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Abstract
An important task in personalized medicine is to predict disease risk based on a person’s genome,
e.g. on a large number of single-nucleotide polymorphisms (SNPs). Genome-wide association
studies (GWAS) make SNP and phenotype data available to researchers. A critical question for
researchers is how to best predict disease risk. Penalized regression equipped with variable
selection, such as LASSO and SCAD, is deemed to be promising in this setting. However, the
sparsity assumption taken by the LASSO, SCAD and many other penalized regression techniques
may not be applicable here: it is now hypothesized that many common diseases are associated
with many SNPs with small to moderate effects. In this article, we use the GWAS data from the
Wellcome Trust Case Control Consortium (WTCCC) to investigate the performance of various
unpenalized and penalized regression approaches under true sparse or non-sparse models. We find
that in general penalized regression outperformed unpenalized regression; SCAD, TLP and
LASSO performed best for sparse models, while elastic net regression was the winner, followed
by ridge, TLP and LASSO, for non-sparse models.
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1 INTRODUCTION
Genetic information has the potential to improve health outcomes by allowing an individual
to tailor preventive care and treatment plans to his or her personalized medical needs. An
important task in personalized medicine is using a person’s genome to predict disease risk
(and treatment response). A necessity for making accurate risk predictions based on
individuals’ genomes is obtaining data on their genetic variants and phenotypes. Genome-
wide association studies (GWAS) provide such data to researchers. Now one critical
question is how to best predict disease risk from a large number of genetic variants, such as
single-nucleotide polymorphisms (SNPs). Penalized regression equipped with variable
selection, such as LASSO (Tibshirani, 1996), is deemed to be promising in this setting.
However, for some diseases the sparsity assumption used by penalized regression to
facilitate variable selection may not hold, in which case it is not completely clear how to
proceed: should we apply a penalized or unpenalized approach? how about other penalized
methods that do not conduct variable selection, such as ridge regression (Hoerl and Kennard,
1970)? To answer these questions, our current research investigated the performance of an
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unpenalized approach and several representative penalized regression approaches under
various scenarios with sparse or non-sparse models.

GWAS identify risk SNPs by individually testing each SNP with a stringent significance
level adjusting for multiple testing. Many SNPs discovered to be associated with disease
have been validated (McCarthy et al., 2008). However, for many strongly heritable diseases,
their risk cannot be adequately explained by only a small number of identified SNPs. For
example, adding seven SNPs known to be associated with breast cancer to the National
Cancer Institute’s Breast Cancer Risk Assessment Tool increased the discriminatory
accuracy of the tool by only a small amount as measured by the area under the receiver
operating characteristic curve (AUC) (Gail, 2009). In related work Gail (2008) demonstrated
that very large relative risks are needed for a single factor to meaningfully improve disease
classification; therefore, estimation of the effect of many disease associated SNPs with small
effects will require researchers to address the issue of candidate SNPs vastly outnumbering
available case samples. Penalized regression with variable selection can address this issue.
In another study the percent of phenotypic variance in the highly heritable trait height
explained by SNPs increased from 5% to 45% when both genome-wide significant SNPs
and many non-significant SNPs were considered simultaneously (Yang et al., 2010).
Increasing the number of SNPs used may also impact risk prediction: the inclusion of many
non-significant SNPs discriminated bipolar disorder, coronary heart disease, hypertension,
and Crohn’s disease to some degree better than when only fewer and more significant SNPs
were included (Evans et al., 2009). Furthermore, there was evidence to support polygenic
effects for many common diseases (Park et al., 2010). For example, the risk of schizophrenia
seemed to be associated with hundreds to thousands of SNPs (The International
Schizophrenia Consortium, 2009). It is now hypothesized that many common diseases are
associated with many SNPs with small to moderate effects.

Two studies have confirmed the value in including up to thousands of SNPs when assessing
disease risk (Kang et al., 2011; Wei et al., 2009). Importantly, both studies revealed that,
while still noticeably better than random, logistic regression with maximum-likelihood
estimation was suboptimal in utilizing large numbers of SNPs to classify disease status. A
recent study concluded that utilizing penalized regression with variable selection,
specifically LASSO, on a large number of SNPs in addition to those reaching the genome-
wide significance level could improve prediction of Crohn’s disease (Kooperberg et al.,
2010). This disease is a form of inflammatory bowel disease affecting as many as 1.4
million Americans (About Crohn’s Disease, 2009; Crohn’s Disease, 2010). Patients with
Crohn’s disease have a chronic inflammation of the gastrointestinal tract that causes mild to
severe symptoms such as abdominal pain, fever, and fatigue (Crohn’s Disease, 2010). Gaya
et al. (2006) presented evidence of the heritability of Crohn’s disease. Two subsequent
studies (WTCCC, 2007; Franke et al., 2010) identified six regions of chromosome 10
associated with Crohn’s disease. To mimic real situations we use the real SNP data from
chromosome 10 to generate simulated disease risks and disease phenotypes in order to
assess the performance of various regression methods with respect to risk estimation and
disease classification. Specifically, we consider four types of true models: (1) a sparse model
with risk being determined by a small number of SNPs with large effect sizes, (2) a sparse
model with a small number of SNPs with moderate effect sizes, (3) a non-sparse model with
risk being determined by a large number of SNPs with moderate effects, and (4) a non-
sparse model with an even larger number (> 1/3 of the sample size) of SNPs with small
effect sizes. We consider both unpenalized and penalized regressions, the former based on
maximum likelihood estimator (MLE) while the latter on (1) least absolute shrinkage and
selection operator (LASSO) (Tibshirani, 1996), (2) smoothly clipped absolute deviation
(SCAD) (Fan and Li, 2001), (3) truncated L1–penalty (TLP) (Shen et al., 2012), (4) ridge
regression (Hoerl and Kennard, 1970) and (5) elastic net (Zou and Hastie, 2005). This study
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is a follow-up on Kooperberg et al. (2010), in that we consider several new penalized
regression methods and contrast the performance of the methods between sparse and non-
sparse true models.

We also study the discrimination capabilities of the regression methods on two real data sets,
Crohn’s disease and bipolar disorder provided by the Wellcome Trust Case Control
Consortium (WTCCC) (2007). It was confirmed that the best performer was dependent on
the number and effect sizes of causal SNPs in the true model, and the inclusion of SNPs
failing to meet the genome-wide significance level impacted the prediction accuracy.

2 METHODS
2.1 Data

We use the Crohn’s disease and bipolar disorder case and control data provided by the
WTCCC. The WTCCC has collected genotype data of about 500,000 SNPs for
approximately 2,000 samples for each of seven diseases, such as type 1 diabetes,
hypertension, bipolar disorder and Crohn’s disease, and 3,000 controls (WTCCC, 2007). For
simulations, we use the genotype data of 28501 SNPs on chromosome 10 for Crohn’s
disease cases and controls. For quality control purposes, per WTCCC recommendations, we
remove some samples and retain 1748 Crohn’s disease samples and 2938 control samples;
we also exclude some SNPs as recommended. Next, we eliminate the SNPs with a minor
allele frequency (MAF) less than 5%. Furthermore, to mimic practical situations while
maintaining a reasonable size for repeated simulations, we test each SNP separately by a
chi-squared test for its association with Crohn’s disease, and remove those with p-values
larger than 0.1. At the end, we have about 2300 SNPs left and use them throughout our
simulations.

2.2 Model
Let Yi = 0 or 1 be a binary disease indicator for subject i = 1, …, n, and Xij subject i’s minor
allele number (0,1, or 2) for SNP j = 1, …, m. Our aim is to build a model to successfully
estimate subject i’s risk of disease, P(Yi = 1∥xi), based on his or her SNP data xi = (Xi1, …,
Xim)T. As in standard practice for binary outcomes, we use a logistic regression model:

(1)

where β0 and βk are unknown regression coefficients to be estimated; p ≤ m indicates any
user specified subset of the SNPs.

In unpenalized logistic regression with maximum-likelihood estimator (MLE), β0 and β =
(β1, …, βp)T are estimated by maximizing the log-likelihood:

(2)

The MLE is asymptotically unbiased with fixed p as n → ∞, but it may not be for a large p.
One possible remedy is to introduce regularization or penalization on regression
coefficients. The use of certain penalties, such as LASSO (Tibshirani, 1996) and SCAD
(Fan and Li, 2001), shrinks many regression coefficient estimates to be 0, effectively
selecting a subset of SNPs to be used for prediction. Penalized logistic regression provides
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coefficient estimates for β0 and β by maximizing a penalized log-likelihood (Friedman et al.,
2008):

(3)

where λ ≥ 0 is a tuning parameter controlling the extent of penalization imposed by penalty
P(β). LASSO regression uses

(4)

which is convex and computationally convenient. However, LASSO estimates are biased
and may not be consistent. To avoid these issues, Fan and Li (2001) proposed using the
SCAD penalty P (β, λ) replacing λP(β):

(5)

for a = 3.7. While maintaining the capability of variable selection, the SCAD penalty does
not introduce biased estimates for some larger coefficients. The truncated L1-penalty (TLP)
adaptively determines which larger coefficients will not be penalized by introducing a
separate thresholding parameter τ > 0 (Shen et al., 2012):

(6)

If a coefficient βk > τ, it will not be further penalized. The TLP approaches the L0-loss as τ
→ 0+. A penalized method without the capability of variable selection is ridge regression
(Hoerl et al., 1970) with penalty

(7)

Certain true models might be best estimated using a hybrid penalty that simultaneously
performs variable selection and continuous shrinkage (Zou and Hastie, 2005). In these
settings elastic net penalized regression may be more suitable. Elastic net penalized
regression has been shown to produce a sparse model with good prediction accuracy,
possibly superior to LASSO, while simultaneously promoting the grouping of strongly
correlated predictors (Zou and Hastie, 2005). Its penalty structure is a weighted combination
of the LASSO and ridge penalties controlled by a user specified mixing parameter α, which
is restricted to [0, 1]. The naive elastic net penalty (Zou and Hastie, 2005) is

(8)

where α is selected to match the desired balance of variable selection and coefficient
shrinkage. Zou and Hastie (2005) suggested that further gains may be possible from using a
rescaled version of the elastic net penalty. However, Friedman et al. (2008) used the naive
version of the penalty in R package glmnet they developed to perform elastic net penalized
regression. Results presented here follow this convention and are not rescaled. For sparse
true models (i.e. with few non-zero βk’s) with a large number of candidate predictors (i.e. a
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large p), variable selection is often beneficial. However, for non-sparse models with many
small non-zero |βk|’s, variable selection will be difficult and may not result in good
performance. On the other hand, since the ridge penalty has the grouping function (Zou and
Hastie, 2005), ridge regression performs like model averaging. It is known that neither
model selection nor model averaging can dominate the other, and each performs better under
different situations (Yuan and Yang, 2005; Shen and Huang, 2006). In the current context,
especially with non-sparse true models, it is not clear how LASSO, SCAD, and TLP
compare to the ridge penalty for risk prediction, or if the elastic net penalty is superior,
which is one of our aims.

3 SIMULATIONS
3.1 Simulation Set-ups

We use the real SNP data of the WTCCC control cohort to generate disease probabilities, πi
= P(Yi = 1). First, we randomly select p1 causal SNPs (i.e. with corresponding βk ≠ 0). The
true correlations for any two SNPs range from -0.8371 to 1 and approximately fit a
symmetric unimodal distribution centered at 0. Table 1 provides summary statistics for all
pairwise correlations for example sets of size p = 5, 10, 50, 100, 500, 1000 randomly
selected SNPs. Table 1 demonstrates how the true models with various numbers of p SNPs
contain a diverse range of minor, moderate or strong correlations among the SNPs.

We use p1 = 10 for two sparse models, one with strong effects (i.e. large |βk|’s) and the other
with only moderate effects (i.e. smaller |βk|’s); we also use p1 = 300 and p1 = 900 for two
non-sparse models. Second, we set β0 = log(0.05/0.95) to emulate diseases with low
prevalence, and follow Wray et al. (2007) to create odds ratios (ORs, ORk = exp(βk)) of
having disease for the p1 causal SNPs. Specifically, we set ORk = 1 + ε(OR0 − 1) with ε
randomly generated from a standard exponential distribution Exp(1) and OR0 being the
mean OR, which is 2.75 and 1.415 for the two sparse models and 1.17 and 1.125 for the two
non-sparse models respectively. We also randomly choose the sign of each βk to be positive
or negative to reflect both risk and protective causal SNPs. Third, the disease probability πi
for each subject i = 1, …, 2938 in the WTCCC control cohort, is generated according to
logistic regression model (1) with only chosen causal SNPs.

Finally, we use each πi sequentially to generate disease status Yi ~ Bin(πi); this step is
repeated until we have n = 2000 cases and n = 2000 controls (while the other cases or
controls are ignored) for each simulated dataset. One hundred datasets were generated under
each of the four true models.

For each simulated dataset a randomly selected half of both the cases and controls is used as
training set for building regression models, while the remaining half is the test set used for
unbiased assessment of performance. The performance of each method is evaluated in two
distinct settings. In the first setting we rank all SNPs by the p-values of their univariate
association with disease. Starting with a few of the most significant SNPs, we fit and refit
the logistic model for each method, sequentially adding more and more top ranked SNPs
into the model (1) to be fit. The structure of this scenario informs when the inclusion of
increasingly less significant SNPs improves or deteriorates the performance. Gail (2009)
measured the impact of only seven SNPs on classification of one disease, breast cancer,
finding a very minor effect. Although they were not directly studying prediction, Yang et al.
(2010) identified one trait, height, whose heritability could be explained better with models
that considered many non-significant SNPs. Our first modeling scenario generalizes this
previous work to measure the impact of including more and more SNPs (by design including
less significant SNPs) on a spectrum of models with less and less true sparsity. Thus, the
results can inform about underlying genetic architectures for which penalized regression can
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use additional SNPs to improve risk classification. The results presented in the following
section for the unpenalized regression are from the usual MLE, while those for LASSO,
SCAD and ridge use the tuning parameter λ selected via 10-fold cross-validation to have the
smallest prediction error for any given number of candidate SNPs.

As exhibited in equations (6) and (8), the elastic net penalty depends on an additional
parameter, α, and the TLP penalty requires specification of τ. Elastic net estimates are
generated for each of a sequence of penalties defined by a uniformly spaced sequence of
values for the mixing parameter, α. The elastic net regression models are fit starting with α
= 0, corresponding to ridge regression, and then with α increased by units of 0.10 until α= 1,
corresponding to LASSO regression. For the TLP we apply a range of τ values chosen to
yield a series of models with minor to major coefficient shrinkage. To save computing time
for tuning parameter selection for the simulated datasets, we use an independent tuning
dataset of an equal size generated exactly like the training and test data set. The idea is
similar to the CV except that we only need to fit a model once with the training data, then
use the tuning data to calculate the prediction error and thus select λ and τ.

The second setting is designed to compare the performance of the methods with a large
number of the candidate SNPs. In penalized regression the regularization parameter λ is
systematically varied to generate a solution path of the regression coefficients, from which
we identify a global maximum of some performance measurement to represent the best ever
performance of the corresponding method.

For each method, the estimated β0 and βk from a training set are applied to the corresponding
test set to obtain risk estimates, π̂i. The correlation of the π̂i and the true πi for the test
samples is computed and used to compare the predictive performance of the methods.

This metric has been used in risk and outcome prediction for GWAS data (Wray et al., 2007;
Lee et al., 2008). In addition, we also utilize the area under a receiver operating curve
(AUC) for test samples to assess the discriminatory capabilities of the regression methods.
The AUC is the gold standard metric that has been most consistently used in the GWAS
literature. The use of AUC also permits direct comparison to previous related work. R
package glmnet was used to fit the LASSO, ridge and elastic net penalized regression
models. SCAD models were fit using the R package ncvreg. TLP models for the simulated
data sets were fit using Feature Grouping and Selection Over and Undirected Graph (FGSG)
software implemented in Matlab (Yang et al., 2012) while those for the real data were fit
using our own implemented R function. Computational time necessitated using the FGSG
software, which was much faster in fitting penalized linear regression models. It is known
that linear regression models perform well for binary traits with GWAS data (Wu et al.,
2010). We also compared the results from penalized logistic regression models fitted by the
R function with those from linear models by the FGSG software for the first ten simulated
datasets; their differences were within 0.031 in the correlation metric and within 0.01 in the
AUC metric.

3.2 Main Results
We first investigate the effect of using an increasing number of top SNPs for risk prediction.
Figure 1(a) presents the correlation between true risk and predicted risk, Corr(πi, π̂i). For
each of the four true models, Corr(πi, π̂i) for each method is plotted as a gray curve against
the number of the top SNPs used in the candidate model (before penalization) for each of the
100 simulated datasets, and the mean correlation curve over all 100 simulations is plotted as
a dark red curve. The elastic net and TLP results are for the data-tuned values of α and τ
respectively. In addition, vertical lines mark the number of the SNPs that would meet a
Bonferroni adjusted genome-wide significance level at 0.05 when evaluated individually
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using a chi-squared test. Examination of the curves beyond the vertical lines reveals
situations in which better estimates of the disease risk can be obtained by considering more
SNPs, including those failing to meet the genome-wide significance level. The horizontal
lines mark the correlations obtained from the MLE of the true model (with exactly all the
causal SNPs).

In the sparse model with strong effect sizes, all penalized methods predict risk nearly as well
or better than the unpenalized method, as shown in Figure 1(b) where only the maximum
correlation across various numbers of top SNPs from each simulated dataset is plotted. For
the sparse model with weaker effects and both non-sparse models, all penalized methods by
far surpass the MLEs, even ones based on the true models. Among the penalized methods,
LASSO, SCAD, TLP and elastic net outperform ridge regression for sparse models, but the
trend reverses for non-sparse models for all but the elastic net. As the number of causal
SNPs increases or strength of effect decreases, the relative performance of the elastic net and
TLP penalties improves. In fact, the elastic net outperforms all methods for the p1 = 300
case, which is to be expected as it is a model balanced between extreme sparse and non-
sparse models. The best performing elastic net models are at least as good in the non-sparse
p1 = 900 case as those of ridge regression, the best overall performer of the non-mixture
penalties. Table 2 provides the mean values of the maximum performance metrics of each
regression method for the datasets. The table allows quick comparisons of the various
methods in all modeling scenarios. These results reinforce the importance of using a suitable
penalty for a given problem, depending on whether the model sparsity assumption holds.

To quantify the impact of including more SNPs, we first examine the performance for the
sparse models. The LASSO and SCAD, methods with a variable selection feature, are able
to maintain near optimal performance even when the number of candidate SNPs far exceeds
that of the true model. Further, the elastic net appears to improve on the LASSO. In contrast,
both unpenalized and ridge regressions have their prediction accuracy worsened markedly
with the inclusion of more SNPs. For non-sparse models containing many SNPs failing to
meet the genome-wide significance level, LASSO, SCAD, and TLP are again able to deal
with a large number of SNPs for better risk estimation than the MLE. TLP uses the
additional SNPs noticeably better than LASSO and SCAD when the true number of causal
SNPs grows. Ridge regression is able to surpass these three penalization methods. In all four
models the elastic net performs comparably to the best of the other regressions. This is likely
due to its being a hybrid of the sparse and non-sparse regression methods, and our method
examined a range of α’s corresponding to a range of models from those strongly favoring
LASSO to those strongly favoring ridge regression. However, it is noteworthy that the
elastic net was not bounded by the performances of LASSO and ridge regressions.

Next, the discriminatory abilities of the methods are assessed because correct classification
of disease status is key to personalized medicine. The literature for the clinical application of
disease assessments universally reported AUCs as the standard for comparing disease
classification methods. Therefore, the current study will assess classification using this
metric to enable comparisons to previous work. Figure 2 demonstrates the classification
performance of the methods in terms of their AUCs. The main conclusions remain the same:
SCAD, closely followed by LASSO, elastic net, and TLP, is the winner for the two sparse
models, while elastic net and ridge regression beat other methods for the non-sparse model
with p1 = 900. However, for the non-sparse model with p1 = 300, ridge regression performs
worse than all other penalization methods. Elastic net performs best, followed by LASSO,
TLP, and then SCAD. Overall, elastic net is either the top performer or close to the top for
all true models, and every type of penalized regression always beats MLE.
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The results presented in Figure 2 demonstrate the value of penalized regression in disease
risk estimation and classification, especially in utilizing the information in less significant
SNPs that may often go unused. A natural question is whether we can eliminate the need to
rank SNPs marginally and examine all SNPs simultaneously. The below simulation results
address this question. All the penalized methods start with a full model containing all
available SNPs; by varying the tuning parameter λ monotonically, various models are fitted
and their performance is assessed. Figure 3(a) provides curves for the correlations between
true and predicted risk at any given value of λ for four of the penalized methods: LASSO,
SCAD, ridge, and elastic net. Elastic net results for only models with α = 0.5 are shown.
Since one value of τ that provides a single intuitive interpretation across all four true models
does not exist, TLP results as a regularization path in terms of λ would have limited
comparability to the results from the other models in this setting and are not presented here.
As before, the result for each simulation is represented by a gray curve, and the mean curve
across all simulations is plotted as a dark red curve. For comparison, the horizontal lines
mark the correlations obtained from maximum likelihood estimation using exactly the true
causal SNPs. To facilitate plotting, for each penalized method, the value of λ is scaled by its
maximum so that it falls inside the interval [0, 1].

As before, SCAD, LASSO and elastic net with α = 0.5 outperform ridge regression for
sparse models, while for both non-sparse models ridge regression is the best when judged by
their optimal performance shown in Figure 3(b). Interestingly, LASSO outperforms SCAD
in all situations, suggesting the robustness of LASSO to a large number of input variables.
The performance of the elastic net with α = 0.5 is between that of LASSO and ridge in all
cases as expected. This elastic net’s results are closer to the better of ridge and LASSO in all
four models; however, the degree to which the best method outperforms the balanced elastic
net (α = 0.5) varies by true model. This provides strong evidence that matching the sparsity
of the penalty to the model sparsity improves classification. Comparing with earlier results,
we can conclude that simultaneous use of too many SNPs will deteriorate the performance
of any penalized method, suggesting possible gain in performance by a preliminary
screening of a large number of variables. Similar conclusions hold if AUC is used to
measure the classification performance of the methods (Figure 4); however, LASSO,
followed closely by the elastic net (α=0.5), is the overall winner, in particular it beats ridge
regression even for the non-sparse model with p1 = 300, indicating the necessity of variable
selection for large p.

3.3 Other Results
Two of the penalties, SCAD and TLP, are non-convex. Thus, there may be multiple local
maxima with respect to their corresponding penalized log-likelihood functions, leading to
possibly different estimates with different starting values. To examine this issue the authors
refit some SCAD and TLP models for the first 20 data sets. The refit models considered the
top ranked 1000 SNPs and at a few fixed λ values (and a fixed τ = 0.1 for TLP). Eight
different sets of initial regression coefficient values were used as the starting values for
SCAD and TLP: the estimated coefficient values with the true model, a vector of all zeros,
and the coefficients estimated by LASSO at each of the six λ values: 0.01, 0.1, 1, 2.5, 5, and
10. This was done for the true models with 10 (strong) and 300 causal SNPs to represent one
sparse true model and one non-sparse true model. The R package SIS was used to fit the
SCAD models as it allowed user specified initial value sets. FGSG software was used to fit
TLP models as before.

Figure 5 presents the findings. Each curve represents the average AUC at a given λ over the
20 data sets for each set of the starting values (with the solid one for the first set). The
primary finding is that for the λ generating the best AUC given a set of initial coefficients,
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all eight sets yield comparable AUCs. Results for many of the SCAD models could not be
obtained when λ exceeded 0.1 due to numerical problems in the R package; the partial
curves are still provided. Many AUC values were the same or within 0.01 for the SCAD
scenarios, thus, given the scale the curves appear to overlap in the plots. Not surprisingly the
AUC is impacted by the starting values used to find regression coefficient estimates.
Importantly, the impact appears to be small near tuning parameter values yielding the top
performing SCAD or TLP models.

Below is a short summary on computing time needed to fit each type of penalized regression
models. We calculated the average CPU time for one value or one set of tuning parameters
for each penalized regression method with 1000 candidate SNPs for the true models with 10
(strong) and 300 causal SNPs. For the 10 strong SNP scenario, SCAD used approximately
30 seconds to fit a model, TLP used 20 seconds, and the model fitting using glmnet ranged
from 1.5 seconds for ridge regression to 7 seconds for LASSO. For the 300 SNP scenario,
SCAD used approximately 44 seconds per model-fitting, TLP used 20 seconds, and glmnet
ranged from 1.2 seconds for ridge regression to 5 seconds with LASSO.

4 EXAMPLES
The final part of our study examines the classification accuracy of the six regression
methods on two WTCCC datasets for Crohn’s disease and bipolar disorder. The training and
test data are created by randomly dividing the WTCCC disease (case) and WTCCC control
samples into two (almost) equally sized sets, one for training and one for test. We consider
the 5000 most significant SNPs from all chromosomes as determined by a univariate chi-
squared test on each SNP. The whole process, including randomly dividing the true cases
and controls into training and test sets, and identifying the 5000 most significant SNPs, is
repeated ten times. The results for each of these ten datasets are presented in the following
plots. The number of the significant SNPs meeting the significance level of 0.05/373191 are
plotted as vertical lines. Horizontal tick marks on the secondary y-axis represent the
maximum AUC achieved by MLE with these significant SNPs.

4.1 Crohn’s Disease
Current research has identified about 80 SNPs associated with Crohn’s disease. Figure 6
shows that approximately only the top 50 SNPs are needed to obtain the best risk prediction
for all the methods; however, this includes more than just those SNPs meeting the
significance level of 0.05/373191. Interestingly, although TLP was the overall winner and
all five penalized methods are better than the unpenalized one, the performance difference
among the methods is small.

Figure 7 presents the results of the four penalized methods starting with all 5000 SNPs
included in a candidate model. With such a large number of candidate SNPs, while the
number of the truly predictive SNPs may be small, the ridge penalty is largely outperformed
by LASSO and SCAD that are capable of variable selection. The ridge regression is
similarly outperformed by an elastic net penalty that shifts part of the weight from the ridge
penalty to the LASSO penalty.

4.2 Bipolar Disorder
Bipolar disorder is a condition in which people go back and forth between mania periods of
a very good or irritable mood and depression (Bipolar disorder, 2011). Figure 8 presents the
AUC results as the number of candidate SNPs was increased. Unlike Crohn’s disease,
penalized regression does not always outperform MLE. Elastic net penalized regression and
TLP perform best, though again the performance difference among the methods is small. As
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shown in 8(b), the inclusion of many SNPs failing to reach the genome-wide significance
level does not diminish the discrimination strength of the penalized methods, and in fact
ridge and elastic net regression and TLP better use these extra SNPs than both LASSO and
SCAD to exceed or nearly exceed its performance achieved with only the few significant
SNPs.

Next we include all SNPs in each penalized regression model and vary the tuning parameter
λ (Figure 9). Again it seems that, with a large candidate model containing a large number of
predictors, ridge regression performs less well than the other three penalized methods,
perhaps due to the former’s inability for variable selection. LASSO and elastic net with α=
0.5 are the winners.

5 DISCUSSION
The primary objective of our study was to provide insight into general categories of models
for which penalized regression improved disease risk prediction and classification for
GWAS data. More specifically, we investigated the performance of MLE, LASSO, SCAD,
ridge, elastic net and TLP regression methods for four different true models. The four
models were chosen to represent broad categories defined by sparsity and strength of SNPs
associated with disease. Two sparse models were considered with strong or moderate
association strengths of only 10 causal SNPs. Two non-sparse models included 300 and 900
causal SNPs with weak effects respectively. Overall, we confirmed the commonly held
belief that penalized regressions based on the model sparsity assumption, such as LASSO,
SCAD, TLP and elastic net weighted towards its LASSO component were most suitable for
sparse true models. This was true for both risk prediction and discrimination. However, we
did discover that when effect sizes were strong in a sparse model, MLE performed as well.
An interesting result was about how the penalized regressions used the information (or lack
of information) when many SNPs were considered, in particular SNPs that would not meet a
strict genome-wide significance level. As a rule, if a various number of top SNPs ranked by
their marginal association significance are allowed to enter into a model, the LASSO and
SCAD regressions were able to detect and thus ignore many unassociated SNPs in sparse
model settings, while ridge regression was able to outperform LASSO and SCAD for non-
sparse models with many SNPs with only weak associations. This may be important going
forward as non-sparse and polygenic models may hold for many common diseases and
complex traits. For sparse models the TLP’s performance was comparable to LASSO and
SCAD, but it outperformed LASSO and SCAD, but not ridge, when the true model was non-
sparse with many weakly associated SNPs. The elastic net demonstrated the value in both
variable selection and continuous shrinkage features of a penalty as it was able to adapt to
the true underlying model and yield the best or nearly the best performance of all penalties.
It is noteworthy, though, that the elastic net did not uniformly outperform either TLP or
SCAD, in particular the TLP performed best on the real Crohn’s disease and bipolar disorder
data in the modeling scenario where the number of input SNPs was varied.

We have focused on penalized regression methods, but Bayesian approaches (Guan and
Stephens, 2011) are also potentially useful and worth further investigation, which however
is beyond the scope of this paper.

The current statistical research on high-dimensional data has largely focused on sparse
models, yielding many important and insightful results. Nonetheless, non-sparse models are
also useful, as manifested by polygenic models for complex and common diseases. There
are few theoretical studies on non-sparse models; an exception is the work of Cook et al.
(2012) on dimension reduction. The main message of our study, certainly not new, is that
different penalized methods may be more suitable depending on the underlying architecture
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of the true model: for example if the model is sparse or non-sparse. Hopefully this will
prompt more empirical and theoretical investigations for non-sparse models.
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Figure 1.
Correlation of the true πi and the π̂i estimated with various numbers of top SNPs. (a) Each
panel displays the performance of a regression method (column) when estimating a true
model (row). (b) Boxplots of the maximum correlation obtained for each simulated dataset
across the number of top SNPs.
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Figure 2.
AUC calculated for 100 simulated test datasets with various numbers of top SNPs. (a) Each
panel displays the performance of a regression method (column) when estimating a true
model (row). (b) Boxplots of the maximum AUC obtained for each simulated dataset across
the number of top SNPs
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Figure 3.
Correlation of the true πi and the π̂i estimated from all SNPs with various values of
regularization parameter λ. (a) Each panel displays the performance of a regression method
(column) when estimating a true model (row). (b) Boxplots of the maximum correlation
obtained for each simulated dataset across the values of λ.
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Figure 4.
AUC calculated for 100 simulated test datasets from all SNPs with various values of λ. (a)
Each panel displays the performance of a regression method (column) when estimating a
true model (row). (b) Boxplots of the maximum AUC obtained for each simulated dataset
across the values of λ.
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Figure 5.
Results of SCAD and TLP with various starting values.
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Figure 6.
AUC calculated for the Crohn’s disease test datasets with various numbers of top SNPs. (a)
Each panel displays the performance of one regression method. (b) Boxplots of the
maximum AUC obtained for each dataset across the number of top SNPs.
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Figure 7.
AUC calculated for the Crohn’s disease test datasets with all SNPs across the values of λ. (a)
Each panel displays the performance of one regression method. (b) Boxplots of the
maximum AUC obtained for each dataset across the values of λ.
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Figure 8.
AUC calculated for the bipolar disorder test datasets with various numbers of top SNPs. (a)
Each panel displays the performance of one regression method. (b) Boxplots of the
maximum AUC obtained for each dataset across the number of top SNPs.
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Figure 9.
AUC calculated for the bipolar disorder test datasets with all SNPs across various values of
λ. (a) Each panel displays the performance of one regression method. (b) Boxplots of the
maximum AUC obtained for each data across the values of λ.
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