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Abstract
In Prequential analysis, an inference method is viewed as a forecasting system, and the quality of the
inference method is based on the quality of its predictions. This is an alternative approach to more
traditional statistical methods that focus on the inference of parameters of the data generating
distribution. In this paper, we introduce adaptive combined average predictors (ACAPs) for the
Prequential analysis of complex data. That is, we use convex combinations of two different model
averages to form a predictor at each time step in a sequence. A novel feature of our strategy is that
the models in each average are re-chosen adaptively at each time step. To assess the complexity of
a given data set, we introduce measures of data complexity for continuous response data. We validate
our measures in several simulated contexts prior to using them in real data examples. The performance
of ACAPs is compared with the performances of predictors based on stacking or likelihood weighted
averaging in several model classes and in both simulated and real data sets. Our results suggest that
ACAPs achieve a better trade off between model list bias and model list variability in cases where
the data is very complex. This implies that the choices of model class and averaging method should
be guided by a concept of complexity matching, i.e. the analysis of a complex data set may require
a more complex model class and averaging strategy than the analysis of a simpler data set. We propose
that complexity matching is akin to a bias–variance tradeoff in statistical modeling.

Keywords
model uncertainty; model selection; predictive optimality; Prequential analysis; Bayes model
averaging; stacking; complexity

1. INTRODUCTION
When the true model F is unknown, a collection of candidate models, say, f1, f2, … , fm, can
often be identified which would be useful to consider. We hope that at least one such fi will be
close to the true model F. At the same time, the fis should be distinguishable from each other
and span a neighborhood that contains F [1]. Given a data set, the ideal would be to find the
fi closest to F. Selection criteria such as AIC, BIC, or PRESS, among others, have been used
to good effect [2]. Indeed, if we are satisfied that the fi selected approximates the true model
well enough, then using the selected model is defensible.
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However, many authors have expressed concerns about classical model selection procedures.
Several authors have argued that the uncertainty implicit in selecting a model is of primary
importance; see Refs. [3-5]. Not only has model uncertainty relative to the list f1, f2, … , fm
been downplayed but also the uncertainty in forming the list itself has been ignored. Methods
to account for these uncertainties have been proposed in the literature; these include Bayesian
model averaging (BMA), ensemble learning [6,7], and weightings based on the bootstrap [5].
Two such techniques are relevant to this work, namely, stacking and likelihood weighted
averaging (LWA).

As a brief synopsis of stacking and LWA, consider the usual ‘signal plus noise’ regression
model of the form Y = F(X) + ∊ where ∊s are i.i.d. unimodal with mean zero and F is the
unknown regression function. Suppose we have a sequence of outcomes Y1, Y2, … , Yn to be
predicted by the use of models f1, f2, … , fm. In stacking, the model coefficients are chosen to
minimize the sum of squared prediction errors between the Yi and the linear combination of
predictors from the models f1, f2, … , fm formed by a cross-validation criterion [8,9]. In contrast,
BMA puts a prior on the models, as well as assigning priors within each model, and weights
the models by their posterior probabilities; see Ref. [10]. In our research, we place a uniform
prior on the models in the model space because the uniform prior has different support from
time step to time step. As the posterior probabilities are proportional to the likelihood values,
we call this procedure as LWA rather than BMA. Note that we are re-choosing the model list
at each time step in response to residual errors. This means that we are treating the models as
actions and updating the Bayes decision problem that the Bayes predictor is solving.

Unfortunately, using a weighted sum of models does not automatically account for model
uncertainty because model list uncertainty has not been assessed. We address model list
uncertainty by including it in the formation of our predictors. Our predictive procedure involves
taking an average of averages, i.e. making predictions sequentially where at each time step the
prediction is an average of a predictor based on stacking and a predictor based on model
averaging. We call predictors generated by our procedure as ACAPs because our predictions
are made sequentially, our predictors are adaptive, and variation due to model list reselection
is implicit in the sequence of prediction errors our method generates. The motivating ideas
behind ACAPs are that an extra layer of averaging will lead to better predictions, particularly
in scenarios with complex data, and that improved prediction can be achieved by including the
uncertainty in the model list in the predictive procedure, i.e. optimizing over a larger space as
we optimize over model terms as well as model parameters.

The rationale for combining stacking and LWA is that the stacking predictor tends to have a
lower predictive error than LWA in the presence of moderate-to-large model mis-specification,
whereas the efficiency of LWA allows it to outperform stacking predictively when model mis-
specification is negligibly small; see Ref. [11]. An alternative heuristic is that a convex
combination of a set of candidate models achieves the minimum relative entropy; see Ref.
[12]. The performance of an ACAP can be evaluated by its cumulative predictive error (CPE).

Out-of-sample prediction is done in the obvious way. For a given sequential data set, apply
our procedure to it; this will give an out-of-sample prediction for each data point. For a given
batch of data, choose m orderings of the data and apply our procedure to each of them. This
will give m predictions for each data point, which can be averaged to give an overall prediction
that can be regarded as independent of the ordering. In other words, the output of our procedure
at time n is exactly the predictor one would use for time n + 1, if one existed. We comment
further on this in Section 6.

Provided the models chosen are reasonable, including more and more models in a convex
combination should, in the limit, give better performance in terms of bias, although not
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necessarily in terms of variance. Analogously, a convex combination of predictors should give
better performance as one includes more predictors as long as the extra predictors reduce bias
enough to compensate for the concomitant increase in variance. Thus, averaging two different
averages should give better prediction than either average alone, especially in problems where
the true model is very complex. This explains how ACAPs, with an extra layer of averaging
and model space searching, improve the tradeoff between bias and variance for complex data,
thereby giving better predictive performance than the individual component averages.

Unlike the perceptive work of Domingos [13] which evaluates bias and variance relative to an
average over predictors called a main prediction, we do not offer a variance/bias/noise
decomposition for our results. Instead, we interpret our results in terms of complexity,
admitting this concept is not well defined outside of algorithmic or information-theoretic
contexts. Here, we define complexity in terms of characteristics of the response given a set of
predictor values, an idea that has been explored in the pattern recognition literature [14]. The
characteristics of interest are obtained from the distance matrix D whose elements are the
pairwise distances between the response values. The three complexity measures are the
skewness of D (Eq. (9)), the ratio of positive to negative correlations (Eq. (10)), and dimension
as defined by principal components analysis (PCA) (Eq. (11)). These ideas are well established
in statistical theory, e.g. PCA dimension is an example of intrinsic dimension, an idea relevant
to dimension reduction [15,16].

In our examples with high complexity data sets, we consider three model classes for prediction,
namely, linear models, generalized additive models (GAMs), and recursive partitioning
models. These classes were chosen to represent a range of model complexity and mathematical
form. The selection of model terms is an effort to balance breadth from random selection of
new terms and parsimony from model reduction to only those terms which provide good
prediction.

The structure of this paper is as follows. In the next section, we give a brief introduction to
Prequential analysis as a framework for statistical inference. We then introduce our ACAP
approach to Prequential analysis of complex data in Section 3, where we present our technique
and demonstrate ACAP performance on simulated data. In Section 4, we describe measures of
data complexity that we have developed and demonstrate their behavior on simulated data. We
present the results of the ACAP analyses of several complex data sets in Section 5. These results
demonstrate that in a full optimization over model classes and averaging strategies ACAPs
achieve the best predictive results. Section 6 contains a discussion of our results and relates
our conclusions to the concept of complexity matching and its relevance to statistical modeling.

2. PREQUENTIAL ANALYSIS
The Prequential setting is a natural context for investigating complex data because sequential
prediction allows information to be extracted from data that could not be extracted as readily
if the data were treated as an undivided batch. This is seen in Ref. [17] in which using the
information in the sequence of residuals to evaluate risk, in finite sample i.i.d. linear regression
settings, predictively outperforms asymptotically optimal Bayesian batch analysis. The basic
object of the Prequential treatment of data is a predictor function denoted by , formed from
all information available up to time t, which makes a testable statement about an occurrence

at time t + 1; see Refs. [18,19]. Predictor sequences  may give probabilities, outcomes,
decisions, or other quantities whose performance can be evaluated at each time step. The great
benefit of sequential prediction is that the choice and performance of a predictor sequence up
to time t is information that can be used to choose a predictor for time t + 1.
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Despite variations among authors, every treatment of the Prequential approach includes at least
three components:

1. Predictor sequence: At each time step, a Forecaster, F, is required to issue a prediction
for t + 1 using all information available up to time t (in particular, all past data) and
F’s performance will be evaluated by how well  matches Yt+1, the correct answer
at time t + 1.

2. Prequential principle: This is usually stated as the evaluation of F’s forecasting
strategy should depend only on the actual forecasts issued. See Refs. [18,19] for
further variations on this.

3. Updating: Upon receipt of the outcome at t + 1, F is permitted to reformulate elements
of the forecasting strategy in view of the new information. This may be simple or
elaborate; see Ref. [20] or [21], for examples.

Evaluation of Prequential schemes in theory has been extensive, including calibration [22],
efficiency [23,24], model fit [25,26], and comparative performance to Bayes methods [17].
The general formulation in terms of loss functions is amenable to a worst case analysis; see
Ref. [27]. This is similar in spirit to coding in the worst case scenario [28-30] and to more
recent work on mixture strategies and oracle inequalities [31,32].

To a substantial extent, the Prequential approach can be regarded as the automation of residual
analysis in linear regression, but done predictively. At each time step, a model space must be
chosen, a model must be selected from it, the coefficients in the model must be estimated, and
the resulting estimated model must be used to form a prediction for the next time step. Thus,
there is information in the sequence of residuals, the estimated parameters, and the chosen
models. In particular, these sequences indicate how rapidly the complexity of modeling can
increase (or decrease) with n and what sort of model deficiencies are hardest or most important
to correct. This analysis is conditional on having a fixed sequence of the data; if the data has
no natural sequence an analysis can be conducted on multiple permutations of the data and
results averaged over permutations.

3. ADAPTIVE COMBINED AVERAGE PREDICTORS
ACAPs form a method for Prequential analysis in which model lists and model averages are
updated adaptively. This level of adaptation is advantageous in complex modeling scenarios.

3.1. Formal Description of Predictors
Let  be an ensemble of terms so that all the models we intend to consider can be written as a
linear combination of elements in . As in regression, the parameters are taken to be the
coefficients on the terms. We denote a generic model as f, or fi when it is in a list of models,
and as F when it is taken as true. We denote lists of models formed from  generically by , or

 to indicate dependence on the tth time step. For m models, . In general,
 and .

Given a model list and a set of weights λk, we can form the model average predictor

(1)

where  is the predictor derived from the kth model in , denoted . A predictor is
characterized by the model list, the weights on the models, and the estimates of the parameters
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in the models. The weights λk, like the parameters, must be estimated from the data sequence.
The performance of a predictor can be assessed by its prediction error, or CPE, at each time
step.

One of the novelties of our approach is the use of model averaging procedures in a sequential
setting. These procedures are often regarded as too complex to allow the re-use of parts of
earlier iterations. Nevertheless, at a given time, our procedure does use the previous model list
in determining the current model list. Our work shows that the computational burden is not as
high as may be feared; see Table 2.

Stacking is motivated by cross-validation; it uses weights λk for the fis that achieve

(2)

given a list  at time t. Following Wolpert [8] or Breiman [9], the variant we use here does
not weight the f s directly but uses a sort of leave-k-out linear regression. Specifically, let

 denote the predictor from a model f evaluated at x where the coefficients in f are
estimated using the past data except the data in the jth hold out set, denoted . The stacking
coefficients result from minimizing

(3)

over the wf s; see Ref. [33]. There are various classes of weights wf over which to optimize,
leading to different stacking coefficients; see Ref. [11]. We have used the most general
optimization, i.e. we do not ensure the optimal wf s are positive or that they sum to 1. We made
this choice because the narrower the class of wf s one uses, the more stacking resembles LWA,
obviating the point in averaging the two procedures. [We caution that some of our computations
(not shown here) indicate that convex combinations tend to outperform non-convex
combinations predictively. So, it is possible that imposing the convexity constraint in the
stacking optimization would lead to a better version of stacking.]

The other model average, LWA, is Bayesian. Let Z denote all the data, i.e. Z = (Y, X) where
Y = (Y1, Y2 … , Yt), and X = (X1, X2, … , Xt). The posterior distribution of Yt+1 given Z is

, which has posterior mean

. This is a weighted average predictors derived from
the individual models with weights given by the posterior probability of each model.

To have a uniform procedure for comparing the model classes, we approximated E(Yt+1|Z) by
the sum of  where  is a predictor of Yt+1 based on model i and w(fi|Z) the
absolute value of the model deviance (−2× log-likelihood), where the deviances have scaled
to sum to 1 across models. By the use of  we have avoided having to assign priors within
models. In the linear models, case earlier computations (data not shown) showed that using the
posterior mean under normal within-model priors or the least-squares estimator made little
difference relative to other sources of error. More generally, if we wanted to be strictly
Bayesian, it is unclear how to do compatible within-model prior specification across model
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classes. Our use of model deviance ensures that our across model prior specifications are
broadly consistent. As stated, we have chosen a uniform prior over the models in the model
space, so the posterior weights are proportional to the model likelihoods.

To fix notation, suppose  is the predictor from the stacking model list  when the λks
come from the stacking optimization and  is the predictor from the LWA model list

 when the λks are posterior weights.

It remains to combine a stacking predictor and a LWA predictor to form an ACAP. We define
the ACAP to be the weighted average of these two, that is

(4)

where 0 ≤ αt ≤ 1. For each time step, an optimal αt can be obtained from the previously observed
data by a least-squares criterion. To form the predictor for the t + 1 time step, we update αt−1
to

(5)

The minimization in Eq. (5) can be done in closed form leading us to choose

(6)

where y, , and  are the data vector, LWA predictions, and stacking predictions for time
steps [t − n’ , … , t], respectively. When α < 0 or α > 1, we set it to 0 or 1, respectively.

In updating αt, we use only the most recent n’ data points, here the last n’ = 20, although the
other parameters in the predictors are permitted to depend on all the accumulated data. Finding

s by using only the most recent data points gave better performance than using all of the
accumulated data (results not shown). We conjecture that these choices worked well because
they were consistent with the different convergence rates between parameters and model
selection for the two model averages. It has been implied that LWA converges to the point in
its support closest to the true distribution in relative entropy, and convergence in the discrete
case is exponentially fast [34]. However, the coefficients in a stacking average do not make
use of the information in the likelihood and hence stacking averages converge more slowly
than LWAs. Otherwise put a single parameter estimate converges to its limit often at rate

 as data accumulates, and this is much faster (in terms of the sample size n) than a
model list can converge to an ‘optimal’ model list. Limiting the amount of data used to estimate
the αt s avoids the possibility that a difference in convergence rates will let one convergence
dominate the other.

Our examples are based on the evaluation of stacking, LWA, and ACAP by their CPE in settings
of high data complexity. For a generic predictor  at time i evaluated at xi, the error is
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(7)

In Eq. (7), we have re-indexed so that i = 0 corresponds to the last time step of burn-in. We
found it necessary to use a minimal burn-in data subset to obtain preliminary estimates for the
model weights and the parameters in the models. An initial model list is specified, and the
models on the list are fit to the burn-in observations (here, the first 30 observations); the
sequential process begins with the first observation after burn-in.

3.2. Updating Model Lists
Suppose we begin with a model list  of cardinality K at time t. We want to update  by
the use of x1, … , xt and y1, … , yt to form a new model list  also of cardinality K; we will
use  to form a predictor  which we evaluate at xx+1 to predict Yt+1. We use the same
updating procedure for both the stacking and LWA model lists and then combine the two for
the ACAP.

We begin by choosing an initial model list by selecting terms at random to be included in each
model; the ensemble of possible terms includes single terms (xi), two-way interaction terms

(xixj), and squared terms . Both LWA and stacking begin with the same initial list. Our
procedure has two stages. First, we add models that we think will improve prediction. Second,
we remove models whose contribution to good prediction is minimal.

Our procedure constructs three candidate models for addition to the list by a random search
around a ‘midpoint of the model list’, which represents its ‘center’, and then tests whether one
of the models on the list should be replaced by a candidate. A term is included in the ‘central’
model if the majority of the models in  include the term, i.e. the ‘central’ model  is formed
by a majority vote on the terms in . Next we consider any model formed by  plus one
additional term; the model with the lowest AIC [35] is the first candidate. We use AIC as
defined by

(8)

where L(m) is the log-likelihood of model m and q the number of degrees of freedom in m. For
GAMs, the value of q in Eq. (8) is the effective degrees of freedom of the fitted model [36].
We comment that in linear models, AIC has been shown to be asymptotically equivalent to
leave-one-out cross-validation [37] and is consistent as a model selection procedure for linear
models if the dimension of the true model increases with n at an appropriate rate [38]. For trees
and GAMs, these do not hold in general. GAMs have unavoidable bias for functions that are
not additive; estimating the splits in a tree model rests on a cost complexity pruning whose
consistency and predictive properties have not been elucidated, cf., Rao [39] and Nobel [40].

Next we consider the collection of models formed by removing a term from ; the model in
this collection with the lowest AIC is the second candidate. The third candidate is formed by
a random selection of terms where the probability of selecting a term for inclusion is the
proportion of terms which appear in . Of these three candidate models, the model with the
lowest AIC is the new candidate model .
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To decide whether or not to replace one of the models in  by , we perform five-fold
cross-validation on {x1, … , xt, y1, … , yt} with each possible sublist of  of cardinality
K. The sublist with the minimum cross-validation error is defined as ; the omitted model
is discarded. We take the convex combination of these two values as the ACAP prediction as
in Eqs. (4) and (5).

Each model list (LWA or stacking) contained five distinct models; each model was represented
by a list of terms from . The models on the lists were constructed by the model fitting
procedures and averaged using either LWA or stacking weights. This choice of five models
per list was a balance between the desire to include many possible models and the results of
previous work which suggest that the formation of distinct models becomes difficult as the
number of models increases because of limited sample size.

A drawback of this procedure is that output model lists can depend on the choice of initial
model list. We have chosen to randomize over the initial choice of model list in each
experimental run (see Section 5) and average over the predictions. Our method also includes
a random search at each time step, an effective way to avoid oversensitivity to initial conditions.
Our conclusions would be broadly the same if each of the models were replaced by individual
fixed models [41].

3.3. Simulation Results: ACAP
We have compared the performance of LWA, stacking, and ACAP on simulated data with
models chosen from three classes, namely, linear models, GAMs [42,43], and recursive
partitioning models (trees) [44]. These choices of model classes will allow a comparison of
parametric and non-parametric approaches, both statistical and rule-based, and has been used
previously in the literature [45].

The data sets were generated from a process of the form Yt = F(Xt) + ∊, i = 1, … , N, where
N = 100 and the Xts are independent penta-variate normals with mean zero and variance the
identity matrix. The error terms are i.i.d. N(0, 1/4). A total of 100 such data sets were generated
from each of 15 different functions F constructed by combining the base terms F1 = −|x1|(3/2),
F2 = |x1|(7/2), F3 = x5|x1|(1/2), and F4 = sgn(x1)|x1|(1/2). Each function was assigned to a class:
class 1 consisted of all single base term Fs, class 2 consisted of all 6 two-term Fs, class 3 had
4 three-term Fs, and class 4 had 1 four-term F.

Consider the representation of a model in a given model list as a collection of terms. In the
linear model case, these terms represent the predictors in the model and can be used as is. These
terms cannot be used in the corresponding GAM as is; instead the GAM contains cubic
smoothing spline predictors [46], one for each term. The GAM has an identity link for the mean
and a log link for the standard deviation; this model is an example of a GAM for location, scale,
and shape [43]. The model fitting is achieved via the GAMLSS software [47]. As for recursive
partitioning models, there are many variations of the basic tree algorithm from different choices
of splitting rules and stopping rules to different statistical models for Y in a given terminal node
[44,48,49]. As our interest is model class comparison and not the intricacies of trees, we chose
the well-established algorithm for tree development provided in the R tree package [50]. In
this algorithm, the terms in the model list for a given model are not included directly in the tree
model. Instead the tree algorithm selects the terms from the list (and the split points) which
provide the best fit. As a result terms in the model list may or may not appear in the resulting
tree.

Summary barplots of the results and some representative line plots are presented in Fig. 1.
ACAP outperforms stacking, in CPE, and provides results better or equivalent to those of LWA.
Figure 1 (right) contains plots for one function from each class; these plots are representative
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of cases where the results of all three methods are similar (upper left subplot), stacking
outperforms LWA (upper right subplot), and LWA outperforms stacking (lower left subplot).

4. DATA COMPLEXITY
We have presented an approach to the Prequential analysis of complex data. But how do we
define ‘complex’? In general, a system is complex if it consists of elements or components that
are difficult to distinguish or whose interdependencies are hard to follow [14]. More complex
systems have more components and more interdependencies, so complexity can be
characterized by variability, i.e. the number of elements and their size and shape, as well as
dependency between components.

The number of elements and their dependencies are represented by the set of available examples
from the system, i.e. the data set. This implies that the complexity of a regression (or
classification) task depends on both the choice of variables and the sample size. The outcome
of interest may have some hidden structure that is only partially reflected in the set of predictors.
The structure of the outcome may be evident from a small set, or require a large set, of predictors
and observations. The link between complexity and variable selection is one of the principles
behind dimension reduction techniques: see Refs. [51-53].

Note that a data set may be complex from a modeling perspective for reasons independent of
dimension and sample size. For example, the distribution of the response may be ambiguous
either intrinsically or due to inadequate feature measurements [54]. Similarly, the response
may have a form not considered by existing modeling techniques, so that the limitation is the
modeling approach. Reports on data complexity in classification contexts can be found in the
literature [14,55,56] although similar reports in regression contexts are rare [57].

The assessments of complexity we propose are derived from dissimilarity matrices D; see
Section 4.1. Similar metrics were initially developed for pattern recognition problems [14,
58]; they are fully non-parametric in that they make no strong distributional assumptions. The
main assumption required here is that if these assessments are regarded as random variables
having a distribution derived from the true distribution, then D must have at least three
moments.

We comment that there is also an organized theory for complexity based on minimum
description length or minimum message length [59-61]. We have not used this formulation
because it depends heavily on assigning codes to classes of distributions.

4.1. Measures of Complexity
Let D(Y, Y) be a n × n dissimilarity matrix, where Y = {y1, y2, … , yn} is a response vector of
size n and each observation is represented by a vector of predictor values xi of length p. The
(i, j)th element of D, denoted D(yi, yj) or dij, is the dissimilarity between responses i and j. D
(yi, Y) is the vector of pairwise dissimilarities between yi and each observation in Y. We define
dissimilarity in terms of Gower distance [62] or Minkowski distance of order 2 (L2 distance)
[63].

The complexity measures we use here are a function of D only. This arises because we first
cluster the observations in X, i.e. cluster observations based on the similarity of their predictor
values. Complexity is calculated based on the responses for the observations in each cluster
and then a weighted sum is taken over clusters (with weights proportional to cluster size) to
yield a complexity measure for a data set. In other words, we form a non-parametric model for
Y in terms of X and then look at the complexity of Y conditional on the clusters. We chose the
k-means algorithm [64] for clustering because it is well established in the literature and
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relatively simple. In our examples, we set k = 5 as a trade off between too small clusters for
small n and too large clusters for large n.

Our first measure is based on skewness and assesses directly the distribution of the pairwise
dissimilarities between the response values. The skewness measure for any two objects i and
j is

(9)

If the data generator is complex and the data set is small, adding a new observation can generate
many large dissimilarities and few small ones. As a result, the distribution of dissimilarities
will have a peak at small values and a long tail in the direction of large values. Eventually,
adding new objects will generate only small dissimilarities. So, with an increase in the
cardinality of Y skewness will grow but eventually converge or stabilize. This stabilization will
occur at smaller sample sizes for simpler problems. Simple problems should converge to higher
skewness values than complex problems, as simpler problems will have a smaller mean
dissimilarity.

Our second measure is based on correlation and captures the idea that similar responses show
similar dissimilarities to other responses and is, thereby, positively correlated. The
correlation measure is defined as the ratio of the average of positive correlations to the average
of the absolute values of the negative correlations between the columns (or rows) of D, i.e.

(10)

For a well-sampled data generator, this measure will be large, as new observations will be
similar to existing observations, and will increase slightly when new observations are added.
As with skewness, correlation will grow as the cardinality of Y increases but it will converge
at a smaller sample size and to a higher value for simpler problems then for more complex
problems.

Our final measure is based on PCA and assesses the similarities between responses, where each
response is represented by its vector of pairwise dissimilarities to other responses. The PCA
measure of D is defined as

(11)

where nα is the smallest integer such that  where {λ1, λ2, … , λn} are
the and eigenvalue of D and λ(k) is the kth largest eigenvalue of D. The faster the value of PCA
drops and converges with increasing sample size, the smaller the intrinsic dimension of the
dissimilarity space representation. Intrinsic dimension has long been recognized in the
literature as an important measure of data set complexity [16,65-68] and our use of the PCA
metric reflects this. We expect the PCA metric to converge at a smaller sample size and to a
smaller value for simpler problems relative to more complex problems.
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4.2. Simulation Results: Complexity
We evaluated our complexity measures on simulated data sets to determine whether they
capture data set complexity across a range of outcome distributions, sample sizes, and number
of predictors. The sample size (n = 300) and dimensions (p = 2, 10, 50) were selected for ease
of comparison with the results from our real data examples in Section 5. As the results for
varying dimension were qualitatively the same, we discuss only the results for p = 10. Our
simulation data sets are described below.

1. Normal: The response Y = Xψ + ∊ where X contains n observations of length p({x1,
x2, … , xn}; xij ~ N(0, 1) for i = 1, … , n, j = 1, … , p, ψ = 1 for j = 1, … , p, and ∊i ~
N(0, 0.5) for i = 1, … , n. This is a common regression context.

2. ARMA: The same model as (1) except ∊i ~ ARMA (2,2) for i = 1, … , n, with random
normal innovations with sd = 0.5. This scenario should be slightly less complex than
1 because the error has more structure.

3. Uniform: The model for X is the same as in (1). However ∊ and ψ are discarded and
yi ~ U(−5, 5) for i = 1, … , n. As the response is independent of the predictors and has
high entropy, we expect this scenario to be of higher complexity than scenarios 1 and
2.

4. Nonlinear unbiased: The response Y = X3ψ + ∊ where X, ψ, and ∊i are as in 1. As
xij ~ N(0, 1) for i = 1, … , n, this nonlinear scenario is compressed relative to scenario
1, e.g. compressed predictors and a compressed response. Clustering is done on X3,
not X. We expect this scenario to be the least complex.

5. Nonlinear bias #1: This scenario is the same as in (4) except clustering is done on
X, not X3. The data is compressed but the predictors used for clustering are not
compressed, which introduces bias into the modeling. This scenario should be at least
as complex as scenario 4.

6. Nonlinear bias #2: This scenario is the same as in (4) except clustering is done on
X3, not X. The data is not compressed but the predictors used for clustering are
compressed, which introduces bias into the modeling but in a direction opposite to
that in 5. This scenario should be at least as complex as scenario 4.

The parameter values used in these simulations were determined by choosing values which
seemed intuitively simple/complex. A total of 30 data sets were generated for each scenario
described above, and the complexity of a scenario was defined for each measure as the average
value of the measure over data sets.

The results of our simulations are shown in Figs. 2 and 3. In each figure, the subplots in the
right column display a portion of the region shown in the left column. All measures report
decreasing complexity as sample size increases. Skewness and correlation decrease to a non-
zero asymptote, i.e. a limiting complexity. However, PCA dimension decreases to an asymptote
at zero, so the maximum value of this measure (and its rate of convergence to zero) is taken as
an indication of complexity. The results in Fig. 2 confirm that, as expected, the uniform scenario
is the most complex while the nonlinear unbiased scenario is the least complex. The ARMA
scenario is slightly less complex than the normal scenario because the noise has relatively more
structure.

Scenarios 4–6 are plotted in Fig. 3 as they represent cases with and without modeling bias;
biased scenarios should have higher complexity. In the scenario of clustering linear predictors
but generating data from nonlinear predictors, the added bias leads to less complexity by
skewness but more complexity by correlation and PCA dimension. In contrast, clustering
nonlinear predictors but generating data from linear predictors leads to more complexity by
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skewness and correlation but no change in complexity by PCA dimension (the PCA results of
these two scenarios overlap and cannot be distinguished).

Clearly no one measure is able to capture all aspects of complexity. Although all three measures
agree in scenarios of complexity based primarily on variability (scenarios 1–4), complexity
based primarily on bias is more difficult to capture. Some directions of bias are detected by
skewness and correlation (scenario 6) while others are detected by correlation and PCA
dimension (scenario 5). In essence, it is the trio of values which indicate the nature of the
complexity, primarily in terms of the relative level of variability and the direction of bias.

5. EXAMPLES
Given the behavior of the complexity measures in simulated scenarios, we are able to use them
to assess data set complexity in real data examples. These examples were chosen to compare
the predictors from LWA, stacking, and ACAP methods by their CPE (Eq. (7)). We compare
linear models, GAMs, and trees on three data sets:

1. Friedman: This regression problem has ten independent variables uniformly
distributed on the interval [0, 1]. The output y is defined as

(12)

where ∊ ~ N(0, 1). The data is available in the R mlbench package [69,70].

2. CompActiv: This database contains records of various computer performance
measures used to predict the fraction of time that central processing units (CPUs) run
in user mode. We chose to model the smaller version of this data set, containing 15
of the original 24 predictors. This data set is available from the Delve project website
[71].

3. Concrete: The actual concrete compressive strength (MPa) for a given mixture under
a specific age (days) was determined in a laboratory. The data set contains nine
quantitative attributes on 1030 records, eight input attributes and one output attribute
(compressive strength). These data were provided by the author of the original study
[72] to the UCI Machine Learning Repository [73].

We chose an ensemble of terms  consisting of all single terms, two-way interaction terms,

and squared terms; the cardinality of  is . The specific experimental runs which
we perform with each data set are described in Table 1.

5.1. Complexity Results
To examine the level of complexity of our example data sets, we calculated the measures of
complexity described in Section 4 and graphed the results in Fig. 4. The Friedman data has
complexity similar to that of uniform noise, i.e. high variability reflected in low skewness, low
correlation, and high PCA dimension. It has larger (less complex) skewness values but higher
(more complex) correlation and PCA dimension values (as in scenario nonlinear bias #2 in
Section 4.2), an indication of some level of bias from the predictors not included in the model.
The CompActiv data follows the complexity patterns of the nonlinear bias #2 simulation for
skewness, but is closest in complexity to uniform noise according to correlation and PCA
dimension. This indicates a case of high variability and some bias incurred by missing
important predictors. The Concrete data has more complexity by skewness than the simulated
scenarios (except for uniform noise) but resembles nonlinear bias #1 in terms of correlation
and PCA dimension. This indicates high variability and some bias with respect to the predictors.
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The resemblance to nonlinear bias (see Section 4.2) is as expected; concrete compressive
strength is a highly nonlinear function of age and ingredients [72].

The complexity measures provide a framework for interpreting the complexity of these
examples in terms of variability and bias. It is interesting that the complexity values of the real
data examples can be interpreted through the simulation results as some mixture of high
variance and moderate to high bias.

5.2. Predictive Results
We performed the experiments described in Table 1 with the burn-in length chosen to provide
enough data for initial parameter estimation. For each run, a different random seed was used
either for data generation (Friedman data) or to select a subset of the entire data set for analysis
(CompActiv and Concrete). Our interest is primarily in the limiting behavior of the predictors.
As we are not attempting function estimation or approximation, only minimal predictive error,
we omit discussion of the specific model lists or model weights. We simply note that model
classes like LMs or GAMs are typically biased although their predictions may outperform some
classes like trees that can provide asymptotically exact approximations.

5.2.1. Results for the Friedman data—We performed computations with the Friedman
data at two different choices of length of burn-in, data set size, and number of runs (see Table
1). Our results for n = 200 are summarized in Fig. 5; the results at other settings were
qualitatively similar.

The best results are for ACAP for GAMs, with CPE at time step 300 a little over 1000, followed
by stacking with GAMs with CPE at time step 300 near 1200. In aggregate, GAMs perform
best followed by trees (with minimum CPE with ACAP near 1900) and LMs (with minimum
CPE with ACAP near 2100).

We posit that the Friedman data is of high complexity yet not nonlinear, so GAMs perform
best along with a prediction strategy of high complexity, i.e. ACAPs. The next best approaches
combine a high complexity model with any averaging strategy; as trees may be slightly too
complex for this data, the averaging strategy has little impact. It may also be that there is not
enough data for the trees to discriminate among the averaging methods. The observation that
trees may be too complex is consistent with our observation in Section 5.1 that the Friedman
data has the lowest relative complexity of our example data sets. Overall, LMs perform worse
as they are of the lowest complexity, although their best performance is with ACAPs.

It seems reasonable to suggest the complexity of the GAMs matches the complexity of the
Friedman data. The searches involved in forming the modeling averages are efforts to
incorporate the complexity of the Friedman function within the complexity of the model
averaging; hence ACAP yields the best results with LMs and GAMs. The trees provide
adequate complexity for the data and hence all averaging strategies perform equally well.

Occasional jumps in the sequential values of the cumulative prediction error regularly occur
(as in the case of trees in Fig. 5); we attribute these to the fact that the algorithm can add or
omit terms discontinuously. That is, rather than having a coefficient smoothly go to zero or
having a coefficient smoothly move away from zero, it is possible that at one time step a term
is present, or absent, and at a later time step it is removed, or included suddenly. In either case,
a jump may result, after which the error increases slowly as the parameters converge to better
values.
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5.2.2. Results for the CompActiv data—Figure 6 shows the average CPE values of all
three model classes and averaging strategies for two samples sizes, n = 70 and n = 300. The
results for n = 200 are omitted because they mirror the results for n = 300.

The results at n = 70 provide a snapshot of preconvergent predictive performance. Initially,
when sample size is small relative to data complexity so little information is available, all three
models favor LWAs. As sample size increases, the performance of LWA deteriorates while
both stacking and ACAPs show improved performance. At n = 300, it is seen that the best
results are for trees with ACAP and LWA (with CPE near 16 000); the next best results are for
trees with stacking (CPE near 20 000). All other results are considerably worse, e.g. a CPE
near 33 000 for LMs with stacking, and a CPE near 82 000 for GAMs with stacking.

We have demonstrated previously that the data are highly complex. It is reasonable that the
most complex model class, trees, provides all top three results when enough data is available
for model estimation, and why the most complicated averaging strategy, ACAP, does best with
the trees. If either the model class or model average is of a slightly lower complexity, then the
performance of the approach is correspondingly degraded. For trees, the choice of αt in the
ACAP, which is near 0.7, indicates dependence on stacking. By converging more slowly, it is
as if stacking refrains from giving a definite conclusion about the model until it is quite
confident of its choice. The 0.3 weight on LWA is the ACAPs way of providing a smaller
variance without harming the gradual reduction of bias as the stacking average finds a better
and better predictor.

As a reasonable heuristic, the present calculations suggest that the complexity gap between
trees and GAMs is much larger than the corresponding gap between GAMs and LMs. That is,
the trees are much more complicated compared with GAMs than GAMs are to LMs. In contrast,
the complexity gaps between the different model averaging strategies seem much smaller.
Although ACAPs are more complex than stacking (because they involve a more extensive
search over models), and stacking is more complex than LWA (because its coefficients are not
restricted by the likelihood), these gaps seem roughly equal. They contribute less to the overall
complexity of the method than does the choice of model class. This may be why given a model
class of appropriate complexity (trees), ACAPs achieve the best balance between bias and
variance. However, given a model class of clearly inadequate complexity (LMs or GAMs),
none of the strategies perform well. The mismatch between the complexity of the data and the
complexity (or mathematical form) of the model class (as shown in the high level of error) is
a hurdle too large for any averaging strategy to overcome.

5.2.3. Results for the Concrete data—Recall from Section 5.1 that this data set has a
highly nonlinear response, so it is no surprise that tree models perform considerably better than
either GAMs or LMs (Fig. 7). In the simplest model class, stacking provides poor performance
and ACAPs perform best but not significantly better than LWAs. The results with GAMs are
similar but the advantage of ACAPs over LWAs increases with the more complex model class.
Trees provide the best performance; in this class stacking outperforms LWA but ACAP
outperforms LWA. It is interesting to note that ACAPs perform best across levels of model
uncertainty; as uncertainty decreases (model/data complexity matching improves) the
improvement of ACAPs over Bayes increases while the improvement of ACAPs over stacking
decreases.

With respect to computational expense, the GAM models were the most expensive, followed
by the trees and then by the linear models. Table 2 displays run times (in minutes) on a Windows
XP laptop with a 2.3 Mhz processor and 4 GB of RAM for the Concrete data set in R with n
= 100, 200, 300 and p = 4, 8, 16 (dimensions were created or removed by adding cross-terms
or removing randomly selected predictors). Once LWA and stacking have been applied to a
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particular data set at a particular time point, ACAP is a simple averaging of the results of each
method. The ability of ACAP to scale to high dimensions or sample sizes depends on the ability
of the underlying model fitting procedures to scale. LM and trees appear to scale well while
GAMs are more limited.

6. DISCUSSION
The modeling of data sets of high complexity requires not only an appropriate choice of model
class but also a sophisticated method for model averaging. We have demonstrated that data set
complexity can be measured and that these measures reflect both the variability and bias in a
given statistical scenario. Real problems encountered in actual statistical practice are generally
messy [74] and a rigid statistical approach can lead to overfitting and lack of validation.
Through the use of examples we have shown that both a prequential approach and model
averaging (ACAPs) can provide a relative advantage in such situations.

As noted in Section 1, if a prediction is desired for a new observation (at time n + 1), the ‘final’
model lists/weights/etc. at time n would be used to construct the prediction. In the case of
simultaneous predictions at m new predictors, we would use this same procedure m times with
each new predictor being treated as the observation at time n + 1. With respect to data that has
no natural ordering, we order the entire data set for ACAPs but we must compensate for this
artificial ordering by using multiple permutations of the data. This allows us to evaluate
predictive performance independently of any artificial ordering.

We suggest that the settings in which LWA or stacking alone are genuinely best are important
special cases, but not in general representative of the situation typically confronted by a
practitioner. Oversimplifying for the sake of clarity, LWA works best when the true model is
simple or the practitioner has good pre-experimental information about candidate models.
Stacking works best when the true model is very complicated and no single model list can be
proposed with confidence. Our method works best in the typical case that partial information
is available pre-experimentally. The model list is neither so small that bias is likely to be a
problem nor so large that model variability will swamp the information in the data. Thus, when
the information available to a practitioner is enough to make a complex problem manageable,
ACAPs will typically be a good choice.

ACAP may outperform LWA and stacking partially because its emphasis on using recent data
makes it more adaptive. The ACAP can cycle around a small set of models that are good for
prediction without settling on any of them too quickly. That is, the ACAP may more accurately
encapsulate the true model uncertainty and the ability of the ensemble to approximate the true
model. We comment that careful restriction of the model space to plausible models, as was
achieved in our work by limiting our model list size, is important for avoiding problems with
dilution [75] or, in the LWA case, giving weights that only reflect prior information. In
particular, a good model list that is too large relative to the available data will tend to have too
many weights of reasonable models close to zero. This can give excessive variability, and hence
poor predictions, purely from the list itself.

Our results can be conceptualized as a demonstration of a principle of complexity matching.
For ease of exposition, suppose that problems of prediction are segregated into classes based
on their complexity (low, medium, and high). We suggest that the complexity of the modeling
task, i.e. the complexity of the data generator and the sample size, should determine the
complexity of the modeling strategy, i.e. the model class and model averaging. Although crude
and imprecise, write
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(13)

to indicate the comparison between the actual complexity of the problem on the left and the
combined complexity of model class and model averaging on the right. Complexity matching
is the principle that an appropriate statistical approach will satisfy this equation. Complexity
affects the balance or tradeoff between bias and variance; however, complexity matching
differs from the variance/bias tradeoff because the goal is not to minimize the complexity but
to represent it accurately.

Our interpretations are consistent with the notions of M-Closed, M-Complete, and M-Open;
see Ref. [76]. Essentially, LWA is the uniquely right answer in the M-Closed case because it
achieves the (Bayes) optimality criterion in the decision problem. Once the prediction problem
is not as well represented by the decision problem, so that the predictor must first find the
correct decision space in which to optimize, the optimality of Bayes need not hold. Hence, in
the sequential setting, one is approximating an M-Complete problem by sequentially improving
an M-Closed problem. The model list reselection we have built into our approach is intended
to speed the learning of the decision problem; it is our way of using the residuals to update the
decision problem sequentially. Our use of stacking or ACAPs thus corresponds to an
enlargement of the action space of the decision problem, probably necessary to ensure that the
updated decision problem will be rich enough. More generally, ACAPs can be regarded as
overcomplete predictors and this may be most appropriate for the M-Open context.
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Fig. 1.
CPE results for simulated data from 15 functions from four classes (left). The horizontal axis
is function; the vertical axes are CPE(LWA)-CPE(ACAP) and CPE(stacking)-CPE(ACAP),
calculated separately for each function (right). CPE results for one function from each class.
The horizontal axis is sample size; the vertical axes are CPE. LWA results are dotted lines,
stacking results dashed lines, and ACAP results solid lines. CPE results are averaged over 100
runs.
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Fig. 2.
Complexity for simulated data with respect to variance, p = 10. Complexity values for scenarios
1–4 are plotted for each measure. The line types correspond to the different scenarios: solid,
normal; dashed, ARMA; dotted, uniform; and dotdash, nonlinear unbiased.
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Fig. 3.
Complexity for simulated data with respect to bias, p = 10. Complexity values for scenarios
5–7 are plotted for each measure. The line types correspond to the different simulation
scenarios: dotdash, nonlinear unbiased; solid, nonlinear bias # 1; and dotted, nonlinear bias #2.
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Fig. 4.
Complexity results for example data. Rows from top to bottom are skewness, correlation, and
PCA complexity measures. The line types vary with different example data and simulation
scenarios: solid, simulated; dashed, Friedman; dotted, CompActiv; and dashdot, Concrete .
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Fig. 5.
CPE over time for Friedman data. Upper left panel is for LMs, upper right for GAMs, lower
for trees. Note that the ranges on the vertical axes are 3000, 2000, and 1500, respectively.
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Fig. 6.
CPE over time for CompActiv Data: the left-hand panels are for n = 70; the right-hand panels
for n = 300. The top row is for LMs, the middle row for GAMs, and the bottom row for trees.
The vertical axes are up to 800 000, 200 000, and 20 000, respectively.
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Fig. 7.
CPE over time for Concrete data. Upper left panel is for LMs, upper right for GAMs, and lower
for trees. Note that the ranges on the vertical axes are 2 003 700, 2 005 000, and 405,
respectively.
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Table 1

Experimental runs

Data set N Burn-in Number of runs

Friedman 80 30 250

150 30 50

300 50 25

Concrete 200 30 20

CompActiv 70 32 25

200 32 25

300 32 25
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