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Abstract: This paper brings explicit considerations of distributed computing architectures and data structures into the
rigorous design of Sequential Monte Carlo (SMC) methods. A theoretical result established recently by the authors shows
that adapting interaction between particles to suitably control the Effective Sample Size (ESS) is sufficient to guarantee
stability of SMC algorithms. Our objective is to leverage this result and devise algorithms which are thus guaranteed to
work well in a distributed setting. We make three main contributions to achieve this. Firstly, we study mathematical
properties of the ESS as a function of matrices and graphs that parameterize the interaction amongst particles. Secondly,
we show how these graphs can be induced by tree data structures which model the logical network topology of an abstract
distributed computing environment. Thirdly, we present efficient distributed algorithms that achieve the desired ESS
control, perform resampling and operate on forests associated with these trees.
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1 Introduction

SMC algorithms are interacting particle methods for ap-
proximating sequences of distributions arising in statis-
tics, and are commonly applied to Hidden Markov Models
(HMM’s) for filtering and marginal likelihood estimation
(see, e.g., [1, 2]). We focus here on this HMM setting for
simplicity, although our methodology is relevant to other
SMC schemes, such as [3], [4] and [5]. It is becoming in-
creasingly important that computationally intensive algo-
rithms are suited to implementation on many-core com-
puting architectures (see, e.g., [6]), and it is well estab-
lished that standard SMC algorithms naturally have this
property (see, e.g., [7]). In particular, the time in which
such algorithms run on many-core devices is typically sub-
linear in the number of particles, N , until N reaches a
device- and application-specific critical size, resulting in
significant performance improvements for moderate num-
bers of particles. However, the number of particles re-
quired for acceptable accuracy in various settings can be
substantially larger than this critical size. In order to
provide accurate estimates in these situations in a timely
fashion, attention is naturally drawn to distributed im-
plementations of SMC algorithms, in which particles are
distributed over multiple devices which can communicate
over a network (see, amongst others, [8, 9, 10]). In this en-
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vironment the interactions between particles, which pro-
vide fundamental stability properties of the algorithm, are
costly due to relatively slow network speeds in comparison
to fast on-device memory accesses.

Motivated by the desire to develop Monte Carlo algo-
rithms whose communication structure is more naturally
suited to distributed architectures, Whiteley et al. [11]
proposed and studied a generalization of standard SMC
algorithms, called αSMC, in which interaction between
particles may be modulated in an on-line fashion. The
“α” in αSMC refers to certain matrices which are chosen
adaptively as the algorithm runs, dictating or constraining
this interaction. A special case of αSMC is the popular
adaptive resampling strategy originally proposed by Liu
and Chen [12]. One of the main results of [11] is a stabil-
ity theorem which shows that, subject to regularity condi-
tions on the HMM, adapting α so as to enforce an appro-
priate lower bound on the ESS is sufficient to ensure time-
uniform convergence of αSMC filtering estimates, and en-
dow it with other attractive theoretical properties so that
the computational cost of the algorithm grows manage-
ably with the length of the data record. This provides a
criterion for stabilization of these algorithms when com-
munication constraints influence interaction.

Monitoring and controlling the ESS using α matrices
is therefore very important. However, if implemented
naively, this monitoring and control itself involves col-
lective operations on the entire particle system, and so
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remains as an obstacle to parallelization. In this paper,
our overall aim is to address this obstacle and formulate
approaches to ESS control which are more appropriate for
distributed implementation. In order to do so, we consider
a logical tree topology which represents an abstract dis-
tributed computing environment. This network structure
accommodates divide-and-conquer routines and recursive
programming, making it suited to distributed computa-
tion, and its hierarchical nature lends itself to partition-
ing and resampling operations. We consider methods of
ESS control involving computations which are local with
respect to the topology of these trees.

After outlining αSMC in Section 2, our first original con-
tribution in Section 3 is a study of the ESS itself, as a
functional of the α matrix governing interaction. This
study leads us to consider a subset of potential α matrices
with a specific associated graphical structure. We then
define a partial order on this set of matrices, which makes
precise a sense in which they are more or less suited to dis-
tributed architectures, and prove that the ESS is (partial)
order-preserving. This important relationship connects
computational considerations with statistical performance
and informs our algorithm design. Section 3 culminates
in a lower bound on the ESS phrased in terms of par-
ticle sub-populations, and applied recursively this bound
leads to an abstract recursive algorithm for enforcing a
lower bound on the population-wide ESS. Crucially, each
recursive call of this algorithm can require the consider-
ation of only a small number of aggregated weights, and
this is what makes it suited to distributed architectures.
Section 4 is devoted to practical implementation of this
abstract recursive algorithm in a distributed setting using
trees, in such a way that all quantities required are avail-
able via local computations whose cost is independent of
N . An interpretation of the resulting resampling scheme
is that it corresponds to a tree sampling procedure involv-
ing a number of disjoint trees, and so we term the overall
procedure forest resampling. All proofs are given in the
appendix.

2 αSMC

In this section we overview relevant aspects of the general
methodology proposed in [11]. An HMM with measur-
able state space (X,X ) and observation space (Y,Y) is a
process {(Xn, Yn) ;n ≥ 0} where {Xn;n ≥ 0} is a Markov
chain on X, the observations {Yn;n ≥ 0}, valued in Y, are
conditionally independent given {Xn;n ≥ 0}, and the con-
ditional distribution of each Yn depends on {Xn;n ≥ 0}
only through Xn. Let π0 and f be respectively a proba-

bility distribution and a Markov kernel on (X,X ), and let
g be a Markov kernel acting from (X,X ) to (Y,Y), with
g(x, ·) admitting a density, denoted similarly by g(x, y),
with respect to some dominating σ-finite measure. The
HMM specified by π0, f and g, is

X0 ∼ π0,

Xn | {Xn−1 = xn−1} ∼ f(xn−1, ·), n ≥ 1,

Yn | {Xn = xn} ∼ g(xn, ·), n ≥ 0. (1)

Throughout this paper we consider a fixed observation
sequence {yn;n ≥ 0} and write

gn(x) := g(x, yn), n ≥ 0. (2)

Throughout this paper we shall work under the mild as-
sumption that for each n ≥ 0, supx∈X gn(x) < +∞ and
gn(x) > 0 for all x ∈ X.

For n ≥ 1, let πn be the conditional distribution of Xn

given Y0:n−1 = y0:n−1, called the prediction filter ; and let
Zn be the marginal likelihood of the first n observations,
evaluated at the point y0:n−1. Due to the conditional inde-
pendence structure of the HMM the following recursions
hold:

πn (A) =

´
X
πn−1 (dx) gn−1(x)f(x,A)´

X
πn−1 (dx) gn−1(x)

, A ∈ X , n ≥ 1,

and

Zn = Zn−1

ˆ
X

πn−1 (dx) gn−1 (x) , n ≥ 1,

with the convention Z0 := 1. Our main computational ob-
jectives are to approximate {πn;n ≥ 0} and {Zn;n ≥ 0}.

We write [M ] := {1, . . . ,M} for a generic M ∈ N. We
denote by N an arbitrary but fixed positive integer rep-
resenting the number of particles in the algorithm we are
about to describe. To simplify presentation, whenever a
summation sign appears without the summation set made
explicit, the summation set is taken to be [N ], for example
we write Σi to mean ΣNi=1.

Let A[N ] be the set of doubly stochastic matrices of size
N × N (this is a special case of the setup of [11], corre-
sponding to their assumption (B++)). The αSMC algo-
rithm simulates a sequence {ζn;n ≥ 0} with each ζn :=(
ζ1
n, . . . , ζ

N
n

)
valued in XN . When n ≥ 1, this involves

choosing a matrix αn−1 from A[N ] according to some
deterministic function of {ζ0, . . . , ζn−1}, and this matrix
specifies the type of interaction that occurs at time n.
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Algorithm 1 αSMC
For n = 0,

For i = 1, . . . , N ,
Set W i

0 = 1.
Sample ζi0 ∼ π0.

For n ≥ 1,
(?) Select αn−1 from A[N ] as a function of {ζ0, . . . , ζn−1}

For i = 1, . . . , N ,
(†) Set W i

n =
∑
j α

ij
n−1W

j
n−1gn−1(ζjn−1).

(‡) Sample

ζin|ζ0, . . . , ζn−1

∼
∑
j α

ij
n−1W

j
n−1gn−1(ζjn−1)f(ζjn−1, ·)∑

j α
ij
n−1W

j
n−1gn−1(ζjn−1)

With δx denoting the Dirac measure centred on x, the
objects

πNn :=

∑
iW

i
n δζin∑

iW
i
n

, ZNn :=
1

N

∑
i

W i
n, n ≥ 0, (3)

are regarded as approximations of πn and Zn, respectively.

In general, some algorithm design is involved at line (?)
of Algorithm 1; one has to decide on a rule which dic-
tates how αn−1 is chosen from A[N ], and in practice
one will often select αn−1 from A[N ] as some function
of
(
W 1
n−1, . . . ,W

N
n−1

)
and

(
gn−1(ζ1

n−1), . . . , , gn−1(ζNn−1)
)
.

Two members of A[N ] used implicitly in methods predat-
ing αSMC are: 11/N , the N × N matrix which has 1/N
as every entry; and Id, the identity matrix. If αn = 11/N

for every n, αSMC reduces to the bootstrap particle fil-
ter, whereas if αn = Id for every n, αSMC reduces to
sequential importance sampling. If at each time step one
chooses adaptively between 11/N and Id, αSMC is equiv-
alent to the adaptive resampling method of [12]. We re-
fer the reader to [11, Section 2.2] for the details of these
equivalences.

The ESS associated with the weights
{
W i
n : i ∈ [N ]

}
is

N eff
n :=

(∑
iW

i
n

)2∑
i (W i

n)
2 . (4)

Looking also at line (†) of Algorithm 1, we see that N eff
n

clearly depends on αn−1 but not on ζn. Therefore αn−1

can be selected adaptively to ensure that N eff
n exceeds

some threshold before ζn is simulated. In this paper we
investigate methods to carry out this kind of adaptive se-
lection, with αn−1 chosen from a large family of matrices
which includes 11/N and Id.

One of the main contributions of [11] is the stability theo-
rem stated below, which gives a rigorous theoretical justi-
fication for enforcing a lower bound on N eff

n . This theorem
relies on the following regularity condition on the HMM,
which is often used to establish stability results for non-
adaptive SMC algorithms (see e.g., [13, 14, 15], and see
also [16] for stability under weaker conditions).

Assumption. (C) There exists (δ, ε) ∈ [1,∞)2 such that

sup
n≥0

sup
x,y

gn(x)

gn(y)
≤ δ, f(x, ·) ≤ εf(y, ·), (x, y) ∈ X2.

For µ a measure on (X,X ) and ϕ a real-valued, X -
measurable function on X we define µ(ϕ) :=

´
X
ϕ(x)µ(dx),

allowing us to compare πNn with πn via the differences
πNn (ϕ)− πn(ϕ), for suitable ϕ. For example, when A ∈ X
and ϕ = 1A then πn(ϕ) is the conditional probability that
Xn ∈ A given Y0:n−1 = y0:n−1 and πNn (ϕ) its αSMC esti-
mate.

Theorem. [11, Theorem 2] Assume (C). Then there
exist finite constants c1 and for any r ≥ 1, c2(r), such
that for any N ≥ 1 and τ ∈ (0, 1], if

inf
n≥0

Neff
n ≥ Nτ, (5)

then

sup
n≥1

E

[(
ZNn
Zn

)2
]1/n

≤ 1 +
c1
Nτ

,

and for any ϕ : X → R which is X -measurable and
bounded,

sup
n≥0

E
[∣∣πNn (ϕ)− πn(ϕ)

∣∣r]1/r ≤ ‖ϕ‖∞ c2(r)√
Nτ

.

In this paper our objective is to design instances of αSMC
which guarantee (5) whilst achieving a desirable balance
between the communication costs associated with steps
(?) and (‡) of Algorithm 1. Whiteley et al. [11, Section
5.3] suggested some procedures for adaptively selecting
αn−1 from A[N ] at line (?). However, a practical issue
concerning these adaptive procedures is that guaranteeing
(5) involves evaluating the ESS for some candidate αn−1’s,
and this task may itself be demanding in terms of commu-
nication cost. Indeed, if one wishes to search through a
large set of candidates for αn−1, e.g. when attempting to
guarantee (5) with as sparse an αn−1 as possible, the cost
of step (?) may dominate the overall cost of Algorithm 1.

On the other hand, the adaptive resampling particle filter
[12] involves only the two candidates Id and 11/N ; evaluat-
ing the ESS for the candidate Id can be done cheaply, and

3



if αn−1 = 11/N , then we always have N eff
n = N , so step (?)

is inexpensive. However, if αn−1 = Id does not achieve
N eff
n ≥ Nτ there is no choice but to set αn−1 = 11/N , and

one then incurs the communication cost associated with
the resulting population-wide interaction at step (‡).

To help us understand how we can achieve (5) using sparse
αn−1, but without excessive communication, we proceed
with an investigation of the ESS.

3 Properties of the ESS

3.1 Dependence of the ESS on α

Slightly extending our notation, for each non-empty V ⊆
[N ] let AV be the set of all substochastic N ×N matrices
a with the following properties:

1. a leaves the uniform distribution on V invariant,

2. aij = 0 whenever (i, j) ∈ [N ]2 \ V 2.

Note that when V = [N ], we have AV ≡ A[N ] as defined
in Section 2. By convention, when V = ∅, we define AV
to contain only the zero matrix. It is readily observed
that if a ∈ AV and a′ ∈ AV ′ with V ∩ V ′ = ∅ then
(a+ a′) ∈ AV ∪V ′ .

Now let A :=
⋃
V⊆[N ] AV and define the function N eff :

A× RN+ → R+,

N eff(a, c) :=

0 a ∈ A∅,
(
∑
i

∑
j a

ijcj)
2∑

i(
∑
j a

ijcj)
2 otherwise,

(6)

where c = (c1, . . . , cN ) ∈ RN+ (for simplicity we shall
always assume that each ci is strictly positive). This
generalizes the ESS in (4): let c be given by ci :=
W i
n−1gn−1(ζin−1), i ∈ [N ]. Then, if αn−1 = a ∈ A[N ],

we have N eff(αn−1, c) ≡ N eff
n . If instead αn−1 = a + a′,

where a ∈ AV for some strict, non-empty subset V ⊂ [N ]
and a′ ∈ A[N ]\V , then

N eff(a, c) =

(∑
i∈V

∑
j∈V a

ijcj
)2

∑
i∈V

(∑
j∈V a

ijcj
)2 =

(∑
i∈V W

i
n

)2∑
i∈V (W i

n)
2

represents the ESS associated with the sub-population of
|V | weights

{
W i
n : i ∈ V

}
, cf. (4).

The following proposition provides useful properties of
N eff .

Proposition 1. Let V, V ′ ⊆ [N ] such that V ∩ V ′ = ∅.
Let a ∈ AV , a′, ã′ ∈ AV ′ and c ∈ RN+ be given such that
N eff (a, c), N eff (a′, c) and N eff (ã′, c) are all positive. All
of the following hold:

1. Extremes: 1 ≤ N eff(a, c) ≤ |V | and N eff(a, c) = |V |
whenever aij = |V |−1I (i, j ∈ V ).

2. Subadditivity:

N eff (a+ a′, c) ≤ N eff (a, c) +N eff (a′, c) ,

with equality only when
∑
j∈V c

j

Neff (a,c)
=

∑
j∈V ′ c

j

Neff (a′,c)
.

3. Monotonicity:

N eff(a′, c) ≤ N eff(ã′, c)

=⇒ N eff(a+ a′, c) ≤ N eff(a+ ã′, c),

with equality on the right hand side of the implication
only when N eff(a′, c) = N eff(ã′, c).

4. Lower bound:

N eff (a+ a′, c) ≥ min
{
N eff (a, c) , N eff (a′, c)

}
.

The first part of this proposition is well known and iden-
tifies extremal values of N eff , of which the maximal value
can always be realized by a particular choice of a. The
other parts concern properties of N eff when consider-
ing elements of AV and AV ′ for some fixed and disjoint
V, V ′ ⊆ [N ]. The second establishes the subadditivity of
N eff and indicates that the effective sample size associ-
ated with a + a′ is less than the sum of those associated
with a and a′ separately. The third shows that neverthe-
less a monotonicity property holds when comparing two
substochastic matrices in AV , and the fourth provides a
simply-proved but tight lower bound on the effective sam-
ple size associated with a+ a′.

3.2 Disjoint unions of complete graphs
and a partial order

Whiteley et al. [11, Section 5.3] considered a family of can-
didate α matrices which have the interpretation of being
transition matrices of random walks on regular undirected
graphs. In this section, we expand upon this duality be-
tween α matrices and undirected graphs, and introduce
some mathematical machinery which allows us describe
how these objects are related to each other, and N eff . In
particular, we consider graphs that are disjoint unions of
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complete graphs (Definition 1 below): these graphs are
not necessarily regular but are highly structured nonethe-
less and are of interest here because we can define a partial
order over them, and then establish a partial order preser-
vation result for N eff (see Propositions 2 and 3) that will
ultimately guide the efficient exploration of progressively
denser stochastic matrices until one is found, a, for which
we can guarantee N eff(a, c) ≥ Nτ .

To proceed, let us introduce some standard graph-
theoretic notions. A graph G = (V,E) is a set of ver-
tices V ⊆ [N ] and a set of edges E ⊆ V 2, where an edge
(i, j) ∈ E represents a connection between vertices i and j.
We adopt the convention that (i, i) ∈ E whenever i ∈ V .
If G is undirected then (i, j) ∈ E ⇐⇒ (j, i) ∈ E. If
G is a complete graph then E = V 2. Since a complete
graph is defined solely by its vertex set, and because com-
plete graphs are important building blocks in the sequel,
we define κ(V ) := (V, V 2) to be the complete graph with
vertices V .

Let ∪ denote the disjoint union of two graphs: if G =
(V,E), G′ = (V ′, E′) and V ∩ V ′ = ∅ then G ∪ G′ =
(V ∪ V ′, E ∪ E′).

Definition 1. (Disjoint union of complete graphs) A
graph G is a disjoint union of complete graphs if for some
K ∈ [N ] there exists a set of pairwise disjoint subsets of
[N ], denoted{Vk : k ∈ [K]} such that G =

⋃
k∈[K] κ(Vk).

In analogy with AV (and A) we define GV to be the
set of graphs which have vertices V and which are dis-
joint unions of complete graphs (and G :=

⋃
V⊆[N ] GV ).

Clearly, if G ∈ GV , G′ ∈ GV ′ and V ∩ V ′ = ∅, then
G ∪ G′ ∈ GV ∪V ′ . We also define the matrix-valued func-
tion φ

φ : G = (V,E) ∈ G 7−→ a = (aij) ∈ A

where

aij :=

{ I{(i,j)∈E}∑
k∈[N] I{(i,k)∈E} (i, j) ∈ V 2,

0 (i, j) ∈ [N ]2 \ V 2.
(7)

One trivial property of elements G = (V,E) ∈ G is that
(i, j) ∈ E and (j, k) ∈ E implies (i, k) ∈ E. It is therefore
clear that if G ∈ GV then φ(G) is a symmetric matrix
and leaves the uniform distribution on V invariant, hence,
φ(G) ∈ AV . Figure 1 shows an example of a graph G ∈ G
and the corresponding substochastic matrix φ(G). Letting
AG := {φ(G) : G ∈ G} be the image of φ, it is straight-
forward that φ : G → AG is a bijection and so we denote

by φ−1 the inverse of φ. In addition, it can be seen that
if G ∈ GV and G′ ∈ GV ′ with V ∩ V ′ = ∅, then

φ (G ∪G′) = φ(G) + φ(G′). (8)

We can now introduce a particular relation amongst
graphs, and amongst the corresponding substochastic ma-
trices.

Definition 2. (Binary relation �) Let G = (V,E) and
G̃ = (Ṽ , Ẽ) be members of G. Then we write G � G̃ if
and only if V = Ṽ and E ⊆ Ẽ. Since φ is a bijection
between G and AG we will also write, for a, ã ∈ AG, a � ã
if and only φ−1(a) � φ−1(ã).

Proposition 2. (Partial order) � is a partial order over
G and AG.

Definition 2 says that for some G, G̃ ∈ GV we have G � G̃
if G̃ = G, or if G̃ can be obtained from G by adding
edges in such a way that G̃ ∈ GV . Intuitively, one can
imagine adding edges by choosing two of the complete
graphs comprisingG and adding edges between all vertices
in these two graphs. Figure 2 shows an example of two
graphs G,G′ ∈ G such that G � G′. We note that � is
not a total order, because there exist members of GV , G =
(V,E), G′ = (V,E′) such that E * E′ and E′ * E. Our
interest in � is the following order preservation property.

Proposition 3. (Order preservation) For any c ∈ RN+ ,
a � ã =⇒ N eff(a, c) ≤ N eff(ã, c).

3.3 Local lower bounds on N eff

In this subsection we present Algorithm 2, a recursive
method for efficient selection of a ∈ A[N ]; using a cor-
responding recursive lower bound on N eff (Proposition 4)
and the ordering result Proposition 3, we shall validate
Algorithm 2 with Proposition 5, which shows that it is
guaranteed to achieve N eff(a, c) ≥ Nτ .
For purposes of exposition, we first provide an expression
forN eff(ã, c) when ã is the substochastic matrix associated
with a disjoint union of complete graphs. Following (8),
let ã =

∑
k∈[K] φ(κ(Vk)) ∈ AG ∩ AV for some K ∈ [N ]

and pairwise disjoint {Vk : k ∈ [K]} with V =
⋃
k∈[K] Vk.

Then, from (6),

N eff (ã, c) =

(∑
k∈[K]

∑
j∈Vk c

j
)2

∑
k∈[K]

∑
i∈Vk

(∑
j∈Vk φ(κ(Vk))ijcj

)2

=

(∑
k∈[K]

∑
j∈Vk c

j
)2

∑
k∈[K] |Vk|

(
|Vk|−1

∑
j∈Vk c

j
)2 . (9)
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Figure 1: A graph G ∈ G, with vertex set {1, 3, 4, 5, 6, 7}, and the corresponding matrix φ(G). For visual clarity, self-loops
are not shown.
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6 3

4

5

7 �
1

6 3

4

5

7

Figure 2: Two graphs G,G′ ∈ G with G � G′.

We note that (9) depends on c only through the values of
the sums

{∑
j∈Vk c

j : k ∈ [K]
}
; we can interpret this as

saying thatN eff (ã, c) is equal to the ESS associated with a
collection of

∑
k∈[K] |Vk| weights, in which for each k ∈ [K]

there are |Vk| weights all taking the value |Vk|−1
∑
j∈Vk c

j .
This lends interpretation to the lower bound in the follow-
ing proposition.

Proposition 4. Let {Vk : k ∈ [K]} consist of non-empty
and pairwise disjoint subsets of [N ] and {ak : k ∈ [K]} be
given such that each ak ∈ AVk . Let a =

∑
k∈[K] ak and

ã =
∑
k∈[K] φ(κ(Vk)). Then for any c ∈ RN+ ,

N eff (ã, c) ≥ N eff (a, c) ≥ min
k

{
N eff(ak, c)

|Vk|

}
N eff (ã, c) .

(10)

Importantly, Proposition 4 enables us to calculate a lower
bound on N eff

(∑
k∈[K] ak, c

)
without explicit computa-

tion of (6). This observation is at the heart of our new
algorithms.

A disjoint union of complete graphs with vertices V ⊆ [N ]
can be succinctly represented by a partition P = {Vk : k ∈
[K]} of V , where K ∈ [|V |]. Overloading our N eff(·, c)
notation so as to conveniently express certain quantities
in Algorithm 2, we define for such a partition P ,

N eff(P, c) :=

(∑
S∈P

∑
j∈S c

j
)2

∑
S∈P |S|

(
|S|−1

∑
j∈S c

j
)2 . (11)

Since P is a partition of V , we have

N eff(P, c)∑
S∈P

∑
j∈S 1

= |V |−1N eff(P, c) =: ρ(P, c), (12)

and this quantity also appears in Algorithm 2.

If P and P̃ are the partitions representing G and G̃ respec-
tively, where G, G̃ ∈ GV for some V ⊆ [N ], then G � G̃ if
and only if P is a refinement of P̃ . This allows us to make
the following definition, which will be used extensively in
the sequel.

Definition 3. (Coarsening) Let P , P̃ be partitions of
some subset of [N ]. Then P̃ is a coarsening of P , written
P̃ � P , if and only if P is a refinement of P̃ .

It follows from Proposition 3 that P̃ � P =⇒
N eff(P̃ , c) ≥ N eff(P, c).

Proposition 5. Algorithm 2 called with (V, τ) satisfying
∅ 6= V ⊆ [N ] and τ ∈ [0, 1] returns a ∈ AV such that
N eff (a, c) ≥ τ |V |.

There are a number of ways that step 1 of Algorithm 2
can be implemented. One possibility, motivated by Propo-
sition 3, is to search through a sequence of successively
coarser, candidate partitions until the condition ρ(P, c) ≥
τ is met. In Section 4 we provide a more detailed and prac-
tical version of this procedure in Algorithm 5, in which the
partitions considered arise from collections of tree data
structures.

6



Algorithm 2 Choose an a ∈ AV such that
N eff

(∑
k∈[K] ak, c

)
≥ τ |V |

choose.a(V, τ)

1. Choose a partition P of V such that ρ(P, c) ≥ τ .

2. If P = {V } then return φ(κ(V )).

3. Otherwise, return∑
k∈[K]

choose.a (Vk, τ/ρ(P, c)) .

4 Forest resampling

In this section we introduce tree data structures to rep-
resent the logical topology of a distributed computer ar-
chitecture. Loosely, these trees provide a model for how
the operations involved in αSMC can be arranged over a
network of communicating devices, each of which has the
capacity to store data and to perform basic simulation and
arithmetic tasks. In Sections 4.1–4.2 we explain the con-
nection between the distributed architecture and tree data
structures, and in Section 4.3 we explain the connection
between trees and forests, and the partitions, graphs and
matrices addressed in Section 3. Sections 4 and 4.5 de-
scribe the role of forests when implementing respectively
lines (‡), (†) and (?) of Algorithm 1, and all these ingre-
dients are brought together in Algorithm 6, which is an
implementation of Algorithm 1 using trees and forests.

4.1 Distributed computer architecture

For the purposes of this paper, we are interested primar-
ily in a setting where there are a number of possibly het-
erogeneous computing devices that can communicate via
sending data over a network. Qualitatively, the structural
assumption will be that communication within a device is
far quicker than communication between devices. If there
are M devices, we might think each device i ∈ [M ] is
capable of handling a particle system with Ni particles.
This implies that interactions involving the Ni particles
on device i are considerably less costly than interactions
involving particles on different devices.

4.2 Trees from architecture

The architecture described in Section 4.1 suggests the use
of a particular type of data structure, a tree, to represent

possible interactions between computing devices. A tree is
a recursive data structure comprising a set of nodes with
associated values.

Definition 4. (Node) A node ν is an object that has a
value, V(ν), and a (possibly empty) set of child nodes,
C(ν).

Definition 5. (Finite tree) A (finite) tree T is a finite set
of nodes which is either empty, or satisfies the following
properties:

1. C(ν) ⊆ T for every ν ∈ T (no node has children
outside T ).

2. C(ν)∩C(ν′) = ∅ for any distinct ν, ν′ ∈ T (no node is
the child of two different nodes in T ).

3. There exists a unique element of T called the root
and denoted R(T ), such that R(T ) /∈

⋃
ν∈T C(ν) (a

unique root node is not a child of any of the other
nodes in T ).

One can show (e.g., by contradiction) that if T is a tree
then every node in T other than R(T ) is a descendant of
R(T ), i.e., T \ {R(T )} = D(R(T )) where D(ν) denotes
the descendants of ν:

D(ν) :=

{
∅ C(ν) = ∅,
C(ν) ∪

(⋃
χ∈C(ν)D(χ)

)
C(ν) 6= ∅.

Definition 6. (Subtree) A subtree, of a tree T , consists
of a node in T , taken together with all of the descendants
of that node. In particular, for some ν ∈ T we call S(ν) :=
ν ∪ D(ν) the subtree of T with root ν.

The definitions of a tree and its subtrees are equivalent
to those found in [17, p. 308], but with an emphasis on
their formulation using children. Here, trees serve as data
structures in that the value of each node is the data stored
there, and data transfer can occur between a node and its
children.

It is conventional to call a node of a tree T whose set of
children is empty a leaf, and the set of such nodes comprise
the leaves of T . Our intention is to have the individual
particles, indexed by j ∈ [N ], represented by leaves of a
tree and the parents of leaves representing the M devices
in the distributed architecture. If each device i is assigned
Ni particles then the children of the node associated with
device i will be the Ni leaves associated with the particle
indices

{
1 +

∑
j∈[i−1]Nj , . . . ,

∑
j∈[i]Nj

}
. Beyond these

two levels, the structure is purposefully abstract so as to
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Figure 3: Roles of nodes.

accommodate various choices which could, e.g., be related
to more complex architectural considerations such as the
geographical location of the devices. It is, however, as-
sumed that each node is physically contained on a single
device although more than one node may be physically
contained on the same device. The general idea is that
a node will both facilitate and modulate interaction be-
tween its children. Figure 3 shows a possible tree with 4
devices.

Let T0 be a tree with root node ν0 and exactly N leaves
{νi : i ∈ [N ]}. We now define the set of leaf indices
associated with a node ν of T0 to be the set of indices
associated with the leaves of S(ν), i.e., we let `(νi) := {i}
for each i ∈ [N ], and for each ν ∈ T0 such that C(ν) 6= ∅,
`(ν) :=

⋃
χ∈C(ν) `(χ). Without ambiguity we also define,

for T a subtree of T0, `(T ) := `(R(T )). For some c ∈ RN+ ,
we define the value of each node ν to be

V(ν) := (V1(ν),V2(ν)) :=

|`(ν)| ,
∑
j∈`(ν)

cj

 ,

so that the value of leaf node νi, e.g., is V(νi) = (1, ci).
Once the values of the leaves have been set, Algorithm 3
can be invoked on ν0 to calculate recursively the values of
the rest of the nodes in the tree, and is motivated by the
fact that, element-wise,

V(ν) =
∑

χ∈C(ν)

V(χ), (13)

when C(ν) 6= ∅. This is an instance of a recursive reduction
algorithm suitable for implementation in both parallel and
distributed settings (see, e.g., [18, 19]) which can be called
on the root of the subtree in question. Typically, one will
call it on ν0 to populate the entire tree T0. The time
complexity associated with each node ν’s computation is
in O(|C(ν)|).

Algorithm 3 Populate a subtree
populate(ν)

1. If C(ν) = ∅, return V(ν).

2. Otherwise, set V(ν) ←
∑
χ∈C(ν) populate(χ), where

the summation is component-wise.

3. Return V(ν).

4.3 Graphs induced by trees and forests

We now take the first step towards connecting our tree
data structures with the type of graphs discussed in Sec-
tion 3. We define the graph induced by a tree T to be

G(T ) := κ(`(T )), (14)

the complete graph with vertices `(T ). This allows us
to define the substochastic matrix induced by a tree as
φ(T ) := φ(G(T )). It is immediately obvious that the only
member of A[N ] that can be induced by a single tree is
φ(T0) = 11/N . The notion of a forest allows a richer subset
of A[N ] to be specified using trees.

Definition 7. (Forest) A forest F is a set of pairwise
disjoint trees.

It follows from this definition that if T, T ′ ∈ F are dis-
tinct, then `(T ) ∩ `(T ′) = ∅. If T is a tree then {T} and
{S(ν) : ν ∈ C(R(T ))} are both examples of forests. In
what follows, the forests defined will always be comprised
of subtrees of T0. Figure 4 supplements the example from
Figure 1 with a possible associated tree data structure and
forest of subtrees.

We define the set of leaf indices associated with a forest to
be `(F ) :=

⋃
T∈F `(T ). We also let FV := {F : `(F ) = V },

8
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Figure 4: A forest made up of subtrees of a tree, and the complete graphs induced by each tree in the forest.

where V ⊆ [N ], and F :=
⋃
V⊆[N ] FV . We can relate any

F ∈ F to a member of G by defining

G(F ) :=
⋃
T∈F

G(T ) =
⋃
T∈F

κ(`(T )).

From (8), the substochastic matrix induced by F ∈ F is
then

φ(F ) := φ(G(F )) =
∑
T∈F

φ(κ(`(T ))).

One can therefore think of a forest F as being a data struc-
ture counterpart to a disjoint union of complete graphs
represented by the partition P = {`(T ) : T ∈ F}.

4.4 Forest resampling

We now introduce practical methodology that, given a
forest F ∈ F[N ], enables implementation of step (‡) of
Algorithm 1 when αn−1 = φ(F ). Let c be given by ci :=
W i
n−1gn−1(ζin−1), i ∈ [N ], so that our goal is to sample,

for each i ∈ [N ],

ζin | ζ0, . . . , ζn−1 ∼
∑
j α

ij
n−1c

jf(ζjn−1, ·)∑
k α

ik
n−1c

k
,

which can be implemented in two substeps. First one
simulates an ancestor index Ain−1 with

P
(
Ain−1 = j | ζ0, . . . , ζn−1

)
=

αijn−1c
j∑

k α
ik
n−1c

k
,

and then, secondly, simulates ζin ∼ f(ζ
Ain−1

n−1 , ·). Imple-
mentation of the second step is a model-specific matter,
so we focus on the first step. We define tF to be the tree-
valued map where for any i ∈ `(F ), tF (i) is the unique
tree T ∈ F such that i ∈ `(T ). It then follows that

Algorithm 4 Obtain a sample according to pS(ν)

sample(ν)

1. If C(ν) = ∅, return the only element in `(ν).

2. Otherwise, let χ1, . . . , χ|C(ν)| be the children of ν.

3. Sample i from a categorical distribution over
[|C(ν)|] with probabilities proportional to
{V2(χi) : i ∈ [|C(ν)|]}.

4. Return sample(χi).

αijn−1 = I {j ∈ `(tF (i))} / |`(tF (i))| and so we can write

P
(
Ain−1 = j | ζ0, . . . , ζn−1

)
=

I {j ∈ `(tF (i))} cj∑
k∈`(tF (i)) c

k
, (15)

which implies that Ain−1 is categorically distributed
over `(tF (i)) with probabilities proportional to{
ck : k ∈ `(tF (i))

}
.

Following (15), we propose Algorithm 4, which given the
root node R(T ) of an arbitrary subtree T of T0, samples
from a distribution over `(T ) with probability mass func-
tion

pT (j) :=
I {j ∈ `(T )} cj∑

k∈`(T ) c
k

, j ∈ `(T ).

Each recursive call of Algorithm 4 with argument ν has a
time complexity in O (|C(ν)|).

Proposition 6. The probability that Algorithm 4 returns
j ∈ `(ν) is pS(ν)(j).

Sampling according to (15) for each i ∈ [N ] can be accom-
plished by calling Algorithm 4 N times with potentially
different inputs. For example, if F = {T0} then one would
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call Algorithm 4 N times on ν0 = R(T0), correspond-
ing to standard multinomial resampling with αn−1 =
φ(F ) = 11/N . In contrast, if F = {S(ν1), . . . ,S(νN )}
then one would call Algorithm 4 once on each member
of {ν1, . . . , νN} with the effect that Ain−1 = i for each
i ∈ [N ], and this corresponds to αn−1 = φ(F ) = Id.
An intermediate between these two extremes would be if
F =

{
S(ν1), . . . ,S(νM )

}
, where νi represents device node

i in T0, cf. Section 4.1. Then, for each i ∈ [M ], one would
call Algorithm 4

∣∣`(νi)∣∣ times, once to set each ancestor

index in
{
Ajn−1 : j ∈ `(νi)

}
. These special cases also ex-

emplify a more general phenomenon: sampling according
to (15) using Algorithm 4 does not require the explicit
computation of αn−1. In Section 4.5 we address the issue
of how a forest can be chosen adaptively.

Finally, we note that step (†) of Algorithm 1 can also
be accomplished straightforwardly when αn−1 = φ(F ).
Indeed, then

W i
n =

∑
j

φ(F )ijcj =
∑

k∈`(tF (i))

ck/ |`(tF (i))|

= V2(R(tF (i)))/V1(R(tF (i))).

4.5 Forest selection

Our attention now turns to implementing the (?) step of
Algorithm 1. This can be performed by choosing a for-
est F ∈ F[N ] such that N eff(φ(F ), c) ≥ τN . Algorithm 5
is a recursive implementation of such a procedure, and is
essentially a practical analogue of Algorithm 2. The (??)
step in this algorithm is specified only abstractly, with
concrete choices the subject of Section 4.6. Like steps
(†) and (‡) when implemented according to the proce-
dures of Section 4, step (??) also involves only local com-
putations in the following sense. Recalling Definition 3,
choosing P ′ to be a partition of C(ν) implies that P is a
coarsening of {`(χ) : χ ∈ C(ν)}, and so the computation of
ρ(P, c) involves only the quantities |`(χ)| and

∑
j∈`(χ) c

j

for each χ ∈ C(ν), which are readily available through
{V(χ) : χ ∈ C(ν)}.

In Algorithm 5, new nodes can be created. It is assumed
that when this happens, the values of the new nodes are
set appropriately according to (13).

Gathering together Algorithms 3, 4 and 5 we now arrive at
Algorithm 6, which is an implementation of Algorithm 1
using trees and forests.

The recursive nature of the algorithms presented allow
them to be fairly straightforwardly translated into archi-

Algorithm 5 Specify a forest F with `(F ) = `(ν) and
N eff(φ(F ), c) ≥ τ |`(V )|
choose.forest(ν, τ)

1. If C(ν) = ∅ then return {S(ν)}.

2. (??) Choose a partition P ′ of C(ν) such that ρ(P, c) ≥
τ , where P =

{⋃
χ∈S `(χ) : S ∈ P ′

}
.

3. If P ′ = {C(ν)} then return {ν}. Otherwise, set R ←
∅.

4. For each element S ∈ P ′

(a) If |S| > 1 then create a node ν′ with children
{χ : χ ∈ S} and set R← R ∪ {S(ν′)}.

(b) If S = {χ}, set R ← R ∪
choose.forest (χ, τ/ρ(P, c)).

5. Return R.

tecture specific implementations. In particular, it is imag-
ined that the computations of Algorithms 3, 4 and 5 all
take place on the device on which their node argument
physically resides, and that the recursive calls then repre-
sent messages passed over the network. In addition, Al-
gorithms 3 and 5 are divide-and-conquer algorithms nat-
urally suited to parallel implementation.

The exact implementation of the algorithms may vary
slightly, depending on the architectures involved, without
changing in principle. For example, one implementation of
Step 2e of Algorithm 6 could involve each device sending
its list of associated indices “up” the tree until it reaches
its root in the forest. From there, the indices may filter
“down” the tree in a slight variant of Algorithm 4 until
they reach their leaves. If index i reaches leaf νj , say, the
device housing νj can send ζjn−1 to the device housing νi,
which can then sample ζin ∼ f(ζjn−1, ·).

4.6 Partitioning strategies

The (??) step in Algorithm 5 remains to be speci-
fied. A simple choice would be to choose the partition
{{χ} : χ ∈ C(ν)} if it satisfies the condition in (??) and
{C(ν)} otherwise. However, this could lead to more inter-
action than is necessary.

Before continuing, we note that selecting a partition of
child nodes of ν is equivalent to selecting a partition P
of `(ν) subject to the constraint that the chosen partition
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Algorithm 6 αSMC with forest resampling

1. For i ∈ [N ], sample ζi0 ∼ π0 and set W i
0 ← 1.

2. For n ≥ 1:

(a) Create an unpopulated tree T0 with root ν0 and
leaves {νi : i ∈ [N ]}.

(b) For each i ∈ [N ], set

V(νi)←
(
1,W i

n−1gn−1(ζin−1)
)
.

(c) Call populate(ν0).

(d) Set F ← choose.forest(ν0, τ).

(e) For each i ∈ [N ]:

i. Set W i
n ← V2(R(tF (i)))/V1(R(tF (i))),

ii. Set j ← sample(R(tF (i))),
iii. Sample ζin ∼ f(ζjn−1, ·).

is a coarsening of P0 := {`(χ) : χ ∈ C(ν)}. Therefore, we
simplify the presentation by considering partitions of V ⊆
[N ] instead of partitions of nodes and our goal is to choose
a partition P � P0 of V such that ρ(P, c) ≥ τ .

If a specific order over coarsenings of P0 is defined, one
could seek to find the minimal coarsening P ∗ w.r.t. this
order that satisfies ρ(P ∗, c) ≥ τ . For example, one might
wish to find a P � P0 subject to ρ(P, c) ≥ τ with the
maximal number of elements, or where the size of the
largest element is minimized, both of which could be trans-
lated roughly as P being as refined as possible. This can
always be achieved by enumerating candidate partitions
P1, P2, . . . in the given order and calculating ρ(Pi, c) for
each until some ρ(Pi, c) ≥ τ , but this can quickly become
computationally prohibitive as |C(ν)| grows. Indeed, the
number of candidate partitions is the |C(ν)|’th Bell num-
ber. This type of integer programming optimization prob-
lem is related to the Partition problem (see, e.g., [20]) and
is likely to be NP-hard in general. We therefore focus on
efficient search strategies for finding a P � P0 subject to
ρ(P, c) ≥ τ for which we hope that P is not much coarser
than necessary.

Both of the strategies we introduce below consider a se-
quence of successively coarser partitions P1, P2, . . . which
satisfy the constraint that P0 � P1 � P2 � · · · ,
where P0 is as above, and returns Pj such that j =
min {i : ρ(Pi, c) ≥ τ}. This general procedure has the
property that ρ(Pi, c) ≥ ρ(Pi−1, c) and |Pi| ≤ |Pi−1|−1 for
i ∈ [|C(ν)|]. The latter, together with the fact that (from

part 1 of Proposition 1) |P | = 1 =⇒ ρ(P, c) = 1 ≥ τ ,
implies that the total number of partitions considered is
at most |C(ν)|. The specific strategies below are therefore
defined by the precise way in which the sequence P1, P2 . . .
is chosen.

Pairing strategy for structured trees

This strategy applies when each node in T0 has a number
of children that is a power of 2 and the number of leaves
associated with each child is equal.

Definition 8. (Pairing of a partition) Let P be a partition
of V ⊆ [N ]. A pairing P ′ of P is a partition of V where
each element of P ′ is the union of two elements of P .

Whiteley et al. [11, Section 5.4] suggested a “greedy” pair-
ing strategy, which we formalize in the following proposi-
tion.

Proposition 7. Let P be a partition of V ⊆ [N ] with
P = {Vi : i ∈ [2M ]} for some M ∈ [N ], M ≤ N/2. Let
Vi be ordered such that 0 ≤

∑
j∈V1

cj ≤ · · · ≤
∑
j∈V2M

cj

and assume that |Vi| = |Vj | for any i, j ∈ [2M ]. Then a
pairing P ′ of P that maximizes ρ(P ′, c) is given by P ′ =
{{V1, V2M} , {V2, V2M−1} , . . . , {VM , VM+1}}.

In the pairing strategy, then, we define the sequence of
partitions P1, P2, . . . by each Pi being the optimal pairing
of Pi−1 provided by Proposition 7.

Matching strategy

This strategy does not rely on any particular structure
of T0 and therefore is applicable more generally than the
pairing strategy.

Proposition 8. For some K ∈ [N ] let P = {Vi : i ∈ [K]}
be a partition of V and Pk,l := {Vi : i ∈ [K]} \ {Vk, Vl} ∪
{Vk ∪ Vl} a coarsening of P associated with the indices
k, l ∈ [K]. Then the choice of k, l ∈ [K] that maximizes
ρ(Pk,l, c) is

arg max
(k,l)∈[K]2

|Vk| |Vl|
|Vk|+ |Vl|

(∑
j∈Vk c

j

|Vk|
−
∑
j∈Vl c

j

|Vl|

)2

.

When [K] is large, maximizing this expression by evalu-
ating it for each (k, l) ∈ [K]2 has a time complexity in
O(K2), which we wish to avoid. Therefore, we resort to
finding the (k, l) ∈ [K]2 for which only the squared expres-
sion is maximized. This happens when k and l correspond
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to the sets of indices whose associated terms in the squared
expression are most different.

The matching strategy therefore defines the suc-
cessively coarser partitions P1, P2, . . . by letting
Smin
i−1 = arg minS∈Pi−1

|S|−1∑
j∈S c

j , Smax
i−1 =

arg maxS∈Pi−1 |S|
−1∑

j∈S c
j , and setting

Pi = Pi−1 \
{
Smin
i−1 , S

max
i−1

}
∪
{
Smin
i−1 ∪ Smax

i−1

}
.

An interpretation of this is that the elements of the par-
tition with whose associated values are most different are
successively matched.

5 Discussion

5.1 Numerical illustrations

We consider a simplified HMM whose empirical analysis
illustrates the cost of the forest resampling schemes. In
particular, we assume that the HMM equations (1) satisfy
the additional conditional independence criterion that for
any x ∈ X, f(x, ·) = π0(·), and that gn in (2) is time-
homogeneous with gn(x) = g(x). We further assume that
when X ∼ π0, g(X) is a lnN

(
−σ

2

2 , σ
2
)
random variable,

with mean 1 and variance exp
(
σ2
)
− 1. This model is not

intended to be a realistic, challenging application of SMC.
Instead, its greatly simplified structure allows for trans-
parent analysis and easy replication of results; the time-
homogeneous nature of the model makes it well-suited for
assessing the computational cost of resampling for large
n, and its conditional independence structure allows us
to make some calculations which explicitly show how the
ESS is related to the moments of ZNn and πNn (ϕ).

Writing E and V for respectively expectation and variance
under the SMC algorithm, and for some measure µ and
function ϕ, varµ(ϕ) :=

´
X

[ϕ(x)− µ(ϕ)]
2
µ(dx), one can

verify from (†), (4) and (3) that E
(
ZNn | ζ0, . . . ζn−1

)
=

π0(g)ZNn−1 = ZNn−1 with

V
(
ZNn
ZNn−1

| ζ0, . . . ζn−2

)
=

varπ0
(g)

N eff
n−1

=
exp

(
σ2
)
− 1

N eff
n−1

,

and E
(
πNn (ϕ) | ζ0, . . . ζn−1

)
= πn(ϕ) = π0(ϕ) with

V
(
πNn (ϕ) | ζ0, . . . ζn−1

)
=

varπ0
(ϕ)

N eff
n−1

.

We define the cost of an αSMC resampling step at time
n to be the average degree of the vertices in the forest

corresponding to the αn−1 transition matrix chosen in (?)
of Algorithm 1, which we denote dNn . For example, when
αn−1 = Id the cost is 1 and when αn−1 = 11/N the cost
is N . We ran Algorithm 1 for n = 200 iterations with
various values of τ and σ and N = 212 = 4096 particles.
One can think of the value of N reported here as be-
ing a large multiple of 4096 since, conceptually, one could
imagine that the leaves in this experiment represent de-
vices with a large number of particles. The tree T0 used
at each iteration always consisted of three levels with each
node except the leaves having 24 = 16 children, but the
leaf/device indices were permuted at each iteration.

Figure 5 shows the behaviour of d̄ = n−1
∑n
p=1 d

N
p and

N eff = n−1
∑n
p=1N

eff
p as τ and σ vary using the adaptive

resampling particle filter (ARPF) of [12], and the two pro-
posed strategies in Section 4.6, all instances of αSMC. We
can see that the ARPF is particularly expensive in terms
of average degree, and has a higher average ESS than the
rest. The pairing and matching strategies perform much
better with the latter being less expensive and having an
ESS much closer to the threshold. In all cases, increases in
τ and σ increase the cost of the algorithm, as one would
expect. However, the shape of the curve in Figure 6a
suggests that increasing τ beyond around 0.5 rapidly be-
comes expensive. Indeed, the value τ = 1 corresponds to
an average degree of 4096 in this example for any of the
methods, which is not shown, and is almost 10 times larger
than the corresponding cost for τ = 224/225 ≈ 0.996, the
rightmost point shown. Figure 6b shows further that fix-
ing Nτ = 2048 but increasing N has the effect of reducing
the average degree to close to 2 and suggests that optimiz-
ing, in terms of computational cost, the choice of N and
τ with a given target ESS Nτ could involve choosing a
large N and a small τ , depending on the relative cost of
increasing N compared to the cost in interactions.

5.2 Connection to existing sampling
schemes

Resampling methods other than multinomial can be im-
plemented using trees as well. In order to make this con-
crete, we assume that the tree is ordered, i.e., the chil-
dren of each node written in sequence as χ1, χ2, . . .. This
imposes only the constraint that the labelling of chil-
dren is consistent, and allows the specification of Algo-
rithm 7, which implements Algorithm 4 with a single uni-
form random variable using the recycling method of [21,
Section III.3.7]. Proposition 9 and the Remark that fol-
lows then imply that we can view this algorithm as a tree-
based implementation of the inverse transform method for
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Figure 5: Graphs of (a) log2 d̄ and (b) N eff/N against τ for the various forest selection schemes and choices of σ.
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Figure 6: Dependence of d̄ on τ
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Algorithm 7 Select a value in `(ν) given a u ∈ [0, 1]

select(ν, u)

1. If C(ν) = ∅, return the only element in `(ν).

2. Otherwise, let χ1, . . . , χ|C(ν)| be the children of ν in
order.

3. Set

i← min

k :
∑
j=[k]

V2(χj) ≥ u
∑

j∈[|C(ν)|]

V2(χj)

 .

4. Return

select

(
χi,

u
∑
j∈[|C(ν)|] V2(χj)−

∑
j=[i−1] V2(χj)

V2(χi)

)
.

sampling from a categorical distribution.

Proposition 9. Assume that the tree is ordered such
that for each node its children (χi) have j ∈ `(χi), k ∈
`(χi+1) =⇒ j < k. Calling Algorithm 7 with (ν, u)

returns min
{
k :
∑
j∈`(ν)∩[k] c

j ≥ u
∑
j∈`(ν) c

j
}
.

Remark. The ordering specified above is w.r.t. the indices
of particles and imposes no real constraint on how the tree
is actually constructed, as long as a specific order is used
in step 2 of Algorithm 7. If an alternative ordering is
assumed in Proposition 9 the resulting returned value will
still be deterministic and of the form given with a slight
modification to account for this alternative ordering.

Multinomial resampling corresponds to sampling N
i.i.d. uniform random variables u1, . . . , uN and calling
select(ν, ui) for each i ∈ [N ], thereby providing N i.i.d.
draws from a categorical distribution. One can view other
resampling methods as making dependent draws from a
categorical distribution by the inverse transform method
by using random variables u1, . . . , uN that are not i.i.d.
but for which the distribution of uK , where K is chosen
uniformly at random from [N ], is uniform on [0, 1] [see,
e.g., 22]. Therefore, to implement alternative resampling
schemes, one again calls select(ν, ui) for each i ∈ [N ],
but with u1, . . . , uN are distributed in a dependent fash-
ion as in [22]. The dependent ui can be interpreted as
“trickling” down a tree whose leaves represent ancestor
indices in a manner reminiscent of the approach in [23],
which most closely resembles the systematic resampling
scheme in [24].

5.3 Concluding Remarks

For ease of presentation, we have chosen to work with a
particularly simple version of αSMC, in which new sam-
ples are proposed using the HMM Markov kernel f . As
noted in [11], the algorithm is easily generalized to accom-
modate other proposal kernels.

This paper, and the methodology of [11] more generally,
naturally complements the contribution of [9]. In particu-
lar, the methods in the latter allow particles to be “recon-
structed” on a device on the basis of only a small amount
of communicated information, and could be used in tan-
dem with the algorithms here in appropriate applications.

Both the approaches in Section 4.6 resemble in some ways
greedy strategies for solving the classical Partition prob-
lem. It would be of interest to consider analogues of more
sophisticated solutions to this problem such as those in
[25] and [26]. More generally, it would be of interest to
have quantitative theoretical results enabling the compar-
ison of particular tree structures and partition selection
schemes.

In practice, it may often be the case that devices are homo-
geneous, with the network connections between any two
devices being of similar latency and bandwidth. In such
situations, one will often create the structure of the tree
at levels above the device and particle layers in a highly
structured way. The use of a randomly generated tree may
be beneficial, as suggested by the Random adaptation rule
of [11, Section 5.4], which had however no hierarchy. A
random permutation of the device nodes, in an otherwise
constant tree was used in Section 5.1 for this reason.

Finally, this paper is concerned primarily with α matrices
that are induced by disjoint unions of complete graphs,
and hence have a particular structure. It would be of in-
terest to explore similar results and methodology for more
general α matrices.
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A Proofs

Proof of Proposition 1. It is straightforward to show that
if a ∈ AV then

∑
i a
ij =

∑
i∈V a

ij = I(j ∈ V ). Therefore,

N eff(a, c) =

(∑
i

∑
j a

ijcj
)2

∑
i

(∑
j a

ijcj
)2 =

(∑
i∈V

∑
j∈V a

ijcj
)2

∑
i∈V

(∑
j∈V a

ijcj
)2

=

(∑
j∈V c

j
)2

∑
i∈V

(∑
j∈V a

ijcj
)2 .

We define x1 :=
∑
j∈V c

j , x2 :=
∑
j∈V ′ c

j , y1 :=∑
i∈V

(∑
j∈V a

ijcj
)2

, y2 :=
∑
i∈V ′

(∑
j∈V ′ (a

′)
ij
cj
)2

and ỹ2 :=
∑
i∈V ′

(∑
j∈V ′ (ã

′)
ij
cj
)2

. This allows us

to write N eff (a, c) = x2
1/y1, N eff (a′, c) = x2

2/y2

and N eff (ã′, c) = x2
2/ỹ2, and since V ∩ V ′ = ∅,

N eff (a+ a′, c) = (x1+x2)2/(y1+y2) andN eff (a+ ã′, c) =
(x1 + x2)2/(y1 + ỹ2).

1. The lower bound holds because∑
i

∑
j

aijcj

2

=
∑
i,k

∑
j

aijcj

∑
j

akjcj


≥

∑
i

∑
j

aijcj

2

,

so N eff(a, c) ≥ 1. The upper bound holds because, using
Jensen’s inequality,∑

i

∑
j

aijcj

2

= |V |2
∑
i∈V
|V |−1

∑
j∈V

aijcj

2

≤ |V |2
∑
i∈V
|V |−1

∑
j∈V

aijcj

2

= |V |
∑
i∈V

∑
j∈V

aijcj

2

,

so N eff(a, c) ≤ |V |. The upper bound is attained when
aij = |V |−1I (i, j ∈ V ) since then

∑
i∈V

∑
j∈V

aijcj

2

=
∑
i∈V

∑
j∈V
|V |−1cj

2

= |V |−1

∑
j∈V

cj

2

.

2. The result follows from

N eff (a, c) +N eff (a′, c)−N eff (a+ a′, c)

=
x2

1

y1
+
x2

2

y2
− (x1 + x2)2

y1 + y2

= x2
1

{
y2

y1(y1 + y2)

}
+ x2

2

{
y1

y2(y1 + y2)

}
− 2x1x2

y1 + y2

=
y1y2

y1 + y2

(
x1

y1
− x2

y2

)2

≥ 0,

with equality only when x1

y1
= x2

y2
, corresponding to∑

j∈V c
j

Neff (a,c)
=

∑
j∈V ′ c

j

Neff (a′,c)
.

3. Since N eff(a′, c) ≤ N eff(ã′, c) =⇒ y2 ≥ ỹ2,

N eff(a+ ã′, c)−N eff(a+ a′, c)

=
(x1 + x2)

2

y1 + ỹ2
− (x1 + x2)

2

y1 + y2
≥ 0,

with equality only when y2 = ỹ2, corresponding to
N eff(a′, c) ≤ N eff(ã′, c).

4. We have

N eff (a1 + a2, c)

=
(x1 + x2)2

y1 + y2

=
x2

1

y1
· y1

y1 + y2
+

2x1x2

y1 + y2
+
x2

2

y2
· y2

y1 + y2

≥ min
i

{
x2
i

yi

}
= min

{
N eff (a, c) , N eff (a′, c)

}
.

Proof of Proposition 2. We prove the result for G since
the result for AG then follows. Let V ⊆ [N ] and consider
G1 = (V,E1), G2 = (V,E2) and G3 = (V,E3). It suffices
to check that � is reflexive (G1 � G1), antisymmetric
(G1 � G2 and G2 � G1 implies G1 = G2) and transitive
(G1 � G2 and G2 � G3 implies G1 � G3). Since E1 ⊆ E1,
it follows that G1 � G1. When G1 � G2 and G2 � G1,
this implies E1 ⊆ E2 and E2 ⊆ E1 and it follows that
E1 = E2 and so G1 = G2. Finally, G1 � G2 and G2 � G3

implies that E1 ⊆ E2 and E2 ⊆ E3 and so E1 ⊆ E3 and
therefore G1 � G3.

Proof of Proposition 3. Since a � ã we have that a, ã ∈
AG ∩ AV for some V ⊆ [N ]. Therefore, for some
K, K̃ ∈ [N ] we can write a =

∑
k∈[K] φ(κ(Vk)) and

ã =
∑
k̃∈[K̃] φ(κ(Ṽk̃)) where each Vk and Ṽk̃ are subsets of
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V . Since a � ã, for each k ∈ [K] there exists k̃ ∈ [K̃] such
that Vk ⊆ Ṽk̃. We now define a sequence, with a0 = a,
and for i ∈ [K̃]

ai := ai−1 + φ(κ(Ṽi))−
∑

k∈[K],Vk∩Ṽi 6=∅

φ(κ(Vk)),

and note that aK̃ = ã. Now for each i ∈ [K̃], ai ∈ AG∩AV
and letting V̌i :=

⋃i
j=1 Ṽj and

bi :=
∑

k∈[K],Vk∩V̌i=∅

φ(κ(Vk)) +

i−1∑
j=1

φ(κ(Ṽj)),

we can write ai−1 = bi+
∑
k∈[K],Vk∩Ṽi 6=∅ φ(κ(Vk)) and ai =

bi+φ(κ(Ṽi)). From the first part of Proposition 1 we have
that N eff

(∑
k∈[K],Vk∩Ṽi 6=∅ φ(κ(Vk)), c

)
≤
∣∣∣Ṽi∣∣∣ = φ(κ(Ṽi))

and so by the monotonicity property in Proposition 1 we
have N eff(ai−1, c) ≤ N eff(ai, c) for each i ∈ [K̃]. It follows
that N eff(a, c) ≤ N eff(ã, c).

Proof of Proposition 4. The first inequality follows from
Proposition 3 since a � ã. For the second inequality,
assume that mink |Vk|−1

N eff(ak, c) ≥ D. This implies
that for any k ∈ [K],

∑
i∈Vk

∑
j∈Vk

aijk c
j

2

≤ 1

D|Vk|

∑
j∈Vk

cj

2

.

Therefore

N eff (a, c) =

(∑
k∈[K]

∑
j∈Vk c

j
)2

∑
k∈[K]

∑
i∈Vk

(∑
j∈Vk a

ij
k c

j
)2

≥ D

(∑
k∈[K]

∑
j∈Vk c

j
)2

∑
k∈[K] |Vk|−1

(∑
j∈Vk c

j
)2

= DN eff (ã, c) .

Proof of Proposition 5. The proof is by induction. Note
that τ ∈ [0, 1]. If |V | = 1 then |P | = 1 and N eff

c (P ) = 1,
so the claim is true. Now assume that the claim holds
true for all V with |V | ∈ [s − 1], s ∈ N, and consider
the case where |V | = s. First, note that if P = {V }
then N eff(P, c) = |V | by Proposition 1 and so if |P | =
1 the claim is true. It remains to check that if |P | >
1 then a =

∑
k∈[K] ak satisfies the claim, where ak =

choose.a(Vk, τ/ρ(P, c)). By the induction hypothesis, for
each k ∈ [K], N eff(ak, c)/ |Vk| ≥ τ/ρ(P, c) since |Vk| ∈
[s− 1] and τ/ρ(P, c) ∈ [0, 1]. Then by Proposition 4, with
ã =

∑
k∈[K] φ(κ(Vk)),

N eff (a, c) ≥ min
k

{
N eff(ak, c)

|Vk|

}
N eff (ã, c)

≥ τ

ρ(P, c)
ρ(P, c) |V | = τ |V | ,

and we conclude.

Proof of Proposition 6. Let sν(j) denote the probability
that Algorithm 4 returns j ∈ `(ν). Given j ∈ `(ν), let
ν1 be the parent of νj , ν2 be the parent of ν1, etc., until
νm = ν is the parent of νm−1. Then

sν(j) =
cj∑

k∈`(ν1) c
k

∏
i∈[m−1]

∑
k∈`(νi) c

k∑
k∈`(νi+1) c

k
,

=
cj∑

k∈`(ν) c
k

= pS(ν)(j).

Proof of Proposition 7. We define xi :=
∑
j∈Vi c

j for i ∈
[2M ] and it suffices to show that P ′ minimizes the denom-
inator of ρ(·, c),

r(P ′, c) := (2 |V1|)−1
∑
S∈P ′

(∑
i∈S

xi

)2

,

since each element of any pairing of P is of size 2 |V1|. We
first prove that V1∪V2M is a member of at least one pairing
of P that minimizes r(·, c). Indeed, assume that a pairing
P̌ that minimizes r(·, c) is given. We will show that a
pairing P̌ ′ containing V1 ∪V2M exists for which r(P̌ ′, c) ≤
r(P̌ , c). Let V1 ∪ Vj and Vk ∪ V2M be elements of P̌ . We
define P̌ ′ = P̌ \ {V1 ∪Vj , Vk ∪V2M}∪ {V1 ∪V2M , Vk ∪Vj}.
Then

2 |V1|
(
r(P̌ , c)− r(P̌ ′, c)

)
=

∑
S∈P̌

(∑
i∈S

xi

)2

−
∑
S∈P̌ ′

(∑
i∈S

xi

)2

= (x1 + xj)
2

+ (xk + x2M )
2

− (x1 + x2M )
2 − (xk + xj)

2

= 2x1xj + 2xkx2M − 2x1x2M − 2xkxj

= 2xk(x2M − xj)− 2x1(x2M − xj)
= 2(xk − x1)(x2M − xj) ≥ 0,
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since x1 and x2M are the minimal and maximal values of
{xi : i ∈ [2M ]}, respectively.

Now, let P̌ ′ be a pairing of P and S = V1 ∪ V2M ∈ P̌ ′.
Then r(P̌ ′, c) = r({S}, c) + r(P̌ ′ \ {S}, c) and so it follows
that if P̌ ′ minimizes r(·, c) then P̌ ′ \ {S} is a pairing of
P \ {V1, V2M} that minimizes r(·, c). It then follows that
at least one pairing P̌ ′ of P that minimizes r(·, c) is the
union of V1 ∪ V2M and a pairing of P \ {V2M , V1} that
minimizes r(·, c). But then the argument above shows
that V2 ∪ V2M−1 is a valid element of such a minimizing
pairing. Continuing, we obtain that P ′ is a pairing of P
that minimizes r(·, c) and we conclude.

Proof of Proposition 8. From (12) we can write
ρ(P k,l, c) = ρ(P, c) r(P,c)

r(Pk,l,c)
where r(P, c) :=∑

S∈P |S|
(
|S|−1

∑
j∈S c

j
)2

. It suffices therefore to
find k, l ∈ [K] minimizing r(Pk,l, c). Letting mi = |Vi|
and xi =

∑
j∈Vi c

j , we can write

r(Pk,l, c) = r(P, c)− x2
k

mk
− x2

l

ml
+

(xk + xl)
2

mk +ml

= r(P, c)− mkml

mk +ml

(
xk
mk
− xl
ml

)2

,

the equality following along the same lines as the proof of
the second part of Proposition 1, and we conclude.

Proof of Proposition 9. Let χν := (χν,1, . . . , χν,K) be
the ordered children of ν, where |C(ν)| = K. To
alleviate notation, we define c(χν,k) :=

∑
j∈`(χν,k) c

j ,

kν(u) := min
{
k :
∑
j∈[k] c(χν,j) ≥ u

∑
j∈`(ν) c

j
}

and
sν(k) :=

∑
j∈[k] c(χν,j). Algorithm 7 with input (ν, u)

returns fν(u), where

fν(u) :=

min `(ν) |`(ν)| = 1,

fχν,kν (u)

(
u
∑
j∈`(ν) c

j−sν(kν(u)−1)

c(χν,kν (u))

)
otherwise.

Now we prove by induction that fν(u) =

min
{
k :
∑
j∈`(ν)∩[k] c

j ≥ u
∑
j∈`(ν) c

j
}
. If |`(ν)| = 1, the

claim is trivially true. Now assume the claim is true for
{ν : |`(ν)| ∈ [p − 1]} and consider ν with |`(ν)| = p > 1.
We have

fν(u) = fχν,kν (u)

(
u
∑
j∈`(ν) c

j − sν(kν(u)− 1)

c(χν,kν(u))

)

and we can apply the induction hypothesis since
|`(χν,kν(u))| ∈ [p − 1]. Therefore, letting y :=

u
∑
j∈`(ν) c

j−sν(kν(u)−1), and x := χν,kν(u)we can write
fν(u) as

min

k :
∑

j∈`(x)∩[k]

cj ≥ y

c(x)

∑
j∈`(x)

cj


= min

k :
∑

j∈`(x)∩[k]

cj ≥ u
∑
j∈`(ν)

cj − sν(kν(u)− 1)


= min

k :
∑

j∈`(ν)∩[k]

cj ≥ u
∑
j∈`(ν)

cj

 ,

and we conclude.
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