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Abstract

I propose a frequency domain adaptation of the Expectation Maximization

(EM) algorithm to group a family of time series in classes of similar dynamic

structure. It does this by viewing the magnitude of the discrete Fourier transform

(DFT) of each signal (or power spectrum) as a probability density/mass function

(pdf/pmf) on the unit circle: signals with similar dynamics have similar pdfs;

distinct patterns have distinct pdfs. An advantage of this approach is that it does

not rely on any parametric form of the dynamic structure, but can be used for

non-parametric, robust and model-free classification. This new method works for

non-stationary signals of similar shape as well as stationary signals with similar

auto-correlation structure. Applications to neural spike sorting (non-stationary)

and pattern-recognition in socio-economic time series (stationary) demonstrate the

usefulness and wide applicability of the proposed method.
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1 Introduction

Classification of similar signals is a widespread task in signal processing, where similar

can either mean similar shape (for non-stationary signals) or similar dynamics (for

stationary1 signals). Non-stationary examples are recordings of brain activity (see

Section 1.2) or speech signals; stationary signals can be found in many economic or

physical time series. In both cases, researchers want to detect similar dynamics:

Neuro-scientists study the signal shape sent by neurons in order to understand how

fast neurons send information across the brain. As a recording can contain signals

from many different neurons, it is necessary to cluster them into signals of similar

shape (Quiroga, Nadasdy, and Shaul, 2004), which were presumably sent by the

same neuron.

In economics and public policy one is often interested in similar dynamics of the

market/society to characterize, for example, how fast a country recovers from a

recession, and how it compares to other countries in the region; or which countries

have similar dynamics in their labor market.

Formally, let X = {x1,t, . . . ,xN,t} be a family of sequential observations from a

dynamical system S, where xi,t = (xi,1, . . . , xi,T ) is the individual time series of entity

i. For example, S can be a particular area in the brain or the economic rules in

the labor market. Here we consider systems which can be naturally divided into K

homogeneous sub-systems S1, . . . ,SK , each one with its own characteristic dynamics.

In the neurology context these sub-systems Sk represent different neurons sending a

signal; in economics Sk could correspond to different dynamics in the market, e.g.

countries that recover fast from a recession (S1) versus countries that need more time

to catch up again to global economy (S2).
1A sequence of random variables (RVs) {xt}t∈Z is stationary if i) Ext = µ < ∞, ii) Vxt := E(xt −

µ)2 <∞ and iii) the auto-covariance function γ(k) := E(xt − µ)(xt−k − µ) is independent of t.
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Many clustering and dimension reduction techniques such as principal component

analysis (PCA) (Jolliffe, 2002) focus on the mean and/or variance to make a reduc-

tion/classification in similar blocks of data. Yet these two statistics are irrelevant for

the correlation over time; Keogh and Lin (2003) even claim that time series cluster-

ing is entirely meaningless. Simon, Lee, and Verleysen (2005) show that time series

clustering is not meaningless per se, but that the similarity measure must be chosen

carefully. They embed each time series in a higher dimensional space of lagged vari-

ables, xt → (xt−τ1 , xt−τ2 . . . , xt−τs)
T ∈ Rs, 0 ≤ τ1 < τ2 < . . . < τs < T , such that

signals with different dynamics can be easily distinguished in the higher dimensional

Rs. This method works particularly well for long time series even with non-linear dy-

namics. If only few observations per series are available (T ≈ 100 or even only 50), then

time-embeddings are extremely sparse in Rs and thus clustering becomes impractical.

For few observations per series it can be useful to first fit a parametric model

Mθj to every series xj,t, and then cluster in the lower-dimensional parameter space

{θ̂1, . . . , θ̂n}. For example, for the broad class of auto-regressive integrated moving av-

erage (ARIMA) models several approaches have been studied: Dhiral, Kalpakis, Gada,

and Puttagunta (2001) cluster ARIMA models based on the distance between their

estimated coefficients; Piccolo (1990) uses the Euclidean distance between their auto-

regressive extensions as a metric on the invertible ARIMA model space; Maharaj (2000)

present a hypothesis test to distinguish between two - not necessarily independent -

stationary time series by comparing auto-regressive fits to the data. See Liao (2005)

for a detailed survey. Although this works well for small T , it suffers from a model

selection bias: if we pick the wrong model for just some of the series, then the clustering

cannot be accurate anymore. Furthermore, if the models are not nested in some sense,

then it is hard to compare the parameters of xj,t to those of xi,t.
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Here I propose a novel approach to clustering similar dynamics using frequency do-

main properties of the signals, which avoids the model selection bias and at the same

time works even with few observations. Existing frequency domain classification meth-

ods are mostly based on defining a metric on the spectrum and then using a clustering

algorithm based on the so-obtained distance (or similarity) matrix. Caiado, Crato, and

Pena (2006) use hierarchical clustering algorithm on the Euclidean distance between

the log-spectra; Savvides, Promponas, and Fokianos (2008) use a distance measure on

cepstral coefficients obtained from the log-spectra. The method proposed here differs

from existing techniques as it treats the magnitude of the discrete Fourier transform

(DFT) of signal xj,t as a probability mass function (pmf) on the unit circle and thus

leads to a natural classification by an adaptation of the well-known Expectation Max-

imization (EM) algorithm (Bishop, 2007; Dempster, Laird, and Rubin, 1977). Section

3 describes a non-parametric version which avoids the model selection bias, but it can

also be easily adapted to a parametric framework, e.g. to cluster time series within the

ARIMA model class.

1.1 Similar dynamics in socio-economic time series

In macro-economics and public policy researchers are often interested in comparing

economies/societies with each other. For example, annual unemployment rates over

the course of several decades can show law changes or adaptations of economic inter-

dependencies within a country as well as with the rest of the world.

Here I will consider the annual per-capita income growth rate of the “lower 48” in

the US from 1958 to 2008 compared to the overall US growth rate

gj,t := rj,t − rUS,t, j ∈ {Alabama, . . ., Wyoming}, (1)

where rj,t is the annual growth rate of region j (see Appendix A for details). Clustering
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states according to similar economic dynamics can help to decide where to provide

economic support to overcome a recession faster. For example, if certain states do not

show any important dynamics on a 7-8 year period - which is typically considered the

“business cycle” (Hughes Hallett and Richter, 2008; Iacobucci, 2003) - then it might

be more useful for to invest available money in those states that are heavily affect by

these global economy swings.

This dataset has also been analyzed in Dhiral et al. (2001), who fit auto-regressive

models of order 1 (AR(1)) to the non-adjusted growth rates rj,t for pre-selected 25

states, and then cluster them based on the different fits. Although this procedure

gives useful results, it is very unlikely that different dynamics for each of the 48 states

only manifest themselves in a different AR(1) coefficient. In particular, simple AR(1)

models cannot capture the business cycle dynamics which are clearly visible in the

power spectra of the growth rates (even in the adjusted rates) - see Section 5.1, Fig. 6.

The non-parametric EM algorithm introduced in Section 3 does not face this model

selection bias, but can capture different cyclic components in all 48 time series.

1.2 Neuron identification - “spike sorting”

The human brain can be seen as a big information-processing and -storing unit. For

example, the information we get from watching our environment must be carried from

the eye to the visual cortex. As the visual cortex resides in the back of the brain

neurons have to transmit information from the front to the back of the head, just

for us to being able to make sense of what we see; set aside the neurons involved in

executing our reaction to what we see. Every time a neuron transmits information it

emits an electrochemical signal, which can be measured by an electrode put in the brain

area of interest. Figure 1 (top) shows a recorded signal yt with 73, 500 observations.2.

On a macro-level these measurements help to identify active areas of the brain which

2For a detailed description see Appendix A.
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Figure 1: Brain signal recording: (top) entire 49 seconds; (bottom left) zoom to
[43.2, 43.6] - the transition between extremely large spikes (∼ 43.32) and smaller spikes
(∼ 43.57); (bottom right) zoom to [43.26, 43.29] where two spikes become visible

are involved in performing a particular task; e.g. for visual tasks the back of the brain

shows up as an active area. Micro-level properties of neuron activity are also important:

for example Kass and Ventura (2001) analyze how fast neurons can send information -

this is characterized by a neuron’s “firing rate”. To do this non-trivial task, however,

one implicitly makes an important assumption: it is known which neuron sent which

signal. Figure 1 clearly shows that micro-electrodes cannot single out one neuron, but

record a concatenation - and sometimes a superposition - of an unknown number of

neurons n1, . . . , nK transmitting information plus a lot of background noise. Hence to

successfully analyze the firing rates, it is necessary to

i) distinguish actual spikes from background noise, and

ii) identify and assign each signal to one particular neuron nk, k = 1, . . . ,K where

the number of neurons K is unknown: an electrode records as many neurons as

there are in its local neighborhood.

Part i) constitutes one of the core problems in signal processing (Davies and James,

2007; Wang and Duan, 2000). Consequently there is an immense literature on sig-
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nal/noise separation, especially in audio and speech processing (Barry, Fitzgerald,

Coyle, and Lawlor, 2005; Jang, Lee, and Oh, 2003). For sub-problem ii) we can classify

the observed spikes into classes of similarly shaped wave-forms. If these shapes actually

correspond to one sole neuron nk or still to a collection of neurons, depends on whether

each neuron has a unique wave form or not. Only if there exists such a one-to-one

relation, we can determine the firing rates of each single neuron. Biochemical and

physiological findings suggest that each neuron has its own unique wave-form, which

can only vary slightly based on the state of the neuron. Thus it should be possible to

classify neuron activity according to the form of the signal - the “spike”. This classifi-

cation task is commonly known as “spike sorting” (Kim, 2006; Lewicki, 1998; Nakatani,

Watanabe, and Hoshimiya, 2001).

A common and simple approach is performing PCA on the spikes, and then cluster

the signals according to the PCA coefficients (Wood, Fellows, Donoghue, and Black,

2004). Although generally there are far more spikes than observations per spike (N �

T ), still the first 2-3 eigen-vectors of the low-rank correlation matrix capture most

of the variation in the data. However, since PCA selects sources by the direction of

maximum variance, it will classify low power firings from the same neuron as different

neurons.

The frequency domain classification algorithm introduced here, builds on the rela-

tion between the shape of the signal and its Fourier coefficients. Similar shapes have

similar Fourier coefficients and thus clustering in the frequency domain should reveal

these sub-classes.

2 “Spike sorting” in the time domain

Let N be the set of all neurons and assume that each neuron ni ∈ N has a unique

characteristic spike Si(t) ∈ C[a, b], where C[a, b] is the set of all continuous functions on
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[a, b]. The spike is unique in the sense that ni = nj if and only if Si(t) = Sj(t), or put

in words if we see two different spikes, then we know that two different neurons were

active and vice versa.

The micro-electrode only records a subset of neurons nk, k = 1, . . . ,K, where K is

unknown. In Section 2.1 I use a slowness measure to distinguish between signal and

noise, and in Section 5.2 I fit a Gaussian mixture model (GMM) to the slowness to

detect different neurons, based on the assumption that a every different spike shape

has its characteristic slowness.

2.1 Spike detection

Given the recorded signal yt it is necessary to extract windows of size T containing a

spike.3 These signals sj,t of length T represent the family of sequential observations

X = {s1,t, . . . , sN,t} ∈ RT×N , where N is the number of detected spikes. As the entire

micro-electrode recording is much longer than the length of one single spike there are

far more extracted spikes than number of observations per signal (N � T ). Since the

electrode only records signals in its local neighborhood, we can also expect a small

number of sub-systems (neurons) S1, . . . ,SK of similar shape (K � N). The size of

the window must match the length of a typical spike: the lower right panel of Fig. 1

suggests that a typical spike lasts for about 0.0035 seconds ≈ 55 time steps (vertical

red lines). Thus for the rest of this section I set T = 55.

Since we do not know a-priori where a spike occurs we need a rule that tells us where

to look for it. Whereas characterizing spikes visually is easy, designing a quantitative

automated rule that can describe spikes is much more difficult. A common approach

(Quiroga et al., 2004) is to set a threshold value tol and a spike is detected if the

signal exceeds this threshold. This threshold rule will not only be very sensitive to

3Since these extracted windows containing a spike will later on be used as the N time series
{x1,t, . . . ,xN,t} of length T to the classification algorithm, I also use T here to denote the window
size.
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outliers, but also bias the selected spikes in favor of spikes with large variance (power).

Furthermore neurons sometimes fire with lower power than usual, and thus may not

exceed such a threshold. Although missing these spikes would not affect the spike

sorting algorithm, it will underestimate the firing rate of neuron nk.

Here I characterize “non-spikes”, i.e. noise, in a way that detects spikes according

to properties of the entire signal, not of one single observations (such as the threshold

rule). One way to characterize noise is that it is moving much faster than any spike -

whatever such a spike may look like. Berkes (2005) introduced a measure of slowness

for a signal xt, defined as the variance of the differenced, unit-variance signal

∆(xt) = V (xt − xt−1) , Vxt = 1. (2)

For an independent identically distributed (iid) signal εt the slowness satisfies ∆ (εt) =

2. On the other hand, if xt → const then ∆(xt)→ 0. Therefore, the larger ∆(xt), the

faster xt.

Computing the slowness of the signal in a sliding window over yt reveals noisy parts

(fast) and - complementary - the spikes (slow). The red (right) histogram in Fig. 2a

shows simulated ∆ (εt), where εt
iid∼ N (0, 1) with t = 1, . . . , T = 55 for N = 10, 000

replications. Clearly, the central limit theorem (CLT) comes into play and the simulated

values are centered around their true slowness ∆ (εt) = 2.

However, there is no obvious reason to assume that the brain background noise in

the neighborhood of the micro-electrode is necessarily iid. In fact, the empirical slow-

ness (blue histogram) of the sliding windows is substantially smaller than 2, showing

that brain background noise is not iid.4 But even though we do not know how slow it

is, we know - and can clearly see in Fig. 2a (bottom) - that noise moves much faster

4Since ∆ (εt) = ∆ (const · εt) by definition (Vxt ≡ 1 in (2)), the lower slowness for the brain signal
is not due to a lower variance white noise sequence, but indeed a manifestation of some dependence in
the data.
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Figure 2: How slowly do we think? - the slowness of brain recordings.

than any of the spikes: ∆(background noise)� ∆ (any spike). Hence, we can learn the

boundary value that distinguishes noise and spikes from the data. At this stage we are

only concerned with separating spikes from noise, thus we can choose a conservative

value for the boundary. If it turns out that this still includes too much noise, then

a clustering algorithm will put these falsely extracted “spikes” in a noise class. On

the other hand, a too small boundary will miss spikes and thus bias the analysis of

firing rates towards larger firing intervals. The lower panel of Figure 2a suggests that

tol = 0.25 provides a good separation between noise on the right and spikes on the left.

This rolling window approach gives the so called on-set times (the moment a neuron

fires and the spike lasts for T = 55 units of time), which are then used to extract

possible spikes sj,t from yt. An additional alignment step takes place to avoid slight

misplacements of the onset times; following the spike sorting literature, this was done

by identifying the maximum of each spike and adjust the window such that all signals

have their maximum at the same position.
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Figure 2a shows n = 1, 747 extracted signals of length T = 55 obtained by applying

the slowness measures on a sliding window using tol = 0.25. The rolling window spike

detection could not exclude noise completely, so in the upper left panel of Fig. 2b

one can visually distinguish 2-3 spikes and some noise. Even though the low-variance

signals seem to be noise, they could also be just low-power spikes. Since the slowness

measure is invariant to scaling, it does not falsely ignore low power signals.

Before applying a standard classification algorithm on the extracted signals in Sec-

tion 5, I first describe the main contribution of this work.

3 Non-parametric frequency domain EM algorithm

The fundamental idea of this novel approach to clustering dynamic structures in time

series is to identifying each time series with the distribution it induces on the unit circle

- and thus on the interval [−π, π] - by its Fourier transform. These distributions can

then be used in a mixture density setting and an adaptation of the EM algorithm yields

the classification algorithm.

Definition 3.1 (Spectral Density). The spectral density of a stationary, zero-mean

time series xt with auto-covariance function γx(`) = Extxt−` is defined as

fx(λ) :=
1

2π

∞∑
`=−∞

γx(`)eiλ`, λ ∈ [−π, π], (3)

where the limit is understood point-wise if {γx(`)}∞`=−∞ is absolutely summable, and in

the mean-square sense if {γx(`)}∞`=−∞ is square summable.

For real valued processes γx(`) = γ(−`), thus fx(λ) ≥ 0 for all λ. Furthermore,

∫ π

−π
fx(λ) = σ2x, (4)

since
∫ π
−π e

iλ`dλ = 0 if ` 6= 0 and γx(0) = σ2x. Equivalence (4) is also known as the
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spectral decomposition of the variance of a time series. Hence, the spectral density is

a non-negative function on the interval [−π, π] and peaks at λ0 indicate that this fre-

quency is important for the overall variance of the process, since those peaks contribute

a lot to the integral in (4).

An estimate of the spectral density is the power spectrum or periodogram.

Definition 3.2 (Periodogram). The periodogram (or power spectrum) of xt is defined

as

IT,x(ωj) := |X(ωj)|2 =
∣∣∣ 1√
T

T−1∑
k=0

xte
−2πiωjt

∣∣∣2, ωj = j/T, j = 0, 1, . . . , T − 1 (5)

where ωj are the Fourier frequencies (scaled by 2π for easier interpretation).

For large T a frequent model for IT,x(ωj) is (see Brockwell and Davis, 1991)

IT,x(ωj) =


χ2
1, if j = 0 or T/2,

fx(ωj) η, otherwise.

(6)

where η is a standard (rate = 1) exponential RV. At each frequency ωj (except 0 and π)

the periodogram is an exponential RV with rate parameter equal to the true spectral

density fx(ωj). Therefore IT,x(ωj) is asymptotically unbiased (EIT,x(ωj) = fx(ωj)), but

not consistent (VIT,x(ωj) = fx(ωj)
2 T→∞9 0). This is especially harmful for large values

of the true spectral density, as they exactly correspond to those frequencies which are

particularly important for the overall variation.

There are two main ways to reduce the variance of the raw periodogram. If only one

time series is available, then one can reduce the variance of IT,x(ωj) by smoothing over

neighboring frequencies (Oppenheim and Schafer, 1989) - just as in non-parametric

density estimation. This works well for series with many observations, but for small
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samples such as the neuron spikes or many economic time series averaging over neigh-

boring frequencies is not a practical option as it quickly introduces too much bias at

each ωj .

For Mk independent time series {xm,t}Mk
m=1 of the same type (all from sub-system

Sk) a variance-reduced estimate of the true fSk(λ) can be obtained by averaging over

all Mk periodograms at each frequency

f̂Sk(λ) |λ=ωj=
1

Mk

Mk∑
m=1

IT,xm,t(ωj), j = 0, . . . , T − 1. (7)

Since by assumption all xm,t ∈ Sk have the same dynamic structure, f̂Sk(λ) is also a

good estimate of fxm,t(λ) for all m = 1, . . . ,Mk.

If the sub-series xm,t are far enough apart in a signal yt, then periodograms IT,xm,t(ωj)

can be considered as independent estimates of the same underlying true spectral density

fSk(λ). Thus (7) is still unbiased but has a much lower variance

Ef̂Sk(ωj) = fSk(ωj), Vf̂Sk(ωj) =
f2Sk(ωj)

Mk
. (8)

3.1 From spectral density estimation to the EM algorithm

Equation (??) looks very similar to the M step of an EM algorithm (McLachlan and

Krishnan, 2008). By averaging over periodograms in (7) we assume we know that se-

ries xi,t came from system Sk. This can be a reasonable assumption when repeatedly

measuring time series in controlled physical experiments. In many applications, how-

ever, it is not known where the signal came from. Thus I introduce a non-parametric

frequency domain EM algorithm to classify time series. As a general idea this shift

from averaging periodograms deterministically to probabilistically is analogous to the

shift from hard-thresholding in k-means to soft-thresholding in the EM algorithm.
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Formally, let zi be a K-dimensional vector indicating from which system series xi,t

comes from; i.e. zik = 1 if xi,t is from Sk, 0 otherwise. By averaging over periodograms

as in (7), zi is treated as a deterministic, known variable. Thus (7) can be rewritten to

f̂Sk(λ) |λ=ωj =
1

Mk

Mk∑
m=1

Ixm,t(ωj) (9)

=
1∑N

i=1 zik

N∑
i=1

zikIxi,t(ωj), j = 0, . . . , T − 1. (10)

For the EM framework we treat zi as random variable with marginal distribution

P (zik = 1) = πk, also commonly referred to as mixing weights. Rather than weighing

periodograms with binary weights in (10), the non-parametric frequency domain EM

estimator for f̂Sk(λ) weighs the periodogram of series xi,t with the probability of coming

from system Sk, that is

f̂Sk(ωj) =
1

Nk

N∑
i=1

γikIxi,t(ωj), (11)

where

γik := P (zik = 1 | xi,t) , (12)

and Nk =
∑N

i=1 γik is the effective number of time series from sub-system Sk. As a

by-result this new method also gives improved spectral density estimates.

For the frequency domain EM algorithm we treat the spectral density/periodogram

of xi,t as a pdf/pmf on the on the Fourier frequencies λi = (λi,0, . . . , λi,T−1). Thus we

compute (12) by the probability that “model” density fSk(λ) assigns to the empirical

distribution function (edf) of the Fourier frequencies of xi,t (= periodogram of xi,t),
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i.e.

P (zik = 1 | xi,t) := P
(
Ixi,t(λ) from fSk(λ)

)
(13)

As we do not observe the Fourier frequencies λi we cannot compute likelihoods and

probabilities such as P
(
Ixi,t(λ) from fSk(λ)

)
directly. However, eq. (28) in the Ap-

pendix B shows how to compute the log-likelihood of λi as a linear combination of

the Kullback-Leibler (KL) divergence between Ixi,t(λ) and fSk(λ), and the entropy of

Ixi,t(λ).

Thus the EM algorithm can be implemented as follows:

0. Initialization: set τ = 0 and randomly assign xi,t to one of the K sub-systems;

set class probabilities γ
(τ)
ik := 1 if xi,t ∈ Sk; 0 otherwise. Compute effective

number of time series per cluster N
(τ)
k =

∑N
i=1 γ

(τ)
ik and estimate mixing weights

by π̂
(τ)
k =

N
(τ)
k
N .

1. Estimate fSk(λ) by a weighted average of the periodograms of xi,t:

f̂
(τ)
Sk (ωj) =

1

N
(τ)
k

N∑
i=1

γ
(τ)
ik Ixi,t(ωj), for each k = 1, . . . ,K. (14)

This gives K spectral densities {f̂ (τ)S1 , . . . , f̂
(τ)
SK } =: F (τ) at iteration τ . Note that

for each k, Ef̂ (τ)Sk (ωj) = fSk(ωj) and Vf̂ (τ)Sk (ωj) ≈
fSk (ωj)

Nk
� fSk(ωj).

2. Compute KL divergence between each Ixi,t(ωj) and all f̂
(τ)
Sk ∈ F

(τ):

DKL
(
Ixi,t || f̂

(τ)
Sk

)
=

T−1∑
j=0

Ixi,t(ωj) log
Ixi,t(ωj)

f̂
(τ)
Sk (ωj)

, ∀i,∀k, (15)
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and update conditional probability that series xi,t comes from system Sk

γ
(τ+1)
ik = P

(
Ixi,t(λ) from f̂

(τ)
Sk

)
∀i,∀k (16)

using (15) and (29). Update mixing weights

π̂
(τ+1)
k =

N
(τ+1)
k

N
, where N

(τ+1)
k =

N∑
i=1

γ
(τ+1)
ik . (17)

Set τ = τ + 1.

3. Repeat steps 1 and 2 until convergence of the overall spectral likelihood

`(S1, . . . ,SK ;π1, . . . , πK | x1,t, . . .xN,t) =

N∑
i=1

log

(
K∑
k=1

π̂ke
`(Ixi,t (ω)|f̂Sk (ω))

)
.

(18)

Since for unit-variance input xt the spectral density/periodogram are well-defined

continuous/discrete probability distributions, this EM algorithm can be applied to

both stationary as well as non-stationary signals: in the first case, the spectral density

fx(λ) exists as a non-negative, square integrable function and a large part of the time

series and econometrics literature is devoted to the spectral analysis of stationary time

series (Iacobucci, 2003; Mathias, Grond, Guardans, Seese, Canela, and Diebner, 2004;

Priestley, 1981); in the second case, the periodogram (5), viewed as a purely data-driven

method, represents a valid discrete pmf on {ωj}T−1j=0 .

Since frequency domain analysis plays a very prominent and successful role in statis-

tics, time series analysis, and signal processing, this frequency domain EM algorithm to

detect similar dynamics or shape can be easily implemented and applied to a great vari-

ety of problems where the data has a spectral representation. For example, the method

can be used for image clustering (2D Fourier transform) as well as classification of a

family of positive semi-definite random matrices {Ai}Ni=1, Ai ∈ RT×T considering their
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normalized eigenvalues {{λ̃j}Tj=1}i as a discrete distribution on j = 1, . . . , T .

It must be noted though that it comes with all the pros and cons of the basic

EM algorithm (never decreasing likelihood, but possibly local optima). For a detailed

account of convergence results and many other properties see McLachlan and Krishnan

(2008) or Bishop (2007).

3.2 Choosing the number of clusters

So far the number of clusters was fixed a-priori and the algorithm gives the (locally)

best K-cluster solution. However, since this number is rarely known in practice, we

must have a rule to select a good K. In some cases there is a “true” K. For example,

the micro-electrode in the brain recorded a certain number of neurons. Thus there is

an underlying truth which we try to estimate. In other cases, such as the economic

time series example, there may not be a true number of sub-systems but choosing the

number of clusters is based on convenience and ease of interpretation. One may choose

only two clusters to show vastly contrary situations, and then compare this to a more

refined structure by allowing more clusters.

While the EM algorithm achieves a (locally) optimal classification by maximizing

the expected likelihood function, this criterion cannot be used to choose the optimal

number of clusters: the likelihood is non-decreasing in K, thus maximizing the like-

lihood with respect to K will always give K ≡ N ; that is each time series is its own

class. For parametric models one can use the BIC to choose K (Biernacki and Gov-

aert, 1998), but for non-parametric settings this is not directly applicable. A common

heuristic is the “elbow rule”, where the number of clusters is determined by looking

where the likelihood does not show a substantial increase anymore.

Céleux and Soromenho (1996) propose an entropy based criterion to assess the
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optimal number of clusters. The normalized entropy criterion (NEC) chooses that K

which minimizes

NEC(K) =
E(K)

`∗(K)− `(1)
,K ≥ 2, (19)

where `∗(K) is the log-likelihood of the best K cluster solution, and

E(K) = −
K∑
k=1

N∑
i=1

γik log γik ≥ 0, (20)

is the entropy of the soft classification matrix. Since it is only based on the class

probabilities and the log-likelihood, it can be easily computed even for non-parametric

classification methods.

The entropy in (20) measures how well the best K cluster partition can separate

the data. In the case of perfectly separable classification, γik = 1 for one k and 0

otherwise (for each i); in this case E(K) = 0. In practice, classification is not perfect,

thus in general E(K) > 0. Hence it makes sense to choose that K which minimizes

E(K) as this is as close as possible to a perfect separation. Since the baseline value

of the likelihood changes for each K, the entropy is normalized by the optimal log-

likelihood for each K. The optimal number of clusters is the one that minimizes (19).

See Biernacki, Céleux, and Govaert (1999); Céleux and Soromenho (1996) for details

and simulation results.

It must be noted though that rather than looking at the global minimum, it is more

useful to consider all local minima as possible candidates. Only focusing on the global

minimum can lead to an under-estimation of the true order K. For example, sometimes

a K = 2 cluster solution gives binary weights to each class - and thus E(K) = 0 - but

can be far from representing the true number of clusters, as it averages over several

clusters in one region of the space. Thus for simulations and applications I use the NEC

rule combined with the “elbow” rule in the log-likelihood to choose an appropriate K.
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Figure 3: Simulation results for the frequency domain EM algorithm.

4 Simulations

This section shows how the methods perform on simulated data. In particular, I con-

sider K = 5 sub-systems consisting of both stationary and non-stationary series: one

white noise sequence (flat spectrum), two AR(1) processes with φ = 0.5 and 0.75 re-

spectively, and two sine waves with frequencies ω = 0.1 and 0.2 (on the [0, 0.5] scale)

corrupted by additive Gaussian noise. For each model I generate n = 100 series with

T = 50 observations each. All series have been scaled to zero mean and unit variance.

Figure 3a shows a representative series of each sub-system. All corresponding non-

smoothed periodograms have high variance (not consistent estimate). The nonpara-

metric EM can be directly applied to these raw periodograms to cluster the 500 time

series.

The “elbow” rule for the log-likelihood favors a K = 3 solution, because separating

the signals into the two non-stationary signals plus all stationary signals in the third

class provides the largest gain in likelihood. The additional likelihood gain by separat-

ing the stationary signals into their sub-systems is negligible and thus is not evident

in a plot of the log-likelihood as a function of K. The NEC has a global minimum at
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K = 2 (one sine wave plus rest) and a local minimum at K = 5. The log-likelihood

clearly shows that K = 2 can not be an optimal separation, thus we take the K = 5

local minimum. Figure 3b shows a very good separation between all signals, except for

some cross-matches between the white noise sequence and the two AR(1). However,

as the parameters are close to each other and due to the small sample size (N = 50),

some overlap between them can not be avoided - even using the true model and an

MLE φ̂MLE to cluster them (see below).

4.1 Comparison to model based clustering

For comparison I also fit AR(1) and ARMA(1, 1) models5 to each series. Figure 4

shows the separation of the series in the parameter space φ ∈ (−1, 1) and (φ, θ) ∈

(−1, 1) × (−1, 1). Using the AR(1) model not only gives a large overlap between the

non-stationary signals and the stationary AR(1), φ = 0.5, but also completely fails to

distinguish between the two harmonic signals. Even if the true signal is an AR(1),

model based clustering still has many falsely classified signals. The overlap in the

fitted parameters φ̂MLE show that the bad performance of the frequency domain EM

for the AR(1) series is not due to the algorithm, but results from the true parameters

of distinct AR(1) being very close (0.5 and 0.75). In this case even the maximum

likelihood estimator (MLE) provides wrong conclusions.

Extending the AR(1) to ARMA(1, 1) models improves the separability between

the two harmonic series, but also leads to additional variation in other regions of the

parameter space. In particular, the black dots around the 45-degree line show that

avoiding the model bias by simply using a larger model class introduces another prob-

lem of model based clustering. Here the model class is an ARMA(1, 1), but the true

process is white noise, which is a special case of an ARMA(1, 1) for φ = θ = 0. How-

ever, every ARMA(1, 1) with φ = θ also describes a white noise process, thus the MLE

5The series xt is an auto-regressive moving average process of order (1, 1) if it satisfies xt−φxt−1 =
εt−θεt−1, where both parameters φ and θ must lie in (−1, 1) to guarantee stationarity and invertibility.
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Figure 4: Model based classification: (left) φ̂ (y-axis) from fitting an AR(1) to all
series; (right) estimate pair (φ̂, θ̂) from fitting an ARMA(1, 1) model to each series.
Colors and shapes represent the true classes, not estimated clusters from the data.

finds optimal solutions along the φ = θ line and thus adds artificial variance - and thus

performance loss for the clustering.

The exploratory analysis of the AR and ARMA models is an example of how the

model selection bias can undermine clustering algorithms. For a good classification we

would need to identify the correct model for each series first, and then estimate the

parameters on each tuned model. However, even if we had the time and resources to

do a model check for all N time series, the AR(1) example shows that even if we found

the true model for each series, a large overlap φ̂MLE remains (red triangles and green

diamonds in the left panel of Fig. 4).

The non-parametric EM approach, on the other hand, does not require any modeling

and subsequent checks, and has comparable performance to the model based clustering

if we knew the true model (white noise and AR(1)) and performs much better if the

models are wrong (sine waves versus rest).
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5 Applications

In this section I demonstrate the usefulness and wide applicability of the presented

methods on and income growth (stationary) and neuron spike train (non-stationary)

data.

5.1 States with similar income dynamics in the US

First, all 48 (more or less) stationary series xi,t were transformed via the DFT to get

the raw periodograms Ixi,t(ω), i = 1, . . . , 48. Without any further smoothing all K-

cluster models for K = 1, . . . , 6 were fitted to the data and both the NEC(K) and

the log-likelihood suggest that K = 3 clusters provide a good fit. The upper row in

Fig. 5 shows the periodograms of the three classes and the estimate f̂Sk(λ) (black line)

using (11). The x-axis represents the Fourier frequencies ωj , which have been re-scaled

from [0, π] to [0, 0.5] for easier interpretation. Peaks at frequency ωj mean that peri-

ods of length 1/ωj are important for the variation in the data. For example, the blue

series show two important low frequencies (long cycles): ω ≈ 0.04 and ω ≈ 0.18. They

correspond to a cycle of 25 years and 5-6 years – which represent a generation cycle

and a (short) business cycle (Tylecote, 1994). Note that AR(1) models (Dhiral et al.,

2001) may be appropriate for the red dynamics (AR(1) coefficient slightly negative),

but cannot capture two cycles as shown in the blue and green periodograms.

The spatial connectivity of the obtained clusters confirms the good model fit as it

separates US economy S in three major sub-economies/regions:6

≈ East & Rockies & CA (blue): economy is highly persistent, changes are slow;

business cycle of ≈ 5-6 years is also important.

≈ South-West (green): also highly persistent and affected by global business cycle

6Any resemblance of the RGB color system to politics is purely coincidental.

22



0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Fourier frequencies

15 states

0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

Fourier frequencies

10 states

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Fourier frequencies

23 states

1 2 3 4 5 6

3.
0

3.
5

4.
0

4.
5

5.
0

Number of clusters K

N
E

C

1 2 3 4 5 6

-6
8

-6
7

-6
6

-6
5

-6
4

Number of clusters K

S
pe

ct
ra

l l
og

-li
ke

lih
oo

d

Figure 5: Non-parametric, frequency domain EM detects 3 dominant dynamics of
per-capita income growth (top); (left) normalized entropy from (19) as a function of
K; (center) spectral log-likelihood (18) at the optimum for each K; (right) color-coded
US map where red/green/blue intensity equals the conditional probability γnk (RGB
= (γ̂n1, γ̂n2, γ̂n3)).

of 7− 8 years (peak at ω ≈ 0.13).

≈ Mid-West (red): almost flat spectrum, high frequencies (short cycles) are slightly

more important; decoupled from global business cycle.

One possible explanation why the red states have a flat spectrum, is that they are

mostly agricultural states, and since people have to eat no matter how the global econ-

omy is doing, the red states’ income is not affected too much by recession or other

market fluctuations. On the contrary, states whose economy - and thus income - relies

heavily on industry, production, or technology are more affected by global economy

swings, which typically happen every 7-8 years.

Hence, the classification map in Fig. 5 can provide a basis for more effective policies

to boost local economies facing a recession: it might be more effective to allocate main

parts of public investments to states that are actually affected by the business cycle,

and not put it in states which are decoupled from global economy.
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Table 1: EM estimates of a 6 component GMM for log ∆(sj,t)

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

πk 0.069 0.218 0.093 0.511 0.078 0.031

µ -3.285 -2.766 -2.331 -2.171 -1.671 -1.442
σ2 0.155 0.171 0.037 0.156 0.125 0.042

5.2 Spike sorting

For the neuron classification we can either try to fit a mixture model directly on the

T - dimensional data, or compute “features” for each spike that summarize its shape.

A good feature selection will reduce the dimensionality of the data, and thus greatly

accelerate computations.

Here I will cluster both in the time and frequency domain: for the first I fit a Gaus-

sian mixture model (GMM) on the logarithm of the slowness of each spike, log ∆ (sj,t);

for the second I use the frequency domain EM algorithm on the power spectra induced

by each spike sj,t.

5.2.1 Gaussian mixture model on slowness

The histogram in Fig. 2b of {log ∆ (sj,t)}1,747j=1 shows 5-6 peaks, which presumably corre-

spond to 5-6 differently shaped spikes. Thus I fit GMMs to log ∆ (sj,t) and assign each

spike sj,t to the cluster with highest a posteriori probability. Table 1 shows parameter

estimates of the 6 component model, which was chosen according to the highest BIC

score (Fig. 2b) from all GMMs up to order 10.7

The corresponding spikes are shown in the upper right panel of Fig. 2b. As tol =

0.25 was too conservative, two shapes still represent noise, and GMM identifies K = 4

different neurons.

7To avoid local maxima, I ran the EM algorithm (package mixtools in R) 100 times for each K
and chose the largest local optimum solution in each run.
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Figure 6: EM on periodograms of spike signals sj,t with K = 6 clusters.

5.2.2 Clustering in the frequency domain

After time-domain techniques, I use the frequency domain EM algorithm described in

Section 3. An additional advantage of working in the frequency domain compared to

the time-domain is that misalignment of the spikes does not affect the clustering.

Also here I fit all mixture models up to order K = 9. In this case NEC(K) achieves

a global minimum atK = 2 and is monotonically increasing (not shown here). However,

the two cluster solution is only optimal in the sense that it separates perfectly between

spikes and noise, even though there is a relevant sub-classification within all spikes

(similar to the behavior of NEC(K) in the simulations). Hence here I use the “elbow”

rule in the log-likelihood to determine the number of clusters. The most prominent

“elbow” occurs at K = 3 (Fig. 6) followed by another level-shift at K = 6. Since

K = 6 was also by the BIC for the time-domain classification, I choose K = 6 for

easier comparison. The K = 6 cluster solution reveals five spikes and one noise class
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(green shapes). Thus compared to the time-domain technique the frequency domain

version detects one more spike.

6 Discussion and outlook

I introduce a novel technique to detect and classify similar dynamics in signals, where

similar dynamics can either mean similar shape for non-stationary signals, or similar

auto-correlation for stationary signals. It is an adaptation of the EM algorithm to the

power spectra of the signals and thus future research can benefit from the extensive

literature in both areas of signal processing. Applications to neural spike sorting and

pattern recognition in macro-economic time series demonstrate the usefulness of the

presented method.

I also used the recently introduced slowness feature for the classification of neuron

spikes. The slowness of signals can separate signals from noise and also distinguish

differently shaped signals. Compared to multivariate methods in the literature it is

very fast and easily computable, and more robust to outliers than for example the

standard approach of a simple threshold method.
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Biernacki, C., G. Céleux, and G. Govaert (1999). An improvement of the NEC criterion

for assessing the number of clusters in a mixture model. Non-Linear Anal. 20, 267–

272.

Biernacki, C. and G. Govaert (1998). Choosing Models in Model-Based Clustering

and Discriminant Analysis. Technical report, Institut National de Recherche en

Informatique et en Automatique.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information Science

and Statistics) (1st ed. 2006. Corr. 2nd printing ed.). Springer.

Brockwell, P. J. and R. A. Davis (1991). Time series: Theory and methods (2nd ed.).

Springer Series in Statistics.

Caiado, J., N. Crato, and D. Pena (2006). A periodogram-based metric for time series

classification. Computational Statistics & Data Analysis 50 (10), 2668–2684.
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A Data

Spikes: The PKdata data set can be obtained from www.biomedicale.univ-paris5.

fr/physcerv/C_Pouzat/Data.html. It contains recordings of the electro-chemical sig-

nal in the cerebral slice of a rat. A band pass filter for frequencies between 300 Hz and

5 kHz has been applied to the signal yt, which was sampled at a rate of 15 Khz for 1

minute.

Income: The dataset can be obtained from www.bea.gov/regional/spi. It contains

yearly (1958 − 2008) average per-capita income of the “lower 48” and the entire US:

Ij,t, j = 1, . . . , 49. As Ij,t grew exponentially over time, one typically considers income

growth rates rj,t = log Ij,t − log Ij,t−1 - also known as log-returns - which are (more or

less) stationary. Since we are interested in the individual dynamics of a state compared

to the US, I analyze the difference between each state’s growth rate to the US, as

this is a more refined indicator of the state’s dynamics (it removes the overall seasonal

dynamics of the US baseline).

B KL divergence and maximum likelihood

Let pk := P(X = ak) define a probability distribution for the RV X taking values in

the finite alphabet A := {a1, . . . , aK}. The Kullback-Leibler (KL) divergence between

two discrete probability distributions p = {p1, . . . , pK} and q = {q1, . . . , qK}

DKL (p || q) :=
K∑
i=1

pi log2
pi
qi

= Ep log2
pi
qi

(21)

measures how far p is from the “truth” q; in particular, if p = q then DKL (p || q) = 0.
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Let p̃(x) be the empirical distribution function (edf) of a sample x = (x1, . . . , xN )

p̃(x) :=
1

N

N∑
n=1

δ(x− xn), (22)

where δ(y) is the Dirac delta function, and let p(x | θ) be a model (distribution) for

the RV X. The maximum likelihood estimator (MLE) is that θ which maximizes the

log-likelihood of the data (assuming iid)

`(θ | x) =

N∑
n=1

log p(xn | θ). (23)

In terms of the KL divergence it is intuitive to select that θ which minimizes the

distance between the empirical distribution of the data, p̃(x), and the model p(x | θ).

In fact, they are equivalent since

DKL (p̃(x) || p(x | θ)) =

∫
p̃(x) log

p̃(x)

p(x | θ)
dx = −H(p̃(x))−

∫
p̃(x) log p(x | θ)dx,(24)

where H(p̃(x)) = −
∫
p̃(x) log p̃(x)dx is the entropy of p̃(x), which is independent of θ.

Thus

arg min
θ
DKL (p̃(x) || p(x | θ)) = arg max

θ
Ep̃ log p(x | θ). (25)

Plugging (22) in the right hand side of (25) shows the equivalence of KL divergence

minimization and log-likelihood maximization as

Ep̃ log p(x | θ) =
1

N

∫ N∑
n=1

δ(x− xn) log p(x | θ)dx =
1

N

N∑
n=1

log p(xn | θ) (26)

=
1

N
`(θ | x). (27)
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Conversely the log-likelihood of x can be computed by

`(θ | x) = −N · [DKL (p̃(x) || p(x | θ)) +H(p̃(x))] , (28)

and consequently

P (x | θ) = e`(θ|x). (29)

Equations (28) and (29) play a key role in the non-parametric EM algorithm defined

on the power spectra, as they allow to compute `(θ | x) even though x has not been

observed directly, but just its edf p̃(x) and a model p(x | θ). In this frequency domain

framework, the data x are the unobserved Fourier frequencies ω0, . . . , ωT−1, the edf

p̃(x) is the periodogram IT,x(ωk), and the “true” model p(x | θ) is the EM estimate

f̂Sk(λ) |λ=ωj of the spectral density of sub-system Sk - see (14). Thus the conditional

probability γik = P(zik = 1 | xi,t) can be computed by

γik =
e`(Ixi,t (λ)|f̂Sk (ω))∑K
k=1 e

`(Ixi,t (λ)|f̂Sk (ω))
, i = 1, . . . , N and k = 1, . . . ,K. (30)
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