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Summary
For high-dimensional regression, the number of predictors may greatly exceed the sample size but
only a small fraction of them are related to the response. Therefore, variable selection is inevitable,
where consistent model selection is the primary concern. However, conventional consistent model
selection criteria like BIC may be inadequate due to their nonadaptivity to the model space and
infeasibility of exhaustive search. To address these two issues, we establish a probability lower
bound of selecting the smallest true model by an information criterion, based on which we propose
a model selection criterion, what we call RICc, which adapts to the model space. Furthermore, we
develop a computationally feasible method combining the computational power of least angle
regression (LAR) with of RICc. Both theoretical and simulation studies show that this method
identifies the smallest true model with probability converging to one if the smallest true model is
selected by LAR. The proposed method is applied to real data from the power market and
outperforms the backward variable selection in terms of price forecasting accuracy.
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1 Introduction
With the advent of computers, data are exploding in size and complexity. How to extract
information from mountains of data imposes many new challenges to statisticians. In the
power market, for example, identifying relevant nodes is important from hundreds of
candidates for the sake of price forecasting and risk hedging, where the sample size is
smaller than the number of candidate nodes. In such a situation, is to identify the smallest
true model M0 from pn predictors x1, ..., xpn based on a sample of size n. The large model
space resulted from high dimension brings two challenges to most existing model selection
criteria, namely, inadequate penalization coefficient and huge computing workload. The
goal of this article is to develop a model selection criterion or procedure to deal with these
two issues.

In the literature many of model selection criteria have been proposed, most of which are
information criteria in the form of

(1)

where Yn is a vector of n observations on the response Y ,  is the least square estimate of
μn = E(Yn), |M| is the number of predictors in model M, ∥ ∥2 is the Euclidean norm and λ > 0
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is the penalization coefficient. In (1),  and |M|σ2 measure the goodness-of-fit and a
model's complexity, respectively. The penalization coefficient λ controls the balance
between goodness-of-fit and a model's complexity.

The information criterion includes Akaike's information criterion (AIC, Akaike, 1973) with
λ = 2, the Bayesian information criterion (BIC, Schwarz, 1978) with λ = log n, ϕ criterion
(Hannan and Quinn, 1979) with λ = c log log(n) where c > 2, the risk inflation criterion
(RIC, Foster and George, 1994) with λ = 2 log pn, the modified risk inflation criterion

(MRIC, George and Foster, 2000) with , and covariance inflation

criterion (CIC, Tibshirani and Knight, 1999) with . The asymptotic
properties of information criteria have been studied extensively and the readers may refer to
Shao (1997) and references therein for more details. Consistency and asymptotic loss
efficiency are two major aspects assessing asymptotic properties of a model selection
criterion. Consistent model selection that is the probability of selecting the smallest true
model converging to 1, is our major objective in this article when the true model is one of
the candidate models. A well-known fact is that BIC is consistent in the parametric case
(Stone, 1979). However, there are two issues in applying BIC to high-dimensional data.

1. The penalization coefficient of BIC, log n is nonadaptive to the model space (Chen
and Chen, 2008);

2. Exhaustive search is infeasible.

Some progress has been made with regard to the aforementioned two issues. Chen and Chen
(2008) suggested a criterion based on BIC in which an pn-dependent term is added to log n.
For computation, the stepwise search method such as LASSO (Tibshirani, 1996) offers a
feasible approach of performing model selection for high-dimensional data. The entire
solution path of LASSO, generated by the Least Angle Regression (LAR) algorithm (Efron
et al., 2004), is a sequence of models, which may include the smallest true model (Zhao and
Yu, 2006). Zhao and Yu (2006) proved that if the irrepresentable condition is satisfied and a
suitable penalization coefficient is selected LASSO will be consistent for model selection.

Concerning the difficulty of selecting a suitable penalization coefficient in LASSO, Zou et
al. (2007) suggested a criterion based on BIC in which the least square estimate of β is
replaced by the LASSO estimate.

In this article we propose a novel approach to overcome the two hindrances. The
relationship between the size of model space, the penalization coefficient and the probability
of selecting the smallest true model by (1) is derived. Next, a model selection procedure for
high-dimensional data is constructed and studied from theoretical and empirical
perspectives.

The rest of this article is organized as follows. Section 2 establishes a probability lower
bound of selecting the smallest true model by (1), based on which a consistent information
criterion is proposed as well as a procedure combining LAR with the proposed information
criterion. Section 3 presents simulations and a real data example in which our approach
compares favorably with other competing methods. Section 4 concludes this article and all
technical proofs are deferred to Section 5.

2 Consistent model selection by RICc

Let Yn = μn + ∈n, where ∈n is a vector of n iid errors, ∈i ~ N(0, σ2); i = 1, ..., n. Linear
regression is considered, so all subsets of predictors constitute the model space  and each
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element in  defines a model M. Let XM be a submatrix composed of columns of X
corresponding to predictors in M. The least square estimator of μn for a given model is

, where P(M) is the projection matrix and  . Let
Q(M) = In×n − P(M) denote the corresponding orthogonal projection matrix, where In×n is
an n-dimension identity matrix and Tr(P(M)) ≤ |M|.

The true model satisfies μn = P(M)μn. Let  denote the set of all true models, and 
denote the set of all wrong models. The size of  in a typical multiple linear regression
setting. The smallest true model is supposed to be unique, fixed, full-rank and in the model
space. Assume that pn → ∞ as n → ∞ and |M0| < n.

The definition of consistency and asymptotic loss efficiency is as follows:

DEFINITION 1 A model selection criterion is consistent if P(M ̂ = M0) → 1 as n → ∞,
where M̂ is a model selected by this model selection criterion over .

DEFINITION 2 A model selection criterion is asymptotically loss efficient if

 in probability as n → ∞, where M̂ is a model selected by this model

selection criterion over  and  is the loss of model M.

Note that consistency and asymptotic loss efficiency imply each other in the parametric case
(Zhang, 2009).

2.1 Motivation
It has been observed that BIC is inconsistent when n is small compared to the size of

 (Chen and Chen, 2008). To investigate the relationship between model
selection consistency of (1) and λ, the probability lower bound of selecting the smallest true
model by (1) is established in Theorem 1.

THEOREM 1 Suppose that the smallest true model M0 is unique, fixed, full-rank and in the
model space. Let M̂λ denote model selected by (1). Then

(2)

In Theorem 1, any relationship between pn and n is not assumed, so pn may be greater or

less than n. Obviously, the lower bound  is a function of λ and
pn − |M0|. The performance of an information criterion depends on pn and λ, so we may
construct consistent model selection criteria by choosing a suitable λ as a function of pn such

that  as pn → ∞. The following three corollaries are
established.

COROLLARY 2.1 Let λ = 2(1 + γ) log pn in (1), where γ is a given positive real number.

Then  as pn → ∞.

COROLLARY 2.2 Let λ = 2 log pn+2 log log pn in (1). Then  as
pn → ∞.
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COROLLARY 2.3 Let λ = 2 log pn + (1 + γ) log log pn in (1), where γ is a given positive

real number. Then  as pn → ∞.

The probability lower bound (2) reveals why a pn-dependent penalization coefficient
outperforms an n−dependent penalization coefficient with respect to consistent model
selection, which will be examined in simulations in Section 3.1.

2.2 RICc
Based on Corollary 2.2, we propose the following criterion for model selection by
minimizing

(3)

This criterion is the information criterion (1) with λ = 2 log pn + 2 log log pn, and can be
viewed as RIC plus a correctional term 2 log log pn|M|σ2 (RICc). The RICc criterion is
consistent as shown in Corollary 2.2. The influence of the correctional term, 2 log log pn|M|
σ2 will be examined by comparing RICc with RIC through simulations in Section 3.1.

However, exhaustive search required by RICc becomes infeasible as pn is moderately large,
say 50, so a stepwise method is considered. Next we will propose a procedure through
combining LAR with RICc.

The LASSO estimate,  is defined as the minimizer of

(4)

where β is a pn-dimension vector of regression coefficients βj; j = 1, ..., pn and

 is the L1 norm. Let k, a positive integer, denote the k-th step in the LAR

algorithm and  denote the model selected at the k-th step. Let  denote the LASSO

estimates corresponding to model , where  is obtained at step k + 1 (Efron et al.,
2004).

A feasible model selection strategy is to select a model minimizing

(5)

where possible candidate models are the sequence of models generated by LAR. However,

the bias of the LASSO estimate needs be treated. If  is used as a measure of
the goodness-of-fit and  as a measure of a model's complexity, it results in
overpenalization on sparse models making them unlikely to be selected. Therefore, we need
to construct a new complexity measure to reduce the effect of the bias of LASSO estimates.

Since the bias of LASSO estimate increases in λ, we suggest  for a model's
complexity, where λk is calculated through
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(6)

which is derived by setting the derivative of (4) over β to be 0.

Replacing  by  in (5), we obtain the LAR-RICc criterion,

(7)

Therefore, model selection by LAR-RICc proceeds in two steps: (1) Generate a sequence of
models by LAR, (2) Select the best model by minimizing (7). The LAR-RICc criterion can
achieve consistent model selection if LAR selects the smallest true model at its certain step;
see Theorem 2.

Some additional assumptions are assumed about the design matrix X in addition to those
introduced in Section 1. We assume that the design matrix has been normalized such that X ̄j

= 0 and ∥Xj∥2 = n for each column vector of X, Xj; j = 1, ..., pn. Assume also that 
as n → ∞ for two column vector Xi and Xj, and obviously cij ≤ 1 and cij = 1 if i = j. Assume

that  as n → ∞ and the smallest and largest eigenvalue of Cqq are ϕ1(Cqq) and
ϕq(Cqq), respectively with 0 < ϕ1(Cqq) < ϕq(Cqq) < ∞. Let uk and uk+1 be unit equiangular
vectors as defined in Efron et al. (2004), where  is the inner product of uk and uk+1 and
less than 1.

In addition to assumptions about the design matrix, we assume that:

1.  as n → ∞;

2.
 in probability for all finite-dimensional wrong models;

3. the smallest true model  is selected at step k0 of LAR and ;

4.
 in probability as n → ∞;

5.
 is bounded below by a positive number in probability as n → ∞;

6. the irrepresentable condition (Zhao and Yu, 2006) is met.

The utility of these assumptions will be explained in the proof of consistency of LAR-RICc,
which is summarized in the following theorem.

THEOREM 2 If assumptions 1-6 hold, then LAR-RICc is consistent.

Next we perform simulations to examine the performance of RIC and LAR-RICc.
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3 Data examples
3.1 Simulations: RIC

Simulations are performed to compare AIC, BIC, RIC, MRIC, CIC with RICc, with n = 50,
5000 and pn = 30, based on 200 replications. The design matrix X is n×pn and each row of X
is generated by MVN(0, Σpn×pn) independently, where the ijth element of the covariance
matrix Σpn×pn is 1 if i = j, and ρ|i−j| if i ≠ j. Three values of ρ, -0.5, 0, 0.5, are examined.

The smallest true models is generated by μn = Xη, where η is a 30-dimension vector of
regression coefficients. Only |M0| entries of η are assigned value 5 and the rest are 0. Let ∈n
= (∈1, .., ∈n)′ be generated from the standard normal distribution and Yn = μn + ∈n. The
proportion of selecting M0 is shown in the following tables.

As indicated in Tables 1-2, the performance of AIC and BIC worsens as  increases,
which demonstrates their non-adaptivity to the model space. Though BIC selects the
smallest true model with proportion close to 1 when n = 5000, its poor performance in the
low sample size case (n = 50) makes it inadequate for high-dimensional data. In contrast to
BIC, the performance RICc is stable across different settings. Through a comparison of RIC
with RICc, we note that the correctional term plays a key role. The performance of CIC and
MRIC is the worst when |M0| is moderately large.

Overall, RICc outperforms its competitors in terms of accuracy of identifying the smallest
true model, especially when the sample size is small compared with the model space size.
Therefore, RICc is expected to be a competitor in model selection for high-dimensional data.
The performance of RICc testifies Corollary 2.2, too.

In the above simulations, the error variance, σ2 is assumed known; see Shen and Ye (2002)
and references therein for some estimating methods.

3.2 Simulations: LAR-RICc
The simulations are to test the performance of the LAR-RICc criterion with n = 50, and
pn=25, 50, 75, 100, 250, 500, 750, 1000, 1500, 2000, 2500 based on 200 replications. The
design matrix and the smallest true model are generated by the same method as in Section
3.1. The simulating output is shown in the following three tables.

The above simulations show that the smallest true model is not necessarily selected by LAR
(Zhao and Yu, 2006), but LAR-RICc is able to identify the smallest true model whenever
LAR is able to do that. This confirms Theorem 2.

We note that the proportion of selecting over-fitting true models is greater than that of
selecting the smallest true model and the median model size selected by LAR-RICc is much
less than pn. Therefore, a reasonable strategy in empirical data analysis and modeling is to
remove most redundant variables by LAR-RICc, then perform an exhaustive search through
RICc. Osborne et al (1998) suggested a similar strategy. These simulations also show that
the OLS estimate performs better than the LASSO estimate with respect to estimation
accuracy due to the potential bias of the LASSO estimate. Thus we suggest a three-step
procedure:

1. Remove redundant variables by LAR-RICc,

2. Select the best model by exhaustive subset selection using RICc,

3. Estimate parameters by the ordinary least square method based on the model
selected in step (2).
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We will use this procedure to analyze real data from the regional wholesale power market of
the state of New York.

3.3 A real data example
Since 1998, the wholesale electricity market in USA has gone through a transition from
vertically regulated markets to free and competitive markets. Some regional wholesale
markets have taken into shape including New York (NY). Electricity is the most volatile
commodity that brings much risk to the market participants. The high volatility of the
electricity price makes price forecast challenging and crucial for market participants. The
electricity price in these regional wholesale markets is determined by the the cost of
supplying the next megawatt of electricity demand at a specific location, which is called a
node in the power market. For example, there are more than four hundred pricing nodes in
the regional power market of New York, and the nodal price differs with each other due to
different local supply and demand conditions. If two nodes are geographically close to each
other and connected by a transmission line that makes transmission and congestion loss low,
they tend to have similar prices. We could predict the price of a node through other nodes
whose prices are easier to predict. The data set represents 422 price observations on each of
the 423 nodes, one of which works as the response. For our data pn = 422 is greater than n =
281, but only a small fraction of nodes are expected useful in forecasting the price.
Therefore it is highly desirable to construct a sparse model to achieve prediction accuracy.

The cross-validation method is used to compare two groups of model selection procedures.
The first group of three procedures does exhaustive search by AIC, BIC and RICc
(respectively) preceded by LAR-RICc (denoted by LAR.AIC, LAR.BIC and LAR.RICc).
The second group of three procedures does backward stepwise variable selection (Cook and
Weisberg, 1999) by AIC, BIC and RICc, respectively (denoted by STEP.AIC, STEP.BIC
and STEP.RICc). The 422 observations are divided into a training set including the first 281

observations and a validation set including the remaining 141 observations. Let Yi and ; i
= 1, ..., 141 denote the observed and predicted prices, respectively. The prediction error (PE)

is defined as ; i = 1, ..., 141.

The cross-validation result based on Yi versus ; i = 1, ..., 141 of all six procedures is
displayed in Figure 1, where the straight line passes (0,0) with slope 1.

As indicated in Table 10, the sparsest model yields the best prediction accuracy in both
groups of procedures. The out-performance of RICc over AIC and BIC can be attributed to
the aggressiveness of RICc in removing redundant variables. We note that though the model
selected by STEP.RICc is sparser than that selected by LAR.AIC or LAR.BIC, the former is
worse than the latter with respect to prediction accuracy. A reasonable explanation is that
STEP.AIC and STEP.BIC may miss some most relevant nodes.

Overall, Table 10 and Figure 1 show that the three-step procedure outperforms the backward
stepwise method in terms of prediction accuracy. Another advantage of the three-step
procedure is the computational efficiency.

4 Summary
This article contributes to model selection for high-dimensional data in two aspects. First,
this article establishes a probability lower bound of selecting the smallest true model, which
lays foundations for constructing model selection criteria as pn → ∞. Secondly, a model
selection criterion RICc and a procedure LAR-RICc are proposed and their properties are
studied. Simulating and real data examples show that LAR-RICc is a potent tool in doing
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model selection for high-dimensional data. Admittedly, the consistency of LAR-RICc is
subject to the design matrix satisfying irrepresentable conditions, which is worth further
study.
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5 Technical proofs

5.1 Appendix A
Proof of Theorem 1: Suppose M is an over-fitting true model. Since XMβM = XM0βM0 = μn,

where all components of βM and βM0 are nonzero,  follows a chisquare
distribution with degree-of-freedom Tr(P(M)) − |M0| ≤ |M| − |M0|. To prove

(8)

consider

(9)

(10)

(11)

where δ = (λ − 1)k and k = Tr(P(M)) − |M0|. Since Tr(P(M)) ≤ |M|,

(12)

Let m = |M| − |M0|, then |M| = |M0| + m. Then by Markov's inequality,
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This completes the proof.

Proof of Corollary 1: The result follows from

(13)

as pn → ∞. This completes the proof.

Proof of Corollary 2: The result follows from

(14)

as pn → ∞. This completes the proof.

Proof of Corollary 3: The result follows from

(15)

as pn → ∞. This completes the proof.

In the last step of the proofs, we make use of the following fact: if a positive and increasing
sequence yn → ∞ and a positive and decreasing sequence xn → 0, respectively as n → ∞,

then  as n → ∞. The proof is omitted.

5.2 Appendix B: Proof of Theorem 2
Set σ2 = 1. We need the following seven lemmas to prove Theorem 2.

LEMMA 1 (Efron et al., 2004)

(16)
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where  and .

LEMMA 2 If , then

.

Proof: Note that

This completes the proof.

LEMMA 3  in probability as n → ∞. Both  and  are q-dimensional
vectors.

Proof: By Lemma 1, we have

(17)

By Assumptions 3 and 4,

(18)

in probability, which implies

(19)

in probability as n → ∞. If  did not converge to 0 in probability, then

 would be negligible compared with  and (18)
would not hold. Contradiction. This implies the desired result.

LEMMA 4 .

Proof: It follows from Efron et al. (2004) that
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(20)

where  and  is a  dimension vector of 1 and -1.

(21)

We have known that  and ϕ1(Cqq) and ϕq(Cqq) are the smallest and largest
eigenvalues of Cqq, respectively. Hence,

(22)

So

(23)

implying

(24)

This completes the proof.

LEMMA 5 For k ≥ k0,  in probability.

Proof: By Lemma 4 and Assumption 4, we know that  in probability. And since λk ≤
λk0 (Efron et al., 2004),  in probability. This completes the proof.

LEMMA 6  is an increasing function of k.

Proof: Suppose k2 > k1, then λk2 ≤ λk1 (Efron et al., 2004)

(25)

(26)
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Therefore, . This completes the proof.

LEMMA 7 If , then  is bounded above by a positive real
number in probability as n → ∞.

Proof: By assumption 5

(27)

This completes the proof.

Proof of Theorem 2:

We consider two cases:  and .

1.
We have known for a wrong model ,  in probability by
Assumption 2, whereas for the true model , C(k0)/n → 0 in probability as n →
∞ by Assumptions 1 and 4.

2. For the second case , we want to bound the probability P(C(k0) ≥ infk
C(k)).

We can prove  using the method in the proof of
Theorem 1. This completes the proof.
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Figure 1.
Predicted hourly price by six procedures vs the corresponding observed hourly price.
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