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Abstract
Multiple response regression is a useful regression technique to model multiple response variables
using the same set of predictor variables. Most existing methods for multiple response regression
are designed for modeling homogeneous data. In many applications, however, one may have
heterogeneous data where the samples are divided into multiple groups. Our motivating example
is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we
consider modeling the data coming from a mixture of several Gaussian distributions with known
group labels. A naive approach is to split the data into several groups according to the labels and
model each group separately. Although it is simple, this approach ignores potential common
structures across different groups. We propose new penalized methods to model all groups jointly
in which the common and unique structures can be identified. The proposed methods estimate the
regression coefficient matrix, as well as the conditional inverse covariance matrix of response
variables. Asymptotic properties of the proposed methods are explored. Through numerical
examples, we demonstrate that both estimation and prediction can be improved by modeling all
groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals
some interesting common and unique gene relationships across different cancer subtypes.
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1 Introduction
Multivariate regression with a univariate response is a common and popular technique that
builds a model to predict a response variable given a set of predictor variables. In the
statistical learning literature, many multivariate regression techniques are designed for the
setting of a univariate response case. In many applications, one may have multiple response
variables available. A simple approach is to regress each response variable separately on the
same set of explanatory variables. Although it is simple and popular, the univariate response
approach ignores the joint information among response variables.

To improve estimation and prediction accuracy, it can be advantageous to model the
response variables jointly. Breiman and Friedman [1] proposed a method called the “curd
and whey”, which was shown to achieve improved prediction accuracy over univariate
regression techniques when there are correlations among the response variables. To achieve
variable selection, Turlach et al. [2] proposed a penalized method using the max-L1 penalty.
Their method aims to select a common subset that can be used as predictors for all response
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variables. Yuan et al. [3] proposed another shrinkage method to model response variables
jointly. Their idea is to obtain dimension reduction by encouraging sparsity among singular
values of the regression coefficient matrix. The embedded dimension reduction is very
useful especially when the dimension of predictor variables is much higher than the sample
size.

Besides the regression coefficient matrix, it can also be useful to estimate the conditional
inverse covariance matrix. Under the Gaussian assumption, this matrix closely relates to
Gaussian graphical models and provides useful interpretation of the relationship among
response variables. Recently, Rothman et al. [4] and Lee and Liu [5] proposed to model
response variables jointly in a penalized likelihood framework using L1 regularization. In
particular, they assume that the conditional distribution of response variables given
predictors is multivariate Gaussian. Under this assumption, they perform joint estimation of
the regression coefficient matrix and the conditional inverse covariance matrix of response
variables given predictors. In the estimation procedure, Lee and Liu [5] used weighted L1
penalties on both matrices in order to encourage sparsity among the entries of the estimated
matrices. Their results indicate that simultaneous modeling of the multiple response
variables can provide more accurate estimation of both regression coefficients and the
inverse covariance matrix.

The previous work mentioned above assumes that all observations come from a single
multivariate Gaussian distribution. However, in some applications, this assumption can be
too strong. For example, we consider the glioblastoma multiforme (GBM) cancer data set
studied by The Cancer Genome Atlas (TCGA) Research Network [6]. Verhaak et al. [7]
showed that the GBM patients can be divided into four subtypes based on their gene
expressions. Based on their study, gene expressions of patients within each subtype are very
similar. However, patients in different subtypes can be very different from each other.
Therefore, the assumption of one multivariate Gaussian distribution for all patients may not
be valid. In this paper, we consider modeling the data arisen from a mixture of several
Gaussian distributions. Specifically, we model gene expression data of the patients of a
particular subtype by a multivariate Gaussian distribution, which can vary from one subtype
to another. Here we assume that the Gaussian mixture labels are given. To tackle this
problem, a naive approach is to model each group separately. However, this approach
ignores the common structures that may exist across different groups. Therefore, it might be
more useful to model all groups jointly so that the common structures can be estimated from
the aggregated data.

In this paper, we propose three approaches to model all groups jointly via penalizing
parameter matrices together. The first two approaches are plug-in methods and the third one
is to estimate all parameter matrices jointly. In particular, for the first approach, we plug in a
reasonable estimator of the inverse covariance matrices to estimate the regression coefficient
matrices. For the second approach, we estimate the inverse covariance matrices instead after
plugging in a good estimator of the regression coefficient matrices. The last approach
simultaneously estimates the regression coefficient matrices and the inverse covariance
matrices. These methods are penalized log-likelihood approaches with the multivariate
mixture Gaussian assumption.

In the following sections, we describe the new proposed methods in more details with
theoretical justification and numerical examples. In Section 2, we introduce our proposed
methods. Section 3 explores their theoretical properties. Section 4 develops computational
algorithms to obtain solutions for proposed methods. Simulated examples are presented in
Section 5 to demonstrate performance of our methods and Section 6 provides analysis of a
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glioblastoma cancer data example. We conclude the paper with some discussion in Section
7. The proofs of the theorems are provided in the Appendix.

2 Methodology
Consider the dataset with G different groups. Suppose the g-th group contains ng

observations of p covariates and m response variables. Let ; i = 1, …,

ng, be m-dimensional responses and  be the ng × m response matrix in

the g-th group. Let ; i = 1, …, ng, be p-dimensional predictors and

 be the ng × p design matrix in the g-th group. Consider the multiple
response linear regression model in the g-th group,

where ; j = 1, …, p, k = 1, …, m, is an unknown p × m parameter matrix. The

errors ; i = 1, …, ng, are i.i.d. m-dimensional random vectors following
a multivariate normal distribution N(0, Σ(g)) with a nonsingular covariance matrix Σ(g). Let

; j, j′ = 1, …, m.

Our goal is to estimate {(B(g), C(g))} so that we can perform prediction and achieve
graphical interpretation among response variables, where {(B(g), C(g))} = {(B(g), C(g)), g =
1, …, G}. The most direct way to estimate {(B(g), C(g))} is to build G individual maximum
likelihood models. More specifically, the maximum likelihood estimator of {(B(g), C(g))}
can be obtained via maximizing the following conditional log-likelihoods on X(g),

(1)

up to a constant not depending on (B(g), C(g)). It is well-known that the resulting estimator
of B(g) is the ordinary least squares estimator and it does not make use of the joint
information among response variables. To incorporate the joint information among response
variables in the estimation procedure, we can apply the method proposed by Lee and Liu [5].
In particular, the estimator is given by solving

(2)

where l(B(g), C(g)) = ng log det(C(g))−tr{(Y(g) − X(g)B(g))C(g)(Y(g) − X(g)B(g))T}; g = 1, …,
G.

Motivated from the technique for a single linear model as in (2), we consider penalization
for (1) to improve estimation. In particular, estimation of {(B(g), C(g))} can be improved if
some common information across groups can be shared in the estimation procedure. Note
that the optimization problem suggested in (2) can be solved individually within each group.
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Therefore, it does not utilize the common information across groups. However, since these
groups may have shared information with similar structure, it can be useful to consider the
connection.

In this section, we propose methods that combine G individual models to improve prediction
and estimation. Our goal is to estimate {(B(g), C(g))} simultaneously to identify the common
and unique structures across groups. Note that there are two parameter matrices in each
group, B(g) and C(g), involved in the estimation, and in many applications only one of them
is of main interest. Hence, we consider three different approaches, two plug-in methods and
one joint method. In Sections 2.1 and 2.2, we introduce two different plug-in penalized
likelihood methods, one is for multiple response regression and the other one is for inverse
covariance estimation. In the plug-in method for multiple response regression, we estimate
{C(g)} first and then plug it into the likelihood to estimate {B(g)} using penalization. In the
plug-in method for inverse covariance estimation, we estimate {B(g)} first and then
incorporate the information to estimate {C(g)}. In Section 2.3, we estimate {(B(g), C(g))}
together via double penalization.

2.1 Plug-in Hierarchical LASSO estimator
Our goal in this section is to estimate the regression coefficients {B(g)}, while assuming the
inverse covariance estimates {Ĉ(g)} is available. Although B(g) can be different for different
g, we expect they share some common structures. In particular, for our cancer application
example, different groups correspond to patients with different subtypes of brain cancer.
Thus, patients from different groups are likely to have a lot of similarities although there are
important differences among various subtypes. This motivates us to perform joint estimation
of {B(g)} through shrinkage. It is desirable to identify the common and unique structure on
{B(g)} through the penalty.

Suppose we have the inverse covariance estimates, {Ĉ(g)}, available. Let

. Regression parameters, ( ), corresponding to the same
response variable and the same predictor variable are treated as a group. We consider a new
penalized likelihood method, namely the plug-in hierarchical LASSO (PHL) estimator, to
estimate {B(g)} by solving

(3)

Here λ1 is a tuning parameter. The penalty in (3) was proposed by Zhou and Zhu [8], which
they call the hierarchical group penalty. This penalty controls the sparsity of {B̂(g)}
hierarchically. As the first level of the hierarchical sparsity, the estimator of βjk tends to
shrink to a zero vector with the hierarchical penalty as a group if all coefficients in the group
are small in magnitude. For the second level of the hierarchical sparsity, if βjk is estimated as
a nonzero vector, within the group, some coefficients can be still shrunk to zero according to
their magnitude. Zhou and Zhu [8] showed the penalty in (3) encourages such a hierarchical

sparsity. Intuitively, note that p(βjk) can be approximated by 

where  is close to the solution of (3). Therefore, all coefficients in βjk have the same
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weight, , as a group while each coefficient has different amount of penalty
according to its magnitude. As a remark, we would like to point out that p(βjk) for each
group serves as a group penalty which encourages group shrinkage. Similar idea was
previously considered by Turlach et al. [2], Yuan and Lin [9], Zhang et al. [10], and Zhao et
al. [11].

For the procedure in (3), we need to first estimate {C(g)}. To that end, we obtain initial
estimates of {B(g)} by applying univariate regression techniques within each group. Let
{B̂(g),0} be initial estimates. Define S(g) by

(4)

Then {Ĉ(g)} can be obtained by solving

(5)

This problem is essentially the same as the problem of estimating the inverse covariance
matrix in the context of sparse Gaussian graphical models. This technique was considered
by many authors [12, 13, 14, 15]. Among various existing algorithms, we adapt the
Graphical LASSO (GLASSO) algorithm proposed by Friedman et al. [14].

2.2 Plug-in Hierarchical Graphical LASSO estimator
In Section 2.1, we considered a plug-in method, PHL, which estimates {C(g)} first and then
estimates {B(g)} given {Ĉ(g)}. In this section, we propose another plug-in method using
{B̂(g)} to estimate {C(g)}. In particular, we first estimate {B(g)} by using univariate
regression techniques and then obtain {S(g)}, defined as

. With {S(g)} available, we propose a penalized
likelihood method, the plug-in hierarchical graphical LASSO (PHGL) estimator, by solving

(6)

where λ2 is a tuning parameter.

This approach is closely related to the method previously considered by Guo et al. [16].
They considered the problem of estimating the inverse covariance matrix of Y(g). However,
we estimate the conditional inverse covariance matrix of Y(g) given X(g). Even though the
optimization problem in (6) is technically the same as that in their method, our resulting
estimator has different graphical interpretations.

2.3 Doubly Penalized Sparse Estimator
In Sections 2.1 and 2.2, we considered two plug-in methods for estimation of {(B(g), C(g))}.
In this section, we propose to estimate {(B(g), C(g))} simultaneously. We would like to
incorporate the information among different response variables in estimation of {B(g)} and
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encourage all groups to share some common structure among {(B(g), C(g))}. We propose a
joint penalized method, the doubly penalized sparse estimator (DPS), by solving

(7)

where lg(B(g), C(g)) = ng log det(C(g)) − tr{(Y(g) − X(g)B(g))C(g)(Y(g) − X(g)B(g))T}. As a
group penalty, the first penalty term in (7) encourages the hierarchical sparsity among
{B(g)}. In the meantime, the second penalty term in (7) serves as a group penalty for {C(g)}.

Note that the objective function in (7) is not convex with respect to {(B(g), C(g))} and the
optimization can be unstable when max{n1, …, nG} < p. With diagonal {C(g)}, the first term
in lg(B(g), C(g)) can dominate the other terms in the objective function if the trace terms are
zero, which may occur when max{n1, …, nG} < p. Therefore, the objective function can
keep decreasing as the diagonal entries in {C(g)} continue to increase. As a result, the
numerical solution of {C(g)} in (7) can have large diagonal entries. Such kinds of solutions
are not desirable in practice since it implies that the residual variances of response variables
are very small. Therefore, if max{n1, …, nG} < p, the plug-in methods in Sections 2.1 and
2.2 are recommended and can often perform better than the DPS method.

2.4 Model Selection
In Sections 2.1 – 2.3, we proposed two plug-in methods and one joint method for estimation
of {(B(g), C(g))}. To apply these methods, we first need to select the tuning parameters λ1
and λ2 in (3), (6), and (7), which control the sparsity of the resulting estimators. For the
tuning parameter selection, K-fold cross-validation can be combined to our methods. In
particular, the K-fold cross-validation method randomly splits the dataset into K parts of

equal sizes. Denote the data in the k-th segment by {( )}. For any given λ1, λ2 and
k, we estimate the regression coefficient matrices and the inverse covariance matrices using

all data except the data in the k-th part and denote them by {( )}. For the
PHL method, the optimal tuning parameter λ̂1 is selected which minimizes the prediction
error defined by

(8)

where ||·||F is the Frobenius norm of a matrix. For the PHGL method, we select the optimal
tuning parameter λ̂2 which maximizes the predictive log-likelihood defined by

(9)

where n(g,k) is the sample size of the g-th group in the k-th segment. In the DPS method, we
first choose the optimal λ̂1 using (8) with a prespecified λ2 and the optimal λ̂2 is selected
using (9) with the selected λ̂1. It helps to avoid a two dimensional grid search of (λ1, λ2). We
have found in simulations that within a certain range for λ2, the choice of particular value
for λ2 has very little effect on the optimal λ̂1. In particular, in all simulated examples in
Section 5, the selected optimal values of λ1 are almost identical for any prespecified value of
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λ2 within interval [2−6, 26]. To prespecify a value of λ2, the optimal tuning parameter in the
PHGL method can be used.

The tuning parameters can be also selected using validation sets. In particular, we split the
dataset into the training set and the validation set. With given λ1 and λ2, we construct the
corresponding models by applying our methods to the training set. By using the validation

set as {( )} in (8) and (9), we can compute the prediction error and the predictive
log-likelihood on this set to select tuning parameters. The cross-validation method is
computationally more intensive than using validation sets. We used validation sets for our
simulated examples and the 5-fold cross-validation for the glioblastoma cancer data
example.

3 Asymptotic Properties

In this section, we investigate the asymptotic behavior of our three proposed methods when
sample sizes go to infinity. In particular, we show that the resulting estimators of all three
methods satisfy consistency and sparsity with proper choices of tuning parameters. To this
end, we use the set-up of Fan and Li [17], Yuan and Lin [12] and Zou [18]. The technical
derivation uses the results in Knight and Fu [19]. Without loss of generality, we assume that
n = n1 = ··· = nG and n goes to infinity. Define a vector operator for any matrix A = [a1, …,

ap] by . Let β* = (Vec(B*,(1))T, …, Vec(B*,(G))T)T be the true
regression parameter vector and c* = (Vec(C*,(1))T, …, Vec(C*,(G))T)T be the vector of the
entries in the true inverse covariance matrices. The following theorem shows the -
consistency and the sparsity of the solution in (3).

Theorem 1—Suppose that  as n → ∞ and Ĉ(g) in (3) is a consistent estimator

of C*,(g); g = 1, …, G. Furthermore, suppose that  as n → ∞ where A(g)

is a positive definite matrix; g = 1, …, G.

1.
(Consistency) There exists a local minimizer of (3) such that ,
where β̂ = (Vec(B̂(1))T, …, Vec(B̂(G))T)T;

2.
(Sparsity) If  if .

Theorem 1 states that with a consistent estimator of C*,(g), the PHL estimator is -
consistent. Furthermore, it can identify the true subset of predictor variables asymptotically
with probability tending to 1. Similar asymptotic properties hold for the PHGL estimator as
stated in the following theorem.

Theorem 2—Suppose that  as n → ∞ and B̂(g) in (6) is a -consistent
estimator of B*,(g); g = 1, …, G.

1. (Consistency) There exists a local minimizer of (6) such that ,
where ĉ = (Vec(Ĉ(1))T, …, Vec(Ĉ(G))T)T;

2.
(Sparsity) If  if .

In theorems 1 and 2, we establish the consistency and sparsity of plug-in estimators. The
following theorem shows the similar asymptotic properties of the DPS solution in which
{B̂(g)} and {Ĉ(g)} are obtained together.
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Theorem 3—Suppose that  and  as n → ∞. In addition to that,

suppose that  as n → ∞ where A(g) is a positive definite matrix; g = 1,
…, G.

1. (Consistency) There exists a local minimizer of (7) such that

where β̂ = (Vec(B̂(1))T, …, Vec(B̂(G))T)T and ĉ = (Vec(Ĉ(1))T, …, Vec(Ĉ(G))T)T;

2.
(Sparsity of {B ̂(g)}) If  if ;

3.
(Sparsity of {Ĉ(g)}) If  if .

4 Computational Algorithm

In this section, we describe computational algorithms to solve problems (3), (6), and (7). In
particular, we apply the coordinate-descent algorithms used by Lee and Liu [5] iteratively,
with combination of the local linear approximation (LLA) [20].

We now describe the algorithm for the PHL method in details. Denote the estimates of 

from the i-th iteration by . Then by applying the LLA, the penalty term in (3) at the (i
+ 1)-th iteration can be approximated as follows,

Then, at the (i + 1)-th iteration, the problem (3) is decomposed into G individual
optimization problems

(10)

where  and g = 1, …, G. The optimization problem (10) is
exactly the problem of estimating the regression parameter matrix with the plug-in inverse
covariance matrix. It can be solved by applying the coordinate-descent algorithm for the
plug-in weighted LASSO method proposed by Lee and Liu [5]. The basic idea of the
coordinate-descent algorithm is to optimize each parameter at one time with other
parameters being fixed at the current solution. Therefore, the algorithm for (3) proceeds as
follows:
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Algorithm for the PHL Method
Step 1 (Initial value). Set the separate LASSO solution {(B̂(g))(i)}; g = 1, …, G as the
initial value for {B(g)}.

Step 2 (Updating rule). For g = 1, …, G, update {(B̂(g))(i)} by applying the coordinate-
descent algorithm for the the plug-in weighted LASSO method [5] to the problem (10).

Step 3 (Iteration). Repeat Step 2 until convergence.

Next we describe the algorithm for the PHGL method in Section 2.2. Similar to the
algorithm for the PHL method, we first apply the LLA to the objective function in (6) with
the current estimates {(Ĉ(g))(i)}. Then, at the (i + 1)-th iteration, the problem (6) is
decomposed into G individual optimization problems

(11)

where  and g = 1, …, G. The problem (11) can be solved by
applying the GLASSO algorithm. Therefore, the algorithm for (6) proceeds as follows:

Algorithm for the PHGL Method
Step 1 (Initial value). Set the separate GLASSO solution {(Ĉ(g))(i)}; g = 1, …, G as the
initial value for {C(g)}.

Step 2 (Updating rule). For g = 1, …, G, update {(Ĉ(g))(i)} by applying the GLASSO
algorithm to the problem (11).

Step 3 (Iteration). Repeat Step 2 until convergence.

Next, we combine the above two algorithms to solve problem (7) for the doubly penalized
method, DPS. The algorithm can be summarized as follows:

Algorithm for the DPS Method
Step 1 (Initial values of {B(g)} and {C(g)}). Set the separate LASSO solution {(B̂(g))(i)}
as the initial value for {B(g)} and the separate GLASSO solution {(Ĉ(g))(i)} as the initial
value of {C(g)}.

Step 2 ({B(g)} updating rule). For a given {(B̂(g))(i)}, update {(Ĉ(g))(i)} by applying the
algorithm for the PHGL method.

Step 3 ({C(g)} updating rule). For a given updated {(Ĉ(g))(i)}, update {(B̂(g))(i)} by
applying the algorithm for the PHL method.

Step 4 (Iteration). Repeat Steps 2 and 3 until convergence.

As we point out in Section 2.3, when max{n1, …, nG} < p, the solution can possibly be
unstable with very small residual variances. In that case, the plug-in methods may perform
better.

5 Simulated Examples
In this section, simulation studies are carried out to assess the performance of our proposed
methods. In particular, we compare our proposed methods with several existing methods.
All five methods are described below.
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Method 1 (M1). We model each group separately. In particular, we apply the doubly
penalized maximum likelihood (DML) method by Lee and Liu [5] separately to each
group. The estimator is given by solving (2). This method will be referred as DML1.

Method 2 (M2). In this approach, all groups are combined into one dataset as if they
come from a common Gaussian distribution. We apply the DML method to the
combined dataset. We name this method as DML2.

Method 3 (M3). We first estimate {B(g)} by applying LASSO to each response variable
separately in each group. Once we have an estimator of {B(g)}, we compute residuals
and apply GLASSO to estimate {C(g)}. In particular, the estimator of {C(g)} is given by
solving (5). The resulting estimator of {B(g)} will be called the LASSO estimator and
the resulting estimator of {C(g)} will be referred as the GLASSO estimator.

Method 4 (M4). An initial estimate of {B(g)} is obtained by applying LASSO. With the
initial estimate of {B(g)}, we apply our proposed plug-in method, PHGL, to estimate
{C(g)} jointly. Once we have the estimator of {C(g)}, another plug-in method, PHL, is
applied to obtain the final estimate of {B(g)}.

Method 5 (M5). We model all groups jointly by applying our proposed method, DPS. In
this approach, we estimate both {B(g)} and {C(g)} simultaneously.

Note that Methods 1 and 3 model all groups separately and Method 2 does not allow any
unique structure to each group. On the other hand, our proposed methods (Methods 4 and 5)
model all groups jointly while allowing unique structures to each group.

We set G = 3, p = 20 and m = 20. For each group, we generate training sets, validation sets,
and testing sets with the the same size of n = 40. Each data set is generated as follows. First,
we produce B and C common in all groups. Figure 1 shows the common structure across
groups. We create unique structures to each group by adding additional nonzero parameters
to each group. In particular, for each B(g), we randomly pick zero entries and replace them
with values randomly chosen from the interval [1,3]. For each C(g), we randomly pick zero
entries and make them have values randomly chosen from interval [−1, −0.5] ∪ [0.5, 1]. We
define ρ as the ratio of the number of unique nonzero entries to the number of common
nonzero entries. We consider two values of ρ. The case of ρ = 0 does not allow unique

structure to each group. The second case has ρ = 0.25. Finally,  is generated from

, where ; i = 1, …, n are i.i.d vectors from N(0, Ip).

To assess prediction performance, we use the prediction error defined as,

where ||·||F is the Frobenius norm of a matrix.

To compare performance in the estimation of {C(g)}, we report the average entropy loss and
the average Frobenius loss which are defined as,
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Table 1 and Figures 2–4 summarize the results. When ρ = 0, M2 outperforms the others in
both prediction and estimation of {C(g)}. This is expected because M2 assumes all groups
come from the same distribution and that assumption is valid when ρ = 0. Therefore, by
combining all groups, M2 has more information than other methods. Note that our proposed
methods, M4 and M5, also show competitive performance in prediction. When ρ = 0.25,
M5, one of our proposed methods, shows the best performance in all criteria. This implies
that modeling all groups jointly can help us improve both prediction and the estimation of
{C(g)} when all groups share some common structures.

Table 2 summarizes the relative computational times of M4 and M5 compared with that of
M3. In terms of computational complexity, M5 is more intensive than the other methods
while M4 shows competitive computational time. For instance, when ρ = 0.25, the
computational time of M5 is 30.09 times of that for M3. M5 is computationally more
intensive as it estimates all parameter matrices simultaneously. However, in terms of
performance, M5 outperforms M3 in both prediction and estimation of {C(g)} in our
simulated examples.

6 Application on the Glioblastoma Cancer Data
In this section, we apply our proposed methods to a glioblastoma multiforme (GBM) cancer
dataset. In our application, there are 17814 genes and 534 micro-RNAs of 482 GBM
patients. The patients were classified into 4 gene expression-based subtypes, namely,
Classical, Mesenchymal, Neural, and Proneural with sample sizes of 127, 145, 85 and 125
respectively [7]. One important goal is to regress genes on micro-RNAs to investigate the
effect of micro-RNAs on gene expressions. The other goal is to estimate the conditional
inverse covariance matrix of gene expressions given micro-RNAs. This matrix can help us
to interpret the conditional relationship among genes given micro-RNAs.

To proceed with the analysis, preprocessing is necessary. There are many possibilities for
preprocessing. For example, Bair and Tibshirani [21] developed some procedures that utilize
both gene expression data and clinical data to select a list of genes for identifying cancer
subtypes. In our analysis, the preprocessing step proceeds as follows. Verhaak et al. [7]
established 840 signature genes which are highly distinctive for four subtypes. We use these
840 signature genes to explore distinctive effects of micro-RNAs on them. Our proposed
methods are needed for genes having correlated residuals. Therefore, to apply our proposed
methods, the genes are first grouped into several gene modules with genes more related to
each other within each module. Then our proposed methods are applied to each module
separately. This approach is sensible for our methodology as a gene module is a set of genes
which are closely related. To detect such gene modules, we perform the weighted gene co-
expression network analysis (WGCNA) by Zhang and Horvath [22]. WGCNA detects
modules using a hierarchical clustering method with the topological overlap dissimilarity
measure [23]. Zhang and Horvath [22] pointed out that WGCNA can detect biologically
meaningful modules.

By performing WGCNA with the 840 signature genes, we found 14 modules with 60 genes
per module on average. It turns out that one of them is particularly interesting as many genes
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in the module such as EGFR and PDGFA are involved in cell proliferation. Moreover,
Verhaak et al. [7] demonstrated the essential roles of these genes in GBM tumor genesis.
Therefore, we focus on that module hereafter. In particular, there are 90 genes in this
module. Among them, we choose top 40 genes with largest Median Absolute Deviations
(MADs) since for the 50 genes with low MADs, all regression coefficients are estimated
nearly zeros which do not provide any meaningful interpretation. We also select a subset of
micro-RNAs which are predicted to target at least one of the selected genes and have large
MADs. As a result, 40 genes and 50 micro-RNAs are used for the results in this analysis.

We consider four approaches to estimate the regression coefficient matrices and the residual
inverse covariance matrices. In the first approach, we assume that the Gaussian distributions
in all subtypes are the same. Therefore, all subtypes are combined into one data set and we
apply the doubly penalized maximum likelihood (DML) method by Lee and Liu [5] to the
combined data. In particular, the estimator can be obtained by solving (2). In the second
approach, we apply LASSO and GLASSO. The detailed description of this approach is
presented in M3 in Section 5. In the third approach, we apply our proposed plug-in methods,
PHL and PHGL. The last approach uses the DPS method in which all matrices are jointly
estimated. The third and fourth approaches can help us to discover the common and unique
structures to each group.

For performance assessment, we randomly divide the data set of each subgroup into a
training set of size 70 and a test set of the remainder. The tuning parameters are selected
using 5-fold cross-validation as discussed in Section 2.4. We perform the random splitting
100 times. By using the test set, we assess prediction performance of several methods
including our proposed methods.

Table 3 shows average PE of 100 replications. Note that the DPS, PHL and LASSO methods
outperform the DML method. It implies that a single Gaussian assumption for all subtypes
might not be reasonable. The LASSO gives comparable, but slightly better prediction
accuracy than our PHL and DPS methods. One potential reason is that we allow different
tuning parameter values for each response in the LASSO. The more flexible tuning may help
the LASSO give slightly better PE.

Figure 5 shows the averaged estimated regression coefficients over 100 replications of
several micro-RNAs for some selected genes. In order to produce the heatmap, the DPS
estimates are used. The results show some interesting relationships between genes and
micro-RNAs that are specific to certain GBM subtypes. For instance, we have observed a
negative correlation between miR222 and its predicted target GLI2 in the Mesenchymal
subtype. GLI2 is an essential transcription factor mediating cytokine expression in cancer
cells [24]. It has been shown that the knockdown of GLI2 mRNA has significantly decreased
the migratory ability of human glioblastoma cells [25]. Herein, our results suggest that the
accelerated inflammatory response observed in the GBM Mesenchymal subtype might be
partially through miR222-dependent GLI2 regulation [7].

Another example is the anti-correlation between miR130b and its predicted target ARAP2
(CENTD1) in the GBM Neural subtype. This subtype is typically associated with the gene
ontology (GO) categories such as neuron projection and axon and synaptic transmission.
Yoon et al. [26] have reported that ARAP2 associates with focal adhesions and functions
downstream of RhoA to regulate focal adhesion dynamics in glioblastoma cells. Consistent
with this report, our findings suggest that miR130b regulates ARAP2 specifically in the
neural subtype.
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Additionally, we have observed the subtype-specific correlation between micro-RNAs and
non-target genes, indicating an indirect regulation between the two. For instance, our results
have identified distinct EGFR-miR21 correlations in different subtypes. Several research
papers have shown that EGFR regulates miR21 in a couple of cancers, including human
glioblastoma and lung cancers [27, 28]. Here our observation further indicates that this
regulation is subtype-specific in GBM. In the Neural subtype, there was positive correlation
between EGFR and miR21 while negative correlations are observed in the subtypes,
Messenchymal and Proneural.

Figure 6 shows the estimated conditional inverse covariance structure of genes given micro-
RNAs. This structure is obtained from the model using our proposed DPS method. Black
edges represent the common structure shared among all subgroups while grey edges
represent unique structures to some subgroups. Verhaak et al. [7] claimed that FGFR3,
PDGFA and EGFR are all Classical genes in sense that they tend to be highly expressed
only in Classical subtype. Thus, it is expected that they have some connectivity among them.
However, in Figure 6 from our results, none of them are connected for all subtypes. This
implies that in all subtypes, they can be conditionally independent given other genes once
we take out the effects of given 50 micro-RNAs on them even though they are marginally
correlated. Therefore, joint modeling of all subtypes using our DPS method can help us to
interpret similarities and differences of the conditional gene relationships given micro-RNAs
among different cancer subtypes.

7 Discussion
In this paper, we propose three methods for modeling several groups jointly to estimate both
the regression coefficient matrix and conditional inverse covariance matrix. All methods are
derived in a penalized likelihood framework with hierarchical group penalties. Our
theoretical investigation shows that our proposed estimators are consistent and can identify
true zero parameters with probability tending to 1 as the sample size goes to infinity.
Simulated examples demonstrate that our proposed methods can improve estimation of both
regression coefficient matrix and conditional inverse covariance matrix.

In very high dimensional problems, our joint method (DPS) may have numerical difficulty
as discussed in Section 2.3. In that case, the proposed plug-in methods are recommended
and can often perform better than the DPS method. In certain applications such as our GBM
cancer example, a preprocessing step can be first performed before applying the DPS
method to reduce dimensions. There is a well-developed literature on preprocessing. For
example, see Bair and Tibshirani [21]. With moderate dimensions of predictors and response
variables, the joint method can be applied and its performance can be very competitive.

Our current theoretical study is on the case when n goes to infinity. However, for high
dimensional cases, it will be also interesting to investigate asymptotic behaviors of our
methods when the dimension of predictors, p and the dimension of response variables, m
both go to infinity.

Our methods are based on the multivariate Gaussian assumption. Recently, there are some
research developments on extending Gaussian graphical models to non-Gaussian cases such
as Liu et al. [29] and Cai et al. [30]. Another research direction is to extend our methods to
non-Gaussian situations. Further exploration is needed.
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A Proof

A.1 Proof of Theorem 1
A.1.1 Consistency

Let β = (Vec(B(1))T, …, Vec(B(G))T)T and define Q(β) as

(12)

To show the results, we use the similar technique in the proof of Theorem 1 in Fan and Li
[17]. It suffices to show that for any given δ > 0, there exists a large constant D such that
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(13)

where U = (U(1)T, …, U(G)T)T is a m × p × G-dimensional vector.

Let y(g) = Vec(Y(g)), Xm,(g) =Im ⊗ X(g) and β(g) = Vec(B(g)); g = 1, …, G. Then we can
rewrite Q(β) in (12) as

(14)

Define . Using (14), we can show that

(15)

where ε(g) = Vec(e(g)); g = 1, …, G. Define  for
some g = 1, …, G}. Since

 for (j, k) ∉
, we have that

(16)

For the first term on the right-hand side of (16), note that

as  and

Ĉ(g) →p C*,(g);g = 1, …, G.

For the second term on the right-hand side of (16), note that
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as  where Z has multivariate normal distribution. For the
third term on the right-hand side of (16), we can show that

where 

By combining above statements, we have

By choosing a sufficiently large D, Vn(U) > 0 uniformly on {U :|| U ||= D} with the
probability greater than 1 − δ as C*,(g) and A(g) are positive-definite. Therefore, (13) holds.
This completes the proof of the consistency.

A.1.2 Sparsity
It is sufficient to show that with probability tending to 1 as n → ∞, for any (j, k) such that

, the partial derivative of Q in (12) with respect to  at  has the same sign as

. Let β(g) = Vec(B(g)) and note that

as  and

 where Z has multivariate normal distribution. Therefore, the
partial derivative of Q can be written as
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Since  as n → ∞, the sign of the derivative is completely determined by that of

. This completes the proof of the sparsity.

A.2 Proof of Theorem 2
A.2.1 Consistency

Let c = (Vec(C(1))T, …, Vec(C(G))T)T and define Q(c) as

(17)

To show the results, we use the similar technique in the proof of Theorem 1. It suffices to
show that for any given δ > 0, there exists a large constant D such that

(18)

where U = (Vec(U(1))T, …, Vec(U(G))T)T is a m × m × G-dimensional vector.

Using (17), define Vn(U) as

Using the similar argument as in the proof of Lemma 2 in Lee and Liu [5], it can be shown
that

(19)

For the second term on the right-hand side of (19), by using the similar argument as in the
proof of Theorem 2 in Lee and Liu [5], it can be shown that
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where . Note that 
converges in distribution to multivariate normal distribution by the central limit theorem.

For the third term on the right-hand side of (19), by using the similar argument as in the
proof of Theorem 1, it can be shown that

By combining the above statements, we can conclude that the first term on the right-hand
side of (19) dominates the other terms. Therefore, by choosing a sufficiently large D, Vn(U)
> 0 uniformly on {U :|| U ||= D} with the probability greater than 1 − δ. This completes the
proof of the consistency.

A.2.2 Sparsity
Similar to the proof of the sparsity in Theorem 1, it is sufficient to show that with

probability tending to 1 as n → ∞, for any (s, t) such that , the partial derivative of

Q in (17) with respect to  at  has the same sign as . Note that

where  and . By using the argument in the proof of Theorem 2 in

Guo et al. [16], one can show that . Therefore, we have

Since  as n → ∞, the sign of the derivative is completely determined by that of

. This completes the proof of the sparsity.

A.3 Proof of Theorem 3
A.3.1 Consistency

Define Q(β, c) as
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(20)

where lg(β, c) = n log det(C(g)) − tr (Y(g) − X(g)B(g))C(g)(Y(g) − X(g)B(g))T.

To show the results, we use the similar technique in the proof of Theorem 1. It suffices to
show that for any given δ > 0, there exists a large constant D such that

(21)

where  and

Using (20), define . It can be shown that

(22)

For the first term on the right-hand side of (22), it has been shown in Theorem 2 that

For the second term and the third term on the right-hand side of (22), by using the similar
argument in the proof of Lemma 3 in Lee and Liu [5], it can be shown that

and
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For the fourth and fifth term on the right-hand side of (22), it has been shown in Theorems 1
and 2 that

By combining the above statements, we can conclude that the right-hand side of (22) is

dominated by  and .
Therefore, by choosing a sufficiently large D, Vn(U) > 0 uniformly on {U :|| U ||= D} with
the probability greater than 1 − δ. This completes the proof of the consistency.

A.3.2 Sparsity

Note that (β̂, ĉ) is a -consistent local minimizer of Q(β, c) defined in (20). As β̂ = argminβ
Q(β, ĉ) and ĉ is -consistent, the sparsity of β̂ holds by Theorem 1. Similarly, since ĉ =
argminc Q(β̂, c) and β̂ is -consistent, the sparsity of ĉ holds by Theorem 2. These
complete the proof of this theorem.
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Figure 1.
Regression Parameter Structure and Inverse Covariance Structure that are common in all
groups. Non-zero entries are colored as black and zero entries are colored as white.
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Figure 2.
Boxplots of prediction errors of all methods based on 100 replications. Left: All groups are
the same. Right: There exist the common and unique structures across groups.
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Figure 3.
Boxplots of entropy losses of all methods based on 100 replications. Left: All groups are the
same. Right: There exist the common and unique structures across groups.
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Figure 4.
Boxplots of Frobenius losses of all methods based on 100 replications. Left: All groups are
the same. Right: There exist the common and unique structures across groups.
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Figure 5.
Heatmap of averaged estimated regression coefficients of several micro-RNAs for some
selected genes. The DPS estimates are used to generate the heatmap.
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Figure 6.
A graphical model of gene expressions based on the estimated inverse covariance matrix.
Black lines are common edges across all subgroups. Grey lines are unique edges to some
subgroups. The DPS estimates are used to generate the network.
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Table 2

Averages of relative computational time of M4 and M5 compared with M3 based on 100 replications (The
numbers in parentheses are standard errors). For example, when ρ = 0, the computational time of M4 is 3.92
times of that for M3.

M3 M4: PHL M5: DPS

Simulated examples
ρ = 0 1 3.92(0.05) 38.40(0.35)

ρ = 0.25 1 3.44(0.04) 30.09(0.35)
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Table 3

Averages of PE based on 100 replications (The numbers in parentheses are standard errors)

DML LASSO PHL DPS

PE 1.373(0.004) 1.025(0.003) 1.050(0.004) 1.065(0.004)
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