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Abstract

Sparse machine learning has recently emerged as powerful tool to obtain models of high-dimensional
data with high degree of interpretability, at low computational cost. The approach has been successfully
used in many areas, such as signal and image processing. This paper posits that these methods can be
extremely useful in the analysis of large collections of text documents, without requiring user expertise in
machine learning. Our approach relies on three main ingredients: (a) multi-document text summarization
and (b) comparative summarization of two corpora, both using sparse regression or classification; (c)
sparse principal components and sparse graphical models for unsupervised analysis and visualization
of large text corpora. We validate our methods using a corpus of Aviation Safety Reporting System
(ASRS) reports and demonstrate that the methods can reveal causal and contributing factors in runway
incursions. Furthermore, we show that the methods automatically discover four main tasks that pilots
perform during flight, which can aid in further understanding the causal and contributing factors to
runway incursions and other drivers for aviation safety incidents. We also provide a comparative study
involving other commonly used datasets, and report on the competitiveness of sparse machine learning
compared to state-of-the-art methods such as Latent Dirichlet Allocation (LDA).
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1 Introduction

Sparse machine learning refers to a set of learning algorithms that seek a trade-off between some goodness-of-
fit measure and sparsity of the result, the latter property allowing better interpretability. In a sparse learning
classification task for example, the prediction accuracy or some other classical measure of performance is not
the sole concern: we also wish to be able to better understand which few features are relevant as markers for
classification. Thus, if a binary classification task involves, say, data with genes as features, one wishes to
provide not only a high-performance classifier, but one that only involves a few genes, allowing biologists to
focus their further research efforts on those specific genes. Binary classification algorithms often provide a
weight for each feature, hence if the weight vector is sparse (it contains many zero weights), then the features
with non-zero weights are the ones that are the most relevant in understanding the difference between the
two classes. Similar benefits are derived from sparsity in the context of unsupervised learning, as discussed
in more detail later.

There is an extensive literature on the topic of sparse machine learning, with terms such as compressed
sensing, l1-norm penalties and convex optimization [15, 9, 4, 8, 54, 8, 47], often associated with the topic.
Successful applications of sparse methods have been reported, mostly in image and signal processing, see for
example [19, 33, 35]. Due to the intensity of research in this area, many very efficient algorithms have been
developed for sparse machine learning in the recent past. Despite an initial agreement that sparse learning
problems are more computationally difficult than their non-sparse counterparts, a new consensus might soon
emerge that sparsity constraints or penalties actually help reduce the computational burden involved in
learning.

Our paper makes the claim that sparse learning methods can be very useful to the understanding of large
text databases. Of course, machine learning methods in general have already been successfully applied to
text classification and clustering, as evidenced by a large body of literature, for example by [26]. We show
that sparsity is an important added property that is a crucial component in any tool aiming at providing
interpretable statistical analysis, allowing in particular efficient multi-document summarization, comparison,
and visualization of huge-scale text corpora. More classical algorithms, such as näıve Bayes (for supervised
learning tasks) and Latent Dirichlet Association (for unsupervised learning, see [7]), can also be applied for
such tasks. However, these algorithms do not incorporate sparsity directly into the model, and applying
them for the text processing tasks considered here requires a final “thresholding” step to make the result
interpretable. The experiments in this paper indicate that the sparse learning approaches provide an efficient
alternative to these popular models, and in the case of LDA, at a fraction of the computational cost, and
much better readability of the code.

To illustrate our approach, we perform an analysis, using our methods, of a specific data set coming
from the Aviation Safety Reporting System (ASRS) database. This database contains reports generated by
pilots, air traffic controllers, and others on a voluntary basis, and is a crucial component of the continuing
effort to maintain and improve aviation safety1. The ASRS data contains several of the crucial and generic
challenges involved under the general banner of “large-scale text data understanding”. First, its scale is
huge, and growing rapidly, making the need for automated analyses of the processed reports more crucial
than ever. Another issue is that the reports themselves are far from being syntactically correct, with lots of
abbreviations, orthographic and grammatical errors, and other shortcuts. Thus we are not facing a corpora
with well-structured language having clearly defined rules, as we would if we were to consider a corpus of
laws or bills or any other well-redacted data set. Finally, in many cases we do not know in advance what
to look for, because the goal is to discover precursors to aviation safety incidents and accidents. In other
words, the task is not about search, and finding a needle in a haystack: in many cases, we cannot simply
monitor the emergence or disappearance of a few keywords that would be known in advance. Instead the
task resembles more one of trying to visualize the haystack itself, compare various parts of it, or summarize
some areas.

Our main goal in this paper is to illustrate how we can use the different algorithms in the sparse machine
learning toolbox, in order to gain a better understanding of a data set such as the ASRS corpora. An

1See http://asrs.arc.nasa.gov for more information on the ASRS system. The text reports are available on that website.
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additional goal is to provide a comparative study of LDA and a sparse unsupervised learning method called
sparse PCA.

Our paper, which is an extended version of the conference paper [17], is organized as follows. Section 2 is
devoted to a review of some of the main models and algorithms in sparse machine learning. We also explain
how to apply the sparse learning models to important text processing tasks such as topic summarization.
Section 3 illustrates the sparse learning approach in the context of ASRS data, and also reviews some prior
work on this specific data set. Section 4 provides a comparative study of sparse PCA and LDA, on several
popular text data sets.

2 Sparse Learning Methods

In this section we review some of the main algorithms of sparse machine learning, and then explain how
these models can be used for some generic tasks arising in text analysis.

2.1 Sparse classification and regression

LASSO Regression. Perhaps the most well known example of sparse learning is the variant of least-
squares known as the LASSO [46], which takes the form

min
β
‖XTβ − y‖22 + λ‖β‖1, (1)

where X is a n ×m data matrix (with each row a specific feature, each column a specific data point), y is
a m-dimensional response vector, and λ > 0 is a parameter. The l1-norm penalty encourages the regression
coefficient vector β to be sparse, bringing interpretability to the result. Indeed, if each row is a feature, then
a zero element in β at the optimum of (1) implies that that particular feature is absent from the optimal
model. If λ is large, then the optimal β is very sparse, and the LASSO model then allows to select the few
features that are the best predictors of the response vector.

The LASSO problem looks more complicated than its classical least-squares counterpart. However, there
is mounting evidence that, contrary to intuition, the LASSO is substantially easier to solve than least-
squares, at least for high values of the penalty parameter λ. As shown later, in typical applications to text
classification, a high value of λ is desired, which is precisely the regime where the LASSO is computationally
very easy to solve. The so-called safe feature elimination procedure, introduced in [18], allows to cheaply
detect that some of the components of β will be zero at optimum. This in turn enables to treat data sets
having millions of terms and documents, at least for high values of λ.

Many algorithms have been proposed for LASSO; at present it appears that, in text applications with
sparse input matrix X, a simple method based on minimizing the objective function of (1) one coordinate
of β at a time is extremely competitive [21, 37].

Other loss functions. Similar models arise in the context of support vector machines (SVM) for binary
classification, where the sparse version takes the form (see e.g. [5])

min
β,b

1

m

m∑
i=1

h(yi(x
T
i β + b)) + λ‖β‖1, (2)

where now y is the vector of ±1’s indicating appartenance to one of the classes, and h is the so-called hinge
loss function, with values h(t) = max(0, 1 − t). At optimum of problem (2), the above model parameters
(β, b) yield a classification rule, i.e. predict a label ŷ for a new data point x, as follows: ŷ = sign(xTβ + b).
A smooth version of the above is sparse logistic regression, which obtains upon replacing the hinge loss with
a smooth version l(t) = log(1 + e−t). Both of these models are useful but somewhat less popular than the
LASSO, as state-of-the-art algorithms are have not yet completely caught up. For our text applications, we
have found that LASSO regression, although less adapted to the binary nature of the problem, is still very
efficient [23].
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2.2 Sparse principal component analysis

The classical Principal Component Analysis (PCA) method allows to reduce the dimension of data sets by
performing a low-rank approximation to the data matrix, and projecting data points on the corresponding
subspace. Sparse principal component analysis (Sparse PCA, see [55, 52] and references therein) is a variant
of PCA that allows to find sparse directions of high variance. The sparse PCA problem can be formulated
in many different ways, one of them (see [43, 32]) involves a low-rank approximation problem where the
sparsity of the low-rank approximation is penalized:

min
p,q
‖M − pqT ‖2F : ‖p‖0 ≤ k, ‖q‖0 ≤ h, (3)

where M is the m× n data matrix, ‖ · ‖F is the Frobenius norm. In the above, the notation ‖ · ‖0 stands for
the cardinality, that is, the number of non-zeros in its vector argument, and k ≤ m, h ≤ n are parameters
that constrain the cardinality of the solution (p, q). Classical PCA is obtained with k = m,h = n.

The model above results in a rank-one approximation to M (the matrix pqT at optimum), and vectors
p, q are constrained to be sparse. If M is a term-by-document matrix, the above model provides sparsity in
the feature space (via p) and the document space (via a “topic model” q), allowing to pinpoint a few features
and a few documents that jointly “explain” data variance.

Several algorithms have been proposed for the above problem, or related variants, see for example [28, 43,
11]. The approach in [53] is based on solving a relaxation to the problem, one column of the matrix variable
at a time. Other algorithms (e.g. [43]) attempt to solve the problem directly, without any relaxation; these
kinds of methods are not guaranteed to even converge to a local minimum. However, they appear to be
quite efficient in practice, and extremely scalable. One such algorithm consists in solving the above problem
alternatively over p, q many times [43]. This leads to a modified power iteration method

p→ P (Tk(Mq)), q → P (Th(MT p)),

where P is the projection on the unit circle (assigning to a non-zero vector v its scaled version v/‖v‖2), and
for t ≥ 0, Tt is the “hard thresholding” operator (for a given vector v, Tt(v) is obtained by zeroing out all
but the t largest components of v).

In some applications, involving for example visualization of large text databases, it is useful to distinguish
positive and negative components of vectors p, q, and retain the a fixed number of the largest positive and
largest negative components separately. We further elaborate on this point in Section 2.5, and illustrate this
in Section 3.

With k = m,h = n, the original power iteration method for the computation of the largest singular value
of M is recovered, with optimal p, q the right- and left- singular vectors of M . The presence of cardinality
constraints modifies these singular vectors to make them sparser, while maintaining the closeness of M to
its rank-one approximation. The hard-thresholding version of power iteration scales extremely well with
problem size, with greatest speed increases over standard power iteration for PCA when a high degree of
sparsity is asked for. This is because the vectors p, q are maintained to be extremely sparse during the
iterations.

An alternative algorithm for solving the above is based on solving a classical PCA problem, then thresh-
olding the resulting singular vectors so that they have the desired level of sparsity. (We discuss “thresholded
models” in more details in Section 2.4.) For large-scale data, PCA is typically solved with power iteration, so
the “thresholded PCA” algorithm is very similar to the above thresholded power iteration for sparse PCA.
The only difference is in how many times thresholding takes place. Note that in practice, the thresholded
power iteration for sparse PCA is much faster than its plain counterpart, since we are dealing with much
sparser vectors as we perform the power iterations.

2.3 Sparse graphical models

Sparse graphical modeling seeks to uncover a graphical probabilistic model for multivariate data that exhibits
some sparsity characteristics. One of the main examples of this approach is the so-called sparse covariance
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selection problem, with a Gaussian assumption on the data (see [38], and related works such as [22, 34, 50,
44, 31, 29]). Here we start with a n × n sample covariance matrix S, and assuming the data is Gaussian,
formulate a variant to the corresponding maximum likelihood problem:

max
X

log detX −TrSX − λ‖X‖1, (4)

where λ > 0 is a parameter, and ‖X‖1 denotes the sum of the absolute values of all the entries in the n× n
matrix variable X. Here, TrSX is the scalar product between the two symmetric matrices S and X, that is,
the sum of the diagonal entries in the matrix product SX. When λ = 0, and assuming S is positive-definite,
the solution is X = S−1. When λ > 0, the solution X is always invertible (even if S is not), and tends
to have many zero elements in it as λ grows. A zero element in the (i, j) entry of X corresponds to the
conditional independence property between nodes i and j; hence sparsity of X is directly related to that of
the conditional independence graph, where the absence of an edge denotes conditional independence.

The covariance selection problem is much more challenging than its classical counterpart (where λ = 0),
which simply entails inverting the sample covariance matrix. At this point it appears that one of the most
competitive algorithms involves solving the above problem one column (and row) of X at a time. Each
sub-problem can be interpreted as a LASSO regression problem between one particular random variable and
all the others [38, 22]. Successful applications of this approach include Senate voting [38] and gene data
analysis [38, 14]

Just as in the PCA case, there is a conceptually simple algorithm, which relies on thresholding. If the
covariance matrix is invertible, we simply invert it and threshold the elements of the inverse. Some limited
evidence points to the statistical superiority of the sparse approach (based on solving problem (4)) over its
thresholded counterpart.

2.4 Thresholded models

The algorithms in sparse learning are built around the philosophy that sparsity should be part of the model’s
formulation, and not produced as an afterthought. Sparse modeling is based on some kind of direct formula-
tion of the original optimization problem, involving, typically, an l1-norm penalty. As a result of the added
penalty, sparse models have been originally thought to be substantially more computationally challenging
than their non-penalized counterparts.

In practice, sparse results can be obtained after the use of almost any learning algorithm, even one that
is not necessarily sparsity-inducing. Sparsity is then simply obtained via thresholding the result. This is
the case for example with näıve Bayes classification: since a näıve Bayes classifier assigns weights to each
feature, we can simply zero out the smaller weights to obtain a sparse classification rule. The same is true for
unsupervised algorithms such as Latent Dirichlet Allocation (LDA, see [6]). In the case of LDA, the result
is a probability distribution on all the terms in the dictionary. Only the terms with the highest weights
are retained, which amounts in effect to threshold the probability distribution. The notion of thresholded
models refers to the approach of applying a learning algorithm and obtaining sparsity with a final step of
thresholding.

The question about which approach, “direct” sparse modeling or sparse modeling via thresholding, works
better in practice, is a natural one. Since direct sparse modeling appears to be more computationally
challenging, why bother? Extensive research in the least-squares case shows that thresholding is actually
often sub-optimal [23]. Similar evidence has been reported on the PCA case [52]. Our own experiments in
section 3 support this viewpoint.

There is an added benefit to direct sparse modeling—a computational one. Originally thresholding was
considered as a computational shortcut, a quick way sparse models. As we argued above for least-squares,
SVM and logistic regression, and PCA, sparse models can be actually surprisingly easier to solve than
classical models; at least in those cases, there is no fundamental reason for insisting on thresholded models,
although they can produce good results. For the case of covariance selection, the situation is still unclear,
since direct sparse modeling via problem (4) is still computationally challenging.
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The above motivates many researchers to “sparsify” existing statistical modeling methodologies, such
as LDA. Note that LDA also encodes a notion of sparsity, not in the feature space, but on the document
(data) space: it assumes that each document is a mixture of a small number of topics, where the topic
distribution is assumed to have a Dirichlet prior. Thus, depending on the concentration parameter of this
prior, a document comprised of a given set of words may be effectively restricted to having a small number
of topics.

This notion of sparsity (document-space sparsity) does not constrain the number of features active in the
model, and does not limit overall model complexity. As a result, in LDA, the inclusion of terms that have
little discrimination power between topics (such as ‘and’, ‘the’, etc) may fall into multiple topics unless they
are eliminated by hand. Once a set of topics is identified the most descriptive words are depicted as a list
in order of highest posterior probability given the topic. As with any learning method, thresholding can be
applied to this list to reveal the top most descriptive words given a topic. It may be possible to eliminate
this thresholding step using a modified objective function with an appropriate sparsity constraint. This is
an area of very active research, as evidenced by [16].

2.5 Applying sparse machine learning to text

In this section, we review some of the text processing tasks that can be addressed using sparse learning
methods.

Topic summarization. Topic summarization is an extensive area of research in natural language process-
ing and text understanding. For a recent survey on the topic, see [10]. There are many instances of this
problem, depending on the precise task that is addressed. For example the focus could be to summarize
a single unit of text, or summarize multiple documents, or summarize two classes of documents in order
to produce the summaries that offer the best contrast. Some further references to summarization include
[24, 25, 36].

The approach introduced in [23] relies on LASSO regression to produce a summary of a particular topic
as treated in multiple documents. This is part of the extraction task within a summarization process, where
relevant terms are produced and given verbatim [10]. Using predictive models for topic summarization has
a long history, see for example [41]; the innovation is the systematic reliance on sparse regression models.

The basic idea is to divide the corpora in two classes, one that corresponds to the topic, and the other
to the rest of the text corpora. For example, to provide the summary of the topic “China” in a corpora
of news articles from The New York Times over a specific period, we may separate all the paragraphs
that mention the term “china” (or related terms such as “chinese”, “china’s”, etc) from the rest of the
paragraphs. We then form a numerical, matrix representation X (via, say, TF-IDF scores) of the data, and
form a “response” vector (with 1’s if the document mentions China and −1 otherwise). Solving the LASSO
problem (1) leads to a vector β of regressor coefficients, one for each term of the dictionary. Since LASSO
encourages sparsity, many elements of β are zero. The non-zero elements point to terms in the dictionary
that are highly predictive of the appearance of “china” in any paragraph in the corpus.

The approach can be used to contrast two sets of documents. For example, we can use it to highlight the
terms that allow to best distinguish between two authors, or two news sources on the same topic.

Topic summarization is closely related to topic modeling via Latent Dirichlet Allocation (LDA) [6],
which finds on a latent probabilistic model to produce a probability distribution of all the words. Once the
probability distribution is obtained, the few terms that have the highest probability are retained, to produce
some kind of summary in an unsupervised fashion. As discussed in section 2.4, the overall approach can be
seen as a form of indirect, thresholding method for sparse modeling.

Discrimination between several corpora. Here the basic task is to find out what terms best describe
the differences between two or more corpora. We simply classify one of the corpora against all the others:
the (say) positive class will contain all the documents from one corpora, and the negative class includes the
documents from all the remaining corpora. We can use any sparse binary classification algorithm for the
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task, included the thresholded models referred to in section 2.4. The classification algorithm will identify
the features that are most relevant in distinguishing a document from one class (the corpora under study)
to one from the other class.

The resulting classifier weight vector, which is sparse, then points to a short list of terms that are most
representative of the salient differences between the corpora and all the others. Of course, related methods
such as multi-class sparse logistic regression can be used.

Visualization and clustering. Sparse PCA and sparse graphical models can provide insights to large
text databases. PCA itself is a widely used tool for data visualization, but as noted by many researchers,
the lack of interpretability of the principal components is a challenge. A famous example of this difficulty
involves the analysis of Senate voting patterns. It is well-known in political science that, in that type of
data, the first two principal components explain the total variance very accurately [38]. The first component
simply represents party affiliation, and accounts for a high proportion of the total variance (typically, 80%).
The second component is much less interpretable.

Using sparse PCA, we can provide axes that are sparse. Concretely this means that they involve only
a few features in the data. Sparse PCA thus brings an interpretation, which is given in terms of which
few features explain most of the variance. As mentioned before, it is possible to assign a fixed number of
terms to each axis direction, one for the positive and one for the negative directions. (We illustrate this in
our experiments on the ASRS data set.) Likewise, sparse graphical modeling can be very revealing for text
data. Because it produces sparse graphs, it can bring an understanding as to which variables (say, terms, or
sources, or authors) are related to each other and how.

3 Experimental Analysis on ASRS Data

3.1 Goals of the study

In this section our focus is on reports from the Aviation Safety Reporting System (ASRS). The ASRS is a
voluntary program in which pilots, co-pilots, other members of the flight crew, flight controllers, and others
file a text report to describe any incident that they may have observed that has a bearing on aviation safety.
Because the program is completely voluntary and the data are de-identified, meaning that the author, his or
her position, the carrier, and other identifying information is not available in the report. After reports are
submitted, analysts from ASRS may contact the author to obtain clarifications. However, the information
provided by the reporter is not investigated further. This motivates the use of (semi-) automated methods
for the real-time analysis of the ASRS data. In our experiments, we have used the one provided by NASA
as part of the SIAM 2007 Text Mining Competition. It consists in about 20,000 flight reports submitted by
pilots after their flight. Each report is a small paragraph describing any incident that was recorded during
flight, and is assigned a category (totaling 22), or type of incident.

Our goals here are as follows. A first objective is to report on previous work on this particular data set
(Section 3.2). Then in Section 3.3, our aim is to validate our methods based on categorical information.
Using our comparative summarization methods, we investigate if we can recover summaries for each category
that allow to clearly distinguish between them, and are consistent with their meaning.

In Section ??, we illustrate how sparse PCA can be used to visualize the data, specifically visualize the
different categories. We also make a comparison with threshdolded LDA.

In Section 3.4, we focus on the analysis of runway incursions, which are events in which one aircraft
moves into the path of another aircraft during landing or takeoff. A key question that arises in the study of
runway incursions is to understand whether there are significant distinguishing features of runway incursions
for different airports. Although runway incursions are common, the causes may differ with each airport.
These are the causal factors that enable the design of the intervention appropriate for that airport, whether
it may be runway design, runway lighting, procedures, etc. To do this kind of analysis, we further processed
the ASRS data a bit more, as detailed in Appendix A.
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3.2 Related work on ASRS data

In this section we list some previous work in applying data mining/machine learning methods for analyzing
ASRS data, along with pointers for further research.

Text Cube [30] and Topic Cube [51] are multi-dimensional data cube structures which provide a solid
foundation for effective and flexible analysis of the multidimensional ASRS text database. The text cube
structure is constructed based on the TF/IDF (i.e., vector space) model while the topic cube is based on a
probabilistic topic model. Techniques have also been developed for mining repetitive gapped subsequences
[12], multi-concept document classification [48][49], and weakly supervised cause analysis [1]. The work in
[30] has been further extended in [13] where the authors have proposed a keyword search technique. Given a
keyword query, the algorithm ranks the aggregations of reports, instead of individual reports. For example,
given a query “forced landing” an analyst may be interested in finding the external conditions (e.g. weather)
that causes this kind of query and also find other anomalies that might co-occur with this one. This kind of
analysis can be supported through keyword search, providing an analyst a ranked list of such aggregations
for efficient browsing of relevant reports. In order to enrich the semantic information in a multidimensional
text database for anomaly detection and causal analysis, Persing and Ng have developed new techniques
for text mining and causal analysis from ASRS reports using semi-supervised learning [40] and subspace
clustering [3].

Some work has also been done on categorizing ASRS reports into anomalous categories. It poses some
specific challenges such as high and sparse dimensionality as well as multiple labels per document. Oza et
al. [39] presents an algorithm called Mariana which learns a one-vs-all SVM classifier per anomaly category
on the bag-of-words matrix. This provides good accuracy on most of the ASRS anomaly categories.

Topic detection from ASRS datasets have also received some recent attention. Shan et al. have developed
the Discriminant Latent Dirichlet Allocation (DLDA) model [42], which is a supervised version of LDA. It
incorporates label information into the generative model using logistic regression. Compared to Mariana, it
not only has a better accuracy, but it also provides the topics along with the classification.

Gaussian Process Topic Models (GPTMs) by Agovic and Banerjee [2] is a novel family of topic models
which define a Gaussian Process Mapping from the document space into the topic space. The advantage
of GPTMs is that it can incorporate semi-supervised information in terms of a Kernel over the documents.
It also captures correlations among topics, which leads to a more accurate topic model compared to LDA.
Experiments on ASRS dataset show better topic detection compared to LDA. The experiments also illustrate
that the topic space can be manipulated by changing the Kernel over documents.

3.3 Understanding categories

3.3.1 Recovering categories

In our first experiment, we sought to understand if the sparse learning methods could perform well in a blind
test. The category data did not contain category names, only referring to them with letter capitals. We
sought to understand what these categories were about. To this end, we have solved one LASSO problem
for each category, corresponding to classifying that category against all the others. As shown in Table 1,
we did recover a very accurate and differentiated image of the categories. For example, the categories M,
T, U correspond to the ASRS categories Weather/Turbulence, Smoke/Fire/Fumes/Odor, and Illness. These
categories names are part of the ASRS Events Categories as defined in http://asrs.arc.nasa.gov/docs/

dbol/ASRS_Database_Fields.pdf. This blind test indicates that the method reveals the correct underlying
categories using the words in the corpus alone.

The analysis reveals that there is a singular category, labelled B. This category makes up about 50% of
the total number of reports. Its LASSO images points to two terms, which happen to be two categories,
A (mechanical issues) and N (airspace issues). The other terms in the list are common to either A or N.
The analysis points to the fact that category is a “catch-all” one, and that many reports in it could be
re-classified as A or N.
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Category term 1 term 2 term 3 term 4 term 5 term 6 term 7
A (1441) MEL install maintain mechanic defer logbook part
B (12876) CATA CATN airspace install MEL AN
C (393) abort reject ATO takeoff advance TOW pilot
D (428) grass CATJ brake mud veer damage touchdown
E (3062) runway taxi taxiway hold tower CATR ground control
F (6065) CATH clearance cross hold feet runway taxiway
G (1684) altitude descend feet CATF flightlevel autopilot cross
H (2213) turn head course CATF radial direct airway
I (405) knotindicator speed knot slow airspeed overspeed speedlimit
J (1107) CATO CATD wind brake encounter touchdown pitch
K (353) terrain GPWS GP MD glideslope lowaltitude approach
L (3357) traffic TACAS RA AN climb turn separate
M (2162) weather turbulent cloud thunderstorm ice encounter wind
N (1261) airspace TFR area adiz classb classdairspace contact
O (325) CATJ glideslope approach high goaraound fast stabilize
P (935) goaround around execute final approach tower miss
Q (394) gearup land towerfrequency tower contacttower gear GWS
R (1139) struck damage bird wingtip truck vehicle CATE
S (6767) maintain engine emergency CATA MEL gear install
T (647) smoke smell odor fire fume flame evacuate
U (304) doctor paramedic nurse ME breath medic physician
V (574) police passenger behave drink alcohol seat firstclass

Table 1: LASSO images of the categories: each list of terms correspond to the most predictive list
of features in the classification of one category against all the others. The numbers in parentheses
denote the number of reports in each category. The meaning of abbreviations is listed in Table 2.

Meaning Abbreviation
aborted take-off ATO
aircraftnumber AN
airtrafficcontrol ATC

gearwarningsystem GWS
groundproximity GP

groundproximitywarningsystem GPWS
groundproximitywarningsystemterrain GPWS-T

knotsindicatedairspeed KIAS
medicalemergency ME

Meaning Abbreviation
minimumdescent MD

minimumequipmentlist MEL
noticestoairspace NTA
resolutionadvisory RA

trafficalertandcollisionavoidancesystem TACAS
takeoffclear TOC

takeoffwarning TOW
temporaryflightrestriction TFR

Table 2: Some abbreviations used in the ASRS data.
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3.3.2 Sparse PCA for understanding categories

In this section, we plot the data set on a pair of axes that contain a lot of the variance, at the same time
maintaining some level of interpretability to each of the four directions. Here the purpose is simply to
perform an exploratory data analysis step, and evaluate if the results are consistent with domain knowledge.
Our choice for setting the number of (sparse) principal components to two is not related to the data set
itself. Rather, our choice simply allows us to plot the data on a two-dimensional figure, each component
leading to one positive or negative direction.

We have proceeded with this analysis on the category data set. To this end we have applied a sparse PCA
algorithm (power iteration with hard thresholding) to the category data matrix M (with each column an
ASRS report), and obtained Fig. 1. We have not thresholded the direction q, only the direction p, which is
the vector along which we project the points, so that it has at most 10 positive and 10 negative components.
Hence, on our plot the underlying space is that corresponding to vector p. The sparse PCA plot shows that
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Figure 1: A sparse PCA plot of the category ASRS data. Here, each data point is a category, with
size of the circles consistent with the number of reports in each category. We have focussed the axes
and visually removed category B which appears to be a catch-all category. Each direction of the
axes is associated with only a few terms, allowing an easy understanding of what each means. Each
direction matches with one of the missions assigned to pilots in FAA documents (in light blue).

the data involves four different themes, each corresponding to the positive and negative directions of the first
two sparse principal components.

Without any supervision, the sparse PCA algorithm found themes that are consistent with the four
missions of pilots, as is widely cited in aviation documents [27]: Aviate, Navigate, Communicate, and Manage
Systems. These four actions form the basis of flight training for pilots in priority order. The first and
foremost activity for a pilot is to aviate, i.e., ensure that the airplane stays aloft and in control. The second
priority is to ensure that the airplane is moving in the desired direction with appropriate speed, altitude,
and heading. The third priority is to communicate with other members of the flight crew and air traffic
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Figure 2: A sparse PCA plot of the runway ASRS data. Here, each data point is an airport, with
size of the circles consistent with the number of reports for each airport.

control as appropriate. The final priority is to manage the systems (and humans involved) on the airplane
to ensure safe flight. These high-level tasks are critical for pilots to follow because of their direct connection
with overall flight safety.

The sparse algorithm discovers these four high-level tasks as the key factors in the category data set. The
words associated with each direction in Fig. 1 (for example, “seat”. “inspect”, etc, along the East direction)
were automatically assigned by the algorithm. On the plot, we manually assigned a higher-level label (such
as “Navigate”) to the list of words associated with each direction. As claimed, the list of words are very
consistent with the high-level labels.

We validated our discovery by applying the Latent Dirichlet Allocation algorithm to the ASRS data and
set the desired number of topics equal to 4. Because there is currently no method to discover the ‘correct’
number of topics, we use this high-level task breakdown as for an estimate of the number of topics described
in the documents. While the results did not reveal the same words as sparse PCA, it revealed a similar task
breakdown structure. More detailed results involving LDA are described in section ??.

In a second illustration we have analyzed the runway data set described in Appendix A. Fig 2 shows that
two directions remain associated with the themes found in the category data set, namely “aviate” (negative
horizontal direction) and “communicate”. The airports near those directions, in the bottom left quadrant
of the plot (CLE, DFW, ORD, LAX, MIA, BOS) are high-traffic ones with relatively bigger number of
reports, as is indicated by the size of the circles. This is to be expected from airports where large amounts
of communication is necessary (due to high traffic volume and complicated layouts). Another cluster (on the
NE quadrant) corresponds to the two remaining directions, which we labelled “specifics” as they related to
specific runways and taxiways in airports. This other cluster of airports seem to be affected by issues related
to specific runway configuration that are local to each airport.

In a second plot (Fig. 3) we redid the analysis after removal of all the features related to runways and
taxiways, in order to discover what is “beyond” runway and taxiway issues. We recover the four themes
of Aviate, Navigate, Communicate and Manage. As before, high-traffic airports remain affected mostly by
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Figure 3: A sparse PCA plot of the runway ASRS data, with runway features removed.

aviate and communicate issues. Note that the disappearance of passenger-related issues within the Manage
theme, which was defining the positive-vertical direction in Fig 1. This is to be expected, since the data
is now restricted to runway issues: what involved passenger issues in the category data set, now becomes
mainly related to the other humans in the loop, pilots (“permission”), drivers (“vehicle”) and other actors,
and their actions or challenges (“workload, open, apologized”).

A look at the sparse PCA plots (Figs. 3 and 1) reveals a commonality: the themes of Aviate and
Communicate seem to go together in the data, and are opposed to the other sub-group of Navigate and
Manage Systems.

How about thresholded PCA? Fig. 4 shows the total explained variance by the two methods (sparse and
thresholded PCA) as a function of the number of words allowed for the axes, for the category data set.
We observe that thresholded PCA does not explain as much variance (in fact, only half as much) as sparse
PCA, with the same budget of words allowed for each axis. This ranking is reversed only after 80 words are
allowed in the budget. The two methods do reach the maximal variance explained by PCA as we relax our
word-budget constraint. Similar observations can be made for the runway data set.

3.3.3 Thresholded LDA

For the sake of comparison, we have also applied the Latent Dirichlet Allocation (LDA) algorithm to the
ASRS data. LDA is an unsupervised technique for topic modeling and as such it requires the number of
topics to extract from the data. For our ASRS data, we have generated 4, 6, and 10 topics. We have used
the code in [45], with default parameter values, as detailed in Table 3.

In a first attempt, we have not removed any stop words and found the corresponding lists to be quite
uninformative, as stop words did show up. We have then removed the stop words using a standard list of
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N Words on Axis 5 8 10 20 50
Threshold PCA 1.8 3.77 5 10.5 21.15
SPCA 8.99 10.75 10.82 17.2 24.18
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Figure 4: Explained variance.

NUMTOPICS=10

BETA=0.01;

ALPHA=50/NUMTOPICS;

ITERATIONS = 500; (LDA iterations)

WORDSPERTOPIC = 10;

SEED = 1000; (used for Gibbs sampler initialization)

Table 3: Table of default parameters used in the LDA code of [45].

stop words from the English dictionary2.
Table 4 shows the four topics with the top 10 words (according to posterior distribution) thresholded

from the entire distribution of words. Unlike the Spase PCA method (Fig. 1), the 4 topics of LDA model do
not correspond to the four missions of the pilot: Aviate, Navigate, Communicate, and Manage Systems. In
fact, there are certain words such as ‘aircraft’, ‘runway’ etc. which seem to occur in most of the topics and
are therefore not very informative for discrimination purposes. From a high level, the topics roughly seem to
correspond to the following: (1) Topic 1 – gate events or ground events, (2) Topic 2 – ATC communication
or clearance related, (3) Topic 3 – not clear , and (4) Topic 4 – approach/landing.

Tables 5 and 6 depicts 6 and 10 topics extracted from the ASRS data. Both of these tables show that
there the topics are not very unique since the words in the topics appear to be substantially overlapping and
therefore, (1) there is not much discriminative power of the components (words) and, (2) the topics do not
discover unique structures in the data. Finally, we report the running time of LDA algorithm for these three

2The list can be consulted at http://www.eecs.berkeley.edu/~gawalt/MIR2010/NYTWStops.txt.

Topic term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8 term 9 term 10
1 runway taxi ground taxiway turn control captain airport gate txwyno
2 tower clear takeoff aircraft rwyus clearance position firstofficer captain flight
3 runway hold short line cross told rwyus nar aircraft taxi
4 runway aircraft landing ctlapproachcontrol feet report lights pilot due crew

Table 4: 4 topics extracted from ASRS dataset.
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experiments: 12 secs for 4 topics, 16 secs for 6 topics and 25 secs for 10 topics. For all these experiments,
we have run the gibbs sampler for 500 iterations.

Topic 1 2 3 4 5 6
term 1 captain runway runway tower runway runway
term 2 firstofficer hold taxi clear aircraft taxiway
term 3 time short ground takeoff landing taxi
term 4 flight line control clearance ctlapproachcontrol turn
term 5 departure aircraft cross position feet airport
term 6 secondofficer stopped rwyus rwyus traffic report
term 7 airtrafficcontrol taxi instructions aircraft tower txwyno
term 8 chklist stop crossing aircarrier clear lights
term 9 txwyme nar told controller landed end
term 10 crew clear gate call approximately area

Table 5: 6 topics extracted from ASRS dataset.

3.4 Analysis of runway incursion incidents

In this section, our objective is to understand specific runway-related issues affecting each airport using the
runway ASRS data.

We will use three different methods to obtain the image (as given by a short list of terms) for each
airport. A first approach is basic and relies on co-occurrence between the airport’s name and the other
terms appearing in documents mentioning that name. The two other approaches, thresholded näıve Bayes
and LASSO, rely on classification. For this, we separate the data into two sets: one set corresponds to the
ASRS reports that contain the name of the airport under analysis; the other contains all the remaining ASRS
documents in our corpus. We have selected for illustration purposes the top twenty airports, as ordered by
the number of reports that mention their name.

3.4.1 Co-occurrence analysis

With no stop words removed or word-stemming, the simplest method is the co-occurence on term frequency,
which expectedly gives commonly-used words with little meaning as term association for the airports. Results
are shown in Table 7. Among these top words across the airports are simply “the”, “runway”, “and”.

We also experiment with the TF-IDF scores for the co-occurence method, which adds a weight of inverse
document frequency to each term. When considering an airport, TF-IDF generally favors terms that occur
more exclusively in documents containing the name of that airport. Results are shown in Table 8. Among
the top 8 terms chosen for each airport in the experimentation are: the airport name (ATL, LGA, LAS,
BWI, JFK) and specific runways with taxiways that have reported aviation issues. Some focus on actions
are shown in a few airports: MIA (takeoff), PHL (cross), DCA and BWI (turn).

3.4.2 Näıve Bayes classification

To emphasize the differences between two sets of documents, one method is to make use of the Näıve
Bayes classifier on the binary term-appearance matrix. This method relies on a strong assumption of term’s
independence across the whole corpus. To obtain the term association for each airport, we compute the
estimated log-odds ratio of term appearance in “positive” documents to that in “negative” ones, normalized
by the variance of this estimation, in order to cope with noise in the data. Hard thresholding these log-odds
ratios allows to retain a fixed number of terms associated to each airport. Results from the Näıve Bayes
classification are shown in Table 9. It seems that the method, applied to the runway ASRS dataset, is
effective in pointing out generic actions relevant to the aviation system. Term associations mostly reveal
“cross”, “landed”, “tower” as strong discriminating features. Nevertheless, this generic result provides little
help in understanding specific runway-related issues that affect each airport.
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Topic 1 2 3 4 5
term 1 runway runway aircraft taxi runway
term 2 clearance taxiway runway time ground
term 3 controller taxi tower airport taxi
term 4 cross end clear ramp rwyus
term 5 clear txwyno takeoff crew control
term 6 crossing lights landing flight told
term 7 back airport rwyus departure instructions
term 8 instructions turn nar problem gate
term 9 airtrafficcontrol turned stop due instructed
term 10 aircraft side speed factors crossed

Topic 6 7 8 9 10
term 1 tower hold runway ctlapproachcontrol captain
term 2 takeoff short intermediatefix feet taxi
term 3 position line txwyme landing firstofficer
term 4 clear runway txwyno aircraft runway
term 5 rwyus report secondofficer traffic turn
term 6 aircarrier stopped intersection final chklist
term 7 call past asked approximately time
term 8 frequency nar txwydo land looked
term 9 heard taxi txwygo report rwy4l
term 10 clearance holding approach pilot txwyb

Table 6: 10 topics extracted from ASRS dataset.

airport term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8
CLE the runway and i was hold short a
DFW the runway and i was tower a aircraft
ORD the runway and i was a that were
MIA the runway and was i a hold taxi
BOS the runway and i was a hold were
LAX the runway and i was a hold short
STL the runway and i was short a that
PHL the runway and was i aircraft taxi a

MDW the runway and i was a taxi hold
DCA the runway and i was a were that
SFO the runway and i was a that aircraft
ZZZ the and runway i was a aircraft were

EWR the runway and i was a tower that
ATL the runway and was i a aircraft tower
LGA the runway and was i aircraft hold a
LAS the runway and i was a for were
PIT the runway and was i a taxi that
HOU the runway and i was for a rwy12r
BWI the runway and was i taxi a that

CYYZ the runway and hold short was i line
SEA the runway and i was hold tower a
JFK the runway and was i a that clear

Table 7: Images of airports via the co-occurrence method on the binary term by document matrix,
without stop word removal.
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airport term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8
CLE rwy23l rwy24l rwy24c cle rwy23r rwy5r rwy6r rwy5l
DFW rwy18l dfw rwy17r rwy35l rwy35c rwy17c rwy18r rwy36r
ORD ord rwy22r rwy27r rwy32r rwy27l rwy9l rwy4l rwy22l
MIA rwy9l mia txwyq rwy9r line rwy8r txwym takeoff
BOS rwy4l bos rwy33l rwy22r rwy22l rwy4r captain frequency
LAX rwy25r lax rwy25l rwy24l rwy24r i captain firstofficer
STL rwy30l rwy12l rwy12r stl rwy30r cross aircarrier short
PHL rwy9l rwy27r phl rwy27l txwyk x e cross

MDW rwy31c rwy31r mdw rwy22l rwy4r txwyp midway rwy13c
DCA dca txwyj airplane turn ground traffic i pad
SFO rwy28l rwy28r sfo rwy1l rwy1r rwy10r rwy10l captain
ZZZ xxr zzz radio hangar tow i speed rwyxa

EWR rwy4l rwy22r ewr rwy22l txwyp txwyz rwy4r txwypb
ATL atl rwy26l rwy8r rwy9l rwy27r rwy26r dixie atlanta
LGA lga txwyb instrumentlandingsystem txwyb4 vehicle line lights txwyp
LAS las rwy25r rwy19l rwy7l rwy1r rwy19r rwy25l rwy1l
PIT rwy28c rwy10c pit rwy28l txwye txwyw txwyv txwyn1
HOU rwy12r hou rwy12l heading takeoff i rwy30r txwyme
BWI bwi rwy15r txwyp rwy33l turn intersection txwyp1 taxiway

CYYZ txwyq txwyh yyz line rwy6l rwy33r short length
SEA rwy34r rwy16l rwy34l sea rwy16r position firstofficer y
JFK jfk rwy31l vehicle rwy13r rwy4l rwy22r rwy13l rwy31r

Table 8: Images of airports via the co-occurrence method, using TF-IDF scores.

airport term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8
CLE line short this are for following first didn
DFW cross crossing tower landed aircraft across short holding
ORD turn but when l speed get than txwyb
MIA rwy9l txwyp taxiway txwym signage chart line via
BOS frequency told s contact controller txwyk rwy4l rwy22r
LAX tower cross short call high landing speed firstofficer
STL cross line short call hold aircraft trying supervisor
PHL cross e rwy9l crossed x txwye spot txwyk

MDW clearance i taxi hold gate captain crossed short
DCA his turn just captain but airplane txwyj through
SFO control crossing short crossed some txwyb landing cross
ZZZ radio time proceeded while way any i approximately

EWR tower landing aircraft txwyp rwy22r between high rwy4l
ATL cross crossing roll speed high hold txwyd knot
LGA txwyb aircarrier instrumentlandingsystem off lights txwyp behind error
LAS after saw rwy25r procedure lights approximately never signs
PIT via txwye intersection firstofficer conversation night looking down
HOU txwyme hold rwy12r takeoff via around trying little
BWI turn intersection taxi mistake ground gate made crossed

CYYZ line short stopped hold past taxi full end
SEA feet firstofficer cross tower read after called back
JFK prior instructed departure report his being out txwya

Table 9: Images of airports via Näıve Bayes classification, using the binary term by document
data.
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airport term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8
CLE Rwy23L Rwy24L Rwy24C Rwy23R Rwy5R Line Rwy6R Rwy5L
DFW Rwy35C Rwy35L Rwy18L Rwy17R Rwy18R Rwy17C cross Tower
ORD Rwy22R Rwy27R Rwy32R Rwy27L Rwy32L Rwy22L Rwy9L Rwy4L
MIA Rwy9L TxwyQ Rwy8R Line Rwy9R PilotInCommand TxwyM Takeoff
BOS Rwy4L Rwy33L Rwy22R Rwy4R Rwy22L TxwyK Frequency Captain
LAX Rwy25R Rwy25L Rwy24L Rwy24R Speed cross Line Tower
STL Rwy12L Rwy12R Rwy30L Rwy30R Line cross short TxwyP
PHL Rwy27R Rwy9L Rwy27L TxwyE amass TxwyK AirCarrier TxwyY

MDW Rwy31C Rwy31R Rwy22L TxwyP Rwy4R midway Rwy22R TxwyY
DCA TxwyJ Airplane turn Captain Line Traffic Landing short
SFO Rwy28L Rwy28R Rwy1L Rwy1R Rwy10R Rwy10L b747 Captain
ZZZ hangar radio Rwy36R gate Aircraft Line Ground Tower
ERW Rwy22R Rwy4L Rwy22L TxwyP TxwyZ Rwy4R papa TxwyPB
ATL Rwy26L Rwy26R Rwy27R Rwy9L Rwy8R atlanta dixie cross
LGA TxwyB4 ILS Line notes TxwyP hold vehicle Taxiway
LAS Rwy25R Rwy7L Rwy19L Rwy1R Rwy1L Rwy25L TxwyA7 Rwy19R
PIT Rwy28C Rwy10C Rwy28L TxwyN1 TxwyE TxwyW Rwy28R TxwyV
HOU Rwy12R Rwy12L citation Takeoff Heading Rwy30L Line Tower
BWI TxwyP Rwy15R Rwy33L turn TxwyP1 Intersection TxwyE Taxiway

CYYZ TxwyQ TxwyH Rwy33R Line YYZ Rwy24R short toronto
SEA Rwy34R Rwy16L Rwy34L Rwy16R AirCarrier FirstOfficer TxwyJ SMA
JFK Rwy31L Rwy13R Rwy22R Rwy13L vehicle Rwy4L amass Rwy31R

Table 10: Images of airports via LASSO regression, using TF-IDF data.

3.4.3 LASSO

We turn to a LASSO regression to analyze the image of each airport. Our results, shown in Table 10, are
based on the TF-IDF representation of the text data. They indicate that the LASSO images for each airport
reveal runways that are specific to that airport, as well as some specific taxiways. We elaborate on this next.

3.4.4 Tree images via two-stage LASSO

To further illustrate the LASSO-based approach, we focus on a single airport (say DFW). We propose a
two-stage LASSO analysis allowing to discover a tree structure of terms. We first run a LASSO algorithm
to discover a short list of terms that correspond to the image of the term “DFW” in the data set. For each
term in that image, we re-run a LASSO analysis, comparing all the documents in the DFW-related corpus
containing the term, against all the other documents in the DFW-related corpus. Hence the second step
in this analysis only involves the ASRS reports that contain the term “DFW”. The approach produces a
tree-like structure that can be visualized as two concentric circles of terms, as in Figs. 5 and 6.

The tree analysis, which is visualized in Figs. 5 and 6, highlights which issues are pertaining to specific
runways, and where attention could be focussed. In the airport diagram in Figure 7, we have highlighted
some locations discussed next.

As highlighted in red in the airport diagram 7, the major runway 35L crosses the taxiway EL; likewise
for runway 36R and its siblings taxiway WL and F. Runway/taxiway intersections are generally known to
contain a risk of collision. At those particular intersections, the issues seem to be about obtaining “clearance”
to “turn” from the tower, which might be due to the absence of line of sight from the tower (here we are
guessing that the presence of the west cargo area could be a line-of-sight hindrance). The corresponding tree
image in Fig. 5 is consistent with the location of DFW in the sparse PCA plot (Fig. 3), close to the themes
of Aviate and Communicate.

4 Sparse PCA and LDA: Comparative Study

In this section, we perform a comparative study of the sparse PCA and LDA approaches, using databases
that are commonly used in the text processing community. This will help further illustrate the respective
merits of the two methods for data sets other than the previously used ASRS data. We use three data
sets, of increasing size: the Amazon data set, which contains consumer reviews for a variety of products;
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Figure 7: Diagram of DFW.
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the Reuters news text categorization collection, which involves news articles; and the NSF data set, which
contains abstracts from scientific articles dated 1999 through 2003. The three data sets can be obtained
from the UCI archive [20]. These data sets range widely in size, from one to a thousand hundred documents.
For each data set, we apply a very basic stop-word removal from a list of approximately 550 stop words3.

With the ASRS data sets one of our goals in using sparse PCA was to plot the documents in two
dimensions, hence we have selected two principal components. In this present study, we increase that
number to 10 principal components and rigorously compare with the 10 topics revealed by LDA. The LDA
code we have used has been developed by Steyvers and Griffiths [45]; throughout, we have used the default
values for various parameters, as detailed in Table 3.

4.1 Amazon data set

The Amazon data set is the smallest of the three data sets examined in this section, with 1500 documents,
and 2960 single words. It consists of user reviews, mainly on consumer products. The reviews originate from
50 of the most active users, each of whom has 30 reviews collected. The original data contains bigrams and
trigrams, and also includes authors’ usage of digits and punctuation. We have removed all of these, and
retained only unigrams after stop-word removal to run the LDA and the SPCA.

The results are shown in Table 11. For both methods, the topics show very clear word associations. In
these topics, when we rank words in non-increasing order of their weights, the topic words show up as top
words. For SPCA, almost all topics are very easy to interpret: topic 1 corresponds to books, topic 2 to
movies, topic 4 to games, topic 6 to cells and batteries, topic 7 to hair products, topic 8 to music. Topic 9
is less clear, but likely to be about electronic reading devices. For LDA, we see that topic 10 corresponds
to books, topic 9 to stories, topic 3 to movie and topic 1 to music. LDA shows a similar good performance,
although we see some non-informative words such as “good” appear in the lists.

4.2 Reuters data set

The Reuters 21578 data set contains 19043 documents and 38361 unique words. It is one of the most
frequently used for text processing on news since 1999. The dataset is divided into several categories.
However for the purpose of this study we have discarded the labels and any categorical information, treating
all the documents on equal basis. Our goal here is to ascertain if sparse learning methods can handle data
that is complex by the variety of topics, as well as the presence of acronyms and abbreviations. The results
of LDA and SPCA are shown in Table 12.

For both methods, topics in the Reuters dataset are sometimes difficult to recognize, which is perhaps
due to the complexity of this data set. There are topics that both the LDA and the SPCA agree upon.
For example, LDA’s topic 2 and SPCAs topic 1 have similar words: “mln” (million), “dlrs” (dollars), “net”,
“loss”, “profit”, “year” and “sales”. LDA’s topic 9 and SPCA’s topic 5 are both on agriculture exports
and oil/gas prices (with terms such as “wheat”, “export”, “tonnes”, “price”). LDA’s topic 7 and SPCA’s
topic 9 both discuss US government issues, with terms such as “President Reagan” and “John Roberts”,
respectively. Of the remaining topics, the two methods either share some commonalities (for example the
LDA and SPCA topic 8 can both be guessed to be related to the European zone) or involve different topics
(for example LDA’s topic 1 is on economic issues, while SPCA topic 3 is on market exchange).

4.3 NSF data set

The NSF datasets contain a collection of abstracts of scientific papers, written between 1990 to 2003. This
is the largest data set in our study, with over 120, 000 documents and over 30, 000 words. The results of
LDA and SPCA are shown in Table 13.

In Table 14 we have summarized our interpretation of each topic, mostly based on the first (most heavily
weighted) term for each method. (We deviated from the rule when the other terms were consistently pointing
to a more specific topic, such as topic 8 for LDA or 5 for sparse PCA.)

3Available at http://atticus.berkeley.edu/guanchengli/stopword.txt.
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TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
love 0.02461 case 0.01669 film 0.03878 time 0.05518 product 0.02773

music 0.02357 light 0.01298 movie 0.02676 long 0.02607 easy 0.021
year 0.01749 included 0.01247 man 0.01594 recommend 0.02211 quality 0.0209

sound 0.01655 problem 0.01226 stars 0.01273 day 0.02171 make 0.01692
beautiful 0.01383 works 0.01216 american 0.01223 makes 0.0209 bit 0.01641

cd 0.01278 video 0.01082 bad 0.01042 fun 0.01765 hand 0.01539
great 0.01267 cells 0.01061 wife 0.01032 feel 0.01664 top 0.01346

fine 0.01267 system 0.01051 past 0.00982 good 0.01643 color 0.01305
art 0.01267 cable 0.01051 school 0.00972 game 0.01633 amazon 0.01295

christmas 0.01246 time 0.01041 films 0.00912 thing 0.01552 high 0.01193
TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 8 TOPIC 10
good 0.026 good 0.02344 find 0.03938 story 0.04881 book 0.14368
dvd 0.01856 nice 0.01863 people 0.03684 stories 0.02108 read 0.03378

made 0.01834 set 0.01824 work 0.03633 life 0.01953 author 0.02054
series 0.01618 back 0.01755 found 0.02646 family 0.01797 books 0.01952
show 0.01586 small 0.01569 make 0.02595 young 0.01578 reading 0.01926
short 0.01554 great 0.01559 things 0.01618 children 0.01551 life 0.01765

version 0.01543 easily 0.01432 part 0.01598 years 0.01533 history 0.01426
style 0.01456 put 0.01402 thought 0.01343 characters 0.01478 written 0.01392
back 0.01359 buy 0.01324 information 0.0113 world 0.01277 reader 0.01256

set 0.01349 pretty 0.01285 making 0.01099 TRUE 0.01058 interesting 0.01188

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
book 0.9127 film 0.6622 nice 0.3493 game 0.7527 skin 0.5492
read 0.1527 movie 0.3617 side 0.3464 games 0.3034 children 0.3864
good 0.1437 product 0.2666 lot 0.3042 fun 0.294 young 0.3028
story 0.1331 set 0.2268 price 0.2896 play 0.2388 man 0.2378
time 0.1228 made 0.2051 light 0.287 family 0.1969 written 0.2334

life 0.1207 years 0.2014 day 0.275 world 0.1619 dry 0.2098
author 0.1058 makes 0.1889 place 0.2703 characters 0.1572 beautiful 0.208

find 0.1016 long 0.1633 series 0.2688 level 0.1477 case 0.2071
people 0.1008 dvd 0.1573 works 0.2354 character 0.1275 feel 0.2044

reading 0.0867 back 0.1566 small 0.2329 played 0.1062 times 0.1997
TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 8 TOPIC 10
cells 0.7011 hair 0.8361 songs 0.4754 cover 0.8295 writing 0.5158

capacity 0.3149 recommended 0.2397 album 0.4717 wife 0.2398 products 0.4092
mah 0.2537 style 0.2042 christmas 0.3894 similar 0.1887 handle 0.3363

nimh 0.2503 brush 0.2002 cd 0.3492 told 0.1881 perfect 0.274
aa 0.2351 highly 0.18 voice 0.2577 purchased 0.187 material 0.2682

aaa 0.2276 plastic 0.1695 song 0.2347 avoid 0.162 desk 0.2139
charger 0.1924 expensive 0.149 track 0.2011 practical 0.162 short 0.2031
package 0.1769 put 0.1252 fan 0.147 paid 0.1532 color 0.2007

cell 0.1751 hold 0.1148 fine 0.1313 kindle 0.1431 lines 0.2005
rechargeable 0.1511 ingredients 0.1054 hear 0.1247 history 0.1061 review 0.1638

Table 11: Comparison between LDA (top) and Sparse PCA (bottom) on the Amazon data set.
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TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
project 0.01809 species 0.01644 research 0.09839 theory 0.02179 materials 0.01826

data 0.01516 study 0.01247 university 0.04056 problems 0.0205 high 0.01393
research 0.01218 important 0.00828 program 0.02237 methods 0.01438 properties 0.0127

information 0.00947 natural 0.00822 award 0.01927 study 0.01279 phase 0.01165
social 0.00909 provide 0.00742 chemistry 0.01804 work 0.01037 chemical 0.00837
study 0.00855 evolution 0.00721 support 0.01735 systems 0.01011 surface 0.00796
model 0.00832 understanding 0.00692 state 0.0148 problem 0.00912 energy 0.00787

models 0.00684 patterns 0.00679 dr 0.01355 mathematical 0.00892 optical 0.00747
economic 0.00597 environmental 0.00638 equipment 0.01101 models 0.00891 magnetic 0.00736

understanding 0.00573 studies 0.00604 project 0.01023 analysis 0.00799 electron 0.0068
TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 8 TOPIC 10

research 0.04002 molecular 0.01428 data 0.01493 students 0.04399 system 0.01947
scientists 0.01163 cell 0.01152 water 0.01087 science 0.03092 design 0.01944
national 0.01114 protein 0.01101 processes 0.00908 project 0.02327 systems 0.01931

researchers 0.01018 specific 0.01058 study 0.00893 program 0.01754 control 0.01329
workshop 0.00976 function 0.00979 model 0.00772 engineering 0.01521 based 0.01257
scientific 0.00958 cells 0.00942 flow 0.00761 education 0.01385 performance 0.01067

field 0.00911 studies 0.00894 ocean 0.00748 undergraduate 0.0127 data 0.01043
support 0.009 proteins 0.0089 climate 0.0067 laboratory 0.01098 develop 0.00939

areas 0.00894 mechanisms 0.00883 ice 0.00629 faculty 0.01078 network 0.00839
international 0.00886 dna 0.00804 field 0.00622 learning 0.0107 software 0.00814

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
mln 0.5898 common 0.0623 government 0.1019 current 0.069 sources 0.0935
cts 0.5794 payable 0.0652 oil 0.1073 ended 0.0768 compared 0.0971
net 0.3028 bank 0.0685 agreement 0.1093 extraordinary 0.0812 price 0.1035
shr 0.2863 july 0.0695 president 0.1127 sale 0.0855 fell 0.1069
dlrs 0.1987 share 0.0716 due 0.1369 credit 0.095 production 0.1088
loss 0.1853 june 0.0839 trade 0.1415 discontinued 0.1079 prices 0.1097
revs 0.1738 corp 0.0992 debt 0.1558 operations 0.1395 exports 0.1142

profit 0.0922 shares 0.1055 today 0.1651 includes 0.1695 department 0.1187
year 0.0722 stock 0.115 york 0.191 excludes 0.2029 export 0.1214
sales 0.0719 company 0.1355 offering 0.2031 gain 0.2119 total 0.1395

TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 8 TOPIC 10
years 0.0903 rates 0.076 eurobond 0.1496 john 0.0549 directors 0.0743

spokesman 0.1008 provided 0.0837 luxembourg 0.1549 robert 0.0596 paid 0.0871
air 0.1132 week 0.0843 listed 0.1586 subsidiary 0.0605 outstanding 0.0879

work 0.118 interest 0.0845 denominations 0.1735 american 0.0609 increase 0.0927
division 0.1195 central 0.0851 underwriting 0.188 elected 0.0623 offer 0.0952
awarded 0.1244 estimate 0.0951 selling 0.2023 director 0.0739 initial 0.0979

federal 0.1495 forecast 0.0969 issuing 0.2074 effective 0.0811 cash 0.1159
general 0.154 revised 0.1189 payment 0.214 resigned 0.0864 approved 0.1313

expected 0.1588 assistance 0.1208 date 0.2334 financial 0.1265 annual 0.144
international 0.2345 shortage 0.124 management 0.2385 operating 0.1584 meeting 0.1544

Table 12: Comparison between LDA (top) and Sparse PCA (bottom) on the Reuters data set.
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TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
project 0.01809 species 0.01644 research 0.09839 theory 0.02179 materials 0.01826

data 0.01516 study 0.01247 university 0.04056 problems 0.0205 high 0.01393
research 0.01218 important 0.00828 program 0.02237 methods 0.01438 properties 0.0127

information 0.00947 natural 0.00822 award 0.01927 study 0.01279 phase 0.01165
social 0.00909 provide 0.00742 chemistry 0.01804 work 0.01037 chemical 0.00837
study 0.00855 evolution 0.00721 support 0.01735 systems 0.01011 surface 0.00796
model 0.00832 understanding 0.00692 state 0.0148 problem 0.00912 energy 0.00787

models 0.00684 patterns 0.00679 dr 0.01355 mathematical 0.00892 optical 0.00747
economic 0.00597 environmental 0.00638 equipment 0.01101 models 0.00891 magnetic 0.00736

understanding 0.00573 studies 0.00604 project 0.01023 analysis 0.00799 electron 0.0068
TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 8 TOPIC 10

research 0.04002 molecular 0.01428 data 0.01493 students 0.04399 system 0.01947
scientists 0.01163 cell 0.01152 water 0.01087 science 0.03092 design 0.01944
national 0.01114 protein 0.01101 processes 0.00908 project 0.02327 systems 0.01931

researchers 0.01018 specific 0.01058 study 0.00893 program 0.01754 control 0.01329
workshop 0.00976 function 0.00979 model 0.00772 engineering 0.01521 based 0.01257
scientific 0.00958 cells 0.00942 flow 0.00761 education 0.01385 performance 0.01067

field 0.00911 studies 0.00894 ocean 0.00748 undergraduate 0.0127 data 0.01043
support 0.009 proteins 0.0089 climate 0.0067 laboratory 0.01098 develop 0.00939

areas 0.00894 mechanisms 0.00883 ice 0.00629 faculty 0.01078 network 0.00839
international 0.00886 dna 0.00804 field 0.00622 learning 0.0107 software 0.00814

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
research 0.7831 theory 0.3742 materials 0.465 species 0.392 mathematics 0.4311
project 0.2861 analysis 0.2975 engineering 0.3472 molecular 0.3605 education 0.3067

students 0.228 model 0.2848 chemistry 0.3194 dr 0.3161 teachers 0.2793
university 0.2101 models 0.2846 design 0.309 chemical 0.3081 physics 0.2777

program 0.1897 problems 0.2702 laboratory 0.2879 surface 0.2715 year 0.2727
science 0.1515 understanding 0.2536 computer 0.2436 experiments 0.2677 school 0.2646

data 0.1466 studies 0.2491 state 0.2061 phase 0.2373 faculty 0.2498
study 0.1448 methods 0.2455 technology 0.2044 process 0.2359 undergraduate 0.2371

support 0.1356 important 0.2374 techniques 0.2022 determine 0.2258 college 0.2279
systems 0.1292 information 0.2273 properties 0.1972 effects 0.2014 student 0.2183

TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 8 TOPIC 10
cell 0.4392 abstract 0.7037 group 0.4609 order 0.4939 equipment 0.5951

protein 0.3731 fellowship 0.51 groups 0.4016 experimental 0.2891 nsf 0.362
cells 0.3254 postdoctoral 0.3304 areas 0.3214 theoretical 0.2804 projects 0.3613

proteins 0.2873 required 0.2857 number 0.2699 dynamics 0.2796 grant 0.2695
plant 0.2709 error 0.113 area 0.2677 scientific 0.2789 network 0.2596
gene 0.2686 mathematical 0.1006 water 0.231 task 0.2612 funds 0.1912

genes 0.2525 sciences 0.0961 focus 0.2276 test 0.243 performance 0.1826
dna 0.2093 worry 0.0846 behavior 0.2159 scientists 0.2212 community 0.1692

function 0.2075 matter 0.0462 environmental 0.2149 level 0.2193 instrumentation 0.1597
biology 0.1953 length 0.044 related 0.2063 national 0.215 magnetic 0.15

Table 13: Comparison between LDA (top) and Sparse PCA (bottom) on the NSF data set.

Topic LDA SPCA
1 Project Research
2 Species Theory
3 Research Materials
4 Theory Species
5 Materials Mathematics/Education
6 Research Cell
7 Molecular Abstract
8 Data/Climate Research Group
9 Students Order
10 Systems Equipment

Table 14: Manually associated topics in the NSF data set experiment.
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Data set Amazon Reuters NSF
LDA 1 minute 13 minutes 1 hour

SPCA 19 seconds 3 minutes 14 minutes

Table 15: Computational times for LDA and sparse PCA.

The two methods share many topics in common. LDA’s topic 9 and SPCA’s topic 1 are both on university
education, with terms such as “students” and “undergraduate”. LDA’s topic 5 and SPCA’s topic 3 are both
related to material science and physics. LDA’s topic 7 and SPCA’s topic 6 focus on molecular and cell
biology, protein function and gene expression. Overall the LDA method appears to behave slightly better
on this data set; sparse PCA provides a few topics (8, 9) without clear and consistent meaning. LDA does
provide topics with overlap, and/or without much specificity (topics 1 and 3 for example), while non-overlap
is automatically enforced with sparse PCA. As discussed next, sparse PCA runs much faster than LDA.

4.4 Comparison summary

To summarize our findings, we note that overall both LDA and sparse PCA behave well and comparably on
the data sets we have used. In the larger data set (NSF) LDA delivers better results. A clear advantage,
besides performance, of sparse methods lies with their ease of use and readability; our matlab code for sparse
power iteration is a few lines long, and is quite amenable to a distributed computing architecture. Another
clear advantage lies with the computational effort that is required. To our knowledge, there is no precise
computational complexity analysis for both methods. In our experiments we have observed that LDA takes
much longer to run than sparse PCA. Table 15 illustrates the dramatic difference in run times4.

5 Conclusions and future work

Sparse learning problems are formulated as optimization problem with explicit encoding of sparsity require-
ments, either in the form of constraint or via a penalty on the model variables. This encoding leads to
a higher degree of interpretability of the model without penalizing, in fact improving, the computational
complexity of the algorithm. As such, the results offer an explicit trade-off between accuracy and sparsity,
based on the value of the sparsity-controlling parameter that is chosen. In comparison to thresholded PCA,
LDA or similar methods, which provide “after-the-fact” sparsity, sparse learning methods offer a principled
way to explicitly encode the trade-off in the optimization problem. Thus, the enhanced interpretability of
the results is a direct result of the optimization process.

We demonstrated the sparse learning techniques on a real-world data set from the Aviation Safety Re-
porting System and showed that they can reveal contributing factors to aviation safety incidents such as
runway incursions. We also show that the sparse PCA and LASSO algorithms can discover the underly-
ing task hierarchy that pilots perform. We have compared the LDA and sparse PCA approaches on other
commonly used data sets. Our numerical experiments indicate that the sparse PCA and LASSO methods
are very competitive with respect to thresholded methods (involving say LDA and näıve Bayes), at very
moderate computational cost.

In the safety monitoring of most critical, large-scale complex systems, from flight safety to nuclear plants,
experts have relied heavily on physical sensors and indicators (temperature, pressure, etc). In the future
we expect that human-generated text reporting, assisted by automated text understanding tools, will play
an ever increasing role in the management of critical business, industry or government operations. Sparse
modeling, by offering a great trade-off between user interpretability and computational scalability, appears
to be well equipped to address some of the corresponding challenges.

4We have used a 64-bit 2.33 GHz quad core Dell precision 690 desktop running Red Hat Enterprise Linux (version 5.4)
having 24GB of physical memory. The LDA code is a Matlab compiled mex routine run on Matlab version 2011; the sparse
PCA code is a few lines of ordinary matlab.
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A ASRS Data Preparation

In this section, we elucidate our data preparation processes by first showing a sample ASRS report:

WHILE taxi TO runway OUT OF GATE AT sdf airport I unintentional taxi ON runway.WHEN
I notice I WAS ON THE runway I HAD MY firstofficer TELL THE tower WE WERE ON THE
activerunway.THIS happen WHILE THE firstofficer WAS call OUT THE takeoff VREF number.I
WAS look IN AND OUT OF THE COCKPIT.THIS IS WHEN I SAW THE RED runway mark.I
DID NOT NOTICE THE ARROW NEXT TO runway.THE ARROW point TO THE taxiway I
TOOK taxiway G.THIS WAS WHAT disorient ME.THE problem WAS THAT THE SIGN WAS
NOT PARALLEL WITH THE runway WHICH IS WHAT I AM normal us TO.THE SIGN
WAS MORE PARALLEL TO taxiway G.WHAT SHOULD HAVE BEEN A SIMPLE TAXI TO
THE END OF THE runway SOMEHOW turn INTO A runwayincursion.I THINK THE SIGN
SHOULD BE TO THE left south OF taxiway G AND PARALLEL TO runway.

Here is the pre-processing sequence:

1. We revert all characters to lower case and scrub all punctuation and special characters. We remove
redundant white spaces. We remove stop words5.

2. We glue each runway or taxiway and their labels as a single word. This is achieved by the following
regular expression:

/\b(runway|taxiway)\ [a-z0-9]{1,3}\b/

This converts taxiway xy to taxiway_xy, or runway 9x to runway_9x.

The purpose of this step is to enable us to just focus on the issues raised by the runways, by the
taxiways, or anything else. Additionally, this allows for immediate perception of machine learning
results by the reviewer. For example, we would rather expect a list of other words associated to an
airport as taxiway_9l, runway_00, runway_y than simply 9l, 00, y etc.

3. We tokenize each ASRS report by separating the words of the ASRS report using a single space.

4. We vectorize the text by extracting all uni-grams from the sample. In doing so, we first scan through
all ASRS documents and build a dictionary of all uni-grams ever used across a total of 21, 519 ASRS
reports. We thus find 27, 081 distinct uni-grams. Hence, we obtain a data matrix of dimension
21, 519× 27, 081.

With this matrix, we have run LASSO, sparse PCA, and LDA as described above.

5Using the list at http://www.eecs.berkeley.edu/~gawalt/MIR2010/NYTWStops.txt.
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