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Abstract: Graph classification is an important data mining task, and various graph kernel methods have been proposed
recently for this task. These methods have proven to be effective, but they tend to have high computational overhead. In this
paper, we propose an alternative approach to graph classification that is based on feature vectors constructed from different
global topological attributes, as well as global label features. The main idea is that the graphs from the same class should have
similar topological and label attributes. Our method is simple and easy to implement, and via a detailed comparison on real
benchmark datasets, we show that our topological and label feature-based approach delivers competitive classification accuracy,
with significantly better results on those datasets that have large unlabeled graph instances. Our method is also substantially
faster than most other graph kernels. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 5: 265–283, 2012
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1. INTRODUCTION

With the proliferation of graph data, there has been a
lot of interest in recent years to develop effective methods
for classifying graph objects [1]. Applications range from
chem-informatics [2,3] (e.g., compounds that are active or
inactive for some target) and bioinformatics [4,5] (e.g.,
classifying proteins into different families, classifying tissue
samples), to telecommunication networks (e.g., classifying
customers based on their calling behavior) and social
networks (e.g., classifying users based on their feeds on
Twitter, Facebook, etc.).

The graph classification problem can be stated as follows:
There is a dataset of graphs Gi ∈ D, with i = 1, . . . , N .
Each graph Gi = (Vi, Ei) is given as a collection of vertices
Vi = {vi1, . . . , vin} and edges Ei = {(va, vb)|va, vb ∈ Vi}.
The graph Gi may have labels on the nodes and edges,
drawn from some common set of labels � for the entire
dataset D. Finally, each graph Gi has a corresponding class
yi ∈ C, where C is the set of k categorical class labels,
given as C = {1, . . . , k}. The goal of graph classification
is to learn a model f : D → C that predicts the class
label for any graph. Typically the model is learned from a
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training set of graphs with known class labels. The model
is then evaluated on a testing set of graphs. The accuracy
of the classification model can be tested by comparing the
predicted output ŷi = f (Gi) with the true class label yi

(provided it is known).
The main challenge in classifying graphs is how to

convert the discrete graph objects into numeric features
or similarities for effective classification. Graph kernel
methods have attracted a lot of attention because of their
ability to represent the graph data as a N × N symmetric,
positive semi-definite kernel matrix K = {κ(Gi,Gj )}Ni,j=1
that records the pair-wise similarities between graphs in
D. Conceptually, the kernel function κ(Gi,Gj ) represents
an inner-product between the vectors corresponding to the
two graphs Gi and Gj in some N -dimensional feature
space; see ref. 6 for more details on kernel methods.
Once the kernel matrix has been constructed, it is possible
to classify the graphs with a support vector machine
(SVM) [7], using the supplied kernel matrix K. There
has been a lot of research activity in trying to develop
more effective and efficient graph kernel functions κ . These
methods can broadly be classified into methods based on
random walks [8,9], shortest paths (SPs) [10], cycles [11]
subtrees [2,12,13], and subgraphs [14,15,16]. Despite the
research above, it is fair to say that efficient and effective

© 2012 Wiley Periodicals, Inc.



266 Statistical Analysis and Data Mining, Vol. 5 (2012)

graph classification still remains a challenge, especially for
large graphs.

In this paper we propose an alternative approach to
constructing a feature vector for graph classification.
Instead of relying on ‘patterns’ like path, cycles, subtrees,
and subgraphs, we compute several global topological
and label attributes from each graph Gi ∈ D. The values
for these attributes yield a numeric feature vector Fi =
(fi1, . . . , fip). The set of feature vectors Fi and the
corresponding class labels yi are then used to construct
an SVM classifier. We show that our approach is both
effective and scalable compared with state-of-the-art graph
kernel methods. We conduct an extensive set of experiments
over several real graphs, representing chemical compounds,
proteins, and cell-graph datasets. We demonstrate that
our approach yields better or competitive accuracy in a
fraction of the time taken by other kernels. Our method
is particularly effective in classifying large unlabeled
graphs, since it is able to effectively capture the structural
differences among the classes.

2. RELATED WORK

Graph kernels compute the similarity between pairs of
graphs in D, based on the common patterns they share.
The patterns can range from the simple to the complex.
Specifically the kernels are designed to exploit random
walks [4,8,9,17], shortest paths [10], cyclic patterns [11],
subtrees [2,3,12,13], and subgraphs [14–16]. Another class
of graph kernels, e.g. the diffusion kernel [18], deal with the
similarity between nodes of a single graph. However, our
focus in this paper is on kernels between different graphs1,
which we discuss in more detail below.

Random Walk Kernels: The similarity of two graphs
Gi,Gj ∈ D can be quantified by counting labeled walks
that are common to both of them. The random walk kernel
[8], one of the first graph kernels, is based on this idea.
The kernels in refs [4,9] are also based on random walks
over labeled graphs. Computing the pair-wise kernel values
has worst case O(n6) complexity, where n denotes the
number of nodes in Gi and Gj . A more efficient version of
the random walk kernel was proposed in ref. 17, reducing
the complexity to O(n3) per pair of graphs. One potential
problem with these kernels is that artificially high kernel
values may be obtained by repeatedly visiting same nodes
and edges multiple times [20]. We refer to ref. 21 for a
recent overview of random-walk (RW)-based graph kernels.

Shortest Path Kernels: The SP graph kernel [10] first
computes the SP graph S = (VS, ES) for each graph G =

1 A preliminary version of this paper appeared in the MLG’11
Workshop [19], which does not have formal proceedings.

(V ,E) ∈ D. Here VS = V , and a weighted edge (va, vb)

exists in ES if va and vb are connected by a path in G,
with the edge weight representing the SP length between
va and vb (infinity if they are not reachable). Given the SP
graphs Si and Sj for two input graph Gi and Gj the kernel
is defined as the sum over all pairs of edges from Si and
Sj , using any suitable positive definite kernel on the edges.
The all-pairs SP graphs can be computed in O(n3) time,
and the kernel can then be computed in O(n4) time, since
Si and Sj each have O(n2) edges. Other variants of the SP
kernel include equal length SPs, k SP, k shortest disjoint
paths, and so on [10].

Cyclic Pattern Kernels: The cyclic pattern kernel [11] is
based on counting the number of common cycles that occur
in both graphs. Since there is no known polynomial time
algorithm to find all the cycles in a graph, sampling, and
time-bounded enumeration of cycles are used to measure
the similarity of the graphs.

Subtree Kernels: Subtree kernels are based on common
subtrees in the graphs [12]. The main idea is to consider
pairs of nodes from Gi and Gj and see if they share
common tree-like neighborhoods, i.e. to count the pairs of
identical subtrees of height h rooted at vertex va ∈ Gi and
vb ∈ Gj . The kernel is defined as the sum over all pairs
of vertices of a suitably defined vertex pair kernel. The
complexity of this approach is O(n2h4d), where d denotes
the maximum degree. Another subtree kernel was proposed
in ref. 2, based on a path representation of the trees obtained
via a depth-first search on the input graphs. The kernel
function is computed on these paths (e.g., the ratio of the
longest common path).

The recently proposed Weisfeiler-Lehman (WL) kernel
[13] is a fast subtree kernel that scales up to large, labeled
graphs. It uses the WL isomorphism test, which uses
iterative multiset-label determination, label compression,
and relabeling steps. The isomorphism test terminates after
a prespecified number of iterations h. If the sets of labels
for nodes are not identical, then two graphs are considered
as non-isomorphic, otherwise, they are isomorphic. The WL
graph kernel counts the matching multiset labels for the two
graphs Gi and Gj in each iteration of the WL isomorphism
test. The WL kernel has O(mh) complexity, where m is the
number of edges in the graphs.

Graphlet and Subgraph Kernels: Similar graphs should
have similar subgraphs. Graphlet kernels measure the
similarity of two graphs by the dot product of count vectors
of all possible connected subgraphs of order k (i.e., the
graphlets, also called as k-minors) [14,15]. For any k

(usually set to 3, 4, or 5), there are 2(k
2) possible graphlets of

size k, but many of them are isomorphic. Usually, to avoid
the dependence on the size, the count vector is normalized
into a probability vector, and the graphlet kernel is redefined
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as the dot product of the normalized count vectors for
two graphs. Exhaustive enumeration of all graphlets has
complexity O(nk). For a graph with bounded degree d, the
connected graphlets can be enumerated in O(nd(k−1)) [14].

Frequent subgraph mining can also be used to define
a kernel between two graphs [16]. Let F = {s1, . . . , sp}
denote the set of p frequent and discriminative subgraph
patterns mined from D. Each graph Gi ∈ D is then
represented as a binary feature vector {0, 1}p where feature
j is set to 1 if and only if sj is isomorphic to a subgraph
in Gi . The kernel between Gi and Gj can be defined over
their binary feature vectors. CORK [16] implements this
approach; it uses gSpan [22] to mine the subgraphs, and
selects near-optimal features (subgraphs) from that set, that
are most discriminative for classification.

In our experiments in Section 4, we compare with the
following graph kernel methods: fast geometric RW kernel
[17], SP kernel [10], graphlet (GK) kernel [14], Ramon-
Gärtner (RG) subtree kernel [12], and WL subtree kernel
[13]. We also compare with CORK [16].

3. GRAPH ATTRIBUTES FOR CLASSIFICATION

As we have seen above, while many sophisticated graph
kernels have been proposed, efficiency and scalability
remain as challenges, for large graph datasets. Our basic
idea is to compute several topological and label attributes
for each graph in the dataset, and to use the derived feature-
vector attributes for classification. Like most of the graph
kernel work, we use the SVM as the classifier of choice.
The graph attributes we use are listed below.

f-1. Average degree: The degree of a node is defined
as the number of its neighboring edges. Average
degree is the average value of the degree of all
nodes in the graph, i.e. d(G) = ∑n

i d(ui)/n, where
d(ui) denotes the degree of node ui .

f-2. Average clustering coefficient: For a node u, the
clustering coefficient c(u) represents the likelihood
that any two neighbors of u are connected. More
formally, the clustering coefficient of a node u is
defined as: c(u) = λ(u)

τ(u)
, where λ(u) is the number

of triangles (complete graph with three nodes) of
a node u and τ(u) = d(u)2−d(u)

2 , the number of
triples a node u has. Figure 1 shows a triangle

Fig. 1 A triangle with its three triples.

and its three triples. Alternatively, the clustering
coefficient for node u can be defined as the
ratio of the number of actual edges between the
neighbors of u to the number of possible edges
between them. The clustering coefficient C(G) of
a graph is the average of c(u) taken over all
the nodes in the graph, i.e. C(G) = 1

n

∑n
i=1 c(ui).

Here we use C(G) as one of our global graph
features. Generally, average clustering coefficient
is a very popular metric in network analysis, but
in some specific graph datasets, such as chemical
compounds, there do not exist many triangles in
any graph instance, which results in the clustering
coefficient taking on value close to 0.

f-3. Average effective eccentricity: The eccentricity of
a node u is defined as e(u) = max{d(u, v) : v ∈
V }, where the distance d(u, v) is the length of the
shortest path from u to v. For effective eccentricity
we take the maximum length of the SP from u,
so that u can reach at least 90% of nodes in the
graph. Effectiveness is a more robust measure if we
take noise into consideration. The average effective
eccentricity is the average of effective eccentricities
of all nodes in the graph.

f-4. Maximum effective eccentricity (effective diam-
eter): Maximum effective eccentricity is defined as
the maximum value of effective eccentricity over
all nodes in the graph. Note that the maximum
eccentricity is the graph diameter, i.e. diam(G) =
max{e(u)|u ∈ V } = max{d(u, v)|u, v ∈ V }. Max-
imum effective eccentricity is thus the same as
effective diameter.

f-5. Minimum effective eccentricity (effective radius):
Minimum effective eccentricity is defined as the
minimum value of effective eccentricity over all
nodes in the graph. Note that minimum eccen-
tricity is called the graph radius, i.e. rad(G) =
min{e(u)|u ∈ V }, thus minimum effective eccen-
tricity is the effective radius.

f-6. Average path length (closeness centrality): The
closeness centrality of a node u is defined as
the reciprocal of the averaged total path length
between node u and every other node that is reach-
able from node u, where u ∈ V , i.e. close(u) =

n−1∑
v∈V,v �=u d(u,v)

. We take the average of closeness
centrality of all nodes as a global metric for a graph.

f-7. Percentage of central points: We define a point u

to be a central point if it has an eccentricity equal
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to the effective radius of the graph, i.e. it satisfies:
{u ∈ V : effective-rad(G) = e(u)}. The ratio of the
number of central points to the total number of
points in the graph is selected as a feature.

f-8. Giant connected ratio: A giant component is a
subgraph that is connected and has the maximum
number of nodes. We take the ratio of the number
of nodes of the giant connected component to the
total number of nodes in the entire graph as a global
metric for a graph. Note that if the entire graph is
connected, the ratio is 1, thus in those datasets that
are comprised of connected graphs, this attribute
will not be a good graph descriptor. However, not
all graphs in our experimental study are Connected;
thus, this ratio may be a meaningful attribute to use.

f-9. Percentage of isolated points: We define a isolated
point in a graph to be a node with degree zero. The
ratio of isolated points to the total number of nodes
in the entire graph is considered as a feature. For
graphs that are connected, this feature will not be
meaningful, but there are datasets we used in our
study that do have isolated points.

f-10. Percentage of end points: A node which has a
degree of one is defined as an end point. The ratio
of the number of end points to the total number of
nodes in the entire graph is selected as a feature.

f-11. Number of nodes: Total number of nodes in the
graph.

f-12. Number of edges: Total number of edges in the
graph.

f-13. Spectral radius: The spectral radius is defined as
the largest magnitude eigenvalue of the adjacency
matrix of the graph. More formally, let |λ1| >

|λ2| > . . . > |λs | be the distinct eigenvalues of the
adjacency matrix A of the graph, sorted by their
magnitude. The spectral radius of the graph, ρ(G),
is defined as: ρ(G) = |λ1|.

f-14. Second largest eigenvalue: The value of the
second largest eigenvalue of the adjacency matrix
A, i.e. |λ2|.

f-15. Trace: Sum of the eigenvalues of the adjacency
matrix, i.e.

∑n
i λi . This is in fact equivalent to

the trace of the adjacency matrix A, i.e. T r(A) =∑n
i=1 aii . This feature is useful only if the graph

has several loops, i.e. an edge joining a vertex to

Fig. 2 A chemical compound from PTC dataset (with implicit
hydrogens). [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Fig. 3 The graph representation for Fig. 2. Labels on node/
atoms: O = oxygen, H = hydrogens, N = nitrogen, C = carbon.
Labels on edges/bonds: A = aromatic, S = single, D = double.

itself. For a simple graph, which is loop-free, the
trace equals 0 because the elements on the main
diagonal of A are all zeros.

f-16. Energy: Squared sum of the eigenvalues of the
adjacency matrix A. More formally, the energy of
a graph G is: E(G) = ∑n

i λ2
i .

f-17. Number of eigenvalues: Number of distinct eigen-
values, s ≤ n, of the adjacency matrix A of the
graph. The adjacency matrix A of an undirected
graph has n eigenvalues; however, they are not
necessarily distinct.

f-18. Label Entropy: We employ label entropy to mea-
sure the uncertainty of labels. Suppose a graph
G has q different labels: l1,..., lq , then the label
entropy is given as H(G) = −∑q

i=1 p(li) log p(li).

f-19. Neighborhood Impurity: We define the impurity
degree of a node u as:

ImpurityDeg(u) = |L(v) : v ∈ N(u),L(u) �= L(v)|

where L(u) is the label, and N(u) is the neighbor-
hood of (the nodes adjacent to) node u. If all nodes
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in the neighborhood of u have the same node label,
the impurity degree is 0. For the whole graph, we
are only interested in the nodes that have impu-
rity degree larger than 0, i.e. the nodes which have
at least one neighbor whose label is different. The
neighborhood impurity of a graph G is defined as
the average impurity degree over nodes with posi-
tive impurity.

f-20. Link Impurity: An edge (u, v) is defined to be
impure if L(u) �= L(v). The link impurity of a
graph G is defined as: |(u,v)∈E:L(u)�=L(v)|

m
, where m

is the number of total edges in graph G.

Example: Figure 2 illustrates an example from PTC
(the Predictive Toxicology Challenge) chemical compound
dataset (see Section 4.2 for description). Figure 3 is a graph
representation for the molecule in Fig. 2. Nodes/edges
are assigned a label based on their types, properties, etc.
Table 1 gives the graph feature vector based on the 20
global graph attributes that are listed in the order given
above. For instance, there are 20 nodes in the graph, with 9
nodes having degree 1, and 11 nodes having degree 3. The
average degree (f1) is therefore d = 9×1+11×3

20 = 42
20 = 2.1.

Since there are no triangles in the graph the clustering
coefficient (f2) is 0. As another example, the graph has m =
21 edges, but there are 11 impure links (L(u) �= L(v)), thus
the link impurity is given as f20 = 10/21 = 0.48. The other
features can be computed based on their definition. �

Graph Classification: In computing the feature values, if
a certain graph in the dataset is disconnected and contains
several components, we compute the average value for a
given graph metric over all the components. Each graph Gi

in the database is finally represented by its corresponding
feature vector Fi over the 20 topological and label
attributes. However, using the raw or unnormalized feature
values does not perform well. This is mainly because
the original feature have different range of values (see
Table 1 for example), which would give more importance to
features with larger values than those with smaller values.
Instead we normalize the feature values via range and z-
normalization.

In range normalization each value x of a feature fi

is transformed into r(x) = x−min
max − min , where min and max

denote the minimum and maximum value for fi . In z-
normalization x is replaced by z-score(x) = x−μ

σ
, where

μ and σ are the mean and standard deviation for fi . By
normalizing the values all features are considered on equal
footing, which helps improve the classification accuracy.
Once each graph Gi in the dataset D has been transformed
into its corresponding normalized feature vector of length
20, Fi = (fi1, . . . , fi20), we use the SVM classifier over
the new feature-vector dataset, using the Gaussian or radial
basis kernel (RBF) (we tried a linear kernel too, but RBF
gave better results).

Computational Complexity: The various graph attributes
range from the simple to the complex, with higher
computational times for the more complex features. In the
analysis below, we use n to denote the number of nodes |V |
(also called the graph order), and m to denote the number
of edges |E| (also called the graph size).

For each graph in the database, the number of nodes (f11)
and edges (f12) are already known, so their cost is O(1).
If they are not known beforehand, we can compute them
in one pass over the entire graph in time O(n + m). The
degree-based attributes such as the percentage of isolated
or end nodes (f9, f10) and average degree (f1) can be
computed in time linear in the graph order and size, i.e. in
O(n + m) time. The giant connected component (f8) can
also be found via breadth-/depth-first search in O(n + m)

time.
The clustering coefficient (f2) can be computed in time

O(nd2
max), where dmax is the maximum degree for the graph.

A better approximation is to use the average degree d = 2m
n

.
To compute the clustering coefficient for each node takes
on average O(d2) = 2m2

n2 . The time to compute the average

clustering coefficient over all nodes is then O(m2

n
).

The eccentricity-based attributes (f3, f4, f5, f7) and the
average path length (f6) can be easily computed from the
all-pairs SP matrix. The all-pairs matrix can be computed
in time O(n2 + nm) via n calls of single-source SPs, each
of which can be computed in breadth-/depth-first search in
time O(n + m), since we assume that each edge has weight
one. From the SP matrix, the attributes can be computed in
O(n2) time.

The spectral attributes (f13 to f17) depend on the eigen-
decomposition of G, which can be computed in O(n3) time
in the worst case. However, typically real-world graphs are

Table 1. Global graph feature vector for the example.

F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
V 2.10 0.00 5.75 8 4 0.29 0.15 1.00 0.00 0.45
F f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
V 20 21 2.56 2.15 0.0 42.00 20 1.09 1.11 0.48

F = feature, V = value
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sparse, which can be exploited to reduce the complexity
to O(n2) [23]. Also note that when the input graphs are
very large, we compute only the top k ≥ 2 eigenvalues.
For sparse graphs, the top k eigenvalues can be computed
in O(mkt + nk2t + k3t) time (e.g., using the implicitly
restarted Lanczos method [24]), where t is the number
of iterations until convergence. For sparse graphs, with
m = O(n), if k � n, the time reduces to O(nt). The trace
(f15) and energy (f16) are computed only over these k

eigenvalues. The number of eigenvalues (f17) is not very
informative in this case.

Finally, label entropy (f18) can be computed in O(n),
neighborhood impurity (f19) can be computed in O(ndmax)

and link impurity (f20) can be computed in O(n + m) time.

4. EXPERIMENTS

4.1. Experimental Setup

We compare our graph-feature-based classification ap-
proach with state-of-the-art graph kernel classifiers. More
specifically, we compare with the following graph kernel
methods: fast geometric RW kernel [17], SP kernel [10],
graphlet (GK) kernel [14], RG subtree kernel [12], and WL
subtree kernel [13]. We relied on a Matlab implementation
of all of these kernels2. As suggested in ref. 13, we used
the tuned parameter settings for each of the kernels as
follows. For RW, the decay weight is chosen in the range
λ ∈ {10−6, . . . , 10−2}. For RG we set λr = λs = 1. For the
WL kernel, we choose h = {1, . . . , 10}, which means that
ten different kernel matrices are computed. For SP, we
use equal length SPs, and for GK we use connected three
minors. We also compare with the subgraph-feature-based
approach of CORK [16]3, which is implemented in C++.
For CORK, we use 10% minimum support to mine the
frequent discriminative subgraphs. Recall that CORK uses
the efficient gSpan [22] frequent graph mining algorithm,
and then does feature selection. We also compared with a
direct approach that uses all mined frequent subgraphs as
binary features for classification; we used the Gaston [25]
subgraph mining method for this.

In the discussion below, our graph feature approach is
denoted as GF. GF was written in Python, with NumPy [26]
and Networkx [27] modules for linear algebra and graph
support. Note that both NumPy and Matlab use low-level
C implementations for most matrix operations; therefore,
the timing results are comparable4, although there might be
slight differences. We present results for three variants of

2 obtained from Prof. K. Borgwardt and N. Shervashide
3 obtained from Marisa Thoma
4 For performance comparison of NumPy and Matlab, see http://

www.scipy.org/PerformancePython for instance.

the GF approach: GF(no) denotes the method using a raw or
unnormalized feature vector, whereas GF(r) and GF(z) use
range and z-score normalized feature vectors, respectively.

We use the libsvm [28] (support vector machine library)
for all of the kernels and our method. The graph kernels use
the kernel matrix computed via the particular graph kernel,
whereas we use the default Gaussian or RBF kernel in
libsvm: κ(Gi,Gj ) = exp

{−γ ‖Fi − Fj‖2
}
, where γ = 1

p
,

where p equals the number of features, which is 20 for all
datasets, except those that do not have any labels on the
nodes and edges. The latter include the cell-graph datasets,
and the non-label versions of the other datasets; for these
the number of features is n′ = 17, since we do not use the
label-based features (f18 to f20). We also use a RBF kernel
for CORK as that gave us the best results.

For each method, we perform ten runs of tenfold cross-
validation, and we tune the C parameter, for C-SVM, using
only the training folds. We will report the graph kernel
matrix computation (for other methods), or for the graph
feature computation (for GF). We will plot SVM training
times for each method for some selected datasets as well.
All the experiments were performed on MAC OS × 10.5
with two 2.66GHz Dual Core Intel Xeon processors, with
4GB 667MHz DDR2 memory.

For performance assessment, we report the average
accuracy and standard deviation over the tenfold cross-
validation run ten times. We also assess whether the
accuracy of our method is significantly better or worse than
the accuracy of the best previous method. For this we use
the paired t-test for the difference between the accuracies
in each fold. We report the value of the t-statistic, given as:
t =

√
Nμ

σ
, where μ and σ 2 denote the mean and variance

of the difference in accuracy between the two methods, and
N = 100 is the total sample size (ten runs times tenfolds).
We fail to reject the null hypothesis, that there is no
significant difference, if t ∈ (−tα/2,N−1, tα/2,N−1), where
α is the significance level for a two-tailed t-test with
N − 1 degrees of freedom. We use α = 0.05 for which the
interval is (−1.98, 1.98). If the value of t-statistic is outside
this interval, the two methods are statistically significantly
different in performance.

4.2. Datasets

We used three different types of graph datasets: chemical
compounds, proteins, and cell graphs. See Table 2 for
statistics on the different graphs. The table shows the
total size of each dataset, including the number of classes,
the number of points in each class, the average and
maximum number of vertices and edges for the graphs,
and the average degree. Note that the chemical compounds
and protein datasets have two classes, whose sizes are
shown under the positive and negative column labels. The
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Table 2. Benchmark datasets.

Dataset size (N ) Classes Positive Negative Avg. |V | avg.|E| Max. |V | Max. |E| Avg. deg

(a) Chemical compound datasets

MUTAG 188 2 125 63 17.7 38.9 28 33 2.19
NCI1 4 110 2 2 057 2 053 29.9 32.3 111 119 2.16
NCI109 4 127 2 2 079 2 048 29.7 32.1 111 119 2.16
PTC(MM) 336 2 129 207 25.0 25.4 109 108 1.98
PTC(FM) 349 2 143 206 25.2 25.6 109 108 1.99
PTC(MR) 344 2 152 192 25.6 26.0 109 108 1.99
PTC(FR) 351 2 121 230 26.1 26.5 109 108 1.99

(b) Protein datasets

Class Size (N ) Classes Positive Negative Avg. |V | Avg.|E| Max. |V | Max. |E| Avg. deg

D & D 1 178 2 691 487 284.3 715.7 5 748 14 267 4.98
CATH1 712 2 384 328 205.7 819.8 568 2356 7.79
CATH2 190 2 109 81 308.0 1 254.8 568 2 220 8.14

(c) Cell-graph datasets.

Tissue Class Size (N ) Avg. |V | Avg.|E| Max. |V | Max. |E| Avg. deg

Breast Invasive (EI) 202 966.9 12 503.6 1956 51454 22.07
Noninvasive (EN) 93 889.7 13 459.4 1 940 48 750 25.47
Benign (EB) 151 829.4 15 677.7 1 885 49 165 34.72

Bone Ost(OO) 49 532.2 2 324.7 2 855 18 790 5.42
Frac(OF) 39 497.7 1 599.2 1 913 13 564 4.25
Normal(ON) 20 174.2 1 174.0 612 7 309 8.14

Brain Glioma(AG) 329 4 550.2 43 400.5 7 311 98 572 18.04
Inflamation(AI) 107 42 44.1 39 457.7 7 113 90 029 17.06
Benign(AB) 210 789.0 3 988.9 1 755 9 309 9.65

E = breast, O = bone, A = brain.

cell-graphs datasets have three classes, and their sizes are
shown under the ‘size(N)’ column.

Chemical Compounds: The chemical compound datasets
include MUTAG [29], NCI1 and NCI109 [30], and PTC5,
which have been employed as benchmark datasets in previ-
ous graph kernel papers. MUTAG is a dataset of mutagenic
aromatic and heteroaromatic nitro compounds assayed for
mutagenicity on bacterium Salmonella typhimurium. We
used two balanced subsets of the NCI (National Cancer
Institute) datasets. The class labels are based on an anti-
cancer screen, as active or inactive. The PTC datasets record
the carcinogenicity of several hundred chemical compounds
for male rats (MR), female rats (FR), male mice (MM), and
female mice (FM). As one can in Table 2(a), these graphs
are very small (20–30 nodes and 25–40 edges) and sparse,
with average degree around 2.

Proteins: The D&D dataset [31], which has also been
used by previous studies, consists of 1178 proteins,
with 691 enzymes and 487 nonenzymes. In addition, we

5 www.predictive-toxicology.org/ptc

created two new datasets from CATH6, a manually curated
database of protein domain structures. CATH1 consists
of proteins in the same class (mixed alpha–beta), but
having different architectures (alpha–beta barrel vs. two-
layer sandwich). CATH2 has proteins in the same class
(mixed alpha–beta), architecture (alpha–beta barrel), and
topology (TIM barrel), but in different homology classes
(aldolase vs. glycosidases). CATH2 is harder to classify,
because proteins in the same topology class are structurally
similar. The protein graphs are ten times larger in size than
chemical compounds, with 200–300 nodes and 700–1250
edges (Table 2(b)), and average degree is 5–8. We use
another variant of the CATH datasets, without the node
labels (which correspond to the amino acids). We denote
these as CATH1 (w/o L) and CATH2 (w/o L).

Cell-graphs: We also performed experiments on can-
cer cell-graph datasets [5,32,33]. These graphs were con-
structed from the histopathological samples from three
different types of tissues: breast, bone, and brain. Within
each type of tissue we consider three classes: healthy

6 www.cathdb.info
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Table 3. Accuracy (±Standard Deviation): Chemical Compound Datasets.

MUTAG NCI1 NCI109 PTC(MM) PTC(FM) PTC(MR) PTC(FR)

GF(no.) 86.75 ± 6.38 67.18 ± 2.99 66.30 ± 1.67 60.99 ± 4.05 55.90 ± 6.40 51.15 ± 5.87 58.12 ± 6.52
GF(r) 87.11 ± 8.59 69.64 ± 1.69 69.44 ± 2.26 62.78 ± 6.83 63.90 ± 3.97 57.52 ± 6.63 66.71 ± 6.47
GF(z) 91.37 ± 4.77 75.62 ± 2.05 74.22 ± 1.66 63.38 ± 5.43 59.87 ± 6.13 63.94 ± 7.05 62.96 ± 6.65
RW 84.01 ± 6.61 – – 60.58 ± 8.92 58.98 ± 9.72 51.40 ± 5.77 64.63 ± 8.74
SP 88.13 ± 7.15 73.82 ± 1.61 72.89 ± 2.17 57.52 ± 9.98 52.41 ± 9.79 58.46 ± 6.08 63.67 ± 5.27
GK 83.93 ± 6.48 69.18 ± 2.62 69.82 ± 1.89 58.04 ± 8.22 55.86 ± 8.95 55.19 ± 5.66 59.41 ± 5.36
RG 86.23 ± 4.41 – – 64.30 ± 7.89 58.45 ± 7.01 57.61 ± 8.32 63.52 ± 6.40
WL 86.89 ± 6.33 84.11 ± 1.61 83.50 ± 2.34 67.23 ± 5.87 64.37 ± 6.57 58.10 ± 7.18 65.22 ± 5.34
CORK 86.19 ± 7.82 78.12 ± 1.61 77.76 ± 1.48 61.85 ± 8.04 57.90 ± 6.53 60.75 ± 7.31 65.51 ± 9.82
t-statistic 4.02 −28.61 −29.27 −3.91 −0.88 3.26 1.40

Notes: bold t-statistic means statistically significant.

(normal/benign), cancerous (invasive, osteo-sarcoma:Ost,
Glioma), and damaged (noninvasive, fracture:frac, inflam-
mation). We perform binary classification for each pair of
classes within a tissue type. Usually, it is much easier to dis-
tinguish between normal and cancerous classes, but harder
to classify cancerous versus damaged classes, for each tis-
sue type. For example, for the breast tissue, classifying
EB versus EN and EB versus EI is easier than classify-
ing EI versus EB. In contrast to the chemical compounds
and proteins, the cell graphs are even larger and denser
(see Table 2(c)). Average graph size is five to ten times
larger than proteins, with 200–4500 nodes and 100–43 000
edges. Average degree is 4–8 for bone, 10–18 for brain,
and 22–35 for breast tissue. The cell graphs are unlabeled
(i.e., no labels on nodes or edges).

4.3. Graph Kernel Comparison

4.3.1. Chemical compound datasets

Table 3 shows the accuracy comparison for our GF
approach versus other graph kernels on the chemical com-
pound datasets. Each cell records the average classification
accuracy, as well as the standard deviation, over the tenfold
cross-validation over ten different runs. Table 4 reports the
wall clock running times for each method on the differ-
ent datasets. A ‘–’ in any cell means that the computation

of the kernel matrix did not finish in one day, and thus the
run was aborted. We can observe from the results that graph
features with unnormalized/raw values, denoted GF(no), do
not perform well in terms of accuracy. Furthermore, for
these graphs, the z-normalized GF(z) approach delivers the
best results, except for PTC(FM) and PTC(FR).

On the MUTAG dataset, GF(z) is the best overall method.
Looking at the t-statistic, it is significantly better than the
next best method, SP kernel, at a significance level of
α = 0.05, since t �∈ (−1.98, 1.98). Considering the time,
we can see that GF takes only a fraction of the time com-
pared to other methods. It is six times faster than SP.

On the NCI1 and NCI109 datasets, the WL subtree kernel
has the best accuracy. The NCI datasets are quite tree-like;
we can see in Table 2 that for both the average and maxi-
mum number of edges, we have |E| ≈ |V |. Given that the
WL kernel is a subtree kernel, it is well suited for such
tree-like datasets. However, in terms of time, GF is over
25 times faster.

The PTC datasets are also tree-like, and thus the WL
kernel performs well. However, while WL is the best
method for MM, GF(z) is the best method for MR. These
differences are statistically significant. On FM, the WL
kernel has a slight advantage, whereas on FR data, GF(r)
is slightly better, although there is no significant difference
between them. In terms of computational time, GF method
is vastly superior, being six times faster than WL. GK is

Table 4. Running times on chemical compound datasets.

MUTAG NCI1 NCI109 PTC(MM) PTC(FM) PTC(MR) PTC(FR)

GF 0.78s 36.48s 36.77s 2.30s 2.56s 2.66s 2.50s
RW 5m3s – – 2h3m42s 2h16m11s 2h12m7s 2h17m28s
SP 4.61s 16m56s 21m2s 35.82s 35.79s 36.14s 37.72s
GK 1.42s 3m21s 3m25s 4.88s 5.05s 5.04s 5.22s
RG 42m54s – – 2h11m1s 2h16m54s 2h14m17s 2h20m6s
WL 5.88s 15m30s 16m1s 14.86s 16.22s 15.51s 16.10s
CORK 1m1s 33m19s 35m44s 19.92s 23.90s 23.03s 27.04s

h = hours, m = minutes, s = seconds.
Notes: Bold values indicate best performance.
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Table 5. Accuracy (±standard deviation): chemical compound datasets without labels.

MUTAG NCI1 NCI109 PTC(MM) PTC(FM) PTC(MR) PTC(FR)
w/o L w/o L w/o L w/o L w/o L w/o L w/o L

GF(no.) 82.43 ± 7.51 65.72 ± 2.37 64.14 ± 1.83 55.03 ± 9.95 51.85 ± 6.46 51.99 ± 7.89 59.24 ± 6.87
GF(r) 87.28 ± 6.46 67.25 ± 2.25 66.63 ± 1.50 62.44 ± 8.37 63.29 ± 7.27 56.45 ± 8.44 66.70 ± 6.02
GF(z) 87.78 ± 6.35 71.36 ± 2.21 71.53 ± 1.33 63.39 ± 10.36 61.29 ± 4.87 63.42 ± 8.55 62.15 ± 7.68
GK 87.39 ± 6.96 62.75 ± 2.16 62.03 ± 2.50 61.02 ± 6.38 59.84 ± 8.66 56.61 ± 9.01 65.80 ± 6.17
WL 86.75 ± 5.82 78.69 ± 3.33 77.03 ± 5.47 66.99 ± 7.62 64.73 ± 9.63 57.01 ± 7.83 62.10 ± 7.40
CORK 86.78 ± 7.84 – – – – – –

Notes: Bold values indicate best performance.

the second fastest method, but its accuracy is not very high.
Compared with RW, SP, RG, and CORK methods, our GF
approach is one to three orders of magnitude faster.

To study the effect of graph topology versus graph
attributes/labels, we also compared the performance of the
GF method versus the GK, WL, and CORK methods on
unlabeled versions of the chemical compound datasets, as
shown in Table 5. Unfortunately, CORK could not run on
the unlabeled datasets (except for MUTAG) since too many
frequent topological subgraphs are mined once labels are
omitted, and the (sub)graph isomorphism checks become
expensive. The main observation from these experiments
is that GF’s performance remains essentially the same
between the labeled and unlabeled datasets, which indicates
that the label information is not that helpful for GF; it relies
primarily on the topological features. Also, WL does suffer
when labels are omitted, especially for the NCI datasets.
This suggests that for the NCI datasets labels are important
to improve performance, and thus GF may also benefit if
we can incorporate more effective label features (which is
part of future work).

4.3.2. Protein datasets

The protein graphs are much larger compared with the
chemical compound datasets. The accuracy and timing
results are shown in Tables 6 and 7. In terms of accuracy,
among the GF variants, the unnormalized version is the
worst, whereas GF(r) gives the best results, except on the
unlabeled D&D (w/o L) and CATH2(w/o L) datasets.

For the D&D enzyme dataset, the only kernel methods
that finished within 24 h were GF, GK, WL, and CORK.
Here WL has the best accuracy, but GF is about three times
faster. Although CORK is four times faster, since it uses
C++ and GF uses python, the timing comparison is not
entirely fair. Also, it is worth noting that on the unlabeled
versions of the protein datasets, CORK could not be run.

For the CATH datasets, we can see that GF is 2–5 times
faster than WL, about 20 times faster than SP, 4–8 times
faster than GK, and 10–20 times faster than CORK. RW
and RG were not able to finish in the allotted time (1 day).
For CATH1, we find that GF(r) has a slight (although not

Table 6. Accuracy (±standard deviation): (a) protein datasets,
(b) protein datasets without labels.

D&D CATH1 CATH2

(a) Original Datasets
GF(no) 62.99 ± 4.49 83.29 ± 4.98 61.58 ± 10.27
GF(r) 76.32 ± 2.72 99.02 ± 0.90 81.57 ± 5.39
GF(z) 75.95 ± 2.66 98.46 ± 1.32 79.27 ± 9.46
RW – – –
SP – 98.88 ± 1.37 96.32 ± 3.37
GK 75.13 ± 2.71 98.32 ± 0.84 94.74 ± 4.71
RG – – –
WL 78.29 ± 3.05 98.59 ± 1.09 94.21 ± 4.97
CORK 71.22 ± 4.56 94.24 ± 2.77 97.89 ± 2.58
t-statistic −3.75 0.07 −26.75

(b) Datasets without Node/Edge Labels

D&D (w/o L) CATH1(w/o L) CATH2(w/o L)

GF(no) 62.48 ± 3.35 82.86 ± 5.43 61.05 ± 8.87
GF(r) 76.06 ± 3.31 98.60 ± 1.54 77.89± 7.74
GF(z) 77.51 ± 5.08 97.90 ± 1.57 81.05 ± 3.49
RW – – –
SP – 97.89 ± 1.70 76.32 ± 8.57
GK 69.27 ± 4.78 97.61 ± 2.52 66.84 ± 11.05
RG – – –
WL 74.19 ± 2.60 98.59 ± 1.26 76.84 ± 8.22
CORK – – –
t-statistic 4.74 0.15 4.67

Notes: Bold values indicate best performance, and bold t-statistic
means statistically significant.

significant) advantage over other approaches in terms of
accuracy. CATH1 is an easier dataset to classify, since the
proteins in the two classes differ at the architecture level,
and thus are structurally different. All the methods do well
on this dataset. On CATH2 data, CORK gave the best over-
all results, and GF was significantly worse. CATH2 is a
much harder dataset to classify from a structural viewpoint.
This is because the two classes have significant structural
similarity. On the other hand, there are possibly signifi-
cant differences in the protein sequences between the two
classes. GF mainly relies on topological graph features, and
the three label features (f18 to f20) are not able to capture
the subsequence similarity (since they a re local and are not
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Table 7. Running times on protein datasets.

D&D CATH1 CATH2

GF 52m35s 4m36s 2m15s
RW – – –
SP – 1h42m12s 42m26s
GK 23h14m53s 37m8s 15m54s
RG – – –
WL 2h12m57s 22m33s 4m45s
CORK 14m10s 41m28s 43m6s

h = hours, m = minutes, s = seconds.

designed to look at subsequences). GF is thus not able to
distinguish between the two classes as well as the other ker-
nels that can effectively utilize label information. To verify
this hypothesis, we removed the node (amino acid) labels
from the CATH datasets; thus, all methods have to rely
only on topological information. We also include a compar-
ison the unlabeled D&D dataset for completeness. CORK
aborted on all the unlabeled proteins datasets, since the
(sub)-graph isomorphism checks in this case become too
expensive. We now find that GF(z) is significantly supe-
rior to other methods on CATH2(w/o L), and also on the
D&D dataset. While the accuracy of GF(z) remains close
to the labeled case, the other methods suffer a signifi-
cant drop in accuracy. For example, WL has an accuracy
of 94.21 on CATH2, but only 76.85 on CATH2(w/o L).
This confirms two things: (i) there is significant sequence
similarity between sequences in the same class, exploiting
which helps the other methods and (ii) even though the
CATH2 classes are topologically similar, there are enough

structural differences that GF is still able to exploit. Like-
wise, GF can leverage the topological differences between
the enzymes and nonenzymes for D&D.

4.3.3. Cell-graph datasets

Table 8 shows the accuracy comparison for GF versus
other graph kernels on the cell-graph datasets. The cor-
responding timing results are shown in Table 9. One of
the differences between cell-graph and the other datasets
is that cell graphs are much larger (e.g., 4550 nodes and
43 400 edges for brain graphs). Furthermore, while the other
datasets are labeled, the cell-graph data does not have any
labels.

We show the results separately for each tissue type, and
we show results for binary classification. Among the GF
variants, GF(z) is usually better than GF(r), or is close to
it. The unnormalized version is significantly worse. For GF,
we use only the top k = 2 eigenvalues for bone (O), and
k = 100 for brain (A). This is because computing all the
eigenvalues for these large graphs is expensive.

For the cell-graph datasets, GF significantly outperforms
all other methods in terms of accuracy, and also has an
advantage in terms of time. For the largest graphs, from
brain tissues, even GK and WL were not able to complete
within a day of computation time. We also do not report the
accuracies for CORK, since it aborted on the cell-graphs
datasets. Because of the large graph size and the lack of
labels, the graph mining step in CORK fails to enumerate
any discriminative subgraphs.

Table 8. Accuracy (±standard deviation) on cell-graph datasets.

EB vs. EI EN vs. EB EN vs. EI OF vs. ON ON vs. OO OF vs. OO

GF(no) 57.78 ± 7.25 61.92 ± 5.21 64.48 ± 4.96 65.67 ± 20.76 71.19 ± 14.06 58.83 ± 16.59
GF(r) 87.70 ± 5.30 86.35 ± 7.02 82.76 ± 5.35 98.33 ± 5.00 94.29 ± 7.00 53.47 ± 22.08
GF(z) 88.05 ± 4.27 84.58 ± 6.96 83.84 ± 4.41 97.67 ± 6.67 92.86 ± 7.14 63.75 ± 14.09
RW – – – 90.00 ± 11.06 76.43 ± 14.30 49.72 ± 14.28
SP 76.27 ± 5.16 77.61 ± 6.29 73.22 ± 6.14 94.67 ± 8.19 78.33 ± 14.57 60.67 ± 12.19
GK 66.01 ± 9.57 75.19 ± 8.13 62.38 ± 6.91 56.00 ± 21,12 60.71 ± 13.27 51.39 ± 13.57
RG – – – 72.33 ± 12.52 67.04 ± 15.54 48.87 ± 14.07
WL 87.23 ± 4.57 74.81 ± 6.09 71.22 ± 8.15 98.33 ± 5.00 63.57 ± 17.63 61.25 ± 13.60
t-statistic 0.23 9.31 12.74 0 12.28 1.29

AG vs AI AG vs AB AB vs AI

GF(no) 75.36 ± 5.06 61.04 ± 3.98 66.20 ± 8.36
GF(r) 88.28 ± 3.40 98.70 ± 1.45 99.06 ± 2.81
GF(z) 87.91 ± 2.86 99.26 ± 0.91 98.74 ± 2.87
RW – – –
SP – – –
GK – – 97.79 ± 2.01
RG – – –
WL – – 99.38 ± 1.88
t-statistic – – −0.14

Notes: Bold t-statistic means statistically Significant. E = breast, O = bone, A = brain.
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Table 9. Running times on cell-graph datasets.

EB vs. EI EN vs. EB EN vs. EI OF vs. ON ON vs. OO OF vs OO

GF 1h11m13s 47m11s 1h15m40s 23.7s 1m26s 1m43s
RW – – – 11m16s 18m14s 40m8s
SP 8h21m36s 5h44m23s 9h40m4s 19m8s 1h11m58s 1h27m2s
GK 14h12m4s 9h51m37s 11h46m28s 5m33s 9h47s 10m47s
RG – – – 24.15s 43.70s 1m29s
WL 1h55m42s 44m29s 1h23m35s 55.30s 2m56s 2m32s

AG vs AI AG vs AB AB vs AI

GF 17h50m5s 13h53m38s 5h15m44s
RW – – –
SP – – –
GK – – 9h11m12s
RG – – –
WL – – 7h24m29s

h = hours, m = minutes, s = seconds.

The accuracy of the competing methods depends on the
two classes being compared. WL has comparable accuracy
only on the easier to classify pairs, namely benign and
cancerous breast graphs (EB vs. EI), normal and fractured
bone graphs (OF vs. ON), and benign and inflamed brain
graphs (AB vs. AI). On the other hand, on the other hard
pairs, such as inflamed/noninvasive/damaged versus cancer
(EN vs. EI, OF vs. OO, and AI vs. AG), our graph feature
approach is significantly superior. For example, on EN vs.
EI, GF(z) has an accuracy of 83.84, whereas SP has an
accuracy of 73.22, WL has an accuracy of 71.22 and GK
has an even lower value (62.38).

It is interesting to note that since cell-graph datasets
do not have labels, all the kernels can only use struc-
tural information for computing the kernel matrix. The
fact that GF has the best accuracies implies that the topo-
logical attributes we compute are well suited to extract
discriminating features among the graphs from different
classes. In fact, these attributes are much better at cap-
turing the topological differences than the corresponding
kernels based on subtrees, graphlets, SPs, and random
walks, especially on large, unlabeled graphs, such as the
cell graphs.

4.3.4. SVM training times

Figure 4 plots SVM training times for the different
methods on four selected datasets: MUTAG, PTC(MR),
NCI1, and CATH1. They all use the same libsvm package.
For MUTAG, the training times for GF and CORK are
about five times faster than other graph kernel methods,
which are all relatively close to each other. For PTC(MR),
there are significant differences in the training times. GF
still has the least computational time, whereas the Graphlet
kernel had the longest time. GF is over four times faster

than the WL kernel. For NCI1, since the computation of
RW and RG kernel matrix did not finish within a day,
we excluded them from the plot. GF retains the fastest
SVM training speed. Finally on the CATH1 dataset, GF(z)
and CORK are the fastest, whereas the WL kernel is the
slowest, being over ten times slower than GF(z). Figure 4
shows that GF methods with normalization give rise to
easily optimized SVM classifiers compared with other
graph kernel methods.

4.3.5. Scalability study

To study the scalability of our GF approach, we selected
some datasets from each of the three groups: NCI1,
PTC(FR), CATH2, and OF-OO. Next, we replicate the
instances 10, 50, and 100 times, and we compare with the
original replication factor of 1. For instance, NCI1 dataset
with replication factor 100 has 100 × 4110 = 411 000
instances. Figure 5 shows the time it takes to extract the
GF topological features for the four selected datasets. As
expected, the runtime of GF is linear in the number of graph
instances.

4.4. Frequent Subgraph Features

We evaluated the effectiveness of using frequent sub-
graph features for graph classification. Recall that the
CORK method first uses the gSpan algorithm [22] to mine
frequent subgraphs, and then uses feature selection to cre-
ate the final classifier. CORK’s performance on chemical
compound datasets appears in Table 3. We also employed
the Gaston [25] frequent subgraph miner to obtain all fre-
quent subgraphs at 10% minimum support (same as that
used for CORK/gSpan). Next, we convert each subgraph
into a binary feature, noting its presence or absence in
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Fig. 4 SVM training times. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 5 Scalability study: GF(z) time for various replication
factors.

each training/testing example, without doing any feature
selection. Table 10 shows the accuracy of this approach
on the chemical compound datasets. We find that except

for PTC(FR), this approach is not as good as the WL or
GF methods. Interestingly, the Gaston approach is typ-
ically better than CORK, even though it does not do
any feature selection. It also is the fastest among all
approaches in terms of time; its efficient C++ imple-
mentation finishes in under 2s for all the chemical com-
pound datasets (although it is not fair to compare it with
the Matlab/Python implementations). Unfortunately, Gas-
ton was not able to mine all the frequent subgraphs for
the protein and cell-graph datasets (at 10% minimum sup-
port threshold) within the 24 h time threshold. For some
higher support values (e.g., 30%) Gaston was able to run,
but it outputs so many patterns that the SVM classifica-
tion step failed (it exceeded the 4 GB memory). Com-
bined with the fact that even CORK cannot be run on the
cell-graph and other unlabeled datasets, the whereas sub-
graph features can help for labeled graphs, they are not
effective for unlabeled graphs, where GF is particularly
strong.
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Table 10. Frequent subgraphs as binary features.

MUTAG NCI1 NCI109 PTC(MM) PTC(FM) PTC(MR) PTC(FR)

GASTON 81.87 ± 5.58 80.92 ± 1.45 81.00 ± 1.37 61.35 ± 6.91 59.30 ± 9.24 63.14 ± 8.69 68.64 ± 8.90

Table 11. Feature rankings-range normalization.

F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

MUTAG 4 3 2 1 5
NCI1 5 2 4 1 3
NCI109 2 4 5 1 3
PTC(MM) 4 1 3 2 5
PTC(FM) 1 3 5 4 2
PTC(MR) 1 3 4 2 5
PTC(FR) 1 5 2 3 4
D&D 2 4 3 5 1
CATH1 5 4 1 2 3
CATH2 4 2 5 1 3
CATH1(w/o L) 5 4 1 2 3 – – –
CATH2(w/o L) 4 2 5 3 1 – – –
EB vs EI 1 5 4 3 2 – – –
EN vs EB 3 1 4 5 2 – – –
EN vs EI 3 5 2 1 4 – – –
OF vs ON 1 3 5 2 4 – – –
ON vs OO 1 4 5 2 3 – – –
OF vs OO 3 4 2 1 5 – – –
AG vs AI 5 2 1 3 4 – – –
AG vs AB 4 1 3 5 2 – – –
AB vs AI 4 1 5 2 3 – – –
counts 6 13 4 1 1 6 4 5 4 6 13 7 5 6 0 7 11 3 2 1

4.5. Feature Importance Study

We carried out a detailed study to rank the different
graph features, with the goal to identify which features
carry the most information. We used the SVM-wrapper
feature selection method [34], which ranks the features via
recursive feature elimination using SVM. In Tables 12 and
11 we record the ranks of the top-k effective features,
for k = 5. The last row of the table notes the number
of occurrences of each feature in the top five list. While
it is clear that the most informative graph attributes are
dataset dependent, some general conclusions can still be
made. For instance, for GF with range normalization, the
top five features (shown in bold in Table 11) based on
the number of occurrences include: (i) average clustering
coefficient (f2), (ii) number of nodes (f11), (iii) number
of eigenvalues (f17), (iv) number of edges (f12), and (v)
energy (f16). For GF with z-normalization, the top-five-
occurrences-based features (shown in bold in Table 12) are:
(i) number of nodes (f11), (ii) average degree (f1), (iii)
average clustering coefficient (f2), (iv) number of edges
(f12), and (v) number of eigenvalues (f17). Thus, good
discriminating features depend on both the graph datasets
and different normalization methods. We still observe some
high level trends in the rankings from the tables. The

spectral attributes (f13, f14, f16, f17) are generally quite
effective. The SP-based attributes (f3, f4, f5, f6, f7) do
not appear to be that effective compared to the spectral
attributes, especially for range normalization. f1 (average
degree) and f2 (average clustering coefficient) are also
generally good features. f8 (giant connected ratio), f9

(percentage of isolated points), f10 (percentage of end
points) might be effective if the graphs in the dataset contain
several components, e.g. bone tissues dataset. As for the
label-based features, for half of the datasets (five of ten)
in which graphs have node labels, the feature f18 (label
entropy) is in the top five. Note that none of them select
f15 (trace) as an effective discriminating feature, since none
of the graphs in our experiments contain loops. A detailed
dataset specific analysis of feature importance is given next.

Chemical Compounds Datasets: We first take a look
at range normalization in Table 11, for the chemical
compound datasets: MUTAG, NCI1 and NCI109, and PTC.

For MUTAG, the top five features are f13 (spectral
radius), f12 (number of edges), f5 (effective radius), f1

(average degree), and f16 (energy).
The NCI datasets all have similar top five feature

rankings among themselves, i.e., the first four features are
the same, f17 (number of eigenvalues), f9 (percentage
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Table 12. Feature rankings–z-normalization.

F f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20

MUTAG 3 2 1 4 5
NCI1 3 2 1 4 5
NCI109 3 2 4 1 5
PTC(MM) 1 5 4 3 2
PTC(FM) 5 2 1 4 3
PTC(MR) 2 4 1 5 3
PTC(FR) 1 3 4 5 2
D&D 3 5 4 1 2
CATH1 2 3 4 1 5
CATH2 4 3 1 5 2
CATH1(w/o L) 5 2 3 4 1 – – –
CATH2(w/o L) 5 2 1 4 3 – – –
EB vs EI 1 2 3 4 5 – – –
EN vs EB 1 3 4 2 5 – – –
EN vs EI 1 5 2 3 4 – – –
OF vs ON 3 1 5 2 4 – – –
ON vs OO 3 1 5 2 4 – – –
OF vs OO 4 5 2 1 3 – – –
AG vs AI 5 1 3 2 4 – – –
AG vs AB 4 3 2 5 1 – – –
AB vs AI 4 2 1 3 5 – – –
counts 12 10 6 5 2 4 3 4 2 2 16 8 4 6 0 4 8 5 1 3

of isolated points), f19 (neighborhood impurity), and f13

(spectral radius), except for the fifth feature: for NCI1
it is f8 (giant connected ratio) and for NCI109 it is
f14 (second largest eigenvalue). Note that both range and
z-normalization choose f17 (number of eigenvalues) as
the top feature for these tree-like datasets. There is rich
literature showing that the eigenvalues of a graph capture
many topological properties. For example, multiplicity
of eigenvalues usually corresponds to symmetries in the
graph [35] (although the correspondence is not exact).
The possible explanation for f17 being selected by the
NCI graphs is that one class has more balanced tree-like
structures than the other class.

However, the PTC graphs have quite different feature
rankings with each other. It is interesting to see that
all of them put f2, average clustering coefficient, as the
first rank. But since PTCs are chemical compounds, most
graphs have zero triangles. Thus most graphs will have f2

feature value 0. Using only average clustering coefficient
as the feature for classification, the accuracies for GF(r)
are: PTCMM (61.68 ± 6.83), PTCFM (59.02 ± 6.05),
PTCMR (55.83 ± 7.83), and PTCFR (65.53 ± 9.32), which
are close to the accuracies by using the full 20 features
for classification (see Table 3). One possible explanation
is that since positive or negative graphs have f2 value
0, an SVM classifier will not be able to discriminate
between them. Rather, the SVM will classify all of them
as either positive or negative. Since the PTC datasets
are balanced datasets to some extent (with approximately
40% positives and 60% negatives), the classifier accuracies

are expected to around 60%. The SVM-wrapper feature
selection method also shows that f2 is an informative
graph attribute. Other attributes are less informative or
even redundant. Nevertheless, considering them together
still improves the accuracies by 1–4%, compared to using
f2 alone (see Table 3).

For the z-normalization results in Table 12, we see that
for MUTAG, the top five features are f13 (spectral radius),
f2 (average clustering coefficient), f1 (average degree),
f18 (label entropy), and f20 (link impurity). For the two
NCI graphs, there are two features selected by both: f11

(number of nodes) and f17 (number of eigenvalues). For
the four PTC graphs, f2 (average clustering coefficient) is
selected by three datasets. Note that f5 (effective radius),
f8 (giant connected ratio), f9 (percentage of isolated
points), f15 (trace), and f19 (neighborhood impurity) are not
selected either by range or z-normalization. Since chemical
compound usually contain only one component and form a
simple graph, some features such as isolated points, giant
connected ratio and trace have little discriminating power.

Proteins: The protein datasets include D&D and CATH1
and CATH2 (with and without labels). In Table 11, these
five datasets all put feature f17 (number of eigenvalues) in
the top five, whereas four of them have f16 (energy) and
f12 (number of edges) in the top five, and three choose f11

(number of nodes). Compared with chemical compounds,
protein datasets (graphs) are relatively large. Thus some
simple statistics, e.g. number of nodes and number of edges
might be more effective and can have more discriminating
power. The dimension of the adjacency matrix for each
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graph is larger compared to chemical compound datasets,
which increases the value of the energy feature.

In Table 12, for z-normalization, besides all of the protein
datasets choosing f11 (number of nodes) as an important
feature, three in five consider f4 (effective diameter) and
f12 (number of edges) important for classification. For
D&D dataset, both the range and z-normalization methods
select f14 (the second largest eigenvalue).

Cell graphs: Cell graphs are the largest graphs used in
our experiments. The datasets have three different types
of cancerous tissues: breast, bone, and brain. Each has
three binary classification tasks. With range normalization
(Table 11) all of them consider f11 (number of nodes) and
nearly all of them (seven in nine) put f2 (average clustering
coefficient) as important discriminating features.

For breast-cancer datasets, besides the features men-
tioned above, two in three select f1 (average degree), f3

(average effective eccentricity), f14 (second largest eigen-
value), and f17 (number of eigenvalues) among the top
five features. For bone-cancer datasets, two in three select
f8 (giant connected ratio), f10 (percentage of end points),
and f17 (number of eigenvalues) in the top five. Note that
each graph in bone has multiple connected components
and the largest number of components of one graph is 158
(including isolated points). Thus, f8 and f10 become impor-
tant discriminating features here. For brain-cancer datasets,
besides the features mentioned above (f11, f2), two in three
select f3 (average effective eccentricity), f6 (closeness cen-
trality), and f8 (giant connected ratio). It is known that
different types of tissues in brain have different cellular
density levels [33]. The cancerous tissues (glioma) have
higher cellular density while the healthy tissues (benign)
have lower cellular density. At the same time, cancerous tis-
sues and damaged tissues (inflammation) have equally high
cellular density. Hence, on AG versus AB and AB versus
AI, except for the node-based features (f11 and f2), some
path-based features such as f3 (average effective eccentric-
ity) and f6 (closeness centrality) also show discriminating
power.

For z-normalization (Table 12), all of the cell-graph
datasets choose f1 (average degree) and almost all of them
(seven in nine) choose f2 (average clustering coefficient)
and f11 (number of nodes), as important features. Figure 6
plots the frequency distributions for the average degree (f1)
and average clustering coefficient (f2) for the three breast
cancer cell-graph classes (invasive: EI, noninvasive: EN,
and benigh: EB). One can observe that there are significant
differences among the class-specific distributions, which
help discriminate them in our GF approach.

It is worth remarking that while f11 (number of nodes)
and f12 (number of edges) are good discriminating features
(they are usually in the top five), the accuracy is not
significantly different even without these features, as shown

in Table 13. The table shows the performance of GF with
and without these two features: GF is with the original
set of 17 features (discounting the label-based features
f18 –f20, since Cell-graphs are unlabeled), whereas GF*
is with 15 features (with f11 and f12 removed). We can
see that the differences in accuracies are not significant,
except for ON versus OO, where the drop in accuracy is
approximately 6%. Note that in over half the cases there is
even a slight increase in accuracy for GF*, with the reduced
set of features. For OF versus OO there is a 3.5% increase
for GF*. One possible explanation is that features are not
mutually independent and some missing features could be
compensated to some extent by other features. In any case,
even without the two simplest features, namely number of
nodes and edges, GF* method is superior to other graph
kernels on the cell-graph datasets (see Table 8).

4.6. Augmented Topological Features

To further examine the effect of additional topological
features, we augmented the initial 17 features (f1 to f17,
mentioned in Section 3), with an additional 10 global graph
features, for a total of 30 global features, including the 3
label-based features (f18 to f20). These augmented features
are described below.

f-21. Eigen-exponent: It is defined as the slope of the
best-fitting line for the decreasing eigenvalues, i.e.
λi versus i, in a log–log plot.

f-22. Hop-plot exponent: The hop-plot value reflects
the size of the neighborhood between any two
nodes. Let R(h) denote the number of node pairs
that are reachable within h hops. The hop-plot
exponent is the slope of best-fitting line in a
log–log plot of the number of reachable pairs
R(h) as a function of h.

f-23. Averaged current-flow closeness centrality: A
variant of closeness centrality based on effective
resistance between nodes in a network [36].

f-24. Degree assortativity coefficient: Assortativity
measures the similarity of connections in the
graph with respect to the node degree. It is
essentially the same as the Pearson correlation
coefficient of degrees between pairs of adjacent
nodes [37].

f-25. Number of cliques: This is the number of
maximal cliques in each graph.

f-26. Average neighbor degree: First, we compute the
average degree of the neighborhood of each node.
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Fig. 6 Breast cell-graphs: class-0specific average degree (a) and clustering coefficient distribution (b). [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

Then, for the whole graph we take the average of
these values over all nodes.

f-27. Transitivity: Defined as the fraction of all
possible triangles in each graph. A possible
triangle is a triple which has two edges sharing
one vertex.

f-28. Periphery: The periphery is the set of nodes with
eccentricity equal to the effective diameter. We
compute the fraction of nodes that comprise the
periphery in each graph.

f-29. Cycle basis: A graph may have multiple cycles.
However, each cycle in the graph can be decom-
posed into the sum (defined as ‘exclusive or’ of
the edges) of several cycles. We call a minimal
collection of such cycles as a cycle basis. The
cardinality of cycle basis is selected as a global
feature.

f-210. Square clustering coefficient: While clustering
coefficient by triangles give the likelihood that

any two neighbors of u are connected, the square
clustering coefficient gives the probability that
two neighbors of node v share a common neighbor
different from v.

Tables 14 and 15 give the accuracy and running time,
respectively, for the GF methods, with and without the
augmented features. GF(20) denotes the use of the original
20 features, and GF(30) includes the augmented features.
The results are shown on selected datasets from each group,
i.e. MUTAG and PTC(MM) from chemical compounds,
D&D and CATH2(w/o L) from proteins, and EN versu EI
from cell graphs. We observe that the augmented features
improve the performance for CATH2 (w/o L) to some
extent, with not much difference for the other datasets.
However, interestingly, on the cell-graph dataset EN–EI,
the use of the additional features significantly reduces the
accuracy. This may be because the other features already
capture most of the global topological properties for the
cell-graph dataset. Also, these augmented features can be
expensive to compute, being typically three times slower
than the 20 initial features. Combined with the feature
importance study above, we conclude that the simpler
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Table 13. Accuracy (±standard deviation) on cell-graph datasets.

EB vs. EI EN vs. EB EN vs. EI OF vs. ON ON vs. OO OF vs. OO

GF(no) 57.78 ± 7.25 61.92 ± 5.21 64.48 ± 4.96 65.67 ± 20.76 71.19 ± 14.06 58.83 ± 16.59
GF(r) 87.70 ± 5.30 86.35 ± 7.02 82.76 ± 5.35 98.33 ± 5.00 94.29 ± 7.00 53.47 ± 22.08
GF(z) 88.05 ± 4.27 84.58 ± 6.96 83.84 ± 4.41 97.67 ± 6.67 92.86 ± 7.14 63.75 ± 14.09
GF*(no) 57.79 ± 4.92 61.90 ± 7.02 68.40 ± 7.36 62.67 ± 12.45 66.43 ± 15.00 55.33 ± 16.38
GF*(r) 86.99 ± 6.60 86.87 ± 8.14 84.40 ± 5.31 95.00 ± 7.64 87.14 ± 11.87 56.81 ± 16.30
GF*(z) 86.41 ± 5.19 81.97 ± 5.48 84.10 ± 6.75 95.00 ± 10.67 88.57 ± 12.45 67.22 ± 15.17

AG vs. AI AG vs. AB AB vs. AI

GF(no) 75.36 ± 5.06 61.04 ± 3.98 66.20 ± 8.36
GF(r) 88.28 ± 3.40 98.70 ± 1.45 99.06 ± 2.81
GF(z) 87.91 ± 2.86 99.26 ± 0.91 98.74 ± 2.87
GF*(no) 75.02 ± 4.55 81.63 ± 4.10 67.56 ± 10.67
GF*(r) 87.83 ± 4.76 98.70 ± 1.86 99.05 ± 1.45
GF*(z) 86.93 ± 4.42 99.44 ± 0.85 99.38 ± 1.25

E = breast, O = bone, A = brain, GF* = features f11, f12 removed. The best results for GF and GF* are shown in bold.

Table 14. Accuracy (± standard deviation) on selected datasets.

MUTAG PTC(MM) D&D CATH2(w/o L) EN vs EI

GF(r)(20) 87.11 ± 8.59 62.78 ± 6.83 76.32 ± 2.72 77.89 ± 7.74 87.70 ± 5.30
GF(z)(20) 91.37 ± 4.77 63.38 ± 5.43 75.95 ± 2.66 81.05 ± 3.49 88.05 ± 4.27
GF(r)(30) 87.22 ± 9.20 63.37 ± 5.11 76.74 ± 2.60 80.00 ± 5.67 80.38 ± 5.76
GF(z)(30) 89.91 ± 5.48 61.60 ± 5.87 75.97 ± 3.42 83.16 ± 7.74 82.74 ± 3.40

topological features are typically sufficient to capture
most of the important structural properties, and it is not
that beneficial to include too many complex topological
attributes such as cliques, square clustering, cycles.

5. CONCLUSIONS

We propose a simple yet effective and efficient graph
classification approach that is based on topological and
label graph attributes. The graph dataset is converted into
a feature-vector dataset, which can be classified easily
using any classifier. Our main idea is that graphs from
the same class should have similar attribute values. On
the basis of an extensive comparison with state-of-the-art
graph kernel classifiers, we show that our approach yields
competitive or better accuracies and has typically much
lower computational times. Our conclusion is that graph
attributes are effective in capturing discriminating structural
information from different classes. While no method is

uniformly the best, our approach is particularly effective for
unlabeled graphs. Combining our graph features, with the
best features from other approaches, such as the WL kernel,
has the potential to yield even better methods, especially for
labeled graphs.

This work opens up fruitful directions for future research.
First, we would like to consider features that are more local,
instead of the mainly global ones we consider in this paper.
One approach to achieve this is to use the complete local
distribution (e.g., degree distribution), as a complex feature
in classification, instead of computing the average (e.g.,
average degree) like we do in the global approach. Sec-
ond, we would like to construct better label attributes. We
have exploited only three labeled features so far, and it is
clear that some datasets such as the anticancer chemical
compounds (NCI) and protein structural classes (CATH2)
can benefit from richer label-based attributes. Third, we
would like to exploit additional features from the other
graph kernels (e.g., WL kernel). Finally, we would like
to understand which graph and kernel features are the most

Table 15. Running times on selected datasets.

MUTAG PTC(MM) D&D CATH2 (w/o L) EN vs EI

GF(20) 0.78s 2.30s 52m35s 2m15s 1h15m40s
GF(30) 3.04s 8.52s 1h26m35s 6m18s 3h24m59s

h = hours, m = minutes, s = seconds.
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informative in terms of classification, and eventually, even
for clustering.
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