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Abstract

Experts classifying data are often imprecise. Recently, several models have been proposed to train classifiers

using the noisy labels generated by these experts. How to choose between these models? In such situations, the

true labels are unavailable. Thus, one cannot perform model selection using the standard versions of methods

such as empirical risk minimization and cross validation. In order to allow model selection, we present a surrogate

loss and provide theoretical guarantees that assure its consistency. Next, we discuss how this loss can be used

to tune a penalization which introduces sparsity in the parameters of a traditional class of models. Sparsity

provides more parsimonious models and can avoid overfitting. Nevertheless, it has seldom been discussed in the

context of noisy labels due to the difficulty in model selection and, therefore, in choosing tuning parameters.

We apply these techniques to several sets of simulated and real data.

1 Introduction

In many situations, getting reliable labels in a dataset is very expensive and therefore assigning highly trained

experts to do such tasks is undesirable. In other situations, even trained experts disagree about the labels of

the data. Cases like these include spam detection, diagnosis of patients based on images and morphological

classification of galaxies Lintott et al. [2008]. Although it might be expensive to train experts to a degree one

can trust their labels Richards et al. [2012], systems such as Amazon Mechanical Turk Schulze et al. [2011] allow

each sample unit to be classified by many (not necessarily perfect) experts by a reasonably small cost. These

experts do not have to be people. For instance, they can be different cheap screening tests in a medical problem

Johnson et al.. In these situations, it is desirable to have methods that can detect how reliable each expert is

and use this information not only to detect the adequate labels of the data but also to train accurate classifiers

to predict new data Attenberg et al. [2012]. These methodologies are usually called crowdsourcing methods.
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Here we focus on predicting binary variables, even though similar ideas can be used in the case of predicting a

categorical variable with more than two labels.

The most common approach to deal with multiple experts is to first consider a majority vote scheme to input

the labels of each sample unit. Such procedure is known to be suboptimal in many situations [Yan et al., 2010b].

Many other approaches have been proposed recently. While some of them are based on a two step procedure

of first trying to find the true labels in the data and then training classifiers based on them Chittaranjan et al.

[2011], Karger et al. [2011] others do these tasks simultaneously, that is, the classifier is trained by assuming

that the labels from the experts may be incorrect Raykar et al. [2010], Yan et al. [2010b]. We follow the latter

approach, even though the model selection technique we propose works for the former method as well.

Also, many of the existing methods are essentially algorithm-based Donmez et al. [2009]. However, a signifi-

cant amount of the recent methods consist of probabilistic approaches to this problem, in which the unobserved

true label is modeled as a latent variable Welinder and Perona [2010], Ipeirotis et al. [2010], Raykar et al. [2010],

Yan et al. [2010b,a], Kajino et al. [2012]. In the latter case, the parameters of the model are usually estimated

through the Expectation Maximization Algorithm McLachlan and Krishnan [2008]. This approach has roots on

[Dawid and Skene, 1979]. However, less emphasis has been given to develop ways of comparing these different

models. Since the usual techniques for model selection depend on observing the real labels of the data, they

cannot be used in this case. Lam and Stork [2003] discusses how to find good models when only one annotator is

available . Here we extend some of these results and relax some of the assumptions made. We take a predictive

approach: by good models we mean models that have low predictive errors.

The literature also lacks on methods that can build sparse (in terms of coefficients of the model related

to the features) classifiers in crowdsourcing methods. Sparsity is a useful tool when trying to build classifiers

that have good generalization properties, that is, that do not suffer from overfitting. Moreover, many common

models used for crowdsourcing have a number of parameters that grow with both the number of experts and

samples. Having too many parameters can increase the prediction error substantially. Introducing sparsity on

such classifiers leads to more parsimonious models that potentially have better performance. Bayesian methods

such as the one used by Raykar et al. [2010] can lead to shrinkage of the coefficients and therefore to better

prediction errors, however it is not clear how to choose prior hyperparameters on them when one aims at good

prediction errors. Sparse methods are also valuable because they can reduce costs: for example, in new samples

a smaller number of variables have to be measured.

In Section 2 we develop a method for model selection. In Section 3 we present a model which allows sparse

solutions. We also show how to fit the model parameters for a fixed value of the parameter which specifies the

amount of sparsity. Section 4 provides applications of both the model selection technique and the sparse model

we propose. In particular, we use our model selection technique to select the tuning parameter which induces

the classifier with best predictive errors
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2 Model Selection

Assume there are d experts that label n sample units. For each of these units, we measure k features. Xij is the

j-th feature of the i-th unit. Xi denotes the vector of all features for the i-th sample. Yir ∈ {0, 1} denotes the

label attributed by the r-th expert (annotator) to the i-th sample. Zi ∈ {0, 1} is the unobserved variable which

corresponds to the appropriate label for the i-th sample unit. Table 1 contains a summary of this notation.

Table 1: Model’s random variables
True Labels Experts’ Labels Features

Z1 Y11 . . . Y1d X11 . . . X1k
...

...
. . .

...
...

. . .
...

Zn Yn1 . . . Ynd Xn1 . . . Xnk

We assume one wishes to find a classifier which minimizes the 0-1 loss. That is, one is interested in finding

a classifier that has small probability of making a mistake on a new sample. In this case, many techniques of

model selection rely on calculating empirical errors on a test data set Hastie et al. [2001]. When using noisy

labels, the empirical error is unavailable and this strategy cannot be directly applied. In order to overcome this

difficulty, we introduce a score which is closely related to the empirical error. The reliability of this score does

not depend on assuming that the data is generated according to the model in Section 3.

Our score is based on splitting the data into a training set and testing set, (Xtest
i , Y testi )1≤i≤n′ . If this cannot

be done due to a small sample size, one can use a cross validated version of it Hastie et al. [2001]. Consider a set

of models, Λ. For example, this set can be composed of all models generated by different λ values in the model

presented in Section 3. It could also be the set of models fit with different subsets of the features or it could

even contain different models such as those obtained using majority vote to input the labels or models such as

in Raykar et al. [2010].

For each λ ∈ Λ, we train the model using the training set. Call zλ the classifier λ obtained from the

training data. Through model selection we wish to find λ ∈ Λ with the smallest risk. Define the risk of λ

as R(λ) = E[I(Z 6= zλ(X))], that is, the probability of a new sample unit being misclassified by the classifier

λ. Let n be the sample size in the testing data set. We use zλi as shorthand for zλ(Xtest
i ). The (in practice

incalculable) empirical risk of model λ is R̂(λ) = 1
n′

∑n′

i=1 I(zλi 6= Zi). For each λ ∈ Λ, we score how bad zλ

performs through Ŝ,

Ŝ(λ) =
1

n′

n′∑
i=1

1

d

d∑
j=1

I(zλi 6= Y testi,j ),

and select the model λ∗ such that

λ∗ = arg min
λ∈Λ

Ŝ(λ)

We prove λ∗ is consistent (in the sense of asymptotically giving the same results as when minimizing the

real risk R(λ)) and provide an upper bound on its rate of convergence. In the following theorems, V C(Λ) is the

VC-dimension of Λ and D a universal constant defined in Vaart and Wellner [2000].
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Assumption 1. For every i 6= j, (Xi, Zi, (Yi,k)dk=1) is independent of (Xj , Zj , (Yj,k)dk=1).

Assumption 2. Let εj = P (Z 6= Yj) be the imprecision of expert j. ε̄ ≡
∑d
j=1 εj

d < 1
2 .

Assumption 2 means that the label provided by an expert picked uniformly is better than the flip of a coin.

We now consider two additional assumptions and then prove that using Ŝ to perform model selection works

under either of them.

Assumption 3. For all i, Cov

(∑d
j=1 (1−2I(Zi 6=Y testi,j ))

d , I(zλi 6= Zi)

)
= 0.

Assumption 3 holds e.g. when the classifier and expert errors are unrelated, a condition that appears on

Lam and Stork [2003].

Assumption 4. For all i and j 6= j∗, Cov(I(Zi 6= Y testi,j ), I(Zi 6= Y testi,j∗ )) = 0.

Assumption 4 holds e.g. when the errors of every two experts are unrelated. We prove the following Theorems:

Theorem 1. Under Assumptions 1 and 3, if Λ is a VC-Class,

P (sup
λ∈Λ
|Ŝ(λ)− (1− 2ε̄)R(λ)− ε̄| > δ) ≤

(
D
√
n′δ√

2V C(Λ)

)2V C(Λ)

e−2n′δ2 .

Theorem 2. Under Assumptions 1 and 4, if Λ is a VC-Class,

P (sup
λ∈Λ
|Ŝ(λ)− (1− 2ε̄)R(λ)− ε̄| > 1

4
√
d

+ δ) ≤

(
D
√
n′δ√

2V C(Λ)

)2V C(Λ)

e−2n′δ2 .

The proofs of these facts are sketched in Appendix B. Thus, Theorem 1 states that, under assumptions 1

and 3, as n increases, with high probability, Ŝ(λ) will not deviate more than roughly 1√
n′

from (1− 2ε̄)R(λ) + ε̄

(uniformly). Moreover, under assumption 2, (1− 2ε̄)R(λ) + ε̄ increases on R(λ). Hence, the minimizer of Ŝ(λ)

will be close to the minimizer of R(λ). Using Theorem 2, the same type of reasoning applies under 4, with the

exception that Ŝ(λ) will not deviate more than roughly 1√
n′

+ 1
4
√
d

from (1 − 2ε̄)R(λ) + ε̄. Hence, consistency

is obtained only if the number of experts also increases. Next section describes how to introduce sparsity on a

particular model from the literature. In Section 4 we discuss how to select the tuning parameter for this model

using (̂S).

3 Model Description and Sparse Fitting

The model we use is described by the following conditions, where we use the same notation as in Table 1:

(i). (Zi)i≤n are conditionally independent given (Xi)i≤n.

(ii). Zi|Xi = xi ∼ Ber
(

exp {β0+
∑k
j=i βjxij}

1+exp {β0+
∑k
j=i βjxij}

)
.

(iii). (Yij)i≤n,j≤k are conditionally independent given (Zi)i≤n and (Xi)i≤n.

(iv). P (Yik 6= Zi|Zi = zi, Xi = xi) = 1
1+exp{αk+

∑k
j=i γjxij}

.
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This model is similar to the one specified in Yan et al. [2010b] with the exception that the γj coefficients do

not depend on the expert. The model’s parameters can be interpreted. The higher an αk is, the more precise the

k-the expert. Also, the γj coefficients explain how each feature influences the difficulty in classifying a sample

unit. β′s are the coefficients that measure the influence of the covariates on the real response. One implicit

assumption is that the influence of each feature is the same for all experts. The number of parameters in this

model is more than twice the number of features. Thus, sparse classifiers might improve the prediction error if

n is small Hastie et al. [2001].

We choose this model because it is simple enough and yet sufficiently reasonable to be applied to many

practical situations. We do not intend to argue that this is the best model in all situations. However, similar

ideas of how to introduce sparsity can be used in other models from the literature.

The joint distribution of (Y,Z) given X corresponds to a mixture of products of independent Bernoulli

variables. In fact, denoting

µi :=
exp {β0 +

∑J
j=i βjxij}

1 + exp {β0 +
∑J
j=i βjxij}

,

the complete likelihood (conditional on the features) is given by

L(y, z; θ, x) =∏
i

P (∀k, Yik = yik, Zi = zi|Xi = xi) =
∏
i

P (∀k, Yik = yik|Zi = zi, Xi = xi)P (Zi = zi|Xi = xi) =

∏
i

(∏
k

P (Yik = yik|Zi = zi, Xi = xi)

)
P (Zi = zi|Xi = xi) =

∏
i

µzii (1− µi)1−zi × bi,

where

bi =
∏
k

( exp{αk +
∑
j γjxij}

1 + exp{αk +
∑
j γjxij}

)yik (
1

1 + exp{αk +
∑
j γjxij}

)1−yik
zi ×

×

( 1

1 + exp{αk +
∑
j γjxij}

)yik (
exp{αk +

∑
j γjxij}

1 + exp{αk +
∑
j γjxij}

)1−yik
1−zi

(that is, bi is the joint probability of the experts responses conditional on the true labels and on the ex-

planatory variables) and θ indicates all of the model’s parameters. Hence, the (complete) log-likelihood is given

by

l(y, z; θ, x) = (1)

∑
i

(∑
k

dik log

(
exp{αk +

∑
j γjxij}

1 + exp{αk +
∑
j γjxij}

)
+ (1− dik) log

(
1

1 + exp{αk +
∑
j γjxij}

))
+

+ zi log(µi) + (1− zi) log(1− µi),
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where

dik := 1 + 2ziyik − zi − yik.

Traditionally, the (local) maximum of the marginal likelihood (defined as L(y; θ, x) =
∑
z L(y, z; θ, x)) is

found by using the EM algorithm Dempster et al. [1977]. We propose to introduce sparsity to this solution.

Sparsity reduces the number of parameters we have to estimate, and hence can improve the prediction error.

For a comprehensive account of the role of sparsity on prediction problems, the reader is referred to [Hastie

et al., 2001]. To find a sparse fit of the model, instead of maximizing the marginal likelihood, we introduce a

L1-penalty in the function. That is, we compute,

arg sup
θ

l(y; θ)− λ
k∑
j=1

|βj | − λ
k∑
j=1

|γj |

 , (2)

for some fixed λ > 0. l(y; θ) is the log-likelihood of the observed noisy labels, y. Section 2 indicates how

one can pick an optimum value of λ > 0. Other penalties (e.g., L2) could also lead to better prediction errors,

however L1 penalty creates sparse solutions (that is, it not only shrinks the coefficients) and, as we will see, is

tractable from a computational point of view. In order to solve Equation 2, we will first rephrase it in terms of

a Bayesian problem that leads to the same results. Imagine that we assign a prior probability for θ as follows:

π(θ) ∝ exp

−λ k∑
j=1

|βj | − λ
k∑
j=1

|γj |

 . (3)

The maximum a posteriori estimate (MAP) for θ, given Y and X, corresponds to the solution of Equation

2. Let

g(θ, z) := l(y, z; θ, x)− λ
k∑
j=1

|βj | − λ
k∑
j=1

|γj |,

where l(y, z; θ, x) is as in Equation 1. To find the MAP estimate we use a MAP-EM algorithm McLachlan

and Krishnan [2008]. That is, we first initialize θ with some given values. Then, we iterate until convergence:

(i). (Expectation step) Find the expected value of the g(θ, Z), conditional on the current estimates of the

parameters θ and on yij (denoted by E[g(θ, Z)]).

(ii). (Maximization step) Maximize E[g(θ, Z)] with respect to θ.

Since g(θ, Z) is linear in Z, the Expectation step follows directly from calculating

E[Zi|Yik = yik ∀i, k] =
µi · exp{

∑
k yik ∗ (αk +

∑
j γjxij)}

µi · exp{
∑
k yik ∗ (αk +

∑
j γjxij)}+ (1− µi) exp{

∑
k(1− yik) ∗ (αk +

∑
j γjxij)}

.
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and plugging these values into g(θ, Z). Denote by g(θ, z) the expected value of g(θ, Z). For the Maximization

step, observe that

arg sup
θ

g(θ, z) = (4a)

arg sup
γ′s,α′s

∑
i

(∑
k∈Ai

dik log

(
exp{αk +

∑
j γjxij}

1 + exp{αk +
∑
j γjxij}

)
+ (1− dik) log

(
1

1 + exp{αk +
∑
j γjxij}

))
(4b)

− λ
k∑
j=1

|γj | (4c)

+ arg sup
β

∑
i

(zi log(µi) + (1− zi) log(1− µi))− λ
k∑
j=1

|βj |. (4d)

Hence, we have two independent maximization problems, 4b and 4d. Each of them correspond to solving

for Weighted L1-Regularized Logistic Regressions, which is implemented in functions such as glmnet Friedman

et al. [2010] in R. More details on this are given in Appendix A.

The MAP-EM often converges to different points according to the initialization values. One reason for this

is that them MAP-EM is guaranteed to converge only to local maximums. A more important reason is due to a

type of non-identifiability Reilink et al. [1994] in the model. The parameters (α, γ, β) and (−α,−γ,−β) induce

the same distribution for the data1. This is common in mixture models and is known as trivial non-identifiability

ná and Renals [2000]. Consequently, the likelihood will have two optimizers. In order to choose between these

points we assume that, averaging over all experts, the probability of correct classification is larger than 50%.

This assumption was discussed in Section 2 and can also be found in Karger et al. [2011]. Using this assumption,

if the MAP-EM converges to θ, we choose between θ and −θ, selecting the classifier which agrees the most with

majority vote.

Next section shows empirical performance of this method and the model selection technique in both simulated

and real datasets. In particular we discuss how to use the model selection technique from Section 2 to choose

the tuning parameter λ.

4 Experiments

We perform 4 experiments that aim at exploring the two methods proposed (sparsity and model selection).

Experiment in 4.1, is completely simulated: we generate the features, real responses and also responses from

experts. This allows the Bayes error to be calculated. Experiments 4.2 and 4.3 use data from the UCI repository

Newman et al. [1998]. These databases only contain features and appropriate labels and, thus, we complement

them with simulated responses from hypothetical experts. In 4.1, 4.2 and 4.3 we generate the votes from the

experts in three ways:

1For example, consider there is only one expert and that Z represents if a patient is sick or not. We get the same probability that the
expert finds the patient to be sick when the expert has good accuracy and the patient has a high probability of being sick (parameters
(α, γ, β)) and when the expert has a bad accuracy and the patient has a small probability of being sick (parameters (−α,−γ,−β)).
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(i). The probabilities of misclassification do not depend on the observed features,

(ii). The probabilities of misclassification follow the model described in Section 3

(iii). The probabilities of misclassification do not follow Section 3.

The exact description of how the votes were generated varies and is described in each example.

Experiment 4.4 presents a real data set in which a large set of experts responses (42) is available. Hence,

majority vote gives us the real response with high probability. For instance, assuming each expert is correct

with probability 70% and the responses from experts are independent, majority vote would get the right label

with probability ≈ 99.5%. In this example, (i), (ii) and (iii) correspond to taking random subsets of size 3 from

the 42 experts and comparing the results we get with the (reliable) majority vote on the 42 experts, as if these

were the true labels.

In each experiment, we fit and compare the EM without sparsity (denoted by EM ), with sparsity (EM-

Sparse) and a L1-penalized logistic regression on the labels obtained by majority vote (Majority). For each

of the classifiers obtained, we compute Ŝ and compare it to R̂ (which in practice would not be available), the

empirical risk. For the sake of comparison, we also fit a L1-penalized logistic regression on the real labels.

We initialize all the parameters generating Gaussian variables with variance 1. For the α’s and γ’s we pick

mean 0. For the β’s, the mean is the corresponding coefficient of the logistic regression fitted through majority

vote. In order to avoid local maximums, this procedure was repeated 30 times for each simulation.

4.1 Simulated Data Set

We take sample size 2500. The logit of the probability of each appropriate label being 1 is β0 +
∑5
j=i βjxij

with β = (−0.1, 1, 0.25, 0.24,−0.3,−0.2). (X1, X2, X3, X4, X5) follows a multivariate normal with mean mean

(1, 2, 3, 4, 5) and covariance matrix,



0.50 0.10 0.25 0.10 0.10

0.10 0.50 0.10 0.05 0.04

0.25 0.10 0.80 0.01 0.10

0.10 0.05 0.01 0.40 0.10

0.10 0.04 0.10 0.10 0.50


We also include 50 covariates unrelated to the labels generated independently from a standard normal

distribution. We generate the experts’ responses in the following ways:

(i) Three experts with misclassification probabilities 0.5, 0.15 and 0.47.

(ii) Four experts, with misclassification probabilities as in Section 3, with α = (0, .75,−.1) and

γ = (.1, .2,−.08, .025,−.065).

(iii) Three experts, with probabilities as in Section 3, with α = (0, .65,−.12) and γ = (.05, .05,−.1,−.1, 0) but

generating the votes through the square of the covariates.
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Figure 1 shows the results of applying the model selection ideas to tune the parameter λ. It also shows the

estimated predictive risk (based on the real labels) for EM, EM Sparse and Majority, with an interval with one

standard deviation around the mean. The Bayes risk is represented by a horizontal line. It is possible to see

that in (i), (ii) and (iii), EM Sparse beats the other models. Moreover, plain EM does not give satisfactory

results. This is because there are many (noninformative) covariates, and hence introducing sparsity becomes

crucial. Figures related to (ii) and (iii) also show that Ŝ is also a useful tool to detect points in which either the

EM did not converge: they are the points that have a very different behavior in these curves.

Finally, the results from Table 2 agree with our analysis: using Ŝ to select among different methods gives the

same results as using R̂, that is, when using Ŝ we also conclude that EM Sparse is the best model in this case.

4.2 Ionosphere Data Set

The data set ion holds 351 radar returns which can be “good” or “bad”. There are 34 continuous features. We

simulate the expert labels, using at most the 4 first features, in the following ways:

(i) Five experts with misclassification probabilities 0.6, 0.2, 0.5, 0.4 and 0.4.

(ii) Four experts, with misclassification probabilities as in Section 3, with α = (0.7, 0, 1.6, 0.7) and

γ = (0.3, 0.25,−0.3, 0.1).

(iii) Four experts, with probabilities as in Section 3, α = (0.7, 0, 1.6, 0.7) and γ = (0.3, 0.25,−0.3, 0.1), but

generating the votes through the square of the covariates.

We use a training set of size 175. Figure 3 shows how we fitted EM-Sparse and compares it to the other

models. Ŝ is approximately monotonically increasing with R̂ and, thus, the minimizer of Ŝ has empirical risk

close to that of the empirical risk minimizer. In scenario (ii), although λ∗ is far from the one which minimizes

the empirical risk, their risk is similar. Abrupt variations in the top graphs also indicate cases in which the

EM probably did not converge. On the bottom, EM-sparse improves on results of both EM and Majority in

all scenarios. Finally, we see from the results of Table 2 that using Ŝ to select between the different models

indicates that EM Sparse is the model with smaller estimated predictive risk R̂ on these cases.

4.3 Wine Quality Data Set

The data set wine contains 1599 red wines and 11 features such as alcohol content and pH. The wine quality

of a sample unit is a number between 0 and 10. We define the appropriate label as 1 if wine quality is greater

than 5 and 0, otherwise. We generate the noisy labels, using at most the 5 first features, in the following way:

(i) Three experts with misclassification probabilities 0.4, 0.3 and 0.5.

(ii) Four experts, with misclassification probabilities as in Section 3, with α = (1,−0.5, 2.1, 2.3) and

γ = (0.25, 0.4, 0.3, 0).

(iii) Three experts, with probabilities as in Section 3, α = (1,−0.5, 1.2) and γ = (0.1, 0.2,−0.2,−0.3,−0.3),

but generating the votes through the square of the covariates.

9



We use a training set of size 1000. Figure 2 shows how we fitted EM-Sparse and compares it to the other

models. Regarding the bottom of the figure, in (i) sparsity reduces the prediction error: both EM-Sparse and

Majority are as good as the model fitted using the real labels and much better than EM. In (ii), Majority is

worse than the other approaches, which have the same performance. In (iii), all models perform close to the

one obtained using the real labels. On the top of (iii), λ∗ is far from the one which minimizes R̂, but has

approximately the same risk. Notice that Table 2 leads us to similar conclusions, hence using model selection

ideas introduced here also helps us to decide on what is the best approach, EM or majority vote.

4.4 Astronomy Data Set

The sample units in this data set are galaxies. The label is 1 if the shape of the galaxy is regular Izbicki et al.

[2012] and 0, otherwise. Each galaxy has been labeled by 42 astronomers from CANDELS team Kartaltepe

et al. [2011]. For each galaxy, there are 7 features which are summary statistics of the their images. These

statistics are further described in Izbicki et al. [2012] and Lotz et al. [2004]. The training set is composed of

90 galaxies and the testing set of 85. We perform three experiments, (i), (ii) and (iii), by picking as the noisy

labels random subsets of size 3 out of the 42 astronomers. True labels are defined to be the majority vote over

the 42 astronomers.

Figure 4 illustrates the procedure of fitting EM-Sparse and compares it to EM and Majority. On the

top, minimizing Ŝ yields the same result as minimizing R̂. On the bottom, EM-Sparse and Majority have

approximately the same performance, close to the performance of the model that was fitted when using the real

labels. On the other hand, using EM without introducing sparsity leads to slightly worse prediction errors in

(iii). We emphasize that the large confidence intervals are due to a small sample size. Hence, it is difficult to get

conclusive results of which model is the best in this case. However, the first row of Figure 4 shows in practice

that assumptions made in Section 2 for model selection are reasonable for this problem.

Table 2: Values of statistic Ŝ for the experiments in 4. Bold numbers stand for the minimizer of Ŝ, * indicates
the minimizer of R̂.

(i) 0.434* 0.485 0.446
Simulated (ii) 0.459* 0.510 0.483

(iii) 0.462* 0.463 0.477

(i) 0.432* 0.477 0.435
Ionosphere (ii) 0.422* 0.512 0.544

(iii) 0.323* 0.370 0.398

(i) 0.432 0.505 0.431*
Wine (ii) 0.386* 0.389 0.399

(iii) 0.433 0.450* 0.451

(i) 0.290 0.321 0.286*
Astronomy (ii) 0.229* 0.288 0.241

(iii) 0.323* 0.452 0.335
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Ŝ(λ)
R̂(λ)

●

●

●

●

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

0.
46

R
is

k

EM Sparse EM Majority Real Labels

●

●

●

●

0.
35

0.
40

0.
45

R
is

k

EM Sparse EM Majority Real Labels

●

●

●

●

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

R
is

k

EM Sparse EM Majority Real Labels

Figure 1: Top: Process of choosing λ using Ŝ(λ) for Simulated Data Set for models (i), (ii) and (iii) respectively.
Vertical lines indicate where the minimum is attained for Ŝ(λ) (solid) and for R̂(λ) (dashed). Bottom: Estimated
prediction errors for each dataset according to each model. Horizontal lines indicate error of the Bayes classifier.
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Ŝ(λ)
R̂(λ)

●

●

●

●

0.
10

0.
15

0.
20

0.
25

0.
30

R
is

k

EM Sparse EM Majority Real Labels

●

● ●

●

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

R
is

k

EM Sparse EM Majority Real Labels

●

●

●

●

0.
10

0.
15

0.
20

0.
25

0.
30

R
is

k

EM Sparse EM Majority Real Labels

Figure 2: Top: Process of choosing λ using Ŝ(λ) for Ionosphere Data Set for models (i), (ii) and (iii) respectively.
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prediction errors for each dataset according to each model.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.
28

0.
30

0.
32

0.
34

λ

S
co

re
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Figure 4: Top: Process of choosing λ using Ŝ(λ) for Astronomy Data Set. Vertical lines indicate where the
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5 Conclusions and Future Work

Dealing with noisy labels is a common problem. We show a way one can build classifiers that potentially have

better performance than more traditional methods used when true labels are unavailable. The idea behind it

is that sparsity is a good way to avoid overparametrizations and therefore creates classification schemes that

may have better prediction errors. We also show how model selection can be performed, in particular how one

can choose tuning parameters that induce sparsity. The method is based on the introduction of a surrogate

function for the estimated risk. Both theoretical and empirical results indicate that the proposed method for

model selection works under a fairly large class of problems.

Even though in many situations latent variable models provide big improvements compared to majority

vote (see Yan et al. [2010b]and Raykar et al. [2010] for examples of such cases), we saw that in some cases the

latter can perform better than the former. Two important reasons of why this happens are 1. The Expectation

Maximization Algorithm is sensible to initialization and may converge to local minimums and 2. If the number

of experts is large, majority vote can be accurate provided the voters are reasonably good. On the other hand, in

such situations latent variable models have too many parameters to be estimated, and hence estimation is more

difficult. This is a problem specially if the number of samples is small. However, sparsity can often diminish

this problem, leading to estimators that may be better than the ones derived from majority vote procedures.

A way to deal with this in practice is to use the proposed model selection technique to compare models built

on majority vote labels and on models derived from latent variable models. Performing this procedure in our

examples almost always led us to pick the model among EM Sparse, EM and Majority which had the smallest

R̂, which is the standard procedure when true labels are available.

Even though we focus on the approach of building models without first estimating the true labels of the

data, the ideas of model selection presented are quite general. In fact, even when using the two step procedures

(that first find the “true” labels either using majority vote or using fancier methods such as in Karger et al.

[2011], and then build classifiers based on the recovered labels), the technique proposed for choosing between

models is still valid. An advantage of the latent variables approach over two step procedures is that the first

naturally allows partial information from experts to be incorporated when classifying new instances, that is, one

can easily calculate p(z|x, y) for new data, even if not all experts observe the data point.

On this paper, we used the same tuning parameter for both γγγ′s and βββ′s. As the roles of parameters are of

different nature, in practice better performance can be achieved by using two different tuning parameters. This

improvement comes at the expense of computational time.

Even though we only introduced sparsity for a specific model, the same arguments can be performed in

different situations. For example, one could easily create models in which P (Y = 1|Z = 1) 6= P (Y = 0|Z = 0) by

introducing new coefficients. It is also possible to use links different than the logit, and also include dependencies

that are not linear in the covariates that were observed. On can also introduce sparsity on approaches from

the literature that were already shown to be useful (e.g., Raykar et al. [2010], Kajino et al. [2012]). Our model

selection technique helps choosing between these models.

13



There are also open questions regarding model selection through Ŝ. Theorem 1 does not hold if any of

the assumptions is removed. Necessary conditions for the consistency of minimizing Ŝ in model selection are

unknown. It would also be useful to estimate R(λ∗). Theorem 1 shows that S(λ∗) is close to (1− 2ε̄)R(λ∗) + ε̄.

Hence, it might be possible to estimate R(λ∗) using S(λ∗) and an estimator for ε̄. Therefore it would be useful

to have consistent estimators of ε̄. Finally, we use Ŝ to find a consistent estimator under the 0-1 loss. It remains

unknown how to generalize this methodology for other loss functions. For example, in some classification of

binary variables, the cost of error depends on the labels.
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Appendix

A Maximization Step of EM

Here we give more details of how to find the maximum in Equation 4. As we noted, we have two independent

maximization problems, 4b and 4d.

The first problem, 4b, can be rewritten as

arg sup
γ′s,α′s

2dn∑
i=1

w(i) log(µ′i),

where

wi =

 i-th element of the vectorization of the matrix (djl)1≤j≤n,1≤l≤d for 1 ≤ i ≤ dn

1− wi−dn for dn+ 1 ≤ i ≤ 2dn

and

µ′i =

 i-th element of the vectorization of the matrix (µjl)1≤j≤n,1≤l≤d for 1 ≤ i ≤ dn

1− µ′i−dn for dn+ 1 ≤ i ≤ 2dn

Here,

µik =
exp{αk +

∑
j γjxij}

1 + exp{αk +
∑
j γjxij}

This is just a Weighted L1-Regularized Logistic Regression, and can be solved using functions such as glmnet

[Friedman et al., 2010] in R. Alternatively, one can directly use algorithms such as Newton-Raphson. Note that

if the number of experts is larger than the number of features, using a sparse representation of the matrix can

speed up the calculations. The observations related to this maximization problem are

dn times︷ ︸︸ ︷
1, . . . , 1,

dn times︷ ︸︸ ︷
0, . . . , 0 .

The second problem, 4d, can be rewritten as

arg sup
β

2n∑
i=1

wi log(µ′i)− λ
k∑
j=1

|βj |,

where

wi =

 zi for 1 ≤ i ≤ n

1− zi−n for d+ 1 ≤ i ≤ 2n
µ′i =

 µi for 1 ≤ i ≤ n

1− µi−n for n+ 1 ≤ i ≤ 2n
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This is again a Weighted L1-Regularized Logistic Regression. The observations related to this maximization

problem are

n times︷ ︸︸ ︷
1, . . . , 1,

n times︷ ︸︸ ︷
0, . . . , 0 .

B Proofs

Our argument of why Ŝ is a good measure of performance can be decomposed in three steps. First, we show

that the mean of Ŝ(λ) is close to (1−2ε̄)R(λ)+ ε̄. Next, we prove that, if Λ is a VC-Class, then Ŝ(λ) approaches

its mean uniformly on Λ. Finally, since 1 − 2ε̄ > 0 (Assumption 2), the minimizer of (1 − 2ε̄)R(λ) + ε̄ is the

same as the minimizer of R(λ). From the three steps, we conclude that minimizing Ŝ(λ) approaches minimizing

R(λ).

We use the following result found to relate Ŝ(λ) to the empirical risk:

Lemma 1. For all λ ∈ Λ it holds that:

Ŝ(λ) =
1

n′

n′∑
i=1

(∑d
j=1

(
1− 2I(Zi 6= Y testi,j )

)
d

)
I(zλi 6= Zi) +

1

n′

n′∑
i=1

1

d

d∑
j=1

I(Zi 6= Y testi,j )

Proof. For any given i and j,

I(zλi 6= Y testi,j ) = I(zλi 6= Y testi,j , Zi = Y testi,j ) + I(zλi 6= Y testi,j , Zi 6= Y testi,j ) =

= I(zλi 6= Zi, Zi = Y testi,j ) + I(zλi = Zi, Zi 6= Y testi,j ) =

I(zλi 6= Zi)(1− I(Zi 6= Y testi,j )) + (1− I(zλi 6= Zi))I(Zi 6= Y testi,j ) =

= I(zλi 6= Zi)(1− 2I(Zi 6= Y testi,j )) + I(Zi 6= Y testi,j )

Ŝ(λ) is obtained averaging I(zλi 6= Y testi,j ) over i and j. The right hand side of the lemma is obtained averaging

I(zλi 6= Zi)(1− 2I(Zi 6= Y testi,j )) + I(Zi 6= Y testi,j ) over i and j. Hence, the proof is complete.

Observe that 1
n′

∑n′

i=1
1
d

∑d
j=1 I(Zi 6= Y testi,j ) is constant on λ. Hence,

arg min
λ∈Λ

Ŝ(λ) = arg min
λ∈Λ

1

n′

n′∑
i=1

∑d
j=1

(
1− 2I(Zi 6= Y testi,j )

)
d

I(zλi 6= Zi)

The model which minimizes Ŝ(λ) minimizes a weighted average of I(zλi 6= Zi). This is similar to performing

model selection through empirical risk minimization, in which the model which minimizes the arithmetic mean

of I(zλi 6= Zi) is chosen.

Lemma 2. Under assumption 4, for all λ ∈ Λ it holds that

∣∣∣E[Ŝ(λ)]− (1− 2ε̄)R(λ) + ε̄
∣∣∣ ≤ σzλ√

d
,
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where σ2
zλ = V AR

[
I(zλi 6= Zi)

]
.

Proof. Let W = I(zλi 6= Zi) and Vj = 1− 2I(Zi 6= Y testi,j ). From Cauchy Schwartz inequality it follows that:

∣∣∣∣COV (W,
∑
j Vj

d

)∣∣∣∣ ≤√V AR [W ]

√
V AR

[∑
j Vj

d

]
= σzλ

1

d

√∑
j

V AR[Vj ] ≤
σzλ√
d

The conclusion follows from noticing that
∣∣∣COV (W, ∑j Vj

d

)∣∣∣ is the left term of the inequality presented.

Hence, if we can conlude that Ŝ(λ) is close to its mean, since its mean is close to (1−2ε̄)R(λ)+ ε̄, we establish

that minimizing Ŝ(λ) is close to minimizing R(λ). The following result proves that Ŝ(λ) is close to its mean.

Lemma 3. If Λ is a VC-Class then,

P (sup
λ∈Λ
|Ŝ(λ)− E[Ŝ(λ)]| > δ) ≤

(
D
√
n′δ√

2V C(Λ)

)2V C(Λ)

e−2n′δ2

Proof. Using Lemma 1,

Ŝ(λ) =
1

n′

n′∑
i=1

(∑d
j=1

(
1− 2I(Zi 6= Y testi,j )

)
d

)
I(zλi 6= Zi) +

1

n′

n′∑
i=1

1

d

d∑
j=1

I(Zi 6= Y testi,j )

Define Vi = 1
d

∑d
j=1 I(Zi 6= Y testi,j ) and Wλ

i = I(zλi 6= Zi). Thus,

Ŝ(λ) =
1

n′

 n′∑
i=1

Wλ
i (1− 2Vi) + Vi


We wish to prove that the central limit theorem holds uniformly on S[Λ] = {Wλ(1− 2V ) + V : λ ∈ Λ}. Let

N(F , ε, L2(Q)) be the L2(Q) covering number of a class of functions, F . Call R[Λ] = {Wλ : λ ∈ Λ}. Note that,

since |1 − 2V | ≤ 1, for every distribution Q, N(S[Λ], ε, L2(Q)) ≤ N(R[Λ], ε, L2(Q)). Let V C(Λ) be the VC-

dimension of Λ. From Vaart and Wellner [2000], supQN(R[Λ], ε, L2(Q)) ≤ K · V C(Λ)(4e)V C(Λ)
(

1
ε

)2(V C(Λ)−1)
.

Hence, there exists a constant D, such that,

P (sup
λ∈Λ
|Ŝ(λ)− E[Ŝ(λ)]| > δ) ≤

(
D
√
n′δ√

2V C(Λ)

)2V C(λ)

e−2n′δ2

Finally, putting together lemmas 2 and 3, we get Theorems 1 and 2.
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