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ABSTRACT 
The analysis of texture is an important subroutine in 

application areas as diverse as biology, medicine, 

robotics, and forensic science. While the last three 

decades have seen extensive research in algorithms to 

measure texture similarity, almost all existing methods 

require the careful setting of many parameters. There 

are many problems associated with a surfeit of 

parameters, the most obvious of which is that with 

many parameters to fit, it is exceptionally difficult to 

avoid over fitting. In this work we propose to extend 

recent advances in Kolmogorov complexity-based 

similarity measures to texture matching problems.  

These Kolmogorov based methods have been shown to 

be very useful in intrinsically discrete domains such as 

DNA, protein sequences, MIDI music and natural 

languages; however, they are not well defined for real-

valued data. Towards this, we introduce the Campana-

Keogh (CK) video compression based method for 

texture measures. These measures utilize state-of-the-

art video compressors to approximate the Kolmogorov 

complexity. Using the CK method, we create an 

efficient and robust parameter-free texture similarity 

measure, the CK-1 distance measure. We demonstrate 

the utility of our measure with an extensive empirical 

evaluation on real-world case studies drawn from 

nematology, arachnology, entomology, medicine, 

forensics, ecology, and several well known texture 

analysis benchmarks. 
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1. INTRODUCTION 
Texture analysis is used in classification, clustering, 

segmentation and anomaly detection in images culled 

from domains as diverse as biology, medicine, 

robotics, biometrics, forensic science, and the study of 

historical texts. Texture recognition systems can have 

surprising uses; for example in Malaysia, a leading 

exporter of hardwoods, texture recognition is used to 

check against the logging of protected wood species 

and against attempts to pass off inferior strength 

species as stronger wood species for strength critical 

applications [23]. 

In the Content-Based Information Retrieval (CBIR) 

community, there has been extensive research in 

algorithms to measure texture similarity; however 

virtually all existing methods require the careful setting 

of many domain-specific parameters. For example, the 

commonly used Gabor filter requires the setting of 

scales, orientations, and filter mask size parameters 

[39][42]. As researchers have recently noted, ―Gabor 

filters show a strong dependence on a certain number 

of parameters, the values of which may significantly 

affect the outcome of the classification procedures‖ 

[3]. 

Of the many problems associated with an abundance of 

parameters, the most obvious is simply that with many 

parameters to fit, it is exceptionally difficult to avoid 

over fitting [13]. An additional problem of parameter-

laden algorithms is that they make it exceptionally 

difficult to reproduce published experimental results 

and to truly understand the contribution of a proposed 

algorithm [16]. 

 

Figure 1: Examples of nematode diversity as seen 

under magnification 

In this work we propose to extend recent advances in 

Kolmogorov complexity-based similarity measures 

[10][16][28][29] to texture matching problems.  These 

Kolmogorov based methods have been shown to be 

very useful in intrinsically discrete domains such as 

DNA, natural languages, protein sequences, and 

symbolic music sequences such as MIDI or Parsons 

code; however, they are not defined for real-valued 

data such as textures. We show that by approximating 

the Kolmogorov complexity with the Campana-Keogh 

(CK) method of using state-of-the-art video 

compressors, such as MPEG, we can create an efficient 

and robust texture similarity measure. To give our 

ideas a concrete grounding, we will discuss in detail 

two motivating examples. 



Nematodes are a diverse phylum of ―wormlike‖ 

animals, and one of the most diverse of all animal 

groups. Nematode species are very difficult to 

distinguish; over 80,000 have been described, however 

the true number may be closer to 500,000. As shown in 

Figure 1, nematode bodies are semi-transparent 

structures which mostly consist of digested foods and 

fat cells.  

Understanding the biodiversity of nematodes is critical 

for several applications such as pest control, human 

health, and agriculture. For example, millions of people 

are infected by nematodes worldwide with a quarter of 

the world’s population infected by a single genus of 

nematodes, Ascaris [2].  

Because of their diversity and abundance, finding 

distinct characteristics of a nematode species for 

classification is a non-trivial task. Identification by 

experts requires three to five days to accomplish [14]. 

While the shape of the head and tail can be a useful 

feature in some cases, it is not enough to distinguish 

down to even the genus level. However, as we can see 

in Figure 1, nematodes are often richly textured, both 

externally and (given that they are semi-transparent) 

internally. As we shall show, our simple texture 

measure based on the CK method is extremely 

effective in classifying nematodes, without the need for 

careful parameter tuning or human-guided feature 

extraction.  

Breast cancer results in about 500,000 deaths each 

year [17]. The survival rate of breast cancer patients 

greatly depends on an early diagnosis. In the US, 

survival rates of early diagnosed patients are 98%, 

where the survival rate of a regionally spread cancer is 

84%, and those in a late stage where distant organs are 

effected have a survival rate of 28% [21]. Figure 2 

displays an annotated image from the Mammographic 

Image Analysis Society mammogram database [44] 

with a malignant mass inscribed. 

 

Figure 2: left) A mammogram image with a malignant 

mass encircled. right) Cancerous lesions tend to 

invade the surround tissue and exhibit a radiating 

pattern of linear spicules, resulting in unusual 

textures 

Numerous trials and evaluations have shown that 

mammography is the single most effective method for 

early detection of breast cancer and greatly increases 

chances of survival and treatment options[15][20][45]. 

Radiologists analyze mammograms for the existence of 

microcalcifactions, masses, asymmetries, and 

distortions which are hidden in a noisy texture of breast 

tissue, glands, and fat. Along with the noisy data, they 

must analyze large amounts of mammograms yearly 

[1], with only about 0.5% containing cancerous 

structures [18].  Because of the large amount of 

negative mammograms, radiologist may become less 

acclimated to detecting subtle signs of breast cancer. 

Computer aided diagnosis (CAD) provides a second 

look in the mammogram screen process. The 

radiologist is prompted with regions of interest which 

can increase classification accuracy and screening 

efficiency. Because the anomalies exist within highly 

homogenous fatty tissue and glands, it is a non-trivial 

task to detect and locate them. Texture analysis in this 

field allows for a detection method that does not 

depend on a distinctively shaped growth. 

As we shall show in the experimental section, measures 

based on the CK method allows us to classify and 

cluster nematodes and other datasets with great 

accuracy and speed, without the need (indeed, without 

the ability) to fine tune many parameters. We further 

show the generality of our ideas with a comprehensive 

set of experiments.  

The rest of this paper is organized as follows. Section 2 

contains a discussion of related and background work. 

In Section 3 we introduce our novel CK method and, 

the MPEG-1 video compression employing, CK-1 

measure. In Section 4 we give details of the most 

obvious rival methods before we consider the most 

extensive set of experiments ever attempted for texture 

measures, in Section 5. In section 6, we provide a 

speed performance evaluation for the presented 

methods. Finally, in Section 7 we offer conclusions and 

a discussion of avenues for future research.  

2. RELATED WORK / BACKGROUND  

2.1 A Brief Review of Texture Measures 
The measurement of texture similarity has a three-

decade history and is still the subject of active research, 

see [33] and the references therein for an excellent 

overview. In essence, most methods reduce to some 

method to extract features combined with some 

measure to compare features. 

These features can be global scalars such as energy, 

entropy, autocorrelation, standard deviation, etc., 

global vectors such as wavelet coefficients, Fourier 

coefficients, etc., or local vectors/sets such as SIFT 

descriptors, textons, etc. 

The distance measures between the features are also 

highly variable, and include Euclidean distance, 



Kullback distance, Dynamic Time (histogram) 

Warping, and the Earth Movers Distance [41]. Note 

that if the feature vectors/feature sets can be of 

different lengths, then we are forced to use an ―elastic‖ 

distance measure that allows non-linear mappings for 

comparison of features. Note that such measures 

invariably have at least quadratic time complexity [41], 

often with high constant factors. 

Beyond computer science led research efforts, we have 

noted that many real-world practitioners in biological 

domains simply extract many features, feed them into a 

neural network, and hope for the best [22][31][42]. Our 

informal survey suggests that this use of neural 

networks is often a last resort effort that comes at the 

end of frustrated attempts to deal with the huge 

combination of features/measures. As we shall later 

show, the CK-1 measure typically outperforms these 

efforts with a technique that is much simpler and orders 

of magnitude faster.  

2.2 Kolmogorov Complexity Inspired 

Distance Measures 
The CK method is based on recent pragmatic work 

which exploits the theoretical concepts of Kolmogorov 

complexity. Kolmogorov complexity is a measure of 

randomness of strings based on their information 

content. It was proposed by A.N. Kolmogorov in 1965 

to quantify the randomness of strings and other discrete 

objects in an objective manner. 

The Kolmogorov complexity K(x) of a string x is 

defined as the length of the shortest program capable of 

producing x on a universal computer — such as a 

Turing machine. Different programming languages will 

give rise to distinct values of K(x), but one can prove 

that the differences are only up to a fixed additive 

constant. Intuitively, K(x) is the minimal quantity of 

information required to generate the string x by a 

program. 

In order to define a distance based on the Kolmogorov 

complexity, the notion of conditional complexity is 

introduced. The conditional Kolmogorov complexity 

K(x|y) of x to y is defined as the length of the shortest 

program that computes x when y is given as an 

auxiliary input to the program. In [28], a distance is 

defined by comparing the conditional complexities 

K(x|y) and K(y|x) to  K(xy), the latter of which is the 

length of the shortest program that outputs y 

concatenated to x. More precisely, the authors define 

the distance dk between two strings x and y as: 
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The distance measure is completely parameter-free (it 

is independent of the computer language used) and has 

been shown to be optimal [29] in the sense that it 

subsumes other measures. Unfortunately, the 

Kolmogorov complexity is incomputable for virtually 

all strings and thus must be approximated.  

It is easy to see that universal compression algorithms 

give approximations to the Kolmogorov complexity. In 

fact, K(x) is the best compression that one could 

possibly achieve for the text string x. Given a data 

compression algorithm, we define C(x) as the size of 

the compressed x and C(x|y) as the compression size 

achieved by first training the compressor on y, and then 

compressing x. For example, if the compressor is based 

on a textual substitution method, one could build the 

dictionary on y, and then use that dictionary to 

compress x. 

We can approximate the distance dk by the following 

distance measure: 
( | ) ( | )

( , )
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The better the compression algorithm, the better the 

approximation of dc is for dk. In recent years this idea 

has been applied to domains as diverse as discovering 

the evolutionary histories of chain letters, spam 

classification, alignment-free comparison of biological 

sequences, protein structure classification [24], 

plagiarism detection [4], music genre classification,   

and a host of other problems [29].  

Unfortunately, we cannot directly leverage on this body 

of work for two reasons. The first is that these ideas are 

only defined for discrete data, such as DNA strings or 

natural language. In these domains, a lossless 

compressor can really take advantage of repeated 

structure, which is exactly what we want to find to 

measure similarity. However, with the trivial 

exceptions such as cartoons/clip art, etc., most 

interesting images are real-valued. This difference is 

telling because lossless compression of discrete data is 

well defined and trivial to measure. In contrast, lossless 

compression of real-value images typically does reduce 

the sizes of the files greatly, but not in a way that finds 

repeated structure that is indicative of similarity. 

The second reason we cannot directly use these ideas is 

more pragmatic.  Calculating C(x|y) requires a detailed 

understanding of the compression algorithm C, and 

actually ―hacking‖ into it. While such work would not 

be beyond a reasonable attempt, it is not within the 

scope of effort for us in conducting this research. It 

would limit the adoption of our ideas, especially among 

domain experts that are not computer scientists.  

To solve these two problems we propose a 

modification of the dc (and therefore dk) distance 

measure which treats a lossy compression algorithm as 

a complete black box, and which works for large, real-

valued image data. In the Section 3 we expound these 

ideas. 



2.3 Other Kolmogorov-Based Measures 
To the best of our knowledge, this is the first work to 

consider compression-based distance measures for 

texture matching. A recent work considers a 

compression-based distance measure for color 

distributions in images [32], a paper by Li1 and Zhu 

attempts image classification based on a kernel LZ78-

based string kernel [37], Cilibrasi and Vitanyi create a  

compressor for clustering hand written text [8], and a 

recent work by Cerra and Datcu use a compression 

based measure for classifying satellite photographs 

[10].  

However, beyond not explicitly considering texture, 

one thing all these works have in common is that they 

linearize the images into strings, and define distance 

measures based on strings. An obvious problem with 

converting a two-dimensional image into a one-

dimensional string is that all spatial localization is lost. 

This may make no difference for color; however the 

very definition of texture is tied up with spatial 

patterns. 

A recent paper proposes a compression based measure 

for similarity retrieval of ornamental letters in 

historical manuscripts (although compression-based, 

the authors do not make the connection to Kolmogorov 

inspired methods) [11]. The distance measure is based 

on the similarity of the run-length-encoding 

representations of the data. While the idea is 

interesting, the measure requires careful alignment of 

the two objects being compared and is only defined for 

binary images. Either restriction would prevent us 

using the measure on 90% of the datasets we consider 

in this work. 

3. THE CK METHOD AND CK-1 

MEASURE 
In this section we give the high-level intuition behind 

the CK method of utilizing video compression for 

texture analysis and the CK-1 distance measure which 

utilizes MPEG-1 video encoding. We then give the 

concrete algorithmic details and conclude with explicit 

implementation aspects. 

3.1 Intuition behind our Method 
Recall that our basic goal, motivated by the successful 

use of compression-based distance measures in 

discrete-valued data mining domains [16][28][29], is to 

somehow exploit compression for measuring texture 

similarity in real-valued images. Whatever solution we 

come up with, we are very hesitant to deeply ―hack‖ 

into image compression code. This reluctance here is 

                                                                 

1 This Ming Li [37] should not be confused with the Ming Li 

[28][29][30] who is a pioneer of Kolmogorov inspired distance 

measures. 

not mere sloth on our part, it is simply the case that 

difficult to implement ideas are rarely widely adopted. 

We feel that this is particularly true in this case, 

because much of our intended audience is biologists, 

nematologists, arachnologists, entomologists, etc. That 

is to say, people who may be comfortable using 

computer tools but are unlikely to have the time or the 

skills to write complex image compression code.    

With this is mind we are motivated to use existing tools 

if possible. This leads us to consider measuring image 

similarity by exploiting video compression. Video is 

simply a three-dimensional array of images. Two 

dimensions, horizontal and vertical, serve as spatial 

image information directions of the moving pictures 

and the remaining dimension represents what is 

normally the time domain. 

Virtually all video data contains significant amounts of 

spatial and temporal redundancy. Thus most video 

representations exploit these redundancies to reduce 

the file’s size. Similarities are encoded by merely 

registering differences within a frame (intra frame 

compression), and/or between frames (inter frame 

compression). Our idea then is to exploit video 

compression for measuring the similarity of two 

images, simply by creating a synthetic ―video‖ which is 

comprised of the two images to be compared. If those 

two images are indeed similar, the inter frame 

compression step should be able to exploit that to 

produce a smaller file size, which we will interpret as 

significant similarity. 

While there are dozens of video formats in existence, 

we choose MPEG-1 and refer to its use with the CK 

method as the CK-1 measure. We utilize MPEG-1 

encoding because of its widespread availability and the 

fact that all implementations of it tend to be highly 

optimized. In the next section we will review the 

necessary details of MPEG-1 encoding. 

3.2 MPEG-1 Encoding 
Because the MPEG-1 specification allows variable 

application based implementation of spatial 

redundancy reduction and motion vector calculation for 

temporal redundancy reduction [12][26], we choose to 

utilize the MPEG-1 encoder provided by MathWorks 

in Matlab for its simplicity and availability. We use a 

consistent set of encoder parameters based on 

empirically verified intuitions. Empirical tests have 

illustrated that deviation from the following encoder 

parameters has either drastically reduced classification 

accuracy or has only shown negligible improvement for 

a small subset of the data sets. 

For speed and consistency, a logarithmic search 

algorithm is utilized for the inter frame block matching 

process. Original images for intra-picture reference 

frames are used to bypass their encoding step. The 



resulting full quality reference frame also allows for 

more detailed texture matching by creating a precise 

―dictionary‖ of textures from the original image. Since 

we are only interested in the compression ratios of the 

images rather than their visual presentation, large 

quantization scales for reference(I) and predicted(P) 

frames are selected to prefer compressibility over 

image quality. This down samples the images and 

removes subtle differences between textures that may 

simply be attributed to noise. Since there are no 

bidirectional (B) frames in our usage, their quantization 

factor is ignored. The default Matlab search radius of 

ten pixels is maintained. 

The bits used to specify block matched motion vectors 

have been limited to two. This modification is to allow 

for the possibility an exhaustive block match search 

and global references which may be too distant from 

the query block (would require more bits to reference 

than to store the original data), but has no affect on our 

reported results. The utility of global motion 

compensation is further discussed in section 7. 

3.3 Video Creation 
In our function, mpegSize, we use the MPEG-1 encoder 

to construct a video of two images. This function 

requires two images which are converted to grayscale 

for color invariance. Each image is then transformed 

into a Matlab movie frame. Then, an ordered Matlab 

movie is constructed with these two frames. This 

Matlab movie is subsequently passed to the MPEG-1 

encoder. For speedup, we modify the encoder to bypass 

disk writes and simply return the resulting size of the 

MPEG-1 movie. The first image supplied to mpegSize 

is assigned as an I frame and the second becomes a P 

frame. Because the second image is compressed to 

references of the first, this function is not symmetric. 

3.4 CK-1 Distance Measure 
As hinted at in Section 3.1, in order to measure the 

distance between two images we analyze compression 

ratios. Our measure is accomplished with a simple 

equation: 
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As shown in Table 1, this is executed on two images x 

and y by just a single line of Matlab code: 

function distance = CK1Distance(x, y) 

 distance = ( ( mpegSize(x, y) + mpegSize(y, x) ) / ... 

( mpegSize(x, x) + mpegSize(y, y) ) ) - 1; 

Table 1: Our proposed distance measure 

Our CK-1 distance measure exhibits both positive 

definiteness and symmetry. 

3.4.1 Positive Definiteness 
The CK-1 distance measure exhibits non-negativity. 

Given the consistency of our mpegSize function, the 

CK-1 distance of an image to itself will be zero. This 

property is important because many clustering 

algorithms rely on it to prove convergence properties.    

3.4.2 Symmetry 
As stated, our mpegSize function is not symmetric. 

To build a distance measure with symmetry, the 

bidirectional sum of the distances is taken in the 

numerator of (3) and the sum of the lower bounding 

sizes is in the denominator. 

In addition, preprocessing techniques can be applied to 

the images to introduce several additional invariances 

to our approach. In our experiments we may utilize 

methods to achieve rotation, color, and illumination 

invariance.  

3.4.3 Rotation Invariance 
For rotation invariance we fix one image and rotate 

the other to find the minimum CK-1 distance between 

them. When an image is rotated not at a 90°, 180°, or 

270° angle, the image no longer fits into its original 

rectangular dimensions and a sampling method must 

be used. In our experiments we utilize three 

processes: no cropping, cropping to original image 

dimensions, and center cropping to a minimum 

bounding rectangle of valid pixels; black pixel 

padding or mirroring schemes are also used when 

rotations incur additional image pixels. Figure 3 

demonstrates examples of these methods. Though 

different rotation methods provide better accuracies 

in different datasets, to avoid over fitting, we only 

report the accuracy provided by the center cropping 

method. For further simplification, we only consider 

ten rotations of the image in reported results; though 

our measure if fast enough to consider many more 

rotation degrees (cf. Appendix B). 

 

Figure 3 - Sampling and padding methods. (a) 

Original image, (b) center crop, (c) zero padded with 

larger dimensions, and (d) mirrored with original 

dimensions 

(b) (a) 

(c) (d) 



3.4.4 Color Invariance 
We remove color information and analyze the 

textures based on their gray scale intensity values. 

For datasets where color information is useful, we 

could combine the CK-1 measure with color features 

[49].  

3.4.5 Illumination Invariance 
Illumination between images may vary between 

photographs of samples, with different cameras, 

locations, and photographers. To remove the 

inconsistencies due to lighting we normalize the 

intensity values of the images. For local illumination 

invariance due to shadows from edges and surface 

texture, we can normalize the intensity values across 

an entire image. We can then normalize between two 

images for inter-image illumination invariance. For 

simplicity, our results presented in this paper refrain 

from exploiting any accuracy improvements provided 

by these preprocessing techniques. 

4. RIVAL METHODS 
In this section we give concrete details of the most 

frequently used texture measures, as these will be the 

baseline to which we compare our ideas. 

4.1 Filter Banks 
The use of filter banks for feature extraction of textures 

has been motivated by their ability to be tuned to many 

diverse applications [22][35][42]. Their utility has 

allowed for a wide spread use in computer vision 

applications with many high-quality results. While 

there are many possible filter banks, the Gabor filter is 

by far the most commonly used. An overview of Gabor 

filters can be found in [3][34][50][39]. To generate our 

filters, a mother wavelet and generation function as 

presented in [50] is utilized. Filters of six orientations 

and four scales are generated, resulting in a filter bank 

of size N = 24 filters. High and low frequency 

parameters of the filters were set to the specifications 

found in [50]. 

Images are convolved with each filter. The standard 

deviation and mean of each response is then aggregated 

into a single 48 length vector. The distance between 

image descriptors can then be found from their 

Euclidean distance. 

4.2 Textons 
In order to fairly compare our method, we take the 

extra step of extending the previously described filter 

bank approach by classifying with a dictionary of 

representative filter responses, textons. Textons have 

been shown to be a great improvement over basic filter 

bank techniques [27][47]. Following the texton 

dictionary creation of [47], we represent each pixel of 

an image by a response vector of its corresponding 

outputs from each of the 24 filters. Response vectors 

from all images within a single class are then clustered 

into ten groups using kmeans clustering, provided with 

Matlab, and the centroids of these clusters from each 

class are added to the texton dictionary. An image can 

then be represented by its histogram of response 

vectors binned to the nearest texton in the texton 

dictionary. The distance between two texton 

histograms is then found using the chi-squared 

distance.  

5. EXPERIMENTAL EVALUATION  
We begin by stating our experimental philosophy. To 

ensure that our experiments are not just reproducible, 

but easily reproducible, we have built a website which 

contains all data and code, together with the raw 

spreadsheets for the results [6]. In addition this website 

contains additional experiments that are omitted here 

for brevity. 

5.1 Sanity Check 
We begin with a simple experiment on a domain where 

human intuition can directly judge the effectiveness of 

the CK-1 measure. 

 

Figure 4: The Insect dataset and Heraldic shields 

datasets clustered with the CK-1 distance measure 

(average linkage clustering). While the images are 

shown in color for clarity, our distance measure had 

only access to the grayscale version of the images   



We clustered two sets of images, both of which have 

previously been used to test the utility of color and 

shape distance measures [49].  The two datasets are: 

Heraldic shields extracted from historical manuscripts 

from the 14
th

 to 16
th

 century, and Insects extracted from 

various amateur entomologists websites (used with 

permission). In both cases we selected 12 images 

which could be objectively or subjectively sorted into 

six pairs, Figure 4 shows the results. 

Compared to previous work, the results are 

unexpectedly good. In past work we had clustered 

(supersets) of these datasets based on color (shields) 

and color/shape (insects), but ignored the texture 

because we assumed it would not be very useful [49]. 

To our surprise, right ―out of the box‖ the 

compression-based measure works much better than 

our carefully tuned color/shape measure [49]. 

5.2 Classification Experiments 
In order to demonstrate the generality of our methods 

we have assembled a large and diverse collection of 

datasets. The descriptions below are necessarily brief; 

for more details we refer the interested reader to 

Appendix A, the supporting webpage [6], or the 

originating papers. Note that in every case we make 

these datasets publicly available (with the copyright 

remaining with the original creators were appropriate). 

The smaller datasets can be downloaded from [6]; the 

entire dataset can be obtained on two free DVDs by 

emailing the second author. In Figure 5 we show 

examples from each dataset.  

 

Figure 5: Samples of the datasets considered. A 

detailed key is omitted here for brevity, see [6] 

Arachnology (Spiders): This dataset [42] consists of 

images of the Australasian ground spiders of the family 

Trochanteriidae. This is a diverse family with high 

variance in inter- and intra-specific variation and sparse 

representation of the classes. 

Moths (Macrolepidoptera): This collection [35] 

consisting of the images of live moth individuals, each 

moth belonging to one of 35 different species found in 

the British Isles. We consider three variants of this 

dataset: the original data, in which the moth occupies 

about 10% of the image area; center cropped, where an 

approximate bounding box was placed around the 

image; and a cleaned version, where the background 

was deleted with a semi-automatic technique.  

Tire Treads: This dataset consists of a collection of 

tire imprints left on paper. Three well worn tires had 

paint applied to their treads and were rolled over paper. 

The tires are painted and rolled 16 times, each in 

varying directions and with different painted sections 

of the tire.  

Nematodes: As noted in the introduction, nematodes 

are a diverse phylum of ―wormlike‖ animals, with great 

commercial and medical importance. The department 

of nematology at UCR, one of the leading institutions 

of in nematode research, has recently tasked us with 

creating a distance measure to help them sort through 

the largest archive of high-quality nematode images in 

the world [14].  

Brodatz Textures: This dataset consists of a diverse 

set of images of man-made and natural textures (grass, 

straw, cloth, etc.), digitalized from images from a 

reference photographic album for artists and designers. 

Our version was obtained mostly from a publicly 

available online image database [40]. This set was 

missing slate 14, which we added directly from an 

original copy of the text held at our campus library [5].  

CAIRO Wood Set: This dataset consists of 100 

images of ten species of tropical wood provided by the 

Center for Artificial Intelligence and Robotics [7]. 

Each species is represented by ten photographs taken at 

a microscopic level. The images are also evenly split 

into two families of wood, Leguminosae and 

Dipterocarpaceae. The dataset is classified in two 

approaches: a two-class problem across family 

designations and a ten-class problem across species 

classifications. 

Camouflage: This dataset consists of 70 images of 

nine varieties of modern US military camouflage. The 

images were created by photographing military t-shirts 

and fabrics at random orientations. 

VVT Wood Set: This dataset consists of wood images 

originally for color based inspection and grading for 

industrial usage [43]. Images of wood are tessellated 

and classified into 40 types of wood defect (dry knot, 

small knot, bark pocket, core stripe, etc.). The 

annotated data is parsed and each tessellated region is 

cropped and given a class label of either sound or 



defective. We use a subset consisting of 100 images 

from each class for classification tests. 

UIUCTEX: The UIUCTEX data set [25] is composed 

of images of common textures such as glass, bark, and 

water. They are taken at varying orientations, 

illuminations, and subset locations on the sample 

texture. 

VisTex: The MIT Vision Texture data set [36], unlike 

many other texture datasets, does not hold rigid rules 

for orientation or lighting. Rather, it provides images 

from real world conditions such as flowers within a 

field or the water texture from an inland position. 

KTH-TIPS: The KTH-TIPS [19] texture data set 

exists as an extension of the CURet data set [9] by 

adding variances in scale and by photographing from 

multiple samples in a single class. 

 

 

Data Set 

 

CK-1 
 (%) 

RI 

CK-1 
 (%) 

Gabor 

Filters 
(%) 

 

Texton 
(%) 

Spider Subset 96.3 - 59.6 89.6 

Full Spider Set 93.1 - 39.1 74.1 

Tire Tracks 79.2 91.7 87.5 93.8 

Nematodes 56.0 - 38.0 52.0 

CAIRO Wood (F) 83.0 94.0 95.0 95.0 

CAIRO Wood (S) 77.0 90.0 93.0 94.0 

VTT Wood 81.5 92.0 88.0 89.5 

Original Moths 49.1 - 18.3 42.6 

Cropped Moths 63.4 - 27.5 48.8 

Cleaned Moths 71.0 - 24.0 58.2 

Brodatz 52.1 44.8  37.0 52.0 

KTH-TIPS 73.7 63.3 58.3 54.8 

Camouflage 87.5 - 85.0 92.5 

UIUCTex 51.0 43.6 45.3 55.8 

VisTex 32.9 26.3 36.5 47.9 

Table 2: Accuracy of the one-nearest-neighbor 

classifier using the four measures under 

consideration. Note that results may be biased 

towards the texton approach. Also, for registered data 

sets we did not consider the rotation-invariant CK-1 

measure 

We test all algorithms by doing leaving-one-out 

classification with the one-nearest neighbor algorithm. 

For the relatively slow Texton approach (cf. Figure 8), 

these experiments would take years if we had to relearn 

the Texton dictionary on each fold. We therefore 

allowed the Texton method to ―cheat‖ by learning the 

dictionary on the entire dataset. As such, the results for 

the Texton method may be optimistic. 

Table 2 presents the best experimental results for these 

data sets with the CK-1 measure, the rotation invariant 

CK-1 measure, the Gabor filter bank method, and the 

texton method.  

Because the sheer number of results makes it difficult 

to judge the relative performance of the distance 

measures, we produced a figure to help visualize the 

results. For each dataset, we created a variable X = 

max(CK-1, RI CK-1), and a variable Y = max(Gabor 

Filters, Textons); we used these variables to plot a 

point for each dataset in Figure 6. 

 

Figure 6: A visual summary of the relative strength 

effectiveness of our proposed distance measure  

Here we can see at a glance that the CK methods are 

extremely effective (Recall that classifications are 

biased towards the texton measure due to its learning 

on the entire dataset). 

5.3 An Application to Web Mining 
We conclude our experiments with a simple example of 

a web mining application that can benefit from a robust 

texture measure. Our experiment is somewhat 

contrived, but demonstrates the robustness of the CK-1 

distance to general unseen and unstructured data. 

 

Figure 7: A web query for munda did produce some 

images of the moth, Orthosia munda, we expected 

(left), but it also returned images of the Munda tribes 

of India (top left), a map of Munda Island (top right), 

an unrelated insect Cycloneda munda (bottom left) 

and a military photo taken at Munda Island (bottom 

right) 

While gathering datasets for the classification 

experiments in the previous section, we noted we had a 

folder of moth images simply labeled munda (we know 

now the Genus name is Orthosia).  Suppose we wished 

to retrieve more images of these moths from web, we 



can simply issue a Google image search. We did this 

on October 4
th

, 2009 and found that of the twenty-one 

images returned on the first page, none showed the 

correct moth. An image of the moth could not be found 

until the second page and the next image of the moth 

did not appear until the third page.  As shown in Figure 

7, the false positives include images of Munda Island 

and an unrelated insect that has the same specific name. 

For simplicity, let us consider the first four pages, 

which consist of 84 images, as the entire universe of 

images. Considering only these pages, there is a 

precision and recall of zero on the first page. There is 

an obvious way we could increase the precision of the 

query in the first page of results. Since we have some 

images of the moth we are interested in we could issue 

the text query as before, then reorder the query results 

based on their distance to a representative of our 

training data. This training representative is the training 

image with the lowest mean CK-1 distance to all other 

training images. We then score each query image based 

on their CK-1 distances to this training representative. 

This reordering brought about a recall of 1.0 and a 

precision of 0.19 on the first page. 

6. RUNTIME PERFORMANCE 
The speed of our CK based method can be attributed to 

the simplicity of the underlying MPEG-1 compression 

algorithm. Since the reference image is not down 

sampled, there is no time required for its spatial 

redundancy reduction. The most time costly process, 

interframe block matching, is a logarithmic search 

process. Also, each block in the query image need only 

be compared to its corresponding neighborhood in the 

reference image. This greatly limits the running time 

needed to block match an entire image to O(nlogn). 

Because the search can early abandon depending on 

the quality of a found match, this worst case runtime is 

usually avoided in empirical tests in favor of a fast 

average case runtime. Furthermore, since most uses of 

MPEG involve large movies in the commercially 

important entertainment industry, the MPEG 

compression algorithms are extraordinarily well 

optimized.  

In contrast, Gabor filters must convolve N filters for 

each image. The time performance of this operation 

must then also consider the dimension D of the square 

filters, where D >> N. The size of D depends on the 

scale and frequency parameters used in the filter 

generation and, in some cases, can be larger than the 

image itself. Just the Gabor descriptor extraction is 

therefore an O(n
2
) operation. 

Textons add onto the running time of the original 

Gabor filters approach by requiring clustering within 

each class. Its runtime is bounded by O(n
2
) + n x 

(images per class) x (number of classes), where each 

element to be clustered is of N dimensions. Texton 

calculation speed performance is therefore heavily 

dependent on its application. Large numbers of classes, 

large images, and large collections of images can 

greatly increase the execution time. 

As a concrete example: the distance between two 

images from the VisTex dataset, grass and brick, are 

compared with each of the three methods. The 

distances of ten scales of these images are computed 

and the average execution times over several iterations 

are plotted in Figure 8. 

 

Figure 8: Time comparison of CK-1, Gabor Filter 

Banks (GFB), and Texton approaches 

As we can see, the time taken for the CK-1 measure is 

negligible relative to the other measures. 

7. CONCLUSION AND FUTURE WORK 
In general the results in the previous section speak for 

themselves. For the most part, we have avoided 

comparisons to published results that consider the same 

datasets since different experimental conditions make 

direct comparisons difficult. However in some cases 

tentative comparisons can be instructive. 

In the Spider Subset problem we got an accuracy of 

96.3%, the original authors obtained accuracy in ―the 

range of 90–96%‖ [42]. Note that this range of 

accuracy was obtained at the end of a four-year project 

devoted to just this problem, and their algorithm 

required occasional human intervention, ―it was 

important to review the log files of this process to pick 

out any potentially contaminating images and remove 

them from the training sets‖ [42]. 

Of the variants of the Moth dataset, we obtained a best 

accuracy of 71.0%. Using two variants of the Nearest 

Neighbor algorithm (as we did), the original authors 

obtained 65.7 and 71.6% respectively [35]. However it 

is important to note that we used only texture features, 

whereas the original work had access to both color and 

texture features. It is clear that color is very useful in 



discriminating at least some of the classes. For example 

Ourapteryx sambucaria is yellow, whereas Campaea 

margaritata gets it common name, the Light Emerald 

moth, from its distinctive green hue, and Cabera 

pusaria is aptly known as the Common White Wave. 

It is important to note that in spite of the generally 

excellent performance of the CK-1 measure in diverse 

domains, we are not claiming it is the best measure 

possible for all problems. For specialized application 

areas, better measures, which incorporate domain 

specific constraints and features, may do better. 

However for exploratory data mining, our CK-1 

measure, built on our CK method, offers a powerful yet 

simple baseline measure.  

7.1  Future Work 
In this work we have not focused on the speed or 

indexability of the CK-1 measure. One reason for this 

is that we wanted to forcefully demonstrate its utility 

first. In addition, we feel that optimizing speed may be 

irrelevant in many domains. Theo Pavlidis, one of the 

founders of CBIR recently remarked, ―In a medical 

application it may take well over an hour to produce 

an image, so waiting another hour to find matches in a 

database is not particularly onerous‖ [38]. Such 

remarks apply to many of our domains; the moth 

dataset took almost a year to collect and the nematode 

dataset took four years to collect [14][35]. 

Nevertheless, as we have shown in Figure 8, the CK-1 

measure is orders of magnitudes faster than some 

obvious rivals.  

Still, there may be data mining applications for which 

we need to further improve efficiency. For example, 

within the next two years we expect to have terabytes 

of nematode images [14]. 

There are several possibilities we plan to pursue. One 

possibility is to modify the measure so that it becomes 

a metric. This would allow us to avail of a wealth of 

techniques that exploit the triangular inequality to 

index data.  

Further improvements in speed may come from 

exploiting several known ideas in image/video 

processing. For example multi-resolution analysis for 

scale invariance could improve our method’s 

performances in many domains. More advanced 

compression algorithms could be explored to be used 

with the CK method for possible performance increases 

in speed and accuracy. Modifying the block matching 

search algorithm to allow for global motion vectors 

could allow for higher accuracies or faster search 

procedures and batch processing of multiple images. 

Possible options include the creation of a block 

matching algorithm specifically for the application of 

texture analysis, or to explore the global compensation 

techniques implemented in newer compression 

methods such as MPEG-4 and H.264 [48]. 
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Appendix A: Dataset Details 
In Table 3 we numerically summarize the datasets. 

Image quality is a subjective measure of how ―clean‖ 

the images are, for example do they have occlusions on 

the subject or camera shake. 

Data Set Number 
of 

images 

Number 
of 

classes 

Image 
Size 

Image 
Quality 

Spider Subset 27 3 256x256 High 

Full Spider Set 955 14 256x256 High 

Tire Tracks 48 3 256x256 High 

Nematodes 50 5 1440x1080 High 

CAIRO Wood (F) 100 2 768x576 High 

CAIRO Wood (S) 100 10 768x576 High 

VTT Wood 200 2 ~61x61 Medium 

Original Moths 774 35 1280x960 Medium 

Cropped Moths 774 35 800x800 Medium 

Cleaned Moths 774 35 ~500x800 High 

Brodatz 1,792 112 128x128 High 

KTH-TIPS 810 10 200x200 High 

Camouflage 80 9 256x256 High 

UIUCTex 1000 25 640x480 High 

VisTex 334 19 512x512 High 

Table 3: Dataset details 

Appendix B: Effects of Rotation 
As noted in the main text we achieve rotation 

invariance by holding one image fixed and rotating the 

other. Since our measure is so fast we can quickly do 

this 360 times (once per degree) if necessary, however 

as hinted at in Figure 9, a coarser (and therefore faster 

search) is possible.  

 

Figure 9: (Top) Measured CK-1 distance from image 

1 to rotations of image 2. (Bottom) Center cropped 

images of image 1 and optimal and poorest rotations 

of image 2 
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