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Abstract

How can we correlate the neural activity in the human brain as it responds to typed words, with 

properties of these terms (like ’edible’, ’fits in hand’)? In short, we want to find latent variables, 

that jointly explain both the brain activity, as well as the behavioral responses. This is one of many 

settings of the Coupled Matrix-Tensor Factorization (CMTF) problem.

Can we enhance any CMTF solver, so that it can operate on potentially very large datasets that 

may not fit in main memory? We introduce Turbo-SMT, a meta-method capable of doing exactly 

that: it boosts the performance of any CMTF algorithm, produces sparse and interpretable 

solutions, and parallelizes any CMTF algorithm, producing sparse and interpretable solutions (up 

to 65 fold). Additionally, we improve upon ALS, the work-horse algorithm for CMTF, with 

respect to efficiency and robustness to missing values.

We apply Turbo-SMT to BrainQ, a dataset consisting of a (nouns, brain voxels, human subjects) 

tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. Turbo-SMT is 

able to find meaningful latent variables, as well as to predict brain activity with competitive 

accuracy. Finally, we demonstrate the generality of Turbo-SMT, by applying it on a Facebook 

dataset (users, ’friends’, wall-postings); there, Turbo-SMT spots spammer-like anomalies.

1 Introduction

How is knowledge mapped and stored in the human brain? How is it expressed by people 

answering simple questions about specific words? If we have data from both worlds, are we 

able to combine them and jointly analyze them? In a very different scenario, suppose we 

have the social network graph of an online social network, and we also have additional 

information about how and when users interacted with each other. What is a comprehensive 

way to combine those two pieces of data? Both, seemingly different, problems may be 
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viewed as instances of what is called Coupled Matrix-Tensor Factorization (CMTF), where a 

data tensor and matrices that hold additional information are jointly decomposed into a set 

of low-rank factors.

The CMTF framework is by no means a new concept, with one of its earliest applications 

dating back to 2007 where the authors of [11] define a clustering algorithm on data that form 

Matrix/Tensor couples and apply it to movie recommendation and newsgroup articles 

settings. Subsequently, there has been a lot of work, both on the algorithmic side [52, 4] and 

on the application side, ranging from metabolomics [7] to social network analysis [33], 

where usually the data were of small to medium scale. However, we envision applications of 

the framework where the data scale renders the current state of the art a bottleneck to the 

analysis. Such an example of application is the one of Neurosemantics, where people are 

shown stimuli (which can range from single words to entire books) and their brain activity is 

recorded. These measurements can easily span multiple gigabytes of data, and their size and 

grows as the complexity of the stimulus increases. To that end, we need fast and 

parallelizable methods for CMTF that are able to handle data that may not fit in the main 

memory of a machine. In this work, we introduce Turbo-SMT, a parallel, scalable, and 

sparsity promoting CMTF meta-algorithm. Our main contributions are the following:

• Parallel & triple-sparse algorithm: We provide an approximate, novel, 

scalable, and triple-sparse (see Sec. 3) meta-method, Turbo-SMT, that is 

able to parallelize and scale-up any CMTF core algorithm. Additionally, 

we improve upon the ALS core CMTF algorithm, making it faster and 

able to handle missing values (see Sec. 3 for details on the algorithm, and 

Sec. 7 for experimental evaluation).

• Effectiveness & Knowledge Discovery: As a first step of the 

Neurosemantics application, we analyze BrainQ, a brain scan dataset 

which is coupled to a semantic matrix. Furthermore, we analyze a social 

interaction dataset, coupled with friendship information between the users. 

(see Sec. 5 for details)

• Reproducibility: Our code is publicly available1 ; the BrainQ and 

Facebook datasets we use (see Section 5) are also publicly available.

In the knowledge discovery part, the brain scan part of the dataset consists of fMRI scans 

originally used in [37], a work that first demonstrated that brain activity can be predictably 

analyzed into component semantic features. Here, we demonstrate a disciplined way to 

combine both datasets and carry out a variety of data mining/machine learning tasks, 

through this joint analysis. A snippet of our analysis is shown in Fig. 1, where we find 

groups of semantically similar nouns that activate the same brain regions; additionally, 

Turbo-SMT generally improves the CMTF approximation error, while parallelizing the 

execution of the baselines, working on smaller pieces of data, potentially enabling 

processing of datasets that may not fit in memory. Furthermore, we apply Turbo-SMT to a 

time-evolving social network with side information, discovering anomalies, thereby 

1www.cs.cmu.edu/~epapalex/src/turbo_smt.zip
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demonstrating the generality of the CMTF framework and, ultimately, the strength of Turbo-

SMT.

An earlier version of this work was uploaded on Arxiv.org [44] for quick dissemination 

thereof and early feedback. The first published version of this work is included in the 

proceedings of SIAM SDM 2014 [45]. The present manuscript is an invited journal 

extension of [45] as part of the “best of SDM 2014” papers. The new contributions 

introduced here are 1) additional and extensive performance evaluation, 2) comparison of the 

Turbo-SMT against compression based techniques (which, to the best of our knowledge 

have not been published for the CMTF problem), 3) further improvement of the ALS 

algorithm for CMTF (which is one of the core solvers that can be used with Turbo-SMT), 

and 4) application of Turbo-SMT to a social network with side information.

2 Preliminaries

2.1 A note on notation

Table 1 contains symbols and essential notation that is henceforth used throughout the text, 

both in the present section, as well as in Section 3, where Turbo-SMT is introduced.

2.2 Introduction to Tensors

Matrices record dyadic properties, like “people recommending products”. Tensors are the n-

mode generalizations, capturing 3- and higher-way relationships. For example “subject-verb-

object” relationships, such as the ones recorded by the Read the Web - NELL project [1] 

(and have been recently used in this context [26] [41]) naturally lead to a 3-mode tensor. In 

this work, our working example of a tensor has three modes. The first mode contains a 

number of nouns; the second mode corresponds to the brain activity, as recorded by an fMRI 

machine; and the third mode identifies the human subject corresponding to a particular brain 

activity measurement. A very popular tensor decomposition, shown in Fig. 2 is the 

PARAFAC decomposition [24], where a tensor is decomposed into a sum of rank-one 

tensors (each rank-one tensor being an outer product of three vectors). For a thorough 

overview of all different flavors of tensor decompositions, we refer the interested reader to 

[31]

In [41], the authors introduced a scalable and parallelizable tensor decomposition which uses 

biased mode sampling. In this work, we focus on a more general and expressive framework, 

that of Coupled Matrix-Tensor Factorizations, extending the idea of [41] for that setting. 

Besides [41], there is a line of work that employs sampling for tensor decomposition [36, 

23], which is tangentially related to the present work, and is discussed in more detail in 

Section 8.3

2.3 Coupled Matrix-Tensor Factorization

Oftentimes, two tensors, or a matrix and a tensor, may have one mode in common; consider 

the example that we mentioned earlier, where we have a word by brain activity by human 

subject tensor, we also have a semantic matrix that provides additional information for the 

same set of words. In this case, we say that the matrix and the tensor are coupled in 

Papalexakis et al. Page 3

Stat Anal Data Min. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Arxiv.org


the ’word’ mode, and the problem is instance of Coupled Matrix-Tensor Factorization 

(CMTF) [11, 52, 4] which is an active field of research, aiming to jointly analyze datasets (in 

the form of tensors and matrices) that share a subset of their modes.

In this work we focus on three mode tensors, however, everything we mention extends 

directly to higher modes. In the general case, a three mode tensor X̲ may be coupled with at 

most three matrices Yi, i = 1 ⋯ 3, in the manner illustrated in Figure 3 for one mode. The 

optimization function that encodes this decomposition is:

(2.1)

where ak is the k-th column of A. The idea behind the coupled matrix-tensor decomposition 

is that we seek to jointly analyze X̲ and Yi, decomposing them to latent factors who are 

coupled in the shared dimension. For instance, the first mode of X̲ shares the same low rank 

column subspace as Y1; this is expressed through the latent factor matrix A which jointly 

provides a basis for that subspace.

2.4 Solving CMTF

A popular algorithm for solving CMTF (as shown in Figure 3) is the so-called Alternating 

Least Squares (ALS), a block-coordinate descent method [4] (Fig. 5); in the next subsection, 

we provide a short description of the ALS algorithm, since one of our contributions pertains 

to speeding up the ALS algorithm itself. Besides ALS, there exist other algorithms for 

CMTF. For example, [4] uses a first order optimization algorithm for the same objective. 

Throughout this work, we use both algorithms as core CMTF solvers for Turbo-SMT. The 

strength of Turbo-SMT, however, is that it can be used as-is with any underlying core CMTF 

implementation. Hence, Turbo-SMT is CMTF solver independent.

2.4.1 The Alternating Least Squares Algorithm—The work-horse algorithm for 

solving PARAFAC (as shown in Figure 2) is Alternating Least Squares (ALS) [50]; the basic 

idea is that by fixing two of the three factor matrices, we have a least squares problem for 

the third, and we thus do so iteratively, alternating between the matrices we fix and the one 

we optimize for, until the algorithm converges, usually when the relative change in the 

objective function between two iterations is very small.

Solving CMTF using ALS follows the same strategy, only now, we have up to three 

additional matrices in our objective. For instance, when fixing all matrices but A, the update 

for A requires to solve the following least squares problem:
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In order to obtain initial estimates for matrices A, B, C we take the PARAFAC 

decomposition of X̲. As for matrix D (and similarly for the rest), it suffices to solve a simple 

Least Squares problem, given the PARAFAC estimate of A, we initialize as D = Y1 (A†)T, 

where † denotes the Moore-Penrose Pseudoinverse which, given the Singular Value 

Decomposition of a matrix X = UΣVT, is computed as X† = VΣ−1UT.

In Algorithm 1, we provide a detailed outline of the baseline algorithm, ALS for CMTF, also 

shown in Figure 5 of [4] in less detail.

The Moore-Penrose Pseudoinverse of a matrix is computed as X† = VΣ−1UT given the 

Singular Value Decomposition of a matrix X = UΣVT. The Kronecker product of two 

matrices A, B (of sizes I × J and K × M respectively) is defined as

Algorithm 1

Baseline: Alternating Least Squares (ALS) Algorithm for CMTF [4]

Input: X̲ of size I × J × K, matrices Yi, i = 1 ⋯ 3, of size I × I2, J × J2, and K × K2 respectively, number of factors F.

Output: A of size I × F, B of size J × F, C of size K × F, D of size I2 × F, G of size J2 × F, E of size K2 × F.

  1: Unfold X̲ into X̲(1), X̲(2), X̲(3) (see [27]).

  2: Initialize A, B, C using PARAFAC of X̲. Initialize D, G, E as discussed on the text (e.g. D = Y1 (A‡)T).

  3: while convergence criterion is not met do

  4:

   

  5:

   

  6:

   

  7:   D = Y1 (A†)T, G = Y2 (B†)T, E = Y3 (C†)T

  8: end while

The Khatri-Rao product of two matrices A, B with sizes I × F and J × F is

In Section 4.1, we improve upon Algorithm 1, introducing a few key modifications that 

allow for faster execution.
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3 Proposed Method

3.1 Algorithm Description

There are three main concepts behind Turbo-SMT (outlined in Algorithm 2):

Phase 1 Obtain a nucleus of our data by using biased sampling.

Phase 2 Fit CMTF to the reduced data (possibly on more than one nuclei)

Phase 3 stitch the partial results

Phase 1: Sampling—An efficient way to reduce the size of the dataset, yet operate on a 

representative subset thereof is to use biased sampling. In particular, given a three-mode 

tensor X̲ we sample as follows. We calculate three vectors as shown in equations (3.2), one 

for each mode of X̲ (and respectively Equations 3.3 and 3.4 for the two modes of the 

matrix).

(3.2)

(3.3)

(3.4)

These vectors, which we henceforth refer to as density vectors are the marginal absolute 

sums with respect to all but one of the modes of the tensor, and in essence represent the 

importance of each index of the respective mode. We then sample indices of each mode 

according to the respective density vector. For instance, assume an I × J × K tensor; suppose 
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that we need a sample of size  of the indices of the first mode. Then, we just define 

 as the probability of sampling the i-th index of the first mode, and 

we simply sample without replacement from the set {1 ⋯ I}, using pℐ as bias. The very 

same idea is used for matrices Yi. Doing so is preferable over sampling uniformly, since our 

bias makes it more probable that high density indices of the data will be retained on the 

sample, and hence, it will be more representative of the entire set.

Suppose that we call ℐ, ,  the index samples for the three modes of X̲. Then, we may 

take X̲s = X̲(ℐ, , ) (and similarly for matrices Yi) to form a nucleus of the data; which 

essentially is a small, yet representative, sample of our original dataset, where the high 

density blocks are more likely to appear on the sample. It is important to note that the 

indices of the coupled modes are the same for the matrix and the tensor, e.g. I randomly 

selects the same set of indices for X̲ and Y1. This way, we make sure that the coupling is 

preserved after sampling.

In cases where the data have very different dimensions per mode (e.g. one mode is 

significantly smaller than the rest), we may use different sampling factors in order to account 

for this imbalance.

Finally, Phase 1 can be executed very efficiently, since both the calculation of sample biases, 

as well as the sampling of indices require only 2 passes on the non-zero elements of the 

(usually, highly sparse) data.

Phase 2: Fit CMTF to nuclei—The next step of Turbo-SMT is to fit a CMTF model to 

each nucleus, and then, based on the sampled indices, redistribute the result to the original 

index space. As we have already discussed, Turbo-SMT is not restricted in any way to a 

specific CMTF solver; in fact, we provide experiments using both an ALS and a first order 

gradient approach. In more detail, suppose that As is the factor matrix obtained by the 

aforementioned procedure, and that jointly describes the first mode of X̲s and Y1,s. The 

dimensions of As are going to be |ℐ| × F (where ||˙ denotes cardinality and F is the number 

of factors). Let us further assume matrix A of size I × F which expresses the first mode of 

the tensor and the matrix, before sampling; due to sampling, it holds that I ≫ |ℐ|. If we 

initially set all entries of A to zero and we further set A(ℐ, :) = As we obtain a highly sparse 
factor matrix whose non-zero values are a ’best effort’ approximation of the true ones, i.e. 

the values of the factor matrix that we would obtain by decomposing the full data.

So far, we have provided a description of the algorithm where only one repetition of 

sampling is used. However, the approximation quality of Turbo-SMT improves as we 

increase the number of nuclei. To that end, we allow for multiple sampling repetitions in our 

algorithm, i.e. extracting multiple sample tensors X̲s and side matrices Yi,s, fitting a CMTF 

model to all of them and combining the results in a way that the true latent patterns are 

retained. We are going to provide a detailed outline of how to carry the multi-repetition 

version of Turbo-SMT in the following.
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While doing multiple repetitions, we keep a common subset of indices for all different 

samples. In particular, let p be the percentage of common values across all repetitions and 

ℐp denote the common indices along the first mode (same notation applies to the rest of the 

indices); then, all sample tensors X̲s will definitely contain the indices ℐp on the first mode, 

as well as  indices sampled independently (across repetitions) at random. This 

common index sample is key in order to ensure that our results are not rank deficient, and all 

partial results are merged correctly. As we discuss in Phase 3, it suffices to keep a set of 

common “anchor” indices just for first mode, however, we also describe a method that uses 

common in all modes of the tensor (i,e, ℐp, p, p), that is, however, more expensive 

computationally.

We do not provide an exact method for choosing p, however, as a rule of thumb, we 

observed that, depending on how sparse and noisy the data is, a range of p between 0.2 and 

0.5 works well. This introduces a trade-off between redundancy of indices that we sample, 

versus the accuracy of the decomposition; since we are not dealing solely with tensors, 

which are known to be relatively more well behaved in terms of decomposition uniqueness 

(in contrast to matrices), it pays off to introduce some data redundancy (especially when 

Turbo-SMT runs in a parallel system) so that we avoid rank-deficiency in our data.

Let r be the number of different sampling repetitions, resulting in r different sets of sampled 

matrix-tensor couples  and  (i = 1 ⋯ r, j = 1 ⋯ 3). For that set of coupled data, we fit 

a CMTF model, using a CMTF solver, obtaining a set of factor matrices A(i) (and likewise 

for the rest).

Phase 3: Stitching partial results—After having obtained these r different sets of 

partial results, as a final step, we have to merge them together into a set of factor matrices 

that we would ideally get had we operated on the full dataset.

In order to make the merging work, we first introduce the following scaling on each column 

of each factor matrix: Let’s take A(i) for example; we normalize each column of A by the ℓ2 

norm of the common part, as described in line 8 of Algorithm 2. By doing so, the common 

part of each factor matrix (for all repetitions) will be unit norm. This scaling is absorbed in a 

set of scaling vectors λA (and accordingly for the rest of the factors). The new objective 

function is shown in Equation 3.5

(3.5)

A problem that is introduced by carrying out multiple sampling repetitions is that the 

correspondence of the output factors of each repetition is very likely to be distorted. In other 
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words, say we have matrices A(1) and A(2) and we wish to merge their columns (i.e. the 

latent components) into a single matrix A, by stitching together columns that correspond to 

the same component. It might very well be the case that the order in which the latent 

components appear in A(1) is not the same as in A(2).

The sole purpose of the aforementioned normalization is to resolve the correspondence 

problem. In Algorithm 3, we merge the partial results while establishing the correct 

correspondence of the columns.

Algorithm 3 can be seen as a greedy algorithm for solving the correspondence problem 

between columns. Provided that the factor matrices are not collinear, the algorithm usually 

finds the correct correspondence. In reality, where data might be noisy, we can use the 

Hungarian Method [32], which will slightly increase the computational cost of the overall 

algorithm but solve the problem optimally.

In order to see why this happens, we follow the example of r = 2 of the previous paragraph, 

according to Algorithm 3, we compute the inner product of the common parts of each 

column of A(1) and A(2). Since the common parts of each column are normalized to unit 

norm, then the inner product of the common part of the column of A(1) with that of A(2) will 

be maximized (and exactly equal to 1) for the matching columns, and by the Cauchy-

Schwartz inequality, for all other combinations, it will be less than 1. Additionally, 

elimination of the already used columns operates as a tie-breaker.

The non-collinearity assumption implies that the matrix/tensor pair of each nucleus contains 

data that fit the CMTF model (for the given decomposition rank) well. If either the data do 

not obey the model, or the rank is too high, the partial factors to be merge might end up 

being collinear, in which case we have to either decrease the decomposition rank, discard the 

particular nucleus that produces collinear factors, or readjust s and r so that the nucleus 

chosen has “good” structure (where “good” is used in the sense that it fits the CMTF model 

well).

Note that in the way that we describe the stitching, we only need to keep common “anchor” 

indices for the A matrix, establish the correspondence on A and then propagate the column 

permutation to the remaining factor matrices. Since Turbo-SMT can be used for data whose 

dimensions span millions or billions, a set of anchor indices can easily span thousands or 

even tens of thousands, thus, saving only a set of anchor indices for matrix A results in 

memory and communication savings. Phase 3, due to its low complexity, can be executed 

very efficiently. In particular, the StitchFactors algorithm requires O(rF2) steps, where, both 

r and F are, for most practical cases, very small, compared to the data dimensionality.

For the sake of completeness, here we also describe a theoretically more accurate, but more 

computationally and memory intensive way to stitch the components. Suppose we have a set 

of common indices for all A, B, C. We may, thus, perform the stitching jointly for A, B, C 
and then propagate the permutation that we computed to matrices D, E, G. This joint 

matching can be done as follows: Consider the following product:
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where ⊙ is the Khatri-Rao product, as define earlier. This results in a matrix with F 
columns, where the f-th column is equal to

where ⊗ is the Kronecker product. Because of the definition of the PARAFAC 

decomposition, the above is simply the vectorized f-th rank one component of the 

PARAFAC decomposition defined by A(ℐp, :), B( p, :), C( p, :), i.e. the pieces of the 

partial results that correspond to the same “anchor” indices. Thus, the problem of finding the 

correspondence between, say, the first nucleus and the second nucleus reduces to the 

problem of finding the optimal column correspondence between matrices

and

which can, again, be solved using the Hungarian Method [32]. However, as we mentioned 

earlier, the size of ℐp, p, p, in cases where we are dealing with big tensors and matrices, 

can be in the orders of thousands or tens of thousands. Thus, computing the above Khatri-

Rao products may incur high computational and memory overhead during the stitching step, 

thus, in Algorithm 2 we show Turbo-SMT when using the lightweight version of stitching 

(Algorithm 3).

Algorithm 2

Turbo-SMT: Sparse and parallel CMTF

Input: Tensor X̲ of size I × J × K, matrices Yi, i = 1 ⋯ 3, of size I × I2, J × J2, and K × K2 respectively, number of 
factors F,
  sampling factor s, number of repetitions r.

Output: A of size I × F, b of size J × F, c of size K × F, D of size I2 × F, G of size J2 × F, E of size K2 × F. λA, λB, λC,
  λD, λE, λG of size F × 1.

1: Initialize A, B, C, D, E, G to all-zeros.

2: Randomly, using mode densities as bias, select a set of 100p% (p ∈ [0, 1]) “anchor” indices ℐp to be common 
across all repetitions.

For example, ℐp is sampled with probabilities with .

3: for i = 1 ⋯ r do

  {Phase 1: Obtain nuclei through biased sampling}
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4:   Compute densities as in equations 3.2, 3.3, 3.4.

  Compute set of indices ℐ(i) as random sample without replacement of {1 ⋯ I} of size I/ (s (1 − p)) with 
probability

   . Likewise for , ,, ℐ1, ℐ2, and ℐ3. Set ℐ(i) = ℐ ⋃ ℐp.

5:

  Get nucleus  and likewise for  and 

. Note that the same index
  sample is used for coupled modes.

  {Phase 2: Fit the model on each nucleus}

6:

Run a CMTF solver for  and , j = 1 ⋯ 3 and obtain As, Bs, Cs, Ds, Gs, Es.

7:   A(i)(ℐ(i), :) = As. Likewise for the rest.

8:

  Calculate the ℓ2 norm of the columns of the common part: , for f = 1 ⋯ F. 
Normalize columns of

A(i) using  (likewise for the rest). Note that the common part of each factor will now be normalized to unit 
norm.

9: end for

{Phase 3: Stitch partial results}

10:

A =StitchFactors ( ). When stitching partial results for A, record the column correspondences for different 
nuclei

11: Using the above correspondence, stitch the partial factors of B, C, D, E, G, without performing the full 
StitchFactors
algorithm, but simply reordering the columns.

12: Using the above column/component correspondence, reorder λA, λB, λC, λD, λE, λG for each repetition.

13:

λA = average of . Likewise for the rest.

3.2 Sparsity through Sampling

Besides data size reduction, one merit of sampling is sparsity on the latent factors. Every 

time Turbo-SMT does one repetition, it operates on a sub-sampled version of the data. 

Consequently, in the third phase of the algorithm, where the results are re-distributed to their 

indices in the original, high dimensional space, most of the indices of the latent factors are 

going to be exactly zero, thus resulting in latent factor sparsity. In this way, Turbo-SMT 

always operates on a sparse set of data, through the entire lifetime of the algorithm, a thing 

which is not true for the majority of the algorithms both for tensor and coupled 

decompositions, which usually operate on dense factors (even when the final output is 

sparse), and have very high and unnecessary storage needs.

Definition 3.1. (Triple-sparse)—An algorithm is triple-sparse when 1) the input of the 
algorithm is sparse, 2) the intermediate data during the lifetime of the algorithm is sparse, 
and 3) the final output of the algorithm is sparse.

In the above definition, the input of the algorithm need not necessarily be sparse; however, a 

triple-sparse algorithm still satisfies the second and third requirement, by operating on a 
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sparse, representative subset of the data. We, thus, call Turbo-SMT, a triple-sparse algorithm. 

We have to note that we consider the intermediate data that the algorithm manipulates to be 

sparse with respect to the original data, and not necessarily sparse with respect to the sample 

size.

In addition to storage and efficiency, a major benefit of sparsity is interpretability: when 

most of the coefficients of the factors are zero, it is easier for a person to inspect the non-

zeros and identify patterns in the results. Additionally, having sparse latent factors has been 

shown to be equivalent to higher order co-clustering [42, 43] which is a very useful and 

highly interpretable tool in exploratory data mining.

Algorithm 3

StitchFactors: Given partial results of factor matrices, merge them correctly

Input: Factor matrices  of size I × F each, and r is the number of repetitions, ℐp: set of common indices.

Output: Factor matrix A of size I × F.

1: Set A = A(1)

2: Set ℓ = {1 ⋯ F}, a list that keeps track of which columns have not been assigned yet.

3: for i = 2 ⋯ r do

4:   for f1 = 1 ⋯ F do

5:     for f2 in ℓ do

6:       Compute similarity v(f2) = (A(ℐp, f2))T (A(i)(ℐp, f1)))

7:     end for

8:     c* = arg maxc v(c) (Ideally, for the matching columns, the inner product should be equal to 1; conversely, for 
the rest of the
  columns, it should be considerably smaller)

9:   A(:, c*) = A(i)(:, f1)|A(:,c*)=0, i.e. update the zero entries of the column.

10:   Remove c* from list ℓ.

11:   end for

12: end for

3.3 Parallelization

Turbo-SMT is, by its nature, parallelizable; in essence, we generate multiple samples of the 

coupled data, we fit a CMTF model to each sample and then we merge the results. By 

carefully observing Algorithm 2, we can see that lines 3 to 9 may be carried out entirely in 

parallel, provided that we have a good enough random number generator that does not 

generate the very same sample across all r repetitions. In particular, the r repetitions are 

independent from one another, since computing the set of common indices (line 2), which is 

the common factor across all repetitions, is done before line 3.
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4 Further Optimizations

4.1 Speeding up the ALS algorithm

In addition to our main contribution in terms of speeding CMTF in general, we are able to 

further speed the ALS algorithm up, by making a few careful interventions to the core 

algorithm (Algorithm 1).

Lemma 4.1—We may do the following simplification to each pseudoinversion step of the 
ALS algorithm (Algorithm 1):

Proof: For the Moore-Penrose pseudoinverse of the Khatri-Rao product, it holds that [13], 

[34]

Furthermore [13] (A ⊙ B)T (A ⊙ B) = ATA * BTB For a partitioned matrix , it 

holds that its pseudoinverse may be written in the following form [25]

Putting things together, it follows:

which concludes the proof.

The above lemma implies that substituting the naive pseudoinversion of  with the 

simplified version, offers significant computational gains to Algorithm 1. More precisely, if 

the dimensions of A, B and M are I × R, J × R and I × I2, then computing the pseudoinverse 

naively would cost O (R2 (IJ + I2)), whereas our proposed method yields a cost of O (R2 (I + 

J + I2)) because of the fact that we are pseudoinverting only a small R × R matrix. We have 

to note here that in almost all practical scenarios R ≪ I, J, I2.

Table 2 provides a solid impression of the speedup achieved on the core ALS algorithm, as a 

result of the simplification of the pseudo-inversion step, as derived above. In short, we can 
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see that the speedup achieved is in most realistic cases 2× or higher, adding up to being a 

significant improvement on the traditional algorithm.

4.2 Making ALS robust to missing values

In many practical scenarios, we often have corrupted or missing data. For instance, when 

measuring brain activity, a few sensors might stop working, whereas the majority of the 

sensors produce useful signal. Despite these common data imperfections, it is important for 

a data mining algorithm to be able to operate. The work of Tomasi et. al [49] provides a very 

comprehensive study on how to handle missing values for plain tensor decompositions. A 

very clean and straightforward way of handling missing values is to ignore them throughout 

the optimization process, both with respect to the original data and with respect to the 

model. This can be achieved through masking the missing values, hiding them from the 

optimization. Notice that is not the same as simply zeroing out all missing values, since 0 

might have a valid physical interpretation.

In this section, we show how this masking can be applied to the ALS algorithm for the 

CMTF model. In [4], the authors show how this can be achieved for the CMTF-OPT 

algorithm. In any case, this masking approach is very important because besides enabling 

the analysis of incomplete datasets, it can also serve as stepping stone for estimating those 

missing values: When obtaining a low rank model of the incomplete dataset after masking 

the missing values, we can reconstruct the original data and our reconstruction will contain 

imputations for the missing values. This can be seen as the first iteration of an Expectation-

Maximization scheme introduced in [49].

Following the formulation of [6, 4] we define a ’weight’ tensor W̲ which has ’0’ in all 

coefficients where values are missing, and ’1’ everywhere else. Similarly, we introduce three 

weight matrices Wi for each of the coupled matrices Yi. Then, the optimization function of 

the CMTF model becomes

As we show in Algorithm 1, we may solve CMTF by solving six least squares problems in 

an alternating fashion. A fortuitous implication of this fact is that in order to handle missing 

values for CMTF, it suffices to solve

(4.6)

where W is a weight matrix in the same sense as described a few lines earlier.

Our solution draws from a similar derivation in [43] (Section 3.B) On our way tackling the 

above problem, we first need to investigate its scalar case, i.e. the case where we are 
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interested only in B(j, f) for a fixed pair of j and f. The optimization problem may be 

rewritten as

(4.7)

which is essentially a scalar least squares problem of the form:  with solution 

in analytical form: . The reader may notice that the dimensions of W and A are 

incompatible, however, in the scalar case of Eq. 4.7, we multiply element-wise the columns 

of W and A, which are of the same dimensions.

We may, thus, solve this problem of Equation 4.6 using coordinate descent, on B iteratively, 

until convergence. Therefore, with the aforementioned derivation, we are able to modify our 

original algorithm in order to take missing values into account.

So far, we have described how to make ALS robust against missing values, however a few 

modifications to Turbo-SMT are required in order to be able to use the robust ALS core 

solver. In particular, in order to use the masking scheme for Turbo-SMT, during sampling, 

we have to take into account that some values in the data are missing: when we compute the 

weights for the biased sampling (i.e. Equations 3.2, 3.3, 3.4) we have to hide the missing 

values. In order to do that, we compute the weights on

and

where the weights W̲ and W1 are defined above (and accordingly for Y2, Y3). This is 

equivalent to assuming that the missing values are equal to 0, and because computation of 

the weights is calculated through addition, treating the missing values as 0 in this context is 

equivalent to ignoring them. After these modifications, Turbo-SMT can be used along with 

the robust to missing values ALS algorithm for large and incomplete datasets.

5 Knowledge Discovery

5.1 Turbo-SMT on Brain Image Data With Additional Semantic Information

As part of a larger study of neural representations of word meanings in the human brain 

[37], we applied Turbo-SMT to a combination of datasets which we henceforth jointly refer 

to as BrainQ. This dataset consists of two parts. The first is a tensor that contains 

measurements of the fMRI brain activity of 9 human subjects, when shown each of 60 

concrete nouns (5 in each of 12 categories, e.g. dog, hand, house, door, shirt, dresser, 

butterfly, knife, telephone, saw, lettuce, train). fMRI measures slow changes in blood 

oxygenation levels, reflecting localized changes in brain activity. Here our data is made up 
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of 3×3×6mm voxels (3D pixels) corresponding to fixed spatial locations across participants. 

Recorded fMRI values are the mean activity over 4 contiguous seconds, averaged over 

multiple presentations of each stimulus word (each word is presented 6 times as a stimulus). 

Further acquisition and preprocessing details are given in [37]. This dataset is publicly 

available2. The second part of the data is a matrix describing the semantics of these 60 

nouns, using crowd-sourced numerical responses to 218 questions such as ”is it smaller than 

a golfball?” (see also samples in Fig. 4). This dataset has been used before in works such as 

[39], [40].

BrainQ’s size is 60×77775×9 with over 11 million non-zeros (tensor), and 60 × 218 with 

about 11000 non-zeros (matrix). The dimensions might not be extremely high, however, the 

data is very dense and it is therefore difficult to handle efficiently.

5.2 Simultaneous Clustering of Words, Questions and Regions of the Brain

One of the strengths of CMTF is its expressiveness in terms of simultaneously soft-

clustering all involved entities of the problem. By taking a low rank decomposition of the 

BrainQ data (using r = 5 and sI = 3, sJ = 86, sK = 1 for the tensor and sI for the questions 

dimension of the matrix)3, we are able to find groups that jointly express words, questions 

and brain voxels (we can also derive groups of human subjects; however, it is an active 

research subject in neuroscience, whether brain-scans should differ significantly between 

people, and is out of the scope of the present work).

In Figure 4, we display 4 such groups of brain regions that are activated given a stimulus of a 

group of similar words; we also display the most prominent words, along with groups of 

similar questions that were highly correlated with the words of each group. Moreover, we 

were able to successfully identify high activation of the premotor cortex in Group 3, which 

is associated with concepts that have conventional manual uses (such as holding, or picking 

up).

5.3 Predicting Brain Activity from Questions

In addition to soft-clustering, the low rank joint decomposition of the BrainQ data offers 

another significant result. This low dimensional embedding of the data into a common 

semantic space, enables the prediction of, say, the brain activity of a subject, for a given 

word, given the corresponding vector of question answers for that word. In particular, we use 

this linear transformation in order to map the question answer vector to the latent semantic 

space and then expanding it to the brain voxel space, we obtain a fairly good prediction of 

the brain activity. This linear transformation is reminiscent of the mapping done in Latent 

Semantic Analysis (LSA) [21], where the authors compute a low rank embedding of terms 

and documents, and given a query consisting of terms, they project it to the latent dimension, 

taking advantage of the compaction offered by the low rank approximation. In the case of 

LSA, the embeddings used are orthonormal (since they are computed using SVD), and thus 

2http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
3We may use imbalanced sampling factors, especially when the data is far from being ’rectangular’.
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the “mapping” is a proper projection to the subspace. In our case, we do not restrict the 

embeddings to be orthonormal, and thus we perform a linear transformation.

To evaluate the accuracy of these predictions of brain activity, we follow a leave-two-out 
scheme, where we remove two words entirely from the brain tensor and the question matrix; 

we carry out the joint decomposition, in some very low dimension, for the remaining set of 

words and we obtain the usual set of matrices A, B, C, D. Due to the randomized nature of 

Turbo-SMT, we did 100 repetitions of the procedure described below.

Let qi be the question vector for some word i, and vi be the brain activity of one human 

subject, pertaining to the same word. By left-multiplying qi with DT, we map qi to the latent 

space of the decomposition; then, by left-multiplying the result with B, we map the result to 

the brain voxel space. Thus, our estimated (predicted) brain activity is obtained as v̂i = BDT 

qi

Given the predicted brain activities v̂1 and v̂2 for the two left out words, and the two actual 

brain images v1 and v2 which were withheld from the training data, the leave-two-out 
scheme measures prediction accuracy by the ability to choose which of the observed brain 

images corresponds to which of the two words. After mean-centering the vectors, this 

classification decision is made according to the following rule:

Although our approach is not designed to make predictions, preliminary results are very 

encouraging: Using only F=2 components, for the noun pair closet/watch we obtained mean 

accuracy of about 0.82 for 5 out of the 9 human subjects. Similarly, for the pair knife/beetle, 

we achieved accuracy of about 0.8 for a somewhat different group of 5 subjects. For the rest 

of the human subjects, the accuracy is considerably lower, however, it may be the case that 

brain activity predictability varies between subjects, a fact that requires further investigation.

6 Generality: Mining Social Networks with Additional Information

The CMTF framework, and Turbo-SMT by the same token, can be applied in a very diverse 

set of applications. In the previous subsection we demonstrated the expressive power of the 

framework for the BrainQ dataset; here we show how it can be applied in a completely 

different scenario, that of social network analysis with side information. To that end, we use 

Turbo-SMT to analyze a Facebook dataset, introduced in [51]4. This dataset consists of a 

63890 × 63890 × 1847 (wall, poster, day) tensor with about 740,000 non-zeros, and a 63890 

× 63890 who is friends with whom matrix, with about 1.6 million non-zeros. The tensor 

contains the amount of posts a user posted on some user’s Wall. In principle it contains 

counts, however, most of the values are either 1 or 0. In contrast to BrainQ, this dataset is 

very sparse (as one would expect from a social network dataset). However, Turbo-SMT 

works in both cases, demonstrating that it can analyze data efficiently, regardless of their 

density.

4Download Facebook at http://socialnetworks.mpi-sws.org/data-wosn2009.html
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We decomposed the data into 25 rank one components, using sI = 1000, sJ = 1000, sK = 100 

and sI for both dimensions of the matrix, and manually inspected the results. A fair amount 

of components captured normal activity of Facebook users who occasionally post on their 

friends’ walls; here we only show one outstanding anomaly, due to lack of space: In Fig. 5 

we show what appears to be a spammer, i.e. a person who, only on a certain day, posts on 

many different friends’ walls: the first subfigure corresponds to the wall owners, the second 

subfigure corresponds to the people who post on these walls, and the third subfigure is the 

time (measured in days); we thus have one person, posting on many peoples’ walls, on a 

single day.

We chose to include this particular result in order to showcase the modelling versatility of 

CMTF models, and thus of the Turbo-SMT algorithm, since we are able to express a variety 

of problems in the CMTF framework, and additionally, solve them very efficiently, and 

obtain sparse and interpretable solutions by using Turbo-SMT. The Facebook dataset merits 

its own detailed analysis, however, here we include a small, preliminary result, due to space 

considerations.

7 Experiments

7.1 Experimental Setup

We implemented Turbo-SMT in Matlab. Our implementation of the code is publicly 

available.5 For the parallelization of the algorithm, we used Matlab’s Parallel Computing 

Toolbox. For tensor manipulation, we used the Tensor Toolbox for Matlab [10] which is 

optimized especially for sparse tensors (but works very well for dense ones too). We use the 

CMTF-ALS and the CMTF-OPT [4] algorithms as baselines, i.e. we compare Turbo-SMT 

when using one of those algorithms as their core CMTF implementation, against the plain 

execution of those algorithms. In order to make this comparison possible, all datasets we 

used were within the capabilities of the Tensor Toolbox for Matlab.

We implemented our version of the ALS algorithm, and we used the CMTF Toobox6 

implementation of CMTF-OPT. All experiments were carried out on a machine with 4 Intel 

Xeon E74850 2.00GHz, and 512Gb of RAM. The version of Matlab was R2013a (8.1.0.604) 

64-bit. In the appendix, we show timing experiments on a less powerful machine, in order to 

demonstrate that the principle behind Turbo-SMT is applicable to a variety of platforms. 

Whenever we conducted multiple iterations of an experiment (due to the randomized nature 

of Turbo-SMT), we report error-bars along the plots. For all the following experiments we 

used either portions of the BrainQ dataset, or the whole dataset.

7.2 Run time

A major feature of Turbo-SMT is scaling up and boosting existing, potentially highly 

optimized and state of the art, CMTF solvers. Key facts that contribute to this scale-up are: 

1) dimensionality reduction through sampling, 2) the fact that Turbo-SMT operates on 

sparse data throughout its lifetime, and 3) that Turbo-SMT is highly parallelizable. Figure 1 

5http://www.cs.cmu.edu/~epapalex/src/turbo_smt.zip
6http://www.models.life.ku.dk/joda/CMTF_Toolbox
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illustrates this behaviour. In this section, we measure the execution time on the BrainQ data 

for a variety of different configurations of Turbo-SMT, and for two different baselines 

(CMTF-OPT and CMTF-ALS). In particular, while keeping the number of repetitions r fixed 

to 4, we vary the sampling factor s for values {2, 5, 10, 20}. Because BrainQ is highly 

imbalanced, the actual sampling factors we use are . We also vary the 

decomposition rank F for 1, 5, and 10.

The reason why we keep r fixed to 4 is because we conducted the same experiment on a 

machine with 4 cores (showing the results in the appendix) and for consistency purposes we 

chose the same r for both experiments. In Section 7.3 we show, however, that increasing r is 

improving the accuracy and if we use a machine with as many cores as r, then we may do so 

entirely in parallel, without significantly deviating from the timings that we report in this 

section.

When we compare Turbo-SMT against one of the two baselines, we make sure that we use 

the corresponding baseline as the core solver for Turbo-SMT. We observed a certain 

variation of solutions achieved by the baselines, depending on the number of iterations of the 

algorithm. Thus, we chose to experiment for three different limits for the number of 

iterations for the baselines (also enforcing the same limit in the core solver of Turbo-SMT). 

In particular, all the experiments are executed for 100, 1000, and 10000 iterations7. Note that 

this number indicates the maximum number of iterations (denoted by iter), however the 

baseline algorithm may terminate before reaching this number of iterations, depending on its 

(random) initialization. The termination criterion for both baselines was either meeting the 

maximum number of iterations iter, or the difference of the objective function between 

two consecutive iterations to be less than 10−8. Finally, for every combination of rank, 

sampling factor, and number of iterations, we run Turbo-SMT and the corresponding 

baseline 5 times, in order to account for multiple local minima as well as variation in the 

execution times.

Figure 6 shows the run times for CMTF-OPT and CMTF-ALS. In particular, we show the 

average run time, as well as the maximum run time, in order to account for the worst case 

scenario. As expected, the run time for both baselines increases as the decomposition rank, 

and the number of iterations increase. There are a few cases where the runtime for 

iter=1000 is larger than that of iter=10000, however, since iter is merely the maximum 
number of iterations, and the problem being solved is a highly non-convex one, it is very 

likely that a run from the batch where iter was 10000 converged faster than a run from the 

batch of iter=1000. In Figure 7 we show the corresponding run times for Turbo-SMT, 

using both baselines. We observe the general trend of the run time increasing with the rank 

and the number of iterations, however, the run time decreases as the sampling factor 

decreases.

710000 iterations is the default for CMTF-OPT, according to the documentation.
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7.3 Accuracy

During the experiment described in Section 7.2, besides run time, we also measured the 

reconstruction error for each method and each combination of parameters. In Figure 8 we 

show the reconstruction errors for the two baselines, and in Figure 9 the error for Turbo-

SMT. A first observation is that the error is fairly high for both the baselines and Turbo-

SMT, fact that possibly indicates that the structure of the data is not exactly the one being 

imposed by CMTF, however, a low rank approximation is still useful for exploratory 

analysis.

Figures 9 assumes that the number of repetitions r is fixed to 4, which is a rather small 

number, considering the size of the data. When we, however, increase r, the approximation 

improves. In Figure 10 we demonstrate that the algorithm operates correctly, in the sense 

that it reduces the model error (Equation 2.1) when doing more repetitions. In particular, the 

vertical axis displays the relative error, i.e.  (with ideal being equal to 1) 

and the horizontal axis is the number of repetitions in the sampling. We use 60 × 200 × 9 

portion of the BrainQ tensor and the entire matrix, to ensure that both the baseline (CMTF-

OPT in this case) and Turbo-SMT run in a short amount of time. We set . 

We run the experiment 1000 times and we keep the solutions achieving the minimum error. 

As Figure 10 shows, Turbo-SMT’s relative error decreases as a function of the repetitions, 

indicating that Turbo-SMT generally reduces the CMTF approximation error with every 

repetition. As the decomposition rank increases, the number of repetitions needed increases 

as well, since the model to be captured becomes more complex. Because we are operating 

on smaller pieces of data, we aim for very low rank decompositions, in order to avoid 

overfactoring (i.e. choosing a higher number than the rank of the data) which may cause 

problems with the stitching and lead to instabilities. Additionally, due to the fact that Turbo-

SMT operates on random samples of the data, convergence of the approximation error is 

noisier than deterministic methods such as ALS.

It is important to note that given a large dataset, during the first few repetitions of Turbo-

SMT, the accuracy may be comparable to the null model’s (i.e. the all-zero model), as shown 

in Figure 10; this is because Turbo-SMT starts with a null model and progressively builds it 

up. However, the important take home point here is that given a machine or a cluster of 

machines with enough amount of cores, we can enable the baselines to work on very large 

datasets that may not fit in main memory, and by running more repetitions, we explore more 

of the data and improve the approximation accuracy of the model.

7.4 Sparsity

One of the main advantages of Turbo-SMT is that, it is triple-sparse, i.e. starting from 

(possibly) sparse data, every intermediate result of Turbo-SMT is sparse, as well as the final 

output. In Fig. 11 we demonstrate the sparsity of Turbo-SMT’s results by introducing the 

relative sparsity metric; this intuitive metric is simply the ratio of the output size of the 

baseline algorithm, divided by the output size of Turbo-SMT. The output size is simply 

calculated by adding up the number of non-zero entries for all factor matrices output by the 

algorithm. We use a portion of the BrainQ dataset in order to execute this experiment. We 
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can see that for the relatively dense BrainQ dataset, we obtained significantly more sparse 

results;, e.g. up to 65 times more sparse with almost same approximation error, for the case 

of CMTF-OPT. We observe a large difference of result sparsity when using CMTF-OPT, as 

opposed to ALS; most likely, this difference is due to the fact that, according to [4], CMTF-

OPT converges to a better local minimum than ALS. The results of Fig. 11 indicate that our 

triple-sparse algorithm is able to capture the most useful variation of the data, successfully 

suppressing noise.

7.5 Comparison to Tucker3 Compression

One existing approach used for speeding up the PARAFAC decomposition is based on the 

CANDELINC theorem [16] and has been used in [15, 14]; roughly, the method first uses 

Tucker3 in order to compress the original tensor to a smaller, core tensor, then fits the 

PARAFAC decomposition on the core tensor, and finally, projects the factor matrices to the 

original space. In Section 5.3 of [31], it is implied that one could do the same for the CMTF 

problem. Before proceeding with a brief sketch of the approach which, to the best of our 

knowledge, has not been published yet, we provide a brief overview of the Tucker3 

decomposition.

Consider the I × J × K tensor X̲. Then, its {Q, R, P} Tucker3 decomposition consists of a P 
× Q × R core tensor, say, G̲ and three assorted, unitary, matrices U, V, Z with sizes I × P, J × 

Q and K × R respectively. The Tucker3 objective function is:

and we may write the decomposition, compactly, as:

Having a tensor X̲ coupled with matrices Yi, i = 1 ⋯ 3, we may first obtain the Tucker3 

decomposition of X. Consequently, we may use U in order to project Y1 to the compressed 

space, and respectively V for Y2 and Z for Y3. We, thus, obtain a new set of coupled data: 

the core tensor G̲, and the projected side matrices. Then, we fit a CMTF model to the 

compressed data, and as a final step, we use U in order to project A, D to their original 

dimension (and accordingly for the rest of the factor matrices).

This method, however, lacks a few key features that Turbo-SMT has:

• Tucker3 is now a bottleneck; its computation (even though there exist 

memory efficient implementations in the literature [10], [29], which we 

use in our implementation) is very costly, compared to the simple 

sampling scheme that Turbo-SMT is using. Even though alternatives to 

Tucker3 could be used for the compression (e.g. HOSVD [20]), the 
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authors of [15] state that the algorithm is better off using Tucker3 

compression, quality-wise, whenever Tucker3 is able to be computed.

• This method, in contrast to Turbo-SMT, is not parallelizable, at least not in 

an obvious way, that would make its computation more efficient.

• This compression-based technique is not triple-sparse: The output of 

Tucker3 is dense, hence the core tensor G̲ and the projected side matrices 

are going to be dense. Additionally, both ALS and CTMF-OPT [4] 

produce dense factors. Therefore, this technique is prone to storage and 

interpretability issues.

We implemented this compression-based technique, using Tensor Toolbox’s [10] memory 

efficient implementation of the Tucker3 decomposition. In Fig. 12, we illustrate the wall-

clock time of this approach, compared to Turbo-SMT, on the entire BrainQ dataset; we 

chose s = 5 for Turbo-SMT, and we chose P = Q = R = 60 for the compression-based 

technique. We observe that Turbo-SMT performs significantly better, while, additionally, 

producing sparse outputs.

7.6 Performance of ALS with missing values

In order to measure resilience to missing values we define the Signal-to-Noise Ratio (SNR) 

as simply as , where X̲m is the reconstructed tensor when a m fraction 

of the values are missing. In Figure 13, we demonstrate the results of that experiment; we 

observe that even for a fair amount of missing data, the algorithm performs reasonably well, 

achieving high SNR. Moreover, for small amounts of missing data, the speed of the 

algorithm is not degraded, while for larger values, it is considerably slower, probably due to 

Matlab’s implementation issues. However, this is encouraging, in the sense that if the 

amount of missing data is not overwhelming, Turbo-SMT is able to deliver a very good 

approximation of the latent subspace. This experiment was, again, conducted on a portion of 

BrainQ.

8 Related Work

8.1 Coupled, Multi-block, Multi-set Models

Coupled Matrix-Tensor Factorizations belong to a family of models also referred to as 

Multi-block or Multi-set in the literature. Smilde et al. in [48] provided the first disciplined 

treatment of such multi-block models, in a chemometrics context. One of the earliest works 

that introduce the concept of coupling in data mining applications is [11], where the authors 

apply their algorithms to movie recommendation and newsgroup article clustering. In [47], 

Singh and Gordon introduce a collective matrix factorization framework, again in a data 

mining setting, where the coupling is between matrices. An important issue with these 

models is how to weigh the different data blocks such that scaling differences may be 

alleviated. In [52], Wilderjans et al. propose and compare two different weighing schemes.
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Most related to the present work is the work of Acar et al. in [4], where a first order 

optimization approach is proposed, in order to solve the CMTF problem. In [5], Acar et. al 

apply the CMTF model, using the aforementioned first-order approach in a bioinformatics 

setting. In [3], Acar et. al introduce a coupled matrix decomposition, where two matrices 

match on one of the two dimensions, and are decomposed in the same spirit as in CMTF, 

while imposing explicit sparsity constraints (via ℓ1 norm penalties); although Turbo-SMT 

also produces sparse factors, this so happens as a fortuitous byproduct of sampling, whereas 

in [3] an explicit sparsity penalty is considered. As an interesting application, in [55], the 

authors employ CMTF for Collaborative Filtering. On a related note, [53], [33], and [35] 

introduce models where multiple tensors are coupled with respect to one mode, and 

analyzed jointly. Finally, extending the CMTF framework, Acar et al. propose in [7] a new 

model where rank-one components can be shared by the matrix and the tensor, or belong 

solely to either one of the data pieces/blocks.

To the best of our knowledge, Turbo-SMT is the first algorithm that is able parallelize and 

sparsify any (possibly highly fine tuned) core algorithm for CMTF. The original paper 

introducing Turbo-SMT appeared at SIAM SDM 2014 [45].

8.2 Fast & Scalable Tensor Decompositions

The mechanics behind the Tensor Toolbox for Matlab [10] are introduced in [30] and later 

on in[9], where Bader and Kolda first show how to efficiently decompose sparse tensors, 

avoiding the materialization of prohibitively dense and large intermediate data. Bro and 

Sidiropoulos introduce a compression based method in [14] which is able to speed up 

PARAFAC, without however exploiting parallelization. In [41] the authors introduced a 

parallel algorithm for the regular PARAFAC decomposition, where a sampling scheme of 

similar nature as here is exploited; following a similar split and merge parallelization 

scheme, [46] introduces a fast and parallelizable algorithm for PARAFAC, based on 

compression using random projections, which provides guarantees with respect to the 

identifiability of the true latent factors. In [26], a scalable MapReduce implementation of 

PARAFAC is presented, where the intermediate data problem is avoided in the same way as 

in [30, 9], with specific considerations that pertain to the distributed implementation. Finally, 

in [54], the authors introduce a parallel framework in order to handle tensor decompositions 

efficiently. More recently, Beutel et al. [12] introduce a highly scalable Distributed 

Stochastic Gradient system for CMTF on MapReduce. Finally, in [19], the authors propose 

an alternative parallel architecture for decomposing tensors on a cluster, by exploiting the 

multilinear nature of the tensor data and mapping the computation in a similar multilinear 

fashion on the cluster’s machines. Finally, in [28] the authors introduce a method to 

vertically partition a multi-relational dataset (which can be viewed as a multiway tensor) 

using relational normalization, which results in independent decompositions of smaller 

tensors, that are combined at the end.

8.3 Sampling based techniques

Turbo-SMT draws its strength in reducing the problem size using biased sampling. In that 

sense, it is related to the line of work under the name of “CUR” [22]. In its matrix version, 

given a matrix X, CUR samples m columns of X which define matrix C, samples n rows of 
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X that form matrix R and uses C, R to compute the “core” matrix U. The main advantage of 

doing so is that C, R contain actual pieces of the data, which makes the decomposition 

easily interpretable. There is also follow up work that generalizes CUR to tensors [36, 23] in 

the same spirit. The way sampling is used in Turbo-SMT is different, since it is used in order 

to obtain a small piece of the data which is later decomposed according to CMTF; thus the 

end result of the algorithm will be approximating the result of CMTF and not define a 

decomposition that contains actual pieces of the data.

Finally, in [41] a subset of the authors of the present work propose a biased sampling based 

PARAFAC decomposition that uses the same sample, parallelize, and merge framework.

8.4 Tensor Applications to Brain Data

There has been substantial related work, which utilizes tensors for analyzing brain data. In 

[2] Acar et al. apply the PARAFAC decomposition on EEG measurements in order to detect 

epileptic seizures. Morup et al. in [38] introduce a variation of the PARAFAC decomposition 

that is able to handle temporal shifts across brain measurements. In [17], the authors 

describe how one can use non-negative tensor factorization for source separation and 

analysis of brain signals, and finally, in [18] et al. introduce a constrained PARAFAC model 

in order to identify the connectivity between different brain regions.

8.5 Tensor Applications to Social Network Analysis

Social network analysis has also been tackled using tensors before. One of the first works 

that did so was the work of Bader et al. [8], where the authors detect cliques of dense 

interaction in the ENRON e-mail network, while tracking their activity over time. The 

findings of [8] have also been reproduced in [43] using different, albeit in the tensor regime, 

techniques. Lin et al. [33] employs coupled tensor factorization for community detection in 

social graphs with context information about the users. Finaly, in [41], the authors apply 

their tensor decomposition algorithm on a Facebook dataset, detecting normal and abnormal 

user interaction.

9 Conclusions

The main contributions of our work are:

• Parallel & triple-sparse algorithm: Turbo-SMT is able to parallelize any 
CMTF solver, producing much sparser results. Moreover, the way that 

Turbo-SMT is defined, it can operate on data that do not fit in main 

memory, thus enabling state of the art CMTF solvers to work on such data, 

even though they are not specifically designed to do so.

• Effectiveness and Knowledge Discovery: Turbo-SMT, applied to the 

BrainQ dataset, discovers meaningful triple-mode clusters: clusters of 

words, of questions, and of brain regions have similar behavior; as a by-

product, Turbo-SMT predicts brain activity, with performance that 

matches state of the art predictors.
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• Reproducibility: We make our code public, enabling reproducibility and 

re-usability of our work.
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Appendix

A Run times of BrainQ on a less powerful machine

The run time experiments shown in Section 7.2 are executed on a powerful workstation with 

ample memory and processing power. In this appendix, we show results of the very same 

experiments, when executed on a much smaller, more accessible machine, an iMac with 4Gb 

of RAM and an Intel i5 processor. The Matlab version on that machine was 7.12.0.635 

(R2011a) 64-bit. Due to timing considerations, for the ALS algorithm we only ran the 

experiment for 100 iterations of the core solver, since the machines memory and processing 

power seemed inadequate.
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Figure 14 shows the run times of the baselines. As a general trend, we observe that for most 

of the configurations, the algorithms take more time to execute compared to the powerful 

workstation case of Section 7.2, which is expected. In Figure 15 we show the timings for 

Turbo-SMT using the two baselines as core solvers; Turbo-SMT is generally faster than the 

baselines, however the speedup yielded here is smaller. Again, this behavior is expected, 

since the all four cores of the processor were fully utilized during the entire time of the 

experiment, and the memory of the machine was rather small, leading to a large swap file 

which resulted in heavy disk I/O, further burdening the CPU cores.

However, the main principle of Turbo-SMT still holds: by breaking up the data into smaller 

pieces, Turbo-SMT is able to parallelize the computation, improving performance and 

potentially enabling the analysis of very large datasets that do not fit in main memory that 

the state of the art simply cannot handle.

B Run times and sparsity of Facebook

In this section of the appendix, we provide more details on the technical aspects of analyzing 

the Facebook dataset, that do not pertain to data analysis and discovery. We were not able to 

measure reconstruction error in this dataset due to Matlab’s memory limitations. Figure 

16(a) shows the run time for CMTF-OPT and Turbo-SMT using CMTF-OPT for Facebook, 

for a variety of ranks (using s1 = 10, s2 = 10, and s3 = 2, and 100 iterations for the core 

solver). Timing was computed on the same workstation that was used for Section 7.2. 

Because the Facebook dataset is extremely sparse and the baseline is able to handle it more 

efficiently, using sparse computations, the speedup observed is very small. However, as 

shown in Figure 16(b), Turbo-SMT yields results that are much sparser than those of the 

baseline (where the definition of sparsity is the same as in Section 7.4), which is very 

important for interpreting the results.
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Figure 1. 
(a): Analyzing the BrainQ dataset for the Neurosemantics application, finding semantically 

similar nouns that activate the same part of the brain. In this case, the premotor cortex is 

associated with movements such as holding or picking small items up. (b): The proposed 

algorithm Turbo-SMT reduces the approximation error, while running in parallel, and 

operating on much smaller pieces of data at any given point in time.
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Figure 2. 
PARAFAC decomposition [24] of a three-way tensor of a brain activity tensor as sum of F 
outer products (rank-one tensors), reminiscent of the rank-F singular value decomposition of 

a matrix. Each component corresponds to a latent concept of, e.g. “insects”, “tools” and so 

on, a set of brain regions that are most active for that particular set of words, as well as 

groups of persons.
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Figure 3. 
Coupled Matrix - Tensor example: Tensors often share one or more modes (with thick, wavy 

line): X̲ is the brain activity tensor and Y is the semantic matrix. As the wavy line indicates, 

these two datasets are coupled in the ’word’ dimension.
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Figure 4. 
Turbo-SMT finds meaningful groups of words, questions, and brain regions that are (both 

negatively and positively) correlated, as obtained using Turbo-SMT. For instance, Group 3 

refers to small items that can be held in one hand, such as a tomato or a glass, and the 

activation pattern is very different from the one of Group 1, which mostly refers to insects, 

such as bee or beetle. Additionally, Group 3 shows high activation in the premotor cortex 
which is associated with the concepts of that group.
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Figure 5. 
This is a pattern extracted using Turbo-SMT, which shows what appears to be a spammer on 

the Facebook dataset: One person, posting to many different walls on a single day.
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Figure 6. 
Run time (in seconds) for the baselines, on the full BrainQ dataset. The results shown are 

over 5 full runs of the algorithm.
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Figure 7. 
Run time (in seconds) for Turbo-SMT when using each of the baselines as core solver. The 

results shown are over 5 full runs of the algorithm. For every value of F, the bars on the plot 

starting from left to right, correspond to the parameters shown on the legend. The number of 

repetitions r was set to 4.
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Figure 8. 
Reconstruction error of the tensor and the matrix (as measured by the cost function of the 

problem) for the two baselines. for r = 4.
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Figure 9. 
Reconstruction error for Turbo-SMT.
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Figure 10. 
The relative error of the model, as a function of the number of repetitions r is decreasing, 

which empirically shows that Turbo-SMT generally reduces the approximation error of the 

CMTF model.

Papalexakis et al. Page 38

Stat Anal Data Min. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
The relative output size vs. the relative cost indicates that, even for very dense datasets such 

as BrainQ, we are able to get up to 65 fold (for CMTF-OPT) decrease in the output size, 

while maintaining almost same approximation error as the baseline.
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Figure 12. 
Comparison of Turbo-SMT and a compression-based technique, that uses the Tucker3 

decomposition, as described in Sec. 7.5. Turbo-SMT significantly outperforms the 

alternative method.
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Figure 13. 
This Figure shows the Signal-to-Noise ratio (SNR)-as defined in the main text- as a function 

of the percentage of missing values. We can observe that, even for a fair amount of missing 

values, the SNR is quite high, signifying that Turbo-SMT is able to handle such ill-

conditioned settings, with reasonable fidelity.
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Figure 14. 
Run time (in seconds) for the baselines
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Figure 15. 
Run time (in seconds) for Turbo-SMT
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Figure 16. 
Run times, sparsity, and approximation error for the Facebook dataset, using CMTF-OPT 

and Turbo-SMT with CMTF-OPT as a core solver.
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Table 1

Table of symbols

Symbol Description

CMTF Coupled Matrix-Tensor Factorization

ALS Alternating Least Squares

CMTF-OPT Algorithm introduced in [4]

x, x;, X, X̲ scalar, vector, matrix, tensor (respectively)

A ⊙ B Khatri-rao product.

A ⊗ B Kronecker product.

A * B Hadamard (elementwise) product.

A† Pseudoinverse of A (see Sec. 2)

‖A‖F Frobenius norm of A.

a ◦ b ◦ c (a ◦ b ◦ c) (i, j, k) = a(i)b(j)c(k)

(i) as superscript Indicates the i-th iteration

series of matrices or vectors, indexed by i.

X̲(i) i-th mode unfolding of tensor X̲ (see [27]).

ℐ Set of indices.

x(ℐ) Spanning indices ℐ of x.

nucleus a biased random sample of the data tensor.
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