
ε-biclique (ε = 0.2) 11 0.328
ε-biclique (ε = 0.3) 11 0.356

standard deviation of the co-clusters mined using setting ms =
5, ε = 2 is lower than the one under setting ms = 4, ε = 1.
This means that stocks with more similar financial ratios may
lead to higher similarity in price performance. In settings
ms = 5, ε = 1 and ms = 6, ε = 2, the average standard
deviations of their co-clusters are the lowest in Table IV, which
substantiate our observation that stocks with more similar
financial ratios have higher similar price performance.

Table IV also shows that maximal quasi-bicliques are
more effective in mining co-clusters with higher similar price
movements (which translates to lower standard deviations),
compared to the other quasi-biclique models. For the co-
clusters mined from maximal quasi-bicliques under settings
ms = 5, ε = 1 and ms = 6, ε = 2, although their numbers are
more than the co-clusters of the other quasi-biclique models,
they have the lowest average standard deviations.

We selected some co-clusters mined from maximal quasi-
bicliques and studied them in detail. We categorized our
findings into two types of co-clusters: good and poor co-
clusters. The good co-clusters contain groups of financial
ratios whose values are in the healthy range. Likewise for the
poor co-clusters, they contain groups of financial ratios whose
values in the poor range. Table V shows some co-clusters of



TABLE V

SOME CO-CLUSTERS OF STOCKS AND FINANCIAL RATIOS MINED BY

MQBminer FROM THE STOR GRAPH.

Co-
cluster

Stock
symbols

Financial ratios and their value intervals

1 APA, KSE,
PEG, PGL

Cur(0.232,3.276) DY(5.090,5.137) PB(1.617,1.813)
EBITG(0.112,4.778)

2 BBT GDW
NFB STZ

PC(12.069,14.66) PE(9.919,17.675) NIG(40.146,55.423)
EBITG(18.274,49.823)

3 EMC MU
TLAB XLNX

Cur(3.388-6.534) ROA(-6.879,-4.374) ROE(-7.381,-
5.553) EBITG(-104.96,-99.081)

4 AHC, COP,
GR, LMT

Cur(0.232,3.276) DE(108.216,116.576) NIG(-12.153,-
10.591) EBITG(-8.561,-3.186)

stocks and their financial ratios’ intervals.
For simplicity of comparison, we say that stocks in a co-

cluster have similar price performances if their prices all rise
or fall together, by comparing their closing price of 31 st

December 2001 to the closing price of 31st December 2002.
All price charts shown were taken from MSN Money [40].

Good co-clusters

• Co-cluster 1. The stocks in this co-cluster can be consid-
ered as undervalued stocks as they have very low PB, and
at the same time, they have growth in their EBIT. Another
attractive point is that they have a good DY of about 5%.
Comparing these stock prices with the S & P 500 index of
year 2002, we can see that three out of the four stocks in
co-cluster 1 outperformed the S & P 500 index, as shown
in Figure 10(a). Only PGL performed similarly with the
S & P 500 index. The poor performance of PGL could be
due to external factors which are not considered in our
model. The positive note is that three stocks in the co-
cluster performed much better than the S & P 500 index
with an average of 6.67% increase in their prices, while
the S & P 500 index dropped −22% for the year ended
2002.

• Co-cluster 2. Although the stocks have moderate PC and
PE, they are good stocks due to their high NIG and
EBITG. Figure 10(b) shows the price performances of
these stocks for year 2002. Again, all the stock prices
increased, unlike the dismal performance of S & P 500
index.

Poor co-clusters

• Co-cluster 3. This co-cluster has negative ROA and ROE,
which indicate that the stocks were either making a
loss for the financial year of 2001, or the stocks have
negative shareholders’ equities. If a stock has negative
shareholders’ equities, this implies that it has a larger
amount of long term liabilities than fixed assets. A
possible explanation on the high Cur may be due to
the stocks having large amount of inventories or large
amount of accounts receivable, which are signs of the
companies in trouble. These stocks also have a large drop
in their EBITG, thus this is a poor co-cluster that should
be avoided. Figure 10(c) shows the price performance
for these stocks in year 2002. We can see that all of their
prices performed worse than the S & P 500 index, thus
confirming that our model has correctly mined a poor
co-cluster.

(a) (b)

Fig. 11. 470 stocks with 12 financial ratios as the input for the SOM. (a)
U-matrix of an SOM. (b) The SOM where its neurons are labeled with the
name of the stocks. Quantization error of SOM: 1.053. Topographic error of
SOM: 0.03.

(a) (b)

Fig. 12. 139 stocks with 4 dimensions are obtained by using maximal quasi-
bicliques as input vectors and dimensions selection, and they are used to train
an SOM. (a) U-matrix of the SOM. (b) SOM in which its neurons are labeled
with the stocks. Quantization error of SOM: 0.433. Topographic error of SOM:
0.022.

• Co-cluster 4. As this co-cluster has a high DE and
negative NIG and EBITG, we consider it to be a poor
co-cluster. The high DE can be attributed to the stocks
having large amount of long term liabilities, as their Cur
is normal. Thus, these stocks may be risky investment.

F. Using Maximal Quasi-bicliques as Input Vectors and Di-
mensions Selection for SOM

We explored the potential of using maximal quasi-bicliques
to select stocks and financial ratios as input to SOM, for the
purpose of improving the quality of SOM. We prepared a
transaction dataset using the 3,528 maximal quasi-bicliques
obtained from the stocks and financial ratios case study, under
setting ms = 4, ε = 1. In a transaction, the items are the
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(a) Three out of the four stocks in Co-cluster 1
performed better than the S & P 500 index.
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(b) All the stocks in Co-cluster 2 performed better
than the S & P 500 index.
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(c) All the stocks in Co-cluster 3 performed worse
than the S & P 500 index.

Fig. 10. Price performances of stocks in co-clusters for the year 2002, in comparison with the S & P 500 index.

TABLE VI

NO. OF MAXIMAL QUASI-BICLIQUES/BICLIQUES MINED FROM YEAST

PROTEIN-PROTEIN INTERACTION DATASET AND THEIR SIGNIFICANCE.

basic results Group validation pair validation
ms ε pairs Covered

domains
Validated groups
(rate)

iPfam
pairs

Interdom
pairs

11 0 53 386 92 (86.79%) 0 5
1 7251 1657 12423 (85.66%) 128 420

12 0 4 24 7 (87.50%) 0 0
1 1381 1509 2353 ( 85.19%) 28 115

13 1 79 318 104 (65.82%) 0 0
14 2 1150 1164 1961 (85.26%) 22 67
15 2 13 118 25 (96.15%) 0 0
16 3 12 87 17 (70.83%) 0 0
17 4 15 86 19 (63.33%) 0 0

financial ratios of a maximal quasi-biclique and the maximal
quasi-biclique is the transaction identifier. Thus, we have a
total of 3,528 transactions. A closed itemset mining algorithm
LCM3 [41] was applied on the transaction dataset with mini-
mum support 500 to obtain a set of frequent closed itemsets.
Each closed itemset is a set of financial ratios. We took the
closed itemset which has the highest number of occurrences
as the selected dimensions for SOM, which corresponds to the
set of financial ratios {Cur, DE, PB, EBITG}. We used 139
distinct stocks which are in the maximal quasi-bicliques that
contain the financial ratios set {Cur, DE, PB, EBITG} as
the input vectors of SOM.

Figure 12(a) shows the U-matrix of the SOM and Figure
12(b) shows the SOM labeled with the stocks. This SOM was
constructed using SOM Toolbox 2.0 [42] in Matlab 7.0 [43]
environment. Figure 11 shows the SOM based on the original
input dataset of 12 financial ratios of the 470 stocks from S
& P 500. We can see that more distinct clusters are formed
in Figure 10 than in Figure 11, and the quantization error
and topographic error of SOM in Figure 10 are 0.433 and
0.022, which are better than 1.053 and 0.03 of SOM in Figure
11. Thus, using maximal quasi-bicliques for input vectors and
dimensions selection can be useful for improving the quality
of SOM.

G. Mining protein networks

We mined both maximal quasi-biclique subgraphs and max-
imal biclique subgraphs from the yeast ppi dataset. The aim

of this experiment is to study if using maximal quasi-bicliques
leads to more significant discoveries in protein networks than
using maximal bicliques.

The maximal quasi-biclique subgraphs were mined using
MQBminer and the maximal biclique subgraphs were mined
using the method in [1]. Table VI presents the number of
maximal quasi-biclique subgraphs and maximal biclique sub-
graphs mined from the yeast ppi dataset, by varying the error
tolerance threshold ε while maintaining a constant minimum
support ms. The third column pairs shows the number of
maximal quasi-biclique/biclique subgraphs mined at a given
ms and ε. The results with ε = 0 were obtained with maximal
bicliques, whereas the others were obtained with maximal
quasi-bicliques. For ms ≥ 13, no maximal biclique subgraphs
were found but we are able to mine maximal quasi-biclique
subgraphs by increasing ε. This demonstrates the strength of
maximal quasi-bicliques, as large interacting pairs of protein
groups can be obtained by relaxing the all-to-all relation of
maximal biclique.

As mentioned in Section I, a maximal quasi-
biclique/biclique subgraph represents a pair of protein
groups. To validate if these discovered pairs of protein groups
are significant, we use the validation techniques [1] – Group
validation (Covered domains, Validated groups) and Pair
validation. Details of these validation techniques are in [1].

Group validation checks if each protein group in a pair
of protein groups can be mapped to domains in the do-
main databases. Covered domains indicates the number of
domains in the domain databases which protein groups can
be mapped to, and Validated groups indicates the number of
protein groups that can be mapped to domains in the domain
databases. At ms = 11 and 12, the number of Covered
domains obtained by using maximal quasi-bicliques is 4.5
and 62.9 times more than the Covered domains obtained
by using maximal bicliques. Similarly, at ms = 11 and
12, we are also able to obtain 135 and 336 times more
Validated groups by using maximal quasi-bicliques, than by
using maximal bicliques. The Validated groups rate in the fifth
column indicates that a high percentage (> 80%) of protein
groups mined by maximal quasi-bicliques can be mapped to
domains in the domain database.

Pair validation checks if pairs of protein groups can be
mapped to pairs of domains. At ms = 11 and 12, by using



maximal bicliques, we can only find 5 pairs of protein groups
that can be mapped to pairs of domains and they are only
found in the Interdom database. By using maximal quasi-
bicliques, we can map 691 pairs of protein groups to pairs of
domains in both domain-domain interaction databases, iPfam
and Interdom. Thus, by using maximal quasi-bicliques, we are
able to discover more relations between pairs of protein groups
and pairs of domains.

VI. CONCLUSION

We proposed maximal quasi-bicliques to overcome the
weaknesses of maximal bicliques. Maximal quasi-bicliques
can tolerate certain degrees of erroneous and missing data that
are common in real world graphs, and the strictness of the
connections between the two vertex sets forming a maximal
quasi-biclique can be controlled. Our error tolerant definition
of maximal quasi-bicliques is symmetrical and balanced, thus
maximal quasi-bicliques do not have the problem of skewed
distribution of missing edges, which is faced by prior quasi-
bicliques. We developed an algorithm MQBminer, which
mines the complete set of maximal quasi-bicliques from both
bipartite and non-bipartite graphs. We also proposed to use the
hierarchical clustering algorithm with a new scoring method
iir for the discretization of continuous data. iir has been
shown to be robust against outliers.

We showed that maximal quasi-bicliques are more robust
than prior quasi-biclique models in recovering maximal bi-
cliques from noisy graphs, and also show that the running
time of MQBminer is linear to the number of maximal
quasi-bicliques mined. To demonstrate the versatility and
effectiveness of maximal quasi-bicliques, we used them to
solve a financial problem and a biology problem.

There are areas that need to be improved, which we leave
as our future work. First, the error tolerance of maximal
quasi-bicliques is absolute based, and having a percentage
based error tolerance may be a more natural constraint, as
the error tolerance is with respect to the size of the quasi-
bicliques. Thus, we plan to develop an algorithm that mines
maximal quasi-bicliques with percentage based error tolerance,
but the absence of anti-monotone property in them makes this
a difficult problem. Second, MQBminer is not suitable for
very large and dense graphs, as we have shown that its running
time complexity is linear to the number of outputs, which can
be in exponential. Hence, we plan to develop a heuristic based
algorithm for mining maximal quasi-bicliques from large and
dense graphs.
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