
Discriminative frequent subgraph mining with optimality guarantees

Marisa Thoma∗ Hong Cheng† Arthur Gretton‡ Jiawei Han§ Hans-Peter Kriegel∗

Alex Smola¶ Le Song‡ Philip S. Yu‖ Xifeng Yan∗∗ Karsten M. Borgwardt††

July 7, 2010

Abstract

The goal of frequent subgraph mining is to detect subgraphs

that frequently occur in a dataset of graphs. In classification

settings, one is often interested in discovering discriminative

frequent subgraphs, whose presence or absence is indicative

of the class membership of a graph. In this article, we pro-

pose an approach to feature selection on frequent subgraphs,

called CORK, that combines two central advantages. First,

it optimizes a submodular quality criterion, which means

that we can yield a near-optimal solution using greedy fea-

ture selection. Second, our submodular quality function cri-

terion can be integrated into gSpan, the state-of-the-art tool

for frequent subgraph mining, and help to prune the search

space for discriminative frequent subgraphs even during fre-

quent subgraph mining.

1 Introduction.

In a graph classification problem, we are given a
set of training graphs {G1, . . . , Gn} with class labels
{Gi, yi}n

i=1, yi ∈ {1, . . . ,K}. Given these training ex-
amples, our task is to train a classifier for correctly pre-
dicting the labels of unclassified test graphs.

Such graph classification algorithms have a wide va-
riety of real world applications. In biology and chem-
istry, for example, graph classification quantitatively
correlates chemical structures with biological and chem-
ical processes, such as active or inactive in an anti-
cancer screen, toxic or non-toxic to human beings [21].
This makes graph classification scientifically and com-
mercially valuable (e.g. in drug discovery). In computer

∗Institute for Informatics, Ludwig-Maximilians-Universität
München

†Department of Systems Engineering and Engineering Man-
agement, Chinese University of Hong Kong

‡School of Computer Science, Carnegie Mellon University
§University of Illinois at Urbana-Champaign
¶Yahoo! Research, Santa Clara, California
‖University of Illinois at Chicago, Chicago, Illinois

∗∗Department of Computer Science, University of California at
Santa Barbara

††Max Planck Institute for Developmental Biology and Max
Planck Institute for Biological Cybernetics, Tübingen

vision, images can be abstracted as graphs, where nodes
are spatial entities and edges are their mutual relation-
ships. Such models can be used to identify the type of
foreground objects in an image. In software engineer-
ing, a program can also be modeled as a graph, where
program blocks are nodes and flows of the program are
edges. Static and dynamic analysis of program behav-
iors can then be carried out in these graphs. For in-
stance, anomaly detection of control flows is essentially
a graph classification problem.

Recent research in graph classification comprises
three branches:

• first, the family of frequent pattern approaches [19,
10, 8]. Each graph is represented by its frequent
subgraphs, i.e., its set of subgraphs that occur in
at least σ% of all graphs in the database. This
frequent pattern approach is also referred to as the
(frequent) substructure or fragment approach, and
we will use these terms interchangeably.

• second, the family of approaches that consider all
subgraphs of a certain type in a graph [18, 36, 30].
For instance, the graph kernels by [18, 30] belong
to this class and they count common walks and
subtree patterns in two graphs, respectively.

• third, the family of wrapper approaches that select
informative subgraphs for classification during the
training phase. Typical instances of this family
are the boosting approach by [22] and the lasso-
approach by [33].

In this article, we are concerned with the first of
these three families, the family of frequent subgraph ap-
proaches. There are two reasons for adapting frequent
subgraphs in graph classification. First, it is computa-
tionally difficult to enumerate all of the substructures
existing in a large graph dataset, while it is possible to
mine frequent patterns due to the recent development
of efficient graph mining algorithms. Second, the dis-
criminative power of extremely infrequent substructures
is small due to their limited coverage in the dataset.

Therefore, it is a promising approach to use frequent
substructures as features in classification models.

However, the vast number of substructures poses
three challenges.

1. Redundancy: Most frequent substructures only
differ slightly in structure and co-occur in the same
graphs.

2. Statistical significance: Frequency alone is not a
good measure of the discriminative power of a sub-
graph, as both frequent and infrequent subgraphs
may be uniformly distributed over all classes. Only
frequent subgraphs whose presence is statistically
significantly correlated with class membership are
promising contributors for classification.

3. Efficiency: Very frequent subgraphs are not use-
ful for classification due to lack of discriminative
power. Therefore, frequent subgraph based clas-
sification usually sets an extremely low frequency
threshold, resulting in thousands or even millions
of features. Given such a tremendous number of
features, any runtime or memory-intensive feature
selection algorithm will fail.

Consequently, we need an efficient algorithm to se-
lect discriminative features among a large number of
frequent subgraphs. In [32], we introduced a near-
optimal approach to feature selection among frequent
subgraphs generated by gSpan [39] for two-class prob-
lems. Our method greedily chooses frequent subgraphs
according to the submodular quality criterion CORK
(Correspondence-based Quality Criterion). The use of
a submodular function in a greedy approach ensures a
solution close to the optimal solution [24]. We further-
more showed that CORK can be integrated into gSpan,
the state-of-the-art tool for frequent subgraph mining.

Other approaches use heuristic strategies for feature
selection (such as [8, 13]) or do not provide optimality
guarantees [22, 29, 28, 33, 38, 17]. We will present an
overview on related algorithms in Section 3.1.

Goal The goal of this paper is to refresh the idea of
near-optimal feature selection in subgraph patterns and
to introduce improvements for future use. As a review
of [32] we will first formalize the optimization problem
to be solved (Section 2.1) and then we will summarize
the essential ingredients of our graph feature selector:
first, submodularity and its use in feature selection (Sec-
tion 2.2); second, gSpan, the method to find frequent
subgraphs (Section 2.3). We will review our selection
criterion CORK for two-class problems in Section 2.4,
and explain its integration as additional pruning crite-
rion into pattern growth based graph miners like gSpan
in Section 2.6.

Many applications for graph learning actually de-
fine more than the commonly-used two classes: Biolog-
ical molecules can be categorized into a wide catalog of
functional or structural classes, social network commu-
nities are involved with various topics and process flows
can be analyzed with respect to multiple attributes. As
a new contribution, we will thus generalize CORK to
multi-class problems in Section 2.7.

Finally, for increasing the flexibility of our algo-
rithm, in Section 2.8, we will also provide an extension
for using the proposed pruning approach on pre-mined
graphs. After a review of related work in Section 3
we thoroughly evaluate the proposed algorithms in Sec-
tion 4 on 11 real-world datasets and conclude with a
discussion and outlook in Section 5.

2 Near-optimal feature selection among

frequent subgraphs

We formalize the given dataset as a collection of graphs
G = ∪K

i=i Ki that each belong to one of the K classes Ki.
In this paper we exclude overlapping classes, however,
the proposed selection approach can be easily extended
to graphs with multiple labels.

As a notational convention, the vertex set of a graph
G ∈ G is denoted by V (G) and the edge set by E(G).
A label function, l, maps a vertex or an edge to a label.
A graph G is a subgraph of another graph G′ if there
exists a subgraph isomorphism from G to G′, denoted
by G ⊑ G′. Accordingly, G′ is called a super-graph of
G (G′ ⊒ G). Due to its importance for this article, we
here recite the definition of a subgraph isomorphism.

Definition 2.1. (Subgraph Isomorphism) A sub-
graph isomorphism is an injective function f : V (G) →
V (G′), such that

1. ∀u ∈ V (G), l(u) = l′(f(u)), and

2. ∀(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′) and l(u, v) =
l′(f(u), f(v)),

where l and l′ are the label function of G and G′,
respectively. f is called an embedding of G in G′.

Given a graph database G, we denote by GG1
the

number of graphs in G of which G is a subgraph and
by GG0

the number of graphs in G of which G is not a
subgraph. GG1

is called the (absolute) support. A graph
G is frequent if its support is no less than a minimum
support threshold, σ. Hence, the frequent graph is a
relative concept: whether or not a graph is frequent
depends on the value of σ and on the number of elements
|G| contained in G.

2.1 Combinatorial optimization problem Fea-
ture selection among frequent subgraphs can be defined
as a combinatorial optimization problem. We denote by
D the full set of features, which in our case will corre-
spond to the frequent subgraphs generated by gSpan.
When using these features to predict the class member-
ship of individual graph instances, clearly, only a subset
E ⊆ D of features will be relevant. We denote the rel-
evance of a feature set for class membership by q(E),
where q is a quality criterion measuring the discrimi-
native power of E . It is computed by restricting the
dataset’s representation to the features in E . We then
formulate feature selection as:

D‡ = arg max
E⊆D

q(E) s.t. | E | ≤ s(2.1)

where | · | computes the cardinality of a set and s is the
maximally allowed number of selected features.

The optimal solution of this problem would require
us to search all possible subsets of features exhaustively.
Due to the exponential number of all feature combina-
tions this approach is prohibitive for large feature sets
like frequent subgraphs. The common remedy is to re-
sort to heuristic alternatives, the solutions of which can-
not be guaranteed to be globally optimal or even close
to the global optimal solution. Hence, the key point
in this article is to employ a heuristic approach which
does allow for these quality guarantees, namely a greedy
strategy which achieves near-optimal results.

2.2 Feature Selection and Submodularity As-
sume that we are measuring the discriminative power
q(E) of a feature set E in terms of a quality function
q. A near-optimality solution is reached for a submod-
ular quality function q when used in combination with
greedy feature selection. Greedy forward feature selec-
tion consists in iteratively picking the feature that – in
union with the features selected so far – maximises the
quality function q over the prospective feature set. In
general, this strategy will not yield an optimal solution,
but it can be shown to yield a near-optimal solution if
q is submodular:

Definition 2.2. (Submodular set function)
A quality function q is said to be submodular on a set
D if for E ′ ⊆ E ⊆ D and X ∈ E

q(E ′ ∪ {X}) − q(E ′) ≥ q(E ∪ {X}) − q(E)(2.2)

If q is submodular and we employ greedy forward
feature selection, then we can exploit the following
theorem from [24]:

Theorem 2.1. If q is a submodular, non-decreasing set
function on a set D and q(∅) = 0, then greedy forward

feature selection is guaranteed to find a set of features
E† ⊆ D such that

q(E†) ≥
(

1 − 1

e

)

max
E⊆D: |E|=s

q(E) ,(2.3)

where s is the number of features to be selected.

As a direct consequence, the result from greedy
feature selection achieves at least

(

1 − 1
e

)

≈ 63% of the
score of the optimal solution to the feature selection
problem. This property is referred to as being near-
optimal in the literature (e.g. [14]).

v 0
X

a

b

b

a

X

Z Y

v 1

v 2 v 3

v 0
X

a

b

b

a

X

Z Y

v 1

v 2 v 3

backward extension

v 0
X

a

b

b

a

X

Z Y

v 1

v 2 v 3

forward extension

Figure 1: gSpan: Rightmost Extension

2.3 gSpan If we found a useful submodular criterion
for feature selection on frequent subgraphs, we could
yield a near-optimal solution to problem (2.1). But
how do we determine the frequent subgraphs in the
first place? For this purpose, we use the frequent
subgraph algorithm gSpan [39], which we will outline
in the following.

The discovery of frequent graphs usually consists of
two steps. In the first step, we generate frequent sub-
graph candidates, while in the second step, we check the
frequency of each candidate. The second step involves a
subgraph isomorphism test, which is NP-complete. For-
tunately, efficient isomorphism testing algorithms have
been developed, making such testing affordable in prac-
tice. Most studies of frequent subgraph discovery pay
attention to the first step; that is, how to generate as
few frequent subgraph candidates as possible, and as
fast as possible.

The initial frequent graph mining algorithms, such
as AGM [16], FSG [23] and the path-join algorithm [35],
share similar characteristics with the Apriori-based
itemset mining [1]. All of them require a join opera-
tion to merge two (or more) frequent substructures into
one larger substructure candidate. To avoid this over-
head, non-Apriori-based algorithms such as gSpan [39],
MoFa [3], FFSM [15], and Gaston [25] adopt the
pattern-growth methodology, which attempts to gen-
erate candidate graphs from a single graph. For each

discovered graph G, these methods recursively add new
edges until all the frequent supergraphs of G have been
discovered. The recursion stops once no more frequent
graph can be generated.

gSpan introduced a sophisticated extension method,
which is built on a depth first search (DFS) tree. Given
a graph G we label the root, i.e. the starting vertex of
the DFS tree, as v0, and the last visited vertex as vn.
vn is also called the rightmost vertex. Consequently,
the straight path from v0 to vn is the rightmost path.
Figure 1 shows an example. The darkened edges form
a DFS tree. The vertices are discovered in the order
v0, v1, v2, v3, thus v3 is the rightmost vertex. The
rightmost path is (v0, v1, v3).

This method, called rightmost extension, restricts
the extension of new edges in a graph as follows: For
a given graph and a DFS tree, a new edge e can be
added between the rightmost vertex and other vertices
on the rightmost path (backward extension), or it can
introduce a new vertex originating from a vertex on
the rightmost path (forward extension). As we do not
allow duplicate connections, the only legal backward
extension candidate of the graph in Figure 1 is (v3, v0).
The forward extension candidates can be edges from v3,
v1, or v0 introducing a new vertex. Since there may
be multiple DFS trees for one graph, gSpan establishes
a set of rules to select one of them as representative
so that the backward and forward extensions will only
take place in one DFS tree. One of those rules is the
restriction of newly generated edges to the vertices along
the rightmost path. Another rule, the minimality test,
checks whether the currently examined graph has not
been treated before. For a detailed description of gSpan,
see [39].

Algorithm 2.1. gSpan(G, G, σ, S)
Input: Graph G, graph dataset G,

threshold σ, set of subgraphs S
Output: The set of frequent subgraphs S.

1: if G 6= dfs(G), then

2: return S // G is not minimal
3: insert G into S
4: set C to ∅
5: scan G once: find all the edges e such that G can

be rightmost extended to G ⋄r e
6: insert G ⋄r e into C and count its frequency
7: for each frequent G ⋄r e in C do

8: Call gSpan(G ⋄r e, G, σ, S)
9: done

10: return S

Algorithm 2.1 outlines the pseudocode of gSpan.
G ⋄r e denotes that an edge e extends graph G via

rightmost extension. Step 1 is the minimality test,
where dfs(G), the canonical form of graph G [39] is
compared to the edge order of G. Therefore, G is only
proceeded at the first encounter.

Once we have determined the frequent subgraphs
using gSpan, a natural way of representing each graph
G is in terms of a binary indicator vector of length |S|:

Definition 2.3. (Indicator vector) Given a graph
Gi from a dataset G and a set of frequent subgraph
features S discovered by gSpan. We then define an
indicator vector v(i) for Gi as

v
(i)
d =

{

1 if Sd ⊑ Gi (Sd is a subgraph of Gi)
0 otherwise

,

(2.4)

where v
(i)
d is the d-th component of v(i) and Sd is the

d-th graph in S.

2.4 Definition of CORK We now define our feature
selection criterion q for two-class problems. It will be
generalized to multi-class problems in Section 2.7.

Definition 2.4. Let G be a dataset of binary vectors,
consisting of two disjunct classes G = A∪B. Let
D denote a set of features of the data objects in G,
represented by indicator vector v(i) for graphs Gi ∈ G.

As we aim to separate the two classes, we pay
specific attention to pairs of inter-class instances with
the same pattern in the given feature set. These
instance pairs are correspondences:

Definition 2.5. (Correspondence) A pair of data
objects (v(i), v(j)) is called a correspondence in a set
of features indicated by indices U ⊆ {1, . . . , |D|} (or,
w.r.t. a set of features U) iff

(v(i) ∈ A) ∧ (v(j) ∈ B) ∧ ∀d ∈ U : (v
(i)
d = v

(j)
d),(2.5)

where v
(i)
d is the value of feature d in vector v(i).

Our quality criterion consequently punishes the
number of correspondences remaining for feature set D.

Definition 2.6. (CORK) We define a quality crite-
rion q, called CORK (Correspondence-based Quality
Criterion), for a subset of features E as

q(E) = (−1) ∗ number of correspondences in E(2.6)

Theorem 2.2. q is submodular.

Proof. For q to be submodular, adding feature X ∈ D
to a feature set E ′ ⊆ E ⊆ D has to increase q(E ′) at
least as much as adding feature X to E increases q(E).
This law of diminishing returns is obviously fulfilled if
removing a correspondence from E by adding feature X
also results in a correspondence being eliminated in E ′

by adding feature X.
Let us first state that an instance pair (v(i), v(j)),

that is a correspondence in E must also be a correspon-
dence in E ′. Note that the opposite is not necessarily
true.

In the following, let x be the index of feature X in D.
Whenever adding a feature X to E removes the above

correspondence from E , this means that v
(i)
x 6= v

(j)
x ,

since the other features in E must match. Therefore,
the two formerly corresponding feature patterns for
(v(i), v(j)) cannot match in E ′ ∪ {X} either. Thus,
if a feature X eliminates a correspondence from E ,
this very correspondence (possibly together with further
correspondences) is also removed from E ′, and we satisfy
the submodularity condition of Equation 2.2. ¤

This submodular criterion can be turned (by adding
the constant |A| · |B|) into a submodular set function
fulfilling the conditions of Theorem 2.1.

2.5 Computation of CORK The CORK value for
one feature X in a dataset of the classes A and B can be
computed as the number of inter-class pairs of objects
that both contain X (with AX1

instances in A and BX1

instances in B) or that both do not contain X (AX0
and

BX0
objects).

q({X}) = − (AX0
· BX0

+AX1
· BX1

)(2.7)

For feature sets CORK can be efficiently computed
by recursively dividing the dataset into equivalence
classes:

Definition 2.7. (Equivalence Classes) Given a
two-class dataset G = A∪B represented as binary
indicator vectors over the feature set U . Let P ⊆ 2U be
the set of all unique binary indicator vectors occurring
in G with |P| = l. Then the equivalence class of an
indicator vector v(i) ∈ G is defined as the set

{v(j)|v(j) ∈ G ∧ ∀ d ∈ U : v
(i)
d = v

(j)
d }(2.8)

Each of these unique indicator vectors Pc forms an
equivalence class Ec(c ∈ {1, ..., l}) containing all graphs
of with an indicator vector equal to Pc.

We denote by

APc
=

∣

∣

∣
{v(i) ∈ A | ∀d ∈ U : v

(i)
d = Pc[d]}

∣

∣

∣
(2.9)

the number of instances of equivalence class Ec in A
and by

BPc
=

∣

∣

∣{v(i) ∈ B | ∀d ∈ U : v
(i)
d = Pc[d]}

∣

∣

∣(2.10)

the number of instances of equivalence class Ec in B.

In each greedy iteration step, those equivalence
classes can be efficiently split into hits and misses. The
CORK score for a feature set U ⊆ {1, . . . , |D|} can thus
be calculated by adding up the correspondences of all
occurring equivalence classes Ec in U :

q(U) = (−1) ·
(

∑

Pc∈P

APc
· BPc

)

(2.11)

We can now use q for greedy forward feature selec-
tion on a pre-mined set S of frequent subgraphs in G and
receive a result set S† ⊆ S of discriminative subgraphs
with a guaranteed quality bound. However, the success
of S† strongly depends on the choice of the minimum
support σ. If σ is chosen too low, we can quickly gener-
ate too many features for the selection step to finish in
a reasonable runtime. Setting σ too high can cause the
loss of all informative features. In the following, we will
introduce a selection approach which directly mines only
discriminative subgraphs, which is nested in gSpan and
which can act independently from a frequency thresh-
old.

2.6 Pruning gSpan’s search space via CORK

gSpan exploits the fact that the frequency of a subgraph
S ∈ S is an upper bound for the frequency of all of its
supergraphs T ⊒ S (all subgraphs containing S) when
pruning the search space for frequent subgraphs. We
will show how to derive an upper bound for the CORK-
values of all supergraphs of a subgraph S, which allows
us to further prune the search space.

Let us emphasize that this technique can also be
applied in other graph miners which employ a kind
of hierarchical subgraph pattern growth [3, 15, 25] or
Apriori-based join [16, 23, 15]. The only necessary
pre-condition for including CORK as pruning step is
a supergraph relation (T ⊒ S) for patterns mined at a
later stage.

Theorem 2.3. Let S, T ∈ S be frequent subgraphs, and
T be a supergraph of S. Let AS1

denote the number
of graphs in class A that contain S (‘hits’), AS0

the
number of graphs in A that do not contain S (‘misses’)
and define BS0

, BS1
analogously. Then

q({T}) ≤ q({S}) + max







AS1
· (BS1

−BS0
)

(AS1
−AS0

) · BS1

0







(2.12)

original hits: A B
S 0 1 0 1

↓ Eliminate hits in A,
(2.14): T 0 0 1

or eliminate hits in B, ↓
(2.15): T 0 1 0

original hits or keep all hits.
(un-modified): A B
(2.7): S ⇔ T 0 1 0 1

Figure 2: Possible change scenarios for the number
of hits of supergraphs T for given hit distributions of
S ⊑ T : Hits (“1”) can change into misses (“0”). The
resulting extreme cases are illustrated for eliminating
all hits from A (2.14) or from B (2.15), or for the case
where keeping all hits is the best choice as in (2.7)

Proof. We note that the gSpan pruning criterion is also
valid for each class:

AS1
≥ AT1

∧BS1
≥ BT1

.(2.13)

If we want to asses how many correspondences may
be eliminated by T , we can take into account, that
T can never create new hits but can only decrement
the number of hits in both classes. Naturally, the best
improvement for S is made, when T eliminates all hits
in one of the two classes and maintains the hits in the
other class. This is illustrated in the first two cases of
Figure 2. When all hits of T disappear from A, AS0

increases by AS1
and thus:

q({T}) = − ((AS0
+AS1

) · BS0
+ 0 · BS1

) =

= −(AS0
+AS1

) · BS0
= − |A| · BS0

(2.14)

The same holds for the elimination of all hits from B:

q({T}) = − (AS0
· (BS0

+BS1
) + AS1

· 0) =

= −AS0
· (BS0

+BS1
) = −AS0

· |B|(2.15)

Finally, we observe a third scenario when T does not
cause any change at all, i.e., q({T}) = q({S}). This
provides an additional bound if the decrease of hits
in any class results in more correspondences than for
S alone (cf. the last case in Figure 2). Our maximal
CORK value of T is thus

q({T}) ≤ max







− |A| · BS0

−AS0
· |B|

q({S})







=

eq. 2.7
= q({S}) + max







AS1
· (BS1

−BS0
)

(AS1
−AS0

) · BS1

0







¤(2.16)

We can now use inequality (2.12) to provide an upper
bound for the CORK values of supergraphs T of a given
subgraph S and exploit this information for pruning the
search space in a branch-and-bound fashion.

Inequality (2.12) can be directly applied in the first
iteration of greedy selection. For later iterations of
greedy selection, we can define a similar bound on a
set of features.

The bound of Equation 2.12 then extends to:

q(U ∪ {T}) ≤ q(U ∪ {S}) +(2.17)

∑

Pc∈P

max







APc ∪ {S1} ·
(

BPc ∪ {S1} −BPc ∪ {S0}

)

(

APc ∪ {S1} −APc ∪ {S0}

)

· BPc ∪ {S1}

0







The main difference to (2.12) is that in later itera-
tions of greedy selection, we only have to consider those
graphs which are part of a correspondence (rather than
all graphs). We can thus define an additional pruning
bound for subgraph enumeration:

Definition 2.8. (CORK Upper Bound) Given a
subgraph set U and a subgraph S. The CORK value of
any supergraph T of S(T ⊒ S) cannot exceed the bound
MAXCORK(U , S):

MAXCORK(U , S) = q(U ∪ {S}) +(2.18)

∑

Pc∈P

max







APc ∪{S1} ·
(

BPc ∪{S1} −BPc ∪{S0}

)

(

APc ∪{S1} −APc ∪{S0}

)

· BPc ∪{S1}

0







.

Algorithm 2.2. gSpanCORK(G, σ = 0)
Input : Graph set G, optional threshold σ.

Output: Set of discriminative (frequent) subgraphs S†.

1: S† = ∅
2: S = best subgraph for q(S† ∪ {S}) // gSpan call

3: if q(S† ∪ {S}) > q(S†), then

4: S† = S† ∪ {S} // S is an improvement
5: goto 2

6: return S†

The new feature mining process is defined in Al-
gorithm 2.2:1 We initialize the set of selected sub-
graphs as an empty set S† and follow a recursive op-
eration. In step 2, we require the next best subgraph
S with q(S† ∪ {S}) = maxT∈S q(S† ∪ {T}). It can
be obtained by running gSpan, always maintaining the
currently best subgraph S according to q. Whenever
in the course of mining, we reach a subgraph T with

1An implementation of gSpanCORK is available at
http://www.dbs.ifi.lmu.de/∼thoma/pub/sam2010/sam2010.zip .

MAXCORK(S†, T) ≤ q(S† ∪ {S}), we can prune all
branches originating from T . Else, the candidate sub-
graph S might still be replaced by any of T ’s children.
As long as the resulting subgraph S actually improves
q(S†), it is accepted as a discriminative feature and we
start looking for the next best subgraph.

In contrast to the definition in Equation 2.1, this
setting does not require a selection threshold s for
the maximal number of features (subgraphs) since it
automatically terminates when no new discriminative
subgraph is found. In our experiments, we further
noticed that on most datasets, CORK provides such
a strong bound that it is even possible to omit the
support threshold σ and still receive a discriminative
set of (not necessarily frequent) subgraphs within a
reasonable amount of time.

2.7 CORK for multi-class problems So far, we
have restricted our attention to settings with two
classes. Now, we will show how to extend gSpanCORK

to multi-class problems. The key challenges here are
to extend CORK’s definition for handling multiple
classes, and to then prove that this multi-class CORK
(mcCORK) is still submodular and that it can still be
integrated into gSpan.

Definition 2.9. (pairwise CORK) Assume we are
given a graph dataset G := ∪K

i=1 Ki with K disjunct
classes. qi,j(U) shall denote the CORK value restrict-
ing the dataset to classes Ki and Kj for a feature set
U . Then pairwise multi-class CORK (mcCORKpw) is
defined as

mcCORKpw(U) :=
K−1
∑

i=1

K
∑

j=i+1

qi,j(U)(2.19)

= (−1) ·
∑

Pc∈P

K−1
∑

i=1

K
∑

j=i+1

Ki,Pc
·Kj,Pc

,

i.e., as the sum over CORK values for all pairs of
classes, where Ki,Pc

is the number of matches of pattern
Pc for U in class i and Kj,Pc

is the number of Pc’s
matches in class j, respectively.

Note that we restrict our definition to non-
overlapping class labels. Of course, if a graph G be-
longs to multiple classes, qi,j(U) can be modified such
that G is not considered when calculating the overall
occurrences per equivalence class. This can be achieved
using an additional counter for each equivalence class
which is raised whenever a hit also belongs to another
class and which is later subtracted from the equivalence
class count. However, as structured output is not the

focus of this paper, we will pause this line of thought
for now.

Since pairwise CORK requires a quadratic runtime
in the number of classes, we now show the ranking
equivalence of pairwise CORK with the linear variant
1-vs.-rest CORK.

Definition 2.10. (1-vs.-rest CORK) Assume we
are given a graph dataset G := ∪K

i=1 Ki with K disjunct
classes. qi(U) shall denote the CORK value for a
dataset consisting of class Ki and its complement
(K¬i = ∪K

j=1,j 6=i Kj) as second class for a feature set
U . Then 1-vs.-rest multi-class CORK (mcCORK1vr) is
defined as

mcCORK1vr(U) :=

K
∑

i=1

qi(U)(2.20)

= (−1) ·
∑

Pc∈P

K
∑

i=1

Ki,Pc
·K¬i,Pc

.

Lemma 2.1. 1-vs.-rest CORK and pairwise CORK re-
sult in the same ranking of feature sets.

Proof. As the classes i to K are disjunct and since
CORK does not use relative hit frequencies, the pairwise
approach can be reduced to 1-vs.-rest as follows:

mcCORK1vr(U) = (−1) ·
∑

Pc∈P

K
∑

i=1

Ki,Pc
·K¬i,Pc

= (−1) ·
∑

Pc∈P

K
∑

i=1



Ki,Pc
·



−Ki,Pc
+

K
∑

j=1

Kj,Pc









= (−1) ·
∑

Pc∈P





K
∑

i=1

K
∑

j=1

Ki,Pc
·Kj,Pc

−
K

∑

i=1

K2
i,Pc





= (−1) ·
∑

Pc∈P



2 ·
K−1
∑

i=1

K
∑

j=i+1

Ki,Pc
·Kj,Pc





= 2 · mcCORKpw(U)

¤

We next show the submodularity of this multi-class
extension of CORK.

Theorem 2.4. mcCORK is submodular.

Proof. Both pairwise and 1-vs.-rest mcCORK are sums
of pairwise CORK values. As pairwise CORK was
shown to be submodular in Theorem 2.2, mcCORK is a
sum of submodular functions. As submodular functions
are closed under addition, mcCORK is also submodular.
¤

For the standard application of CORK-based
greedy feature selection, we can hence replace two-class
CORK by multi-class CORK, and perform multi-class
feature selection with the same optimality guarantees.
The question that remains to be answered is whether we
can still perform nested feature selection with CORK
in multi-class settings, that is whether we can integrate
multi-class CORK into gSpan. For this purpose, we re-
quire a bound akin to equation (2.18). Since this bound
is computed for all encountered frequent subgraphs, we
define the bound for the faster 1-vs.-rest mcCORK vari-
ant.

Theorem 2.5. Let MAXCORK(i)(U , S) denote the
CORK upper bound for the subgraph set U and
a subgraph S for class Ki and its complement
K¬i = ∪K

j=1,j 6=i Kj. Then

mcCORK1vr(U ∪{T}) ≤
K

∑

i=1

MAXCORK(i)(U , S) ,

(2.21)

where T is any supergraph of S (T ⊒ S).

Proof. mcCORK(U ∪{T}) is a sum of pairwise CORK
values qi(U ∪{T}), each of which can be upper-bounded
by MAXCORK(i)(U , S). As a consequence, the sum of
these upper bounds

K
∑

i=1

MAXCORK(i)(U , S)(2.22)

provides an upper bound for the sum of pairwise CORK
values

K
∑

i=1

qi(U ∪{T}) ,(2.23)

that is an upper bound for mcCORK1vr(U ∪{T}). ¤

Inequality (2.21) can be used for pruning subtrees
in gSpan’s DFS search tree, if the upper bound on
mcCORK in this subtree is less than the subgraph with
maximum mcCORK score encountered so far.

2.8 Using pre-mined subgraphs The gSpanCORK

algorithm introduced in Section 2.6 is intended to speed
up subgraph enumeration procedures which aim at
generating features for classification. However, some
datasets already allow for fast subgraph enumeration
even without explicitly giving additional pruning crite-
ria such as CORK. Furthermore, one could choose to
use an alternative kind of enumeration, not necessarily

targeting frequent subgraphs [19, 31, 36]. We now show
that given an enumeration of subgraphs, we can con-
vert Algorithm 2.2 into an offline approach depicted in
Algorithm 2.3.

Algorithm 2.3. offline selectCORK(S)
Input : List of subgraphs S with occurrence

patterns v
(i)
index of S for all i ∈ {1, . . . , |G|}

Output: Set of discriminative subgraphs S†.

1: Generate DFS Codes for the graphs of S
2: Sort S lexicographically in ascending order
3: N = integer array of size |S| // map siblings
4: Fill N s.t. N [i] is the position of the next

element in N of which S[i] is not a prefix

5: S† = ∅
6: S = null // next best subgraph
7: i = 0
8: while i < |S| do

9: if q(S† ∪ {S[i]}) > q(S† ∪ {S}), then

10: S = S[i]

11: if MAXCORK(S†,S[i]) ≤ q(S† ∪ {S}), then

12: i = N [i] // prune the children of S[i]
13: else

14: i++

15: done

16: if q(S† ∪ {S}) > q(S†), then

17: S† = S† ∪ {S}
18: goto 6

19: return S†

We first require a conversion of the subgraph enu-
meration into the canonical form of DFS Codes, such
that the subgraphs can be sorted in the same lexico-
graphical order as used by the gSpan traversal (step 2).
Then we use this sorting to form a mapping N of each
subgraph at sorting position i to the first subgraph in-
dex > i which does not have the DFS Code of S[i] as a
prefix (step 4). If S is the result of a gSpan run, N sim-
ply points from any DFS Code to the next DFS Code
with a lower or equal number of edges. For treating
other enumerations, an actual prefix test may become
necessary. We now know that all elements of S from
i + 1 to N [i] are children of S[i] in the DFS Search
Tree traversal, and thus supergraphs of S[i]. While now
traversing S, looking for the next best subgraph accord-
ing to CORK, in step 12 we skip those graphs if they can
be pruned according to the CORK Upper Bound (2.18).

Using pre-mined subgraphs instead of applying the
nested approach of Algorithm 2.2 can be a strong
runtime advantage over gSpanCORK if

1. the number of frequent subgraphs is relatively low,
since then the complete enumeration can be faster

than repeated enumerations of bounded DFS code
trees,

2. or if the frequent subgraphs are especially large,
thus they repeatedly slow down the DFS code
minimality test.

3 Related Work

In this article, we combine two components to achieve
our goal of efficient feature selection among frequent
subgraphs with quality guarantees: i) frequent subgraph
mining and ii) a submodular quality function. We
review related work on both of these components in the
following.

3.1 Discriminative Subgraph Mining Discrimi-
native frequent subgraph mining has evolved into a
major direction in graph mining research over recent
years. We here summarize prominent contributions to
this branch of graph mining.

LeapSearch [38] speeds up subgraph mining by
heuristically exploiting the fact that structurally similar
subgraph patterns tend to have similar frequencies and
statistical significance scores, resulting in orders of
magnitude speed-up in comparison with state-of-the-art
methods.

gBoost [22, 29], is a nested boosting approach,
which repeatedly mines a set of frequent subgraphs
while optimizing an LPBoost problem. This becomes
feasible by iteratively refining pruning bounds which
restrict the search space. In [28] Saigo et al. propose
a faster version of gBoost using partial least squares
regression on frequent subgraphs (gPLS).

The MoSS subgraph mining approach by Borgelt
et al. [4] explicitly mines subgraphs which are frequent
in the target class and infrequent in the control class.
In [17] Jin et al. propose COM, a method for discrimina-
tive mining frequent subgraphs based on co-occurrence
patterns. Using only one subgraph mining cycle, they
iteratively grow a set of rules from the subgraphs mined
so far, which is also designed for identifying a target
class. Comparatively to MoSS they also use a mini-
mum support threshold for rules involving the target
class and a maximum support threshold for rules with
patterns matching the control class.

An excellent wrapper approach to the problem of
discriminate frequent subgraph mining was published
by Koji Tsuda [33]. He uses the LASSO algorithm for
mining salient features while exploiting pruning criteria
on the used search path. Our approach differs from
Tsuda’s in two ways: Our feature selection method is a
filter method and hence independent from the choice of
the classifier and we can provide optimality guarantees

for our solution.
Another class of discriminative pattern mining ap-

proaches for graph mining was proposed by [41] and [13]
who use a decision-tree-like classifier. For a given
dataset, [13] iteratively mine for the most meaningful
feature according to the information gain, and split this
dataset into two separate problems. They proceed until
the subproblems are solved or are of a smaller size than
a given threshold.

3.2 Related work on correspondences While we
here present the first integration of a submodular qual-
ity function into the frequent subgraph mining process,
there is related work on the quality function we em-
ploy. Correspondences were referred to as inconsisten-
cies in Dash et al. [9] and used to define another, non-
submodular quality criterion. In [5] Boros et al. derived
CORK from families of Hamming distance measures as

θ(U) =
∑

v(i)∈A, v(j)∈B

{

1 if ∃ d ∈ U : v
(i)
d 6= v

(j)
d

0 else

(3.24)

They recognized its beneficial greedy selection proper-
ties and evaluated other, more involved submodular set
functions on small datasets with at most 125 features.
We examined whether one of these other submodular
set functions could be integrated into gSpan for effi-
cient subgraph mining. However, it turned out that
only CORK can be represented in terms of equivalence
classes which allows for its efficient computation.

4 Experimental Evaluation

In this section, we conduct experiments to examine the
effectiveness and efficiency of CORK in finding discrim-
inative frequent subgraphs. After introducing the used
graph datasets we will compare CORK to a number of
other filter approaches. We first use the number of fea-
tures selected by CORK as parametrization for all fil-
ters and later analyze how the competitors perform for
a larger variety of selected features. We continue with a
runtime analysis of the nested algorithm gSpanCORK,
followed by an improvement recommendation involving
an additional threshold. We conclude the experimen-
tal section with a comparison to some of the wrapper
approaches introduced in Section 3.1.

4.1 Datasets To evaluate our algorithm, we em-
ployed the 11 real-world datasets summarized in Ta-
ble 1:2

2All datasets (overall size 23.4 MB) are available at
http://www.dbs.ifi.lmu.de/∼thoma/pub/sam2010/data.zip .

Dataset G |G| |V (G)| |E(G)| |LV | |LE | K
NCI1 4117 29.8 32.3 43 3 2
NCI33 3298 30.1 32.6 39 3 2
NCI41 3108 30.2 32.8 28 3 2
NCI47 4068 29.8 32.4 44 3 2
NCI81 4812 29.1 31.6 44 3 2
NCI109 4149 29.5 32.1 44 3 2
NCI145 3911 29.6 32.1 37 3 2
NCI330 4608 24.9 26.6 47 3 2
DD 1178 284.3 715.7 82 1 2
DD6C 664 357.9 909.7 63 1 6
AIDS 5621 27.6 29.7 44 4 3

Table 1: Topologies of used graph sets:

|G|: size of the dataset
|V (G)|: average number of vertices per graph
|E(G)|: average number of edges per graph
|LV |: number of vertex labels
|LE |: number of edge labels

K: number of classes

• Anti-cancer screen datasets (NCI): we use 8 data-
sets collected from the PubChem website as in [36].
They are selected from the bioassay records for
cancer cell lines. Each of the anti-cancer screens
forms a classification problem, where the class
labels on these datasets are either active or inactive
in a screen for anti-cancer activity. The active
class is extremely rare compared to the inactive
class. For a detailed description, please refer to [36]
and the website, http://pubchem.ncbi.nlm.nih.gov.
Each dataset can be retrieved by submitting queries
in the above website.

In order to have a fair comparison on those unbal-
anced datasets, each dataset has been re-sampled
by forming 5 data subsets with balanced classes,
where excessive instances from the larger class have
been removed.

• Dobson and Doig (DD) [11] molecule data set: it
consists of 1178 proteins, which can again be di-
vided up into two classes: 691 enzymes and 487
non-enzymes. The vertices of an extracted graph
represent the Cα atoms of the amino acids of the
corresponding protein. Together with all distinct
special conformations, they sum up to 82 vertex la-
bels and are connected if they are at least within
6 Å of each other in the 3D protein structure. In
order to retrieve edge labels, discretizing those dis-
tances would be possible, but prone to arbitrary
thresholding. Consequently, edge labels are omit-
ted. Even in this compacted form, with an aver-

EC Name Count
1 Oxidoreductases 145
2 Transferases 175
3 Hydrolases 214
4 Lyases 66
5 Isomerases 37
6 Ligases 27

Table 2: DD6C class distribution: Number of instances
of the DD dataset by EC number.

age size of 285 vertices and 716 edges, these pro-
teins are larger and more densely connected than
the molecules from the NCI screening.

• EC-number groups for DD (DD6C): We further-
more use the DD dataset for differentiating the ex-
amples of the enzymes class into their EC num-
bers [2], a hierarchical categorization system for en-
zymes. We distinguish between the 6 basic classes,
thus transferring the dataset DD into a new dataset
DD6C consisting of 664 enzymes that could be
mapped to an EC number. Among the remain-
ing enzymes 25 could not be mapped and 2 caused
duplicate matches and were thus excluded from
DD6C. The topology of this new dataset reveals
that the non-enzymes in the original DD dataset
appear to be smaller on average than the enzymes
which also appear in the DD6C dataset. We thus
consider the DD6C problem as harder than the DD
problem, not only because of the additional classes,
but also because of less pronounced variations be-
tween the classes. The class distribution is summa-
rized in Table 2.

• AIDS antiviral screen data (AIDS): it contains
the activity test information of 43, 850 chemical
compounds. Each chemical compound is labeled
as either active (CA), moderately active (CM)
or inactive (CI) with respect to the HIV virus.
Among these compounds, 423 belong to CA,
1081 are of CM, and the rest is in Class CI.
This dataset is publicly available on the web-
site of the Developmental Therapeutics Program
(http://dtp.nci.nih.gov/docs/aids/aids data.html).
As with the NCI datasets, we have transformed
this data into a slightly more balanced form of 10
splits, combining the active (CA) and moderately
active (CM) compounds with samples of the
inactive compounds (CI). The average number of
compounds per split is shown in Table 1.

In the experiments on these datasets, our CORK
procedure selected between 11 and 66 subgraphs of sizes

varying between 2 and 12 vertices (=atoms or amino
acids), approximately 5% of which contain cycles. This
means that subgraph mining procedures restricted to
sub-classes of graphs like trees [19] or graphs of re-
stricted size [37, 26, 36, 31], which have been developed
for less complex outputs and faster runtimes, would not
enable us to produce results similar to those of gSpan,
the graph mining approach we use.

4.2 Comparison to filter approaches CORK is a
filter method. Hence in the first experiment, we assessed
whether CORK selects subgraphs that generalise well on
classification benchmarks, comparing it to state-of-the-
art filter methods for subgraph selection.

We use 10-fold cross-validation for classification.
Each dataset is partitioned into ten parts evenly. Each
time, one part is used for testing and the other nine
are combined for frequent subgraph mining, feature se-
lection and model learning. In our current implemen-
tation, we use LIBSVM [7] to train a C-SVM classifier
based on the selected features. C is optimised within a
range of seven values {10−6, 10−4, 10−2, 1, 102, 104, 106}
/ (size of the dataset) by cross-validation on the train-
ing dataset only. We employ a linear kernel on the se-
lected graph features, and normalise the resulting kernel

matrix KM via KMnorm(i, j) = KM(i,j)√
KM(i,i)KM(j,j)

. We

repeat the whole experiment 10 times and we report
average results from these 10 runs.

We compare CORK to four state-of-the-art filter
methods. Three of them are rankers using Pearson’s
Correlation Coefficient, the Delta Criterion which is
closely related to MoSS [4] and Information Gain as a
ranking criterion, and the fourth comparison partner is
the Sequential Cover method [10].

Pearson’s Correlation The Pearson’s Correlation
Coefficient (PC) is commonly used in microarray data
analysis [34, 12], where discriminative genes for phe-
notype prediction need to be selected from thousands
of uninformative ones. As a selection criterion, the
squared correlation between the occurrence pattern and
the class label pattern (i.e., 1 to K) is calculated for
each feature independently and a pre-defined number of
the top-scoring features are selected.

Delta criterion The difference among subgraph
frequencies in different classes is another popular fea-
ture selection criterion. For instance, the MoSS mining
approach by Borgelt et al. [4] is designed for pharmaco-
logical screenings which specifically aim for characteriz-
ing the positive class. Thus, the idea is to accept only
subgraphs which are frequent in the positive group, and
infrequent in the complement. From this, we derive the

following delta criterion as

qdelta(S) = max (AS1
−BS1

,BS1
−AS1

) ,(4.25)

which can be used as a ranker criterion, in a similar
way as PC. We extend it to multi-class by taking the
difference between the number of hits in the class with
the maximum frequency and the remaining average hit
count per class:

qdelta MC(S) = max
i∈{1,...,K}



Ki,S1
− 1

K − 1

K
∑

j=1,j 6=i

Kj,S1





(4.26)

Information Gain As a final ranking method,
we compare CORK to the Information Gain (IG), an
entropy-based measure, which is frequently used in
feature selection [40, 27]:

qIG(S) =(4.27)

∑

i∈{0,1}

K
∑

j=1

p(S = i, C = Kj) log2

p(S = i, C = Kj)

p(S = i) · p(C = Kj)
,

where C is the class variable of the tested objects.
Sequential Cover Algorithm 4.1 outlines the se-

quential cover method (SC). Frequent graphs are first
ranked according to their relevance measure such as in-
formation gain, Fisher score, or confidence. In this ex-
periment, we use confidence as the relevance measure:

qconf(S) = max
i∈{1,...,K}

Ki,S1
∑K

j=1 Kj,S1

(4.28)

If a top-ranked frequent subgraph covers some of the
uncovered training instances, it will be accepted and re-
moved from the feature set S. The algorithm terminates
if either all instances are covered or S becomes empty.
SC can be executed multiple times to make several cov-
ers on the instances.

Algorithm 4.1. Sequential Cover (SC)

Input: Set of frequent subgraphs S, training dataset G
Output: Selected set of subgraphs S†

1: Sort subgraphs in S in decreasing order of the
chosen relevance measure;

2: while (G 6= ∅ ∧ S 6= ∅)
3: S = first subgraph of S;
6: S = S \{S};
4: if S covers at least one graph in G then

5: S† = S† ∪ {S};
7: for each graph G ∈ G covered by S
8: G = G \{G};
9: return S†

PC Delta IG SC CORK

Dataset

∣

∣

∣S†
∣

∣

∣ AUC Std AUC Std AUC Std AUC Std AUC Std

NCI1 57 0.682 0.052 0.724 0.025 0.712 0.024 0.690 0.026 0.769 0.023
NCI33 53 0.682 0.053 0.718 0.027 0.698 0.027 0.681 0.029 0.759 0.028
NCI41 49 0.681 0.058 0.722 0.023 0.748 0.028 0.732 0.037 0.763 0.027
NCI47 56 0.714 0.052 0.728 0.022 0.698 0.026 0.687 0.025 0.779 0.024
NCI81 64 0.668 0.068 0.711 0.022 0.731 0.022 0.720 0.024 0.770 0.022
NCI109 56 0.699 0.061 0.716 0.026 0.749 0.025 0.719 0.028 0.774 0.023
NCI145 55 0.684 0.070 0.717 0.029 0.733 0.035 0.698 0.027 0.773 0.029
NCI330 66 0.692 0.044 0.699 0.027 0.676 0.028 0.660 0.025 0.769 0.023
DD 15 0.605 0.051 0.800 0.038 0.674 0.048 0.694 0.039 0.778 0.038

(a) Classification AUC values (and standard deviation (Std)) for the 8 NCI graph datasets and on the two-class DD graphs.

PC Delta IG SC CORK

Dataset

∣

∣

∣S†
∣

∣

∣ Val. Avg Std Avg Std Avg Std Avg Std Avg Std

DD6C 14
ÂUCpw

Accuracy

0.719
0.341

0.018
0.047

0.703
0.324

0.015
0.033

0.715
0.323

0.009
0.099

0.715
0.355

0.027
0.044

0.723

0.359

0.018
0.050

AIDS 55
ÂUCpw

Accuracy

0.829
0.733

0.001
0.001

0.829
0.733

0.001
0.001

0.829
0.733

0.001
0.001

0.829
0.733

0.002
0.001

0.832

0.735

0.006
0.005

(b) Multi-class average pairwise AUC estimates (ÂUCpw) and classification accuracies (both with standard deviation (Std)) for
filter approaches on the DD6C and the AIDS graphs

Table 3: Classification evaluation of filter methods (PC = Pearson’s Correlation Coefficient, Delta = the Delta
method, IG = Information Gain, SC = Sequential Cover, CORK = Correspondence-based Quality Criterion).

The number of features
∣

∣

∣S†
∣

∣

∣ was determined by CORK selection on frequent subgraphs with σ = 10%; best

results are shown in bold.

The results of the filter experiments are displayed in
Table 3. Note that for better comparability, the num-
ber of selected features for all experiments was deter-
mined via CORK. Potential disadvantages for the other
selection approaches are addressed in the next section.

Table 3a shows the number of selected subgraphs
∣

∣

∣S†
∣

∣

∣

among frequent subgraphs of σ 10%, together with the
average area under the receiver operating characteristic
curve (AUC) and its standard deviation (Std) over 100
conducted experiments. We observe that in all but one
dataset, CORK detects the best feature combination for
the two-class classification problems at hand.

Table 3b compares the multi-class filter selectors
on the multi-class datasets DD6C and AIDS by their
average pair-wise AUC estimate

ÂUCpw(G,U) =(4.29)

=
K

∑

i=1

∣

∣

{

dUi,j(Ga) = i | Ga ∈ Ki, j ∈ {1, . . . ,K} \ i
}∣

∣

(K − 1) · |G|

as the fraction of pairwise inter-class decisions in the
dataset G where the decision function dUi,j votes for
the correct class based on the selected subgraphs U .

For further orientation, we provide the classification
accuracy. As can be seen, CORK performs best for both
datasets, although there are no significant differences in
accuracy compared to other methods.

It is not surprising that in the vast space of inter-
dependent features spanned by frequent subgraphs, fea-
ture combinations are more valuable than the simple
ranking approach we used with Pearson’s Correlation,
the Delta method and the Information Gain. The Se-
quential Cover method takes into account that all in-
stances should be covered by the selected set of fea-
tures, yet, can never compete with CORK. We have
been rather surprised by the mightiness of the Delta
method since it actually scored better than Pearson Cor-
relation. However, the complexity of the problem obvi-
ously requires the consideration of the various features’
interdependence. CORK respects this interdependence
by iteratively picking the subgraph feature which opti-
mally complements the set of features selected so far (in
terms of resolving correspondences).

4.3 Other target sizes The number of selected fea-

tures
∣

∣

∣S†
∣

∣

∣ is an important parameter in feature selec-

Screening on selected number of features for NCI330

0 20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

Number of selected features

A
U

C CORK
PC
Delta
IG
SC

(a) NCI330 dataset (two classes)

Screening on selected number of features for DD6C

0 20 40 60 80 100

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

Number of selected features

A
cc

ur
ac

y CORK
PC
Delta
IG
SC

(b) Multi-class dataset DD6C

Figure 3: Screening of the feature quality over the

number of selected features
∣

∣

∣
S†

∣

∣

∣
for CORK selection,

Pearson’s Correlation, the Delta method, Information
Gain, and Sequential Cover Selection. The vertical
line marks the number of features originally chosen by
CORK.

tion. CORK suggests an automatic bound for the num-
ber of selected features, however, the selection proce-
dure can be terminated earlier or restarted for deter-
mining fewer or more features. In order to demonstrate
the fairness of our evaluation, Figure 3 displays screen-
ings over the number of selected features for the tested
filter approaches on the two-class problem NCI330 and
the multi-class problem DD6C. We see that the num-
ber of subgraphs selected by CORK does not represent
the optimal number of features for any of the criteria or
datasets. However, in all cases, the larger the feature
sets get, the smaller the increases in accuracy by adding
more features. Moreover, CORK returns the best re-
sults for all tested feature sizes above the recommended
number of features.

4.4 Experimental runtime analysis In our third
experiment, we evaluated the runtime performance of
nested feature selection, i.e. features are acquired dur-
ing mining, as opposed to un-nested feature selection
which takes place after mining. We run nested CORK
on two complete datasets (the DD dataset and the NCI1
screening in Figure 4) and record the number of corre-
spondences and the number of subgraphs examined per
iteration. Since previous mining experiments have been
handled on training subsets, the number of iterations is
slightly elevated (16 > 15 and 64 > 57) as opposed to
Table 3.

In the DD experiment (Figures 4a and 4c), we ob-
serve that in the beginning, we achieve a steep decrease
in the number of correspondences, whilst enumerating a
comparable number of subgraphs for each of the first 10
iterations and thus maintain an almost constant runtime
per iteration. In the end, CORK prunes a larger per-
centage of the enumerated subgraphs and the iterations
speed up. The enumeration stops when all instances
from the two classes are separated.

This attractive behaviour can be observed if there
exists a (small) subset of subgraph features that elim-
inates all correspondences. In the other, inseparable
case, CORK alone is not able to fully separate the two
classes. This does not present a problem in un-nested
feature selection, as the procedure simply ends when no
new useful features can be identified. However, in the
gSpan-nested setting, it may happen, that the complete
DFS search tree has to be searched in order to discover
that there is no better subgraph. This is illustrated in
Figures 4b and 4d, where the search space cannot be
completely resolved, with 33 correspondences remain-
ing.

A way out of this problem is to allow CORK to
terminate even if not all correspondences have been
resolved, i.e. to introduce a tolerance threshold on the
number of remaining correspondences.

4.5 Impact of tolerance threshold for corre-

spondences In our fourth experiment, we assessed the
impact of employing a tolerance threshold t that leads to
the termination of CORK, i.e. CORK feature selection
ends once the number of correspondences falls below
t. As demonstrated in Section 4.4, in later iterations on
inseparable datasets, expensive subgraph mining results
in relatively few resolved correspondences. In order to
improve the effectiveness of CORK and to prevent over-
fitting by meaningless features, we define a tolerance
threshold t on the number of correspondences that lead
to the termination of the nested mining procedure.

We used the same setting as for the validation
runs in Section 4.2. For showing the effect of the

2 4 6 8 10 12 14 16

Iterations

0
50

10
0

15
0

0
30

60
90

12
0

C
or

re
sp

on
de

nc
es

 [
10

3]

Su
bg

ra
ph

s
[1

03]

#searched
#correspondences

(a) DD search space

0 10 20 30 40 50 60

Iterations

0
50

0
10

00
15

00
20

00

0
10

20
30

40
50

C
or

re
sp

on
de

nc
es

 [
10

3]

Su
bg

ra
ph

s
[1

03]

#searched
#correspondences

(b) NCI1 search space

2 4 6 8 10 12 14 16

Iterations

0
25

50
75

T
im

e
 [s

ec
]

0
20

40
60

80
10

0

C
or

re
sp

on
de

nc
e

 d
ec

re
as

e
 [%

]

runtime
relative correspondence reduction

(c) DD runtimes

0 10 20 30 40 50 60

Iterations

0
20

40
60

T
im

e
 [s

ec
]

0
20

40
60

80
10

0

C
or

re
sp

on
de

nc
e

 d
ec

re
as

e
 [%

]

runtime
relative correspondence reduction

(d) NCI1 runtimes

Figure 4: Nested feature mining experiments on the complete datasets DD and NCI1 (σ is set to 10%): each
iteration corresponds to one selected feature. Upper plots: number of subgraphs (in 103) enumerated for the
selection of one feature (dotted-grey, left scale) and number of correspondences (in 103) present at each iteration
(black, right scale). Lower plots: runtime per iteration (dashed-grey, left scale) percentaged decrease in the
number of correspondences due to the current feature (in black, right scale).

tolerance threshold, we also compare the runtimes of
the nested selection approach gSpanCORK to the un-
nested variant offline selectCORK and the näıve
approach of applying CORK as a common forward
feature selection criterion on a pre-mined subgraph
set without additional pruning. All CORK selection
runs are stopped as soon as they result in less than t
correspondences. The results are displayed in Table 4.

For the DD dataset (4a) this summary shows a
slight advantage in accuracy of the lower tolerance
thresholds 100 and 10, however, the additional runtime
does not seem to be worth such an improvement over
the quicker alternative of using a threshold of 1000 cor-
respondences. The by far lower runtimes of the nested
and offline experiments in comparison to the näıve ap-
proach demonstrate the pruning power of MAXCORK

over the conventional un-nested variants.
Note that in Table 4a the runtimes of the nested ap-

proach are not only better than those of näıve forward
selection, but they are also competitive to the quick of-
fline variant, since the näıve and offline approaches omit
the time necessary to first enumerate the set of frequent
subgraphs. When thus counting the enumeration times,
gSpanCORK is the fastest selection approach.

This effect is due to the large number of 110,131

frequent subgraphs for the DD dataset. For datasets
which contain fewer frequent subgraphs, like the 2893
subgraphs for the NCI33 molecule collection in Ta-
ble 4b, the offline approach and even näıve forward se-
lection can be faster. We also point out the difference
in the AUC value between the Tables 4b and 3a: The
CORK evaluation of Table 3a was achieved by testing
offline selectCORK on a pre-mined set of frequent
subgraphs for the complete dataset. Of course, we sep-
arated the training instances from the test instances
in the selection and training phase, however, the fre-
quency bound for the mining step can cause variation
in the number of frequent subgraphs between the com-
plete and the training graphs only (gSpanCORK) and
can thus influence the classification performance.

In our experiments, the offline approach has always
been faster than the näıve variant. We thus conclude
that this algorithm is a useful example of how the gSpan
pruning structure can be exploited even after mining has
been completed.

4.6 Comparison to wrapper approaches The
last experiment compares CORK to state-of-the-art
wrapper approaches. These wrapper approaches al-
legedly outperform filter-based approaches in graph

Filter Wrapper
CORK MbT AUC values LAR SVM

Dataset

∣

∣

∣
S†

∣

∣

∣
AUC Std

∣

∣

∣
S†

∣

∣

∣
MbT MbT DT MbT AUC Std

NCI1 57 0.769 0.023 77 0.685 0.74 0.805 0.021
NCI33 53 0.759 0.028 344 0.743 0.745 0.792 0.024
NCI41 49 0.763 0.027 376 0.765 0.763 0.802 0.025
NCI47 56 0.779 0.024 587 0.708 0.727 0.809 0.023
NCI81 64 0.770 0.022 685 0.696 0.723 0.792 0.021
NCI109 56 0.774 0.023 605 0.699 0.746 0.808 0.022
NCI145 55 0.773 0.029 491 0.747 0.752 0.807 0.022
NCI330 66 0.769 0.023 n.a. 0.797 0.020
DD 15 0.778 0.038 n.a. 0.789 0.039

Table 5: Classification AUC values (with standard deviation (Std)) on the 8 NCI graph datasets and of the

DD graphs (CORK = Correspondence-based Quality Criterion, MbT and DT MbT = Model based search tree

approaches – results taken from [13], LAR-SVM = features selected (the same number
∣

∣

∣S†
∣

∣

∣ as CORK) by LAR-

LASSO evaluated via SVM). The frequency threshold σ is 10%.

DD Screening time [min, s]

t
∣

∣

∣
S†

∣

∣

∣
AUC Std nested näıve offline

10000 5 0.745 0.036 3’27” 9’28” 23”
1000 8 0.761 0.039 6’01” 15’23” 39”
100 11 0.772 0.039 8’57” 18’41” 56”
10 13 0.776 0.037 10’09” 19’20” 1’01”
0 15 0.778 0.037 10’36” 19’28” 1’01”

(a) DD dataset

NCI33 Screening time [min, s]

t
∣

∣

∣
S†

∣

∣

∣
AUC Std nested näıve offline

10000 10 0.679 0.032 1’21” 1’27” 3”
1000 18 0.707 0.031 3’43” 2’10” 7”
100 31 0.738 0.028 10’06” 2’34” 16”
10 54 0.765 0.023 21’19” 2’48” 30”
0 54 0.765 0.023 23’33” 2’48” 30”

(b) NCI33 dataset

Table 4: Nested CORK versus the two variants of
un-nested CORK feature selection (“näıve”: no prun-
ing structure, “offline”: the pruning approach of Algo-
rithm 2.3) with varying tolerance thresholds t. The un-
nested runtimes are omitting the time needed for the
initial enumeration of frequent subgraphs (20 minutes
for DD, one minute for NCI33).

mining [33], hence we wanted to get a feeling for the
difference in performance. We used the same exper-
imental setup as in Section 4.2 and compare CORK
to LAR-LASSO and the decision-tree based classifiers
of [13] (Table 5).

In [13], a query is classified by either directly
using the feature tree formed by the subgraph mining
routine (MbT), or by building a decision tree on the
selected features (DT MbT). We compare the published
experiments on the NCI screenings to ours in Table 5.
Note, however, that the experiments of [13] have been
conducted on the complete graph sets, while ours are
resulting from balanced subsets of the whole dataset.
CORK usually scores better than the model-based
search tree approaches MbT and DT MbT, even though
these employ by far more subgraphs than CORK. Let
us note, that on average those two feature selectors
perform slightly better than the simple ranker approach
also employing Information Gain (cf. Tables 3a and 5).
Information Gain can be submodular, given certain pre-
conditions [20]. This, however, is not the case here,
since subgraphs are neither independent nor do they
represent a subset of features mined previously. Thus,
our less complex selection criterion still leads to higher
quality results.

CORK cannot yet fully compete with the LAR-
LASSO wrapper approach by [33]. The nested vari-
ant gSpanCORK, however, seems to be more successful
in matters of runtime on the Dobson & Doig problem,
consisting of significantly larger graphs (see Table 1).
This observation suggests that CORK pruning may be
a useful alternative for datasets of large graphs. In ad-
dition, the selection runtimes of offline selectCORK

(between 30 and 60 seconds) are constantly below the
runtime of LAR-LASSO (1 to 15 minutes). Further-
more, CORK as a filter method is useful when searching
for features irrespective of a specific classifier.

5 Discussion and Outlook

In this article we have proposed a supervised feature se-
lection approach for multi-class classification problems
using frequent subgraphs. Since we use a submodular
selection criterion, we can provide optimality guarantees
for the set of selected features obtained by greedy for-
ward selection. Additionally, we have explained how to
integrate this criterion directly into the subgraph min-
ing process by exploiting an upper bound for pattern-
growth extension miners like gSpan. Moreover, we show
how to use this bound on a set of pre-mined subgraphs,
allowing for more flexibility in the choice of the type of
subgraph used.

Similar to information theoretic criteria used for
decision trees, CORK measures the quality of a set
of features by means of its ability to separate target
classes. In our experiments on classification benchmark
datasets, the features selected by CORK reach the
best accuracies among the filter methods. Among the
wrapper methods, CORK outperforms MbT and DT
MbT in all but one cases. The LAR-LASSO method
still achieves a more accurate classification, however,
CORK has runtime advantages on pre-mined patterns
and large subgraphs.

A strategy to further improve the runtime of our
approach is to store the DFS search tree for a set
of previously mined frequent subgraphs [33]. When
restricting the mining procedure to a fixed minimum
support value, this entails much shorter mining times,
since gSpan effectively only has to be called once per
feature selection step and not several times. Still, the
feasibility of this approach obviously depends on the size
of the DFS tree that has to be stored.

One goal in our future research is to find optimal-
ity guarantees for the horizontal leap search strategy
for pattern mining proposed in [38], and to speed up
CORK by employing this search strategy while main-
taining its attractive theoretical properties. Another
exciting question is whether our results on the opti-
mality of supervised feature selection can be transferred
to techniques for unsupervised feature selection on fre-
quent subgraphs [6] (S. Nijssen, personal communica-
tion (2008, 2009)).

Acknowledgements

This research has been supported in part by the THESEUS

Program in the MEDICO Project, which is funded by the German

Federal Ministry of Economics and Technology under the grant

number 01MQ07020. The responsibility for this publication lies

with the authors. The authors would like to thank Siegfried

Nijssen for fruitful discussions.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In Proceedings of the 20th
International Conference on Very Large Data Bases
(VLDB’94), pages 487–499, Santiago de Chile, Chile,
1994.

[2] A. Bairoch. The enzyme database in 2000. Nucleic
Acids Research, 28(1):304–305, 2000.

[3] C. Borgelt and M. Berthold. Mining molecular frag-
ments: Finding relevant substructures of molecules. In
Proceedings of the 2nd IEEE International Conference
on Data Mining (ICDM’02), pages 211–218, Maebashi
City, Japan, 2002.

[4] C. Borgelt, T. Meinl, and M. Berthold. Moss: a pro-
gram for molecular substructure mining. In Proceed-
ings of the 1st international workshop on open source
data mining (OSDM ’05), pages 6–15, New York, NY,
USA, 2005. ACM.

[5] E. Boros, T. Horiyama, T. Ibaraki, K. Makino, and
M. Yagiura. Finding essential attributes from binary
data. Annals of Mathematics and Artificial Intelli-
gence, 39(3):223–257, 2003.

[6] B. Bringmann and A. Zimmermann. One in a million:
picking the right patterns. Knowledge and Information
Systems, 18:61–81, 2008.

[7] C. Chang and C. Lin. LIBSVM: a library for sup-
port vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[8] H. Cheng, X. Yan, J. Han, and C. Hsu. Discriminative
frequent pattern analysis for effective classification. In
Proceedings of the 23rd International Conference on
Data Engineering (ICDE’07), pages 716–725, Istanbul,
Turkey, 2007.

[9] M. Dash, H. Liu, and H. Motoda. Consistency based
feature selection. In Proceedings of the 4th Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
Current Issues and New Applications (PADKK’00),
pages 98–109, London, UK, 2000. Springer.

[10] M. Deshpande, M. Kuramochi, N. Wale, and
G. Karypis. Frequent substructure-based approaches
for classifying chemical compounds. IEEE Transac-
tions on Knowledge and Data Engineering, 17(8):1036–
1050, 2005.

[11] P. D. Dobson and A. J. Doig. Distinguishing en-
zyme structures from non-enzymes without alignments.
Journal of Molecular Biology, 330(4):771–783, Jul
2003.

[12] L. Ein-Dor, O. Zuk, and E. Domany. Thousands
of samples are needed to generate a robust gene list
for predicting outcome in cancer. Proceedings of the
National Academy of Sciences of the United States of
America, 103(15):5923–5928, Apr 2006.

[13] W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han,
P. S. Yu, and O. Verscheure. Direct mining of discrimi-
native and essential frequent patterns via model-based
search tree. In Y. Li, B. Liu, and S. Sarawagi, editors,
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD’08), pages 230–238, Las Vegas, NV, USA, 2008.
ACM.

[14] C. Guestrin, A. Krause, and A. Singh. Near-optimal
sensor placements in gaussian processes. In Proceed-
ings of the 22nd International Conference on Machine
Learning (ICML’05), pages 265–272, Bonn, Germany,
2005.

[15] J. Huan, W. Wang, and J. Prins. Efficient mining
of frequent subgraph in the presence of isomorphism.
In Proceedings of the 3rd IEEE International Confer-
ence on Data Mining (ICDM’03), pages 549–552, Mel-
bourne, FL, USA, 2003.

[16] A. Inokuchi, T. Washio, and H. Motoda. An apriori-
based algorithm for mining frequent substructures from
graph data. In Proceedings of the 4th European Confer-
ence on Principles of Data Mining and Knowledge Dis-
covery (PKDD’00), pages 13–23, Lyon, France, 2000.

[17] N. Jin, C. Young, and W. Wang. Graph classification
based on pattern co-occurrence. In Proceeding of the
18th ACM Conference on Information and Knowledge
Management (CIKM’09), pages 573–582, Hong Kong,
China, 2009. ACM.

[18] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized
kernels between labeled graphs. In Proceedings of the
20th International Conference on Machine Learning
(ICML’03), pages 321–328, Washington, DC, USA,
2003.

[19] S. Kramer, L. Raedt, and C. Helma. Molecular feature
mining in HIV data. In Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD’01), pages 136–143,
San Francisco, CA, USA, 2001.

[20] A. Krause and C. Guestrin. Near-optimal nonmyopic
value of information in graphical models. In Proceed-
ings of the 21st Conference on Uncertainty in Artifi-
cial Intelligence (UAI’05), pages 324–331, Endinburgh,
Scotland, 2005.

[21] H. Kubinyi. Drug research: myths, hype and reality.
Nature Reviews: Drug Discovery, 2:665–668, 2003.

[22] T. Kudo, E. Maeda, and Y. Matsumoto. An applica-
tion of boosting to graph classification. In Advances in
Neural Information Processing Systems 17 (NIPS’04),
pages 729–736, Vancouver, BC, Canada, Dec. 2004.

[23] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proceedings of the 1st IEEE International
Conference on Data Mining (ICDM’01), pages 313–
320, San Jose, CA, USA, 2001.

[24] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis
of the approximations for maximizing submodular set
functions. Mathematical Programming, 14:265–294,
1978.

[25] S. Nijssen and J. Kok. A quickstart in frequent

structure mining can make a difference. In Proceedings
of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’04),
pages 647–652, Seattle, WA, USA, 2004.

[26] N. Przulj. Biological network comparison using
graphlet degree distribution. In Proceedings of the
5th European Conference on Computational Biology
(ECCB’06), Eilat, Israel, September 2006.

[27] P. Radivojac, Z. Obradovic, A. K. Dunker, and
S. Vucetic. Feature selection filters based on the per-
mutation test. In Proceedings of the 15th European
Conference on Machine Learning (ECML’04), Pisa,
Italy, pages 334–346, Porto, Portugal, 2004. Springer.

[28] H. Saigo, N. Krämer, and K. Tsuda. Partial least
squares regression for graph mining. In Proceedings
of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’08),
pages 578–586, Las Vegas, NV, USA, 2008. ACM.

[29] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and
K. Tsuda. gBoost: a mathematical programming ap-
proach to graph classification and regression. Machine
Learning, 75(1):69–89, 2009.

[30] N. Shervashidze and K. M. Borgwardt. Fast subtree
kernels on graphs. In Advances in Neural Information
Processing Systems 22 (NIPS’09), pages 1660–1668,
Vancouver, BC, Canada, 2009.

[31] N. Shervashidze, S. Vishwanathan, T. Petri,
K. Mehlhorn, and K. Borgwardt. Efficient graphlet
kernels for large graph comparison. In Proceedings
of the 12th International Conference on Artificial
Intelligence and Statistics, Clearwater Beach, FL,
USA, 2009.

[32] M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P.
Kriegel, A. Smola, L. Song, P. S. Yu, X. Yan, and
K. Borgwardt. Near-optimal supervised feature selec-
tion among frequent subgraphs. In Proceedings of the
9th SIAM International Conference on Data Mining
(SDM’09), pages 1075–1087, Sparks, NV, USA, 2009.

[33] K. Tsuda. Entire regularization paths for graph data.
In Proceedings of the 24th International Conference on
Machine Learning (ICML’07), pages 919–926, Oregon,
OR, USA, 2007.

[34] L. J. van ’t Veer, H. Dai, M. J. van de Vijver, Y. D. He,
A. A. M. Hart, et al. Gene expression profiling predicts
clinical outcome of breast cancer. Nature, 415:530–536,
2002.

[35] N. Vanetik, E. Gudes, and S. E. Shimony. Computing
frequent graph patterns from semistructured data. In
Proceedings of the 2nd IEEE International Conference
on Data Mining (ICDM’02), pages 458–465, Maebashi
City, Japan, 2002.

[36] N. Wale and G. Karypis. Comparison of descriptor
spaces for chemical compound retrieval and classifi-
cation. In Proceedings of the 6th IEEE International
Conference on Data Mining (ICDM’06), pages 678–
689, Hong Kong, China, 2006.

[37] S. Wernicke. A faster algorithm for detecting network
motifs. In Proceedings of the 5th Workshop on Algo-

rithms in Bioinformatics (WABI’05), pages 165–177,
Palma de Mallorca, Mallorca, Spain, 2005.

[38] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining signif-
icant graph patterns by leap search. In Proceedings of
the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’08), pages 433–444, Van-
couver, BC, Canada, 2008.

[39] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. In Proceedings of the 2nd IEEE
International Conference on Data Mining (ICDM’02),
pages 721–724, Maebashi City, Japan, 2002.

[40] Y. Yang and J. O. Pedersen. A comparative study
on feature selection in text categorization. In Proceed-
ings of the 14th International Conference on Machine
Learning (ICML’97), pages 412–420, Nashville, TN,
USA, 1997. Morgan Kaufmann Publishers Inc.

[41] A. Zimmermann and B. Bringmann. CTC - correlating
tree patterns for classification. In Proceedings of the
5th IEEE International Conference on Data Mining
(ICDM’05), pages 833–836, Houston, TX, USA, 2005.

