
Comparative Study of Clustering Techniques for
Real-Time Dynamic Model Reduction ∗

Emilie Purvine†, Eduardo Cotilla-Sanchez‡, Mahantesh Halappanavar†,
Zhenyu Huang†, Guang Lin◦, Shuai Lu•, Shaobu Wang†

†Pacific Northwest National Laboratory; first-name.last-name@pnnl.gov

‡Oregon State University; ecs@eecs.oregonstate.edu

◦Purdue University; guanglin@purdue.edu

•EnerMod; shuai.lu@EnerMod.com

July 20, 2017

Abstract

Dynamic model reduction in power systems is necessary for improving computa-
tional efficiency. Traditional model reduction using linearized models or offline anal-
ysis is not adequate to capture dynamic behaviors of the power system, especially
with the new mix of intermittent generation and intelligent consumption making the
power system more dynamic and non-linear. Real-time dynamic model reduction has
emerged to fill this important need. This paper explores using clustering techniques
to analyze real-time phasor measurements to identify groups of generators with simi-
lar behavior, as well as a representative generator from each group for dynamic model
reduction. Two clustering techniques – graph clustering and k-means – are consid-
ered. These techniques are compared with a previously developed dynamic model
reduction approach using Singular Value Decomposition. Two sample power grid
data sets are used to test these different model reduction techniques. Based on the
algorithms’ relative performance, recommendations are provided for practical use.

Keywords: Power System Dynamics; Graph Clustering; Model Reduction; SVD

technometrics tex template (do not remove)

∗This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Applied Mathematics program.

1

ar
X

iv
:1

50
1.

00
94

3v
2

 [
ph

ys
ic

s.
so

c-
ph

]
 1

8
Ju

l 2
01

7

1 Introduction

Power engineers rely on simulation to accomplish operation and planning tasks. Dynamic

simulation tools are used extensively to simulate the behavior of power systems over time

subject to disturbances, such as faults, sudden loss of transmission paths, and loss of gen-

eration or load. Good models and accurate parameters are essential for credible computer

simulation. In some cases, inaccurate computer models and simulations result in optimistic

decisions, which can put the electric infrastructure in jeopardy. The extreme consequences

of such optimistic decisions can be massive outages, such as the August 1996 western U.S.

system breakup [16]. In many other cases, inaccurate models and simulations lead to

pessimistic decisions, resulting in reduced asset utilization.

Given the power grid’s complexity and large footprint, a power company needs a reduced

model for the region outside of its own service territory. The goal of such model reduction

is to reasonably represent the external system with a simplified smaller model so analysis

can be performed more efficiently [1, 30]. This is of particular interest for real-time power

system operation, such as online dynamic security assessment [27, 28, 31].

Traditionally, model reduction is performed in the steady-state context, largely ignoring

dynamics, or performed offline where the scenarios may be different from real-time con-

ditions. This has served the power system reasonably well when the behaviors are more

predictable. However, this practice is no longer adequate as the power system is becom-

ing increasingly dynamic and non-linear due to the new mix of intermittent generation

and intelligent consumption. Model reduction must evolve to handle these non-linear and

dynamic behaviors.

Dynamic model reduction has been studied extensively. Coherency is the most common

concept adopted to identify groups of dynamic devices, e.g., generators, for model reduction

purposes. Specifically, a group of generators, G = {g1, . . . , gm}, is coherent if their difference

in voltage angles is constant over time, i.e., there exists a c ∈ R such that δgi(t)− δgj(t) = c

for all t ≥ 0 and gi, gj ∈ G. Coherency can be determined using a linearized model around

an operating point [21, 24] or by analyzing offline simulated dynamics [22]. Either way, it is

not capable of capturing real-time operating conditions, which renders the reduced model

useless for timely analysis.

2

Coherency is inherently a clustering-based reduced order model (ROM) method — as

are the majority of the methods discussed in this paper. However, it is important to point

out that there are many other types of ROM methods. Subspace projection methods,

which find a simpler subspace of the full model with certain approximation guarantees,

are very common. Proper Orthogonal Decompositions (PODs) [19] and Krylov subspace

methods [2] are two examples of subspace projections. One method discussed in this paper,

Singular Value Decomposition (SVD), is also an example of a subspace method. Beyond

clustering and subspace methods, there are also linearization techniques that are used to

reduce variable space of the dynamic power equations directly [10].

Recent developments and deployment of phasor technologies present an opportunity to

perform dynamic model reduction in real time because high-speed phasor measurements

capture the majority of the power system dynamics necessary for power system operation

and planning purposes. Ref. [29] proposes an SVD-based method that can be used for real-

time dynamic model reduction. This method also preserves a certain level of non-linearity

in the reduced model. Following this line of research, our team continues developing real-

time dynamic model reduction techniques using graph clustering methods and compares the

accuracy of reduced models with the SVD-based approach, as well as traditional k-means

clustering.

Real-time phasor measurements are used to cluster generators based on similar behav-

iors, and representative generators are chosen from each cluster. The final reduced model

contains only the representative generators. We investigate two graph clustering methods

– recursive spectral bipartitioning [25] and spectral clustering [18]. Variants of implemen-

tations of these two methods are tested alongside the SVD and k-means algorithms on

fault scenarios within the IEEE 50-machine [4] and 16-machine systems. For reference,

Figure 1 contains a workflow diagram showing each method found in the remainder of

this paper. Error measurements quantify various levels of accuracy for each method, but

many possess accuracy that is adequate for power system operation and planning purposes.

From a comparative perspective, this paper provides a good reference point for practical

implementations.

The remainder of the paper is organized as follows: Section 2 describes the system and

3

Figure 1: Workflow showing the four basic reduction methods compared in this paper.

4

data used in implementing and comparing the proposed model reduction methods. Sec-

tions 3 and 4 provide an overview of the clustering techniques and representative generator

identification, including their computational complexity. Section 5 presents the compara-

tive study approach and results, and Section 6 concludes the paper with suggestions for

real-world use of these algorithms and future research directions.

2 Test Systems and Data

There are many types of data that can be collected from power grid systems. This pa-

per employs data collected by Phasor Measurement Units (PMUs). PMUs, also called

synchrophasors, collect data synchronously across the power grid, providing an “online”

data stream. These units are deployed to many systems throughout the grid and are time

synchronized so that measurements taken at different locations can be correlated together.

This work focuses on phasor data, the angle of the terminal voltage. These data are col-

lected at the millisecond resolution, 100 samples per second, and afford a picture of voltage

angle oscillation at each generator over time. For each generator, a time series of phasor

values is collected, ~δi =
〈
δ
(1)
i , δ

(2)
i , . . . , δ

(m)
i

〉
, where δ

(j)
i is the phasor value of generator i

at the jth time step. In both test systems, data are collected for 3.8 seconds, m = 380, but,

for generality, the symbolic parameter m is used throughout the paper. In future work,

a study is planned to determine how many samples are needed to yield a useful reduced

order model.

2.1 Evaluated Test Systems

Two small model systems are used for method validation. Specifically, the IEEE 145-bus,

50-generator system [4] (Figure 2) referred to as system S1, and the IEEE 68-bus, 16-

generator system, system S2 (Figure 3). In large power networks, such as the Eastern or

Western Interconnects in the United States, individual power companies only control small

areas, known as service territories. All of these small areas are interconnected to form

the entire grid. Each power company considers the generators and buses in their service

territory to be their internal system, while the remaining generators and buses are external.

5

Companies prefer to model their own internal generators fully and use model reduction to

determine a simpler approximation for the external system as it typically is much larger.

In S1, there are I1 = 16 internal system generators and E1 = 34 external generators, while

in S2, there are I2 = 7 internal and E2 = 9 external. In S1, generator 37 at Bus 130 in

the internal area is chosen as the reference machine, meaning it is treated as if its phasor

angle is always 0. All other machines’ phasor values are measured as deviations from the

reference machine. In S2, generator 16 is used as the reference.

Figure 2: The IEEE 50 generator system, S1. In this image, the circles represent the 50

generators in the system, and the buses are numbered 1 through 145.

All generators are modeled using the classical model for machine dynamics with a

second-order swing equation. In power systems, following a disturbance, some state vari-

6

Figure 3: The IEEE 16 generator system, S2. Again, the circles are generators, labeled G1

through G16, and the buses are numbered 1 through 68.

ables decay fast, called fast variables, such as those from excitation systems. Meanwhile,

others, known as slow variables, decay slowly, e.g., rotor angle and speed. Oscillations

of slow variables are determined by machine inertias and are well captured by the classi-

cal (second-order) model [5]. Moreover, slow variables dominate power oscillations in the

power system. Therefore, the classical model is used in this work. Figure 4 illustrates

the difference between the classical model response (solid blue line) and high-order model

response (dotted red line).

For the tests on S1, simulated PMU data sets are created using F1 = 5 different three-

phase, short circuit faults within the system. The faults last for 60 ms. Then, the line is

tripped to clear the fault. In S2, F2 = 3 faults are simulated. Post-fault oscillations of the

phasor values for the external system generators are recorded. The next section describes

the methods used for model reduction to determine sets of representative generators.

7

Figure 4: An illustration of the difference between the classical model response (solid blue

line) and the high-order model response (dotted red line).

3 Identifying Representative Generators

This section describes four methods for identifying representative generators. These rep-

resentative generators are meant to exhibit different types of dynamic behavior and will

be used in reduced model simulations (described in Section 4). Recalling the workflow

given in Figure 1 that identifies each model reduction method, this section describes their

basic details. For full descriptions of these methods, refer to other detailed papers [14, 29].

The computational complexity of each method is also discussed. Table 1 summarizes the

four methods in terms of their parameters and computational complexity. Runtimes for all

methods on a standard desktop computer are less than one second for both test systems

considered.

3.1 Singular Value Decomposition (SVD)

SVD’s goal in the power grid model reduction setting is to find a subset of external gen-

erators, known as representative generators, whose dynamic responses, the ~δi vectors, are

as close to orthogonal as possible. The more orthogonal the representative generators are,

the larger their span. Therefore, there is a better chance that the linear span of these

representative vectors will contain the dynamic response vectors for the remainder of the

generators.

SVD goes far beyond this application and is a general method of matrix factorization

into two unitary matrices and one diagonal matrix [11]. Given an initial m× n matrix, A,

8

Method Parameters Computational

complexity

SVD k O(n2m+ nm2 +m3 + nk)

k-means k O(nk2i)

Recursive spectral

bipartitioning

k; `; “median” or “zero”;

“size”, “sum”, or “avg”

O((k − 1)n3)

Spectral

clustering

k; ` O(n3)

Table 1: Summary of model reduction methods investigated. Refer to each corresponding

section for a detailed description of the parameters.

the SVD method factorizes A into a product of three matrices, A = UΣV ∗, where U (m×m)

and V (n × n) are unitary and Σ is an m × n diagonal matrix. The columns of UΣ are

the principal components of A, while the diagonal values of Σ are singular values. Singular

values are often used to determine how many principal components to choose because

smaller singular values tend to contribute only noise to the principal components. SVD

is used across many different domains, including audio verification [23] and evolutionary

genomics [3]. This work focuses on the algorithm described in [29], where SVD is used for

power grid model reduction.

Recall that for each external generator, i, a time series of phasor values is collected

from a PMU and normalized to form the vector ~δi =
〈
δ
(1)
i , δ

(2)
i , . . . , δ

(m)
i

〉
, where δ

(j)
i is

the normalized phasor value of generator i at the jth time step, and m is the number of

time steps. This vector represents the dynamics of generator i following a disturbance.

The normalization is done in a standard way by subtracting the mean and dividing by the

standard deviation for each ~δi separately. Let n = Ei be the number of external generators

(in system Si) and define the matrix δ to have ~δi as column vectors.

δ =

 ~δ1 ~δ2 · · · ~δn


9

(a) Singular values for all five fault scenarios in

the IEEE 50 system, system S1.

(b) Singular values for all three fault sce-

narios in the IEEE 16 system, system S2.

Figure 5

Given this formulation, an SVD is performed on the matrix δ, writing δ = UΣV ∗. The

first k principal components are found by taking the k × k submatrix of Σ that has the k

largest singular values, denoted Σk, along with the corresponding k columns of U , denoted

Uk. It can be written as

UkΣk = Xk =

 ~x1 ~x2 · · · ~xk


where ~xi is the ith principal component. The computational complexity of computing the

principal components is O(n2m+nm2 +m3) [12]. For both test systems considered in this

paper, the number of time steps, m, is much larger than the number of generators, n, so

the m3 term will dominate. However, this generally may not be the case, particularly in

an online process where few time steps from the recent history on a large system are used.

The two plots in Figure 5 show the singular values calculated for systems S1 (a) and

S2 (b). Because smaller singular values can contribute noise to the principal components,

these plots are used to pick the cutoffs of 4 to 15 in system S1 and 3 to 6 in system S2.

Once the principal components, Xk, are computed, the similarity between ~δis and ~xjs is

analyzed. Namely, for each ~xj find the ~δi closest in the Euclidean distance and choose that

~δi to be one of the representative generators. This yields the k vectors, ~δi, with the highest

similarity to an ~xj, forming the set of k representative generators. The complexity of this

step is O(nk) because each of the n phasor vectors must be compared to each k principal

components.

10

3.2 k-Means

Because the PMU data are vector data and can be thought of as points in Rm for some

m, k-means clustering is a natural choice for comparison. k-means is a standard recursive

clustering technique for data in Rm [26] and is widely used [15, 17]. In each recursion step,

the algorithm computes centroids of each current cluster and then reassigns points to the

cluster whose centroid is closest to it. An initialization step is needed to choose the initial

centroids, which is often done by choosing k points randomly from the original data set.

The algorithm then runs as follows: assign each data point to the cluster whose randomly

chosen centroid is closest, recompute centroids of the current clusters, reassign points to

clusters based on distance to new centroids, recompute centroids, etc. This is repeated

for some predetermined number of iterations, or until the clusters do not change and the

algorithm has converged.

One problem with k-means is that there is no guarantee it will terminate in a globally

optimal clustering. k-means uses gradient descent, or a similar optimization algorithm,

at each step. These are well known to have the possibility of getting stuck in a locally

optimal clustering. Because the initialization step is done randomly, there can be multiple

clusterings from the same input data, all being local optima. This problem can be mitigated

by running k-means clustering multiple times with different random initializations and

choosing the resulting clustering that minimizes an objective function. The chosen objective

function is the residual sum of squares defined as

RSS =
n∑
i=1

||~δi − µ(~δi)||2

where µ(~δi) denotes the centroid for the cluster that contains ~δi and the norm is taken to

be the Euclidean norm. We use the scikit-learn python implementation of k-means, which

runs a default of 10 times and chooses the clustering with the smallest RSS value.

This local optimum problem is also encountered in the spectral clustering method, which

uses k-means. However, it is not an issue for SVD or recursive spectral bipartitioning. The

advantage of k-means, however, is that it is the fastest of the algorithms considered in this

paper. The complexity of k-means is O(nk2i), where i is the number of iterations required

to converge. As k will be less than n, this is faster than the O(n3) graph clustering

11

algorithms.

3.3 Graph Clustering

Recursive spectral bipartitioning, and spectral clustering methods are not new, but they

have not previously been used to perform power grid model reduction. We have made

modifications that will allow for fine tuning by an operator.

First, the graph construction method from PMU data must be described. When setting

up a graph clustering problem, the graph vertices are chosen as the objects being clustered

(in this case, the generators), while the edges will indicate an amount of similarity between

vertices. For each generator, consider its phasor value data vector, ~δi ∈ Rm, where m is

the number of time steps recorded, and calculate a distance matrix D = (dij)
n
i,j=1. The

entries in D are given by the Euclidean distance between ~δi and ~δj, dij = ||~δi − ~δj||2. Once

this matrix has been created, an `-nearest-neighbor graph is formed by connecting each

generator (vertex) to its ` closest generators. Alternate distances and graph constructions

also can be used (see [14] for more details).

Both types of graph clustering will use spectral (eigenvalue) properties of the weighted

Laplacian matrix associated with the graph. The weighted Laplacian, L = (Lij)
n
i,j=1, is

defined as follows:

Lij =


∑

k 6=iwik i = j

−wij i 6= j.

The entries on the diagonal, Lii, are given by the sum of all edge weights on edges incident

to vertex i. Off-diagonal entries, Lij, are equal to the negative weight on edge eij. If an

edge is absent, it is treated as an edge of weight zero. An edge’s weight is defined as the

similarity score between the endpoint vertices based on their distance (high distance means

low similarity, and low distance represents high similarity). In particular, let wij = e−(d
2
ij/2)

be the Gaussian similarity between generators i and j. Other similarity functions, also

known as kernels, may be used, but the Gaussian function is fairly standard [18].

Creating the graph and the Laplacian matrix has complexity O(n2). Begin by calculat-

ing all pairs of distances between the n generators. This will be n(n−1)
2

distance calculations

and dominates the complexity. Then, to construct the `-nearest neighbor graph, for each

12

vertex, consider all other vertices and connect to the ` closest. This requires sorting the

sets of neighbors for each of the n vertices. Therefore, creating an `-nearest neighbor graph

can be done in O(n log n) time after the distances have been computed.

3.3.1 Recursive Spectral Bipartitioning

The most basic type of spectral graph clustering or partitioning is recursive spectral bi-

partitioning [20]. This algorithm uses the eigenvector for the second smallest eigenvalue of

the weighted Laplacian matrix. Clearly, as each row of the Laplacian matrix sums to zero,

there is a zero eigenvalue. It is not difficult to show that L is positive semidefinite. Thus,

zero is, in fact, the smallest eigenvalue, and its multiplicity is the number of connected

components in the graph. The second smallest eigenvalue is the algebraic connectivity of

the graph, and its associated eigenvector, commonly called the Fiedler vector after Miroslav

Fiedler who first defined the theory of algebraic connectivity and its relation to graph par-

titioning [8, 9], has properties that define a partition of the graph vertices into two groups.

The Fiedler vector contains positive, negative, and zero values. By partitioning the asso-

ciated vertices into two sets — one where the value in the Fiedler vector is negative and

the other in which it is positive (splitting the zero values among both or putting them

all in one of the two sets) — a graph partition is obtained that minimizes the sum of the

edge weights between the two partitions, and where both subgraphs are connected [8, 9].

Traditionally, the graph vertices are partitioned into those with positive values and others

with negative values because of the property that both subgraphs are connected. However,

this can lead to unbalanced partitions because there is no guarantee that half of the vertices

will have positive values while the other half will be negative. To construct more balanced

partitions, the split can be made based on the median of the Fiedler vector. This choice

only guarantees that one of the two induced subgraphs is connected. However, since the

partition will be recursively continued, having disconnected induced subgraphs should not

create problems because they will have the opportunity to split eventually. Both of these

splitting methods have been tested and are reported as part of the comparison in Section

5. In particular, splitting at zero often gives degenerate partitions into fewer than k sets.

Using the Fiedler vector to partition the graph vertices into two disjoint sets is only

13

the first step. A second degree of freedom in this method is how to continue the recursive

partitioning. In traditional recursive spectral bipartitioning, both of the sets are further

partitioned using the Laplacian of the subgraph induced by each set of vertices. If this

process of repeatedly splitting each set is continued for N steps, it will yield a partition

with 2N sets. A more targeted approach to the recursive splitting is explored to achieve any

number of sets rather than just powers of 2. Instead of arbitrarily splitting each set of the

partition into two at each step, a search is performed among all current sets for one that is

the least tight. We define tight as defined as either the sum of all pairwise distances in that

set, the average of all pairwise distances, or simply the size of the set. These three possible

tightness schemes are considered, in addition to the two methods for splitting the Fiedler

vector (zero or median). All of the results are summarized in Section 5. In the remainder

of this paper, recursive spectral bipartitioning may be referred to as Fiedler partitioning

because of the prominent use of the Fiedler vector.

The computational complexity of recursive spectral bipartitioning is dominated by the

Fiedler vector calculation which has complexity O(n3). This must be done many times,

each time a set is split into two. Therefore, complexity is O((k − 1)n3).

3.3.2 Spectral Clustering

For general spectral clustering, more than just one eigenvector of the weighted Laplacian

is used. Instead of using only the Fiedler vector, the first k eigenvectors are considered.

Each entry of an eigenvector corresponds to a vertex in the graph from which the weighted

Laplacian was formed. An n × k matrix can be formed where the columns are the first

k eigenvectors. Each row can be thought of as a new vector representation for each of

the vertices. k-means is then used to cluster these new vector representations, thereby

clustering the vertices themselves. The pipeline illustration in Figure 6 shows this sequence.

In this case, eigenvectors are only calculated once, at O(n3) complexity, followed by a single

k-means calculation. As the k-means complexity is less than n3, the total complexity of

spectral clustering is dominated by the n3 term. For a more in-depth discussion of spectral

clustering, including other variants not investigated here, see [18].

14

Clustering of
vertices

Graph Laplacian
n× n matrix

−wiji

j

First k eigenvectors
{xi}ni=1

x1 x2 xk

x11 x21 xk1

x12 x22 xk2

x1nx2n xkn

k-means
on rows

Figure 6: An illustration of the steps in spectral clustering.

3.4 Choosing Cluster Representatives

Both k-means and the graph methods produce a partition of the generators into clusters

of similar dynamic behavior. However, in the context of model reduction, we need a set of

representative generators, as produced by the SVD method. This is achieved by choosing

one representative generator from each cluster: the medoid.

For each cluster, Ci = {δij}|Ci|
j=1, it is preferable to choose the average time series, the

true centroid:

δCi
=

〈∑|Ci|
j=1 δ

(k)
ij

|Ci|

〉m

k=1

.

However, this true centroid is unlikely to correspond exactly to the time series of phasor

values for a generator in the given cluster. Instead, the generator whose time series is

closest to this centroid in the Euclidean distance is chosen. This element closest to the

true centroid is known as the medoid of the cluster.

4 From Representative Generators to a

Reduced Model Simulation

Once a set, C, of representative generators has been produced from any one of the meth-

ods described in Section 3, a reduced model simulation can be performed. For each

non-representative generator, ~δi 6∈ C, coefficients αj ∈ R are found via regression such

that ||~δi −
∑

~δj∈C αj
~δj||2 is minimized. In other words, the phasor values for each non-

representative generator are approximated as a linear combination of the phasor values

for the representative generators. Then, only the set of representative generators are sim-

ulated, by solving power flow equations, and responses for the remaining generators are

15

approximated using the same linear combinations of the responses for the representative

generators.

5 Comparative Study Approach and Results

In this section, a measure that quantifies the amount of error between a reduced model and

the full system is defined. In addition, an overview of performance profiles, the method for

comparing the error in reduction methods across multiple scenarios, is provided. Finally,

performance profiles are used to compare the reduction methods described in the previous

section.

5.1 Measures for Comparison

To judge the error of a particular model reduction method, M , for test system Sx (x = 1, 2)

under fault scenario 1 ≤ u ≤ Fx, first the full system of external and internal generators

(Ex external + Ix internal) is simulated and then the reduced system (r representative

external + Ix internal, depending on the reduction ratio r). Recall that the internal system

represents the set of generators and buses owned by a particular power company of interest

and are not reduced, while the external machines are interconnected but owned by others.

Responses, or phasor values, of the Ix internal generators are recorded during both full and

reduced simulations. Let δfu,i(t) be the phasor value response of the ith internal generator

in the full simulation at time t following fault scenario u and δM,r
u,i (t) be the same for the

reduced model. Notice that δfu,i does not have the M superscript because it is independent

of any reduced model. Then, for each internal system generator, define the following metric

to measure the mismatch of response curves of the full and reduced systems:

JMu,r(i) =
1

t2 − t1

∫ t2

t1

∣∣∣δM,r
u,i (t)− δfu,i(t)

∣∣∣ dt (1)

which is the L1 norm between vectors δM,r
u,i and δfu,i. For example, JSVD

3,7 (38) for system S1

is the error on internal generator i = 38 for fault scenario u = 3 using the M = SVD model

reduction method to r = 7 generators. While using the L2 norm or some other Lp norm is

an option, the results are nearly identical in our test cases. Hence, only one is presented.

16

To simplify the comparisons define

JMu,r =
1

Ix

∑
i∈Ix

JMu,r(i)

to be the average JMu,r(i) values over all internal generators. Of note, there is a slight abuse

of notation in the sum over i ∈ Ix. Here, we use Ix to mean both the set of internal

generators and the number of internal generators, as it was originally defined.

5.2 Performance Profiles

The comparison method use, perfprof (for “performance profile”) [6, 7, 13], comparatively

plots the performance of different algorithms against each other. This type of analysis

is typically used when comparing the runtimes of multiple algorithms against each other,

preferring low runtime over high. This strategy is adopted here because the premise is the

same: to choose the reduction method that most often across multiple comparable tests

(fault scenarios) has smallest error value. Comparisons will only be made within the same

reduction ratio, r, and within the same test system. Once a system (x = 1 or 2) and an r

have been chosen, there are nine methods to compare across Fx fault scenarios, which are

called tests. Table 2 summarizes these values for the example where x = 2 and r = 5.

M Test 1 Test 2 Test 3

SVD JSVD
1,5 JSVD

2,5 JSVD
3,5

k-means Jk-means
1,5 Jk-means

2,5 Jk-means
3,5

Fiedler, zero, sum JFzsu
1,5 JFzsu

2,5 JFzsu
3,5

Fiedler, zero, avg JFza
1,5 JFza

2,5 JFza
3,5

Fiedler, zero, size JFzsi
1,5 JFzsi

2,5 JFzsi
3,5

Fiedler, mid, sum JFmsu
1,5 JFmsu

2,5 JFmsu
3,5

Fiedler, mid, avg JFma
1,5 JFma

2,5 JFma
3,5

Fiedler, mid, size JFmsi
1,5 JFmsi

2,5 JFmsi
3,5

spectral J spec
1,5 J spec

2,5 J spec
3,5

Table 2: Summary of the values compared for system S2 and reduction ratio r = 5.

17

Note that some of the methods did not return a reduced model for all r values in a given

fault scenario, so some of these data may be missing. This is because the clustering may

have degenerated into more than r clusters. For example, if the graph clustering resulted

in r clusters where one of the clusters consisted of only v isolated vertices, the algorithm

treats it as r + (v − 1) clusters. If this is the case, we let the corresponding JMu,r measure

be a value larger than any of the other values returned in the table. This indicates that

it did a “bad job” at that particular reduction ratio in that test or scenario. Too many

of these degenerate reductions reflects poorly on the method and will lower the perfprof

score, described next, as its error will always be much higher than the lowest error.

The performance profile method produces a plot with a tolerance factor, θ, on the x

axis and a proportion of the tests, 0 ≤ p ≤ 1, on the y axis. Each of the model reduction

methods corresponds to a staircase-shaped curve in the plot. Continuing to use Table 2 as

an example, a point (θ, p) for method M in this example means that JMu,5 is within a factor

of θ of the best Ju,5 in proportion p of the three tests. It is likely that the best method is

different for each u, but the JMu,5 measurement produced by this model reduction method

is within some factor of whatever the best is for each test. In particular, a point (1, p)

means that JMu,5 is the optimal value (i.e., within a factor of 1 of the best) in proportion

p of the tests, and a point (θ, 1) denotes that JMu,5 is always (proportion p = 1) within a

factor of θ of the optimal value. Figure 7 contains the perfprof plot for this specific case.

The method Fiedler-zero-size (purple line) passes through the point ∼(35, 0.66), meaning

that for roughly 66% of the tests (u values), the Fiedler-zero-size JFzsiu,5 value is within a

factor of 35 of the best JMu,5. This factor of 35 may sound high, but these measures range

between ∼0.002 and 1, making the maximum possible factor around 500.

Given the perfprof plot for an Sx and r, observe that a line which stays close to the p axis

the longest and reaches p = 1 first is optimal. However, there may not be a single method

that achieves both of these objectives. Instead, we posit that generally higher and further

left is better. Therefore, much like judging the accuracy of a binary classification algorithm

by area under an ROC curve, we compare the accuracy of model reduction methods using

area under its perfprof curve. Unlike ROC curves, the x axis (θ) is not bound between 0

and 1. Instead, the maximum θ value is the maximum ratio between any two accuracy

18

Figure 7: The performance profile for system S2 and reduction ratio r = 5. A point (θ, p)

for method M means that JMu,5 is within a factor of θ of the best Ju in proportion p of the

three fault scenarios.

measures for the given reduction ratio. That is to say, for a given r, the maximum θ will

be

max θ = max
M1,M2,u

JM1
u,r

JM2
u,r

where the maximum is taken over all pairs of methods M1 and M2 and all fault scenarios

u. To normalize the area, divide by the total possible area, which is max θ as the y axis

maximum is 1. In the next section, this perfprof comparison method is used to determine

optimal model reduction methods for each system and reduction ratio.

5.3 Results of Comparison

For system S1, reduction ratios 4 ≤ r ≤ 15 are considered, and for system S2 we let

3 ≤ r ≤ 6. This totals 12 + 4 = 16 different perfprof comparisons. Therefore, rather than

including all perfprof plots, two tables of normalized areas under the perfprof curves will be

provided, one for each test system, showing all r values. In each table, values are rounded

to three significant digits. In particular all 1.000 values are rounded to that value and are

not equal to it. To reinforce the tables, some perfprof plots will also be included.

19

5.3.1 System S1

In system S1, the methods Fiedler-zero-sum and Fiedler-zero-size only return reductions

for r = 4 and Fiedler-zero-avg only for r = 4, 5, 6. Therefore, those three methods have the

worst performance in our comparisons. In this system, splitting the Fiedler vector at zero

sometimes yields a degenerate partition, where one part is empty. Therefore, the splitting

process reaches a stable point (nothing else can be split using the Fiedler vector) prior to

obtaining the desired number of clusters.

Table 3 shows the normalized area measurements for system S1. The methods are in

decreasing order by their average area under the curve over all r values. It is clear that

SVD dominates in this case. However, notice that for r = 5, 6, SVD does not yield the

maximal area under the perfprof curve. In this case, it is beat by Fiedler-mid-sum and

Fiedler-mid-size, the methods with the second and third largest average areas. Figure 8

shows an example perfprof plot for r = 10. The curves for Fiedler-mid-size (solid blue) and

k-means (dotted blue) cross around (3000, 0.8), but the area under k-means is higher than

that for Fiedler-mid-size, indicating that k-means would be preferred between the two for

r = 10.

Method \ r 4 5 6 7 8 9 10 11 12 13 14 15 Avg

SVD 0.989 0.999 0.978 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997

Fiedler-mid-sum 0.699 1.000 1.000 1.000 1.000 0.977 0.993 0.998 0.800 1.000 0.990 0.996 0.954

Fiedler-mid-size 0.699 1.000 0.982 0.994 0.999 1.000 0.800 1.000 0.994 0.994 0.990 0.996 0.954

Fiedler-mid-avg 0.699 0.975 0.975 1.000 0.775 0.991 1.000 1.000 0.988 1.000 0.991 0.756 0.929

Spectral 0.979 0.745 0.974 0.985 1.000 0.787 0.763 1.000 0.990 0.792 0.772 0.710 0.875

k-means 0.779 0.745 0.965 0.985 1.000 0.787 0.960 0.992 0.996 0.792 0.772 0.710 0.874

Fiedler-zero-avg 0.755 0.880 0.911 0.733 0.631 0.765 0.753 0.598 0.777 0.787 0.763 0.710 0.755

Fiedler-zero-sum 0.755 0.680 0.711 0.733 0.631 0.765 0.753 0.598 0.777 0.787 0.763 0.710 0.722

Fiedler-zero-size 0.755 0.680 0.711 0.733 0.631 0.765 0.753 0.598 0.777 0.787 0.763 0.710 0.722

Table 3: Relative areas under the perfprof curves for system S1, rows ordered by average

value.

These perfprof area comparisons may seem far removed from the actual PMU pha-

sor values. To further illustrate the comparisons, some PMU traces for full and reduced

systems under four different methods are produced. Figure 9 contains four PMU response

comparisons for internal system generator #45 following fault scenario 1. In all four subfig-

ures, the solid black line represents the phasor values over time for the full system without

20

Figure 8: Perfprof plot for system S1 and r = 10. The curves for Fiedler-zero-avg and

Fiedler-zero-sum are hidden under the purple Fiedler-zero-size curve as all three did not

return any reductions for r = 10. A point (θ, p) for method M means that JMu,10 is within

a factor of θ of the best Ju,10 in proportion p of the five fault scenarios.

any model reduction, and the dotted red line represents the phasor values simulated using

the indicated model reduction for r = 10. The r = 10 column in Table 3 indicates that

SVD and Fiedler-mid-avg have the best reductions fairly consistently across all five fault

scenarios. Fiedler-mid-sum scores very high, and Fiedler-mid-size does not perform as well.

One might draw the same conclusions from looking at the PMU traces, though it may not

be as clear-cut as it is when looking at the perfprof areas. In particular, Fiedler-mid-sum

appears to perform very poorly, but its perfprof area remains quite high. Of course, this is

only one of 16 internal generators and only a single fault scenario, so the Fiedler-mid-sum

method must have performed much better for other generators.

Generator 45 is chosen because most methods seem to perform fairly well in this fault

scenario on it. In contrast, generator 29 is one where most reductions perform fairly poorly.

In Figure 10, similar PMU traces are shown for generator 29 in S1 still under the first fault

scenario. It is much more difficult to judge a well-performing versus a poorly-performing

reduction just by looking at these particular PMU trace plots, which is one of the reasons

for choosing the more global perfprof areas as the comparison method.

21

(a) Full model vs. SVD (b) Full model vs. Fiedler-mid-avg

(c) Full model vs. Fiedler-mid-size (d) Full model vs. Fiedler-mid-sum

Figure 9: PMU traces for generator 45 in system S1 with the first fault scenario under the

full model (no reduction) and three separate reduced models for r = 10.

5.3.2 System S2

System S2 features a much smaller set with only nine generators in the external area.

There still are a few degenerate cases where a method did not return a reduction for some

r values, but it is not as widespread as in system S1. In addition, methods Fiedler-mid-avg

and Fiedler-mid-sum always return identical reductions. For completeness, both methods

are shown in the tables although they have exactly the same values.

As in the previous section, Table 4 contains the areas under perfprof plots summaries.

In this system, the three Fiedler-zero methods perform poorly just as in S1. Yet, there are

two major differences between S1 and S2. Instead of SVD on top, k-means leads by a wide

margin, whereas in S1 k-means is not a top performer. Additionally, Fiedler-mid-size does

very poorly in S2 compared with S1.

Rather than providing PMU traces, an example partitioning of the input data is shown.

22

(a) Full model vs. SVD (b) Full model vs. Fiedler-mid-avg

(c) Full model vs. Fiedler-mid-size (d) Full model vs. Fiedler-mid-sum

Figure 10: PMU traces for generator 29 in system S1 with the first fault scenario under

the full model (no reduction) and three separate reduced models for r = 10.

In Figure 11, the full set of PMU phasor values recorded at all nine internal generators

are displayed on the same axes. Then, Figures 12 and 13 show the clustering into four

sets of generators for Fiedler-mid-sum and k-means, respectively. Although k-means did

perform better overall in S2, looking at the clusters themselves one could argue that the

representative generators found using the Fiedler clustering seem more representative of

the system as a whole. In particular, k-means split up generators 4 and 5 from 6 and 7 even

though they appear to be very similar as shown in Figure 12(b). Thus, having generators

4, 5, and 6 as representative generators in the k-means reduction might be redundant.

23

Method \ r 3 4 5 6 avg

k-means 0.816 0.984 0.988 0.933 0.931

SVD 0.714 0.967 0.938 0.822 0.860

Fiedler-mid-avg 0.718 0.952 0.798 0.779 0.812

Fiedler-mid-sum 0.718 0.952 0.798 0.779 0.812

Spectral 0.646 0.962 0.900 0.479 0.747

Fiedler-zero-sum 0.350 0.943 0.950 0.684 0.732

Fiedler-zero-avg 0.350 0.943 0.950 0.684 0.732

Fiedler-zero-size 0.636 0.934 0.501 0.688 0.689

Fiedler-mid-size 0.618 0.640 0.493 0.656 0.602

Table 4: Relative areas under the perfprof curves for system S2, ordered by average value.

Figure 11: The PMU phasor values for all nine generators in the internal system for S2

over 380 readings, totalling 3.8 seconds, following fault scenario 1.

6 Conclusion

In this paper, we provide a survey of three clustering techniques and an SVD algorithm

for dynamic model reduction along with a comparison of these methods against two test

systems: the IEEE 50 and IEEE 16 generator systems. We compare two graph methods –

recursive spectral bipartitioning and spectral clustering – as well as an SVD method and

the standard k-means clustering algorithm. Our analysis (detailed in Section 5.3) leads us

to the following conclusions.

First, we remark that the k-means algorithm does not appear to be very reliable. Al-

24

(a) (b)

(c) (d)

Figure 12: Clustering via Fiedler-mid-sum for system S2 following fault scenario 1 with

r = 4. Representative generators are in red in each plot.

though it does perform well on the smaller system but did not rank highly in the larger

system, we must conclude that k-means either is not as well suited for larger systems, or

it is not expected to consistently work well. The latter statement is consistent with known

problems using the k-means algorithm: the data must be sufficiently separated and dis-

tributed to yield useful conclusions. Thus, it seems that k-means, though sometimes quite

suited to this problem, may not always be dependable.

In contrast, we observe that the SVD method does seem to be a persistently high

performer. In S1, SVD dominates almost all of the r values and has similarly high area

under the perfprof curve in S2. This consistency across multiple systems will be necessary

in a broadly applicable dynamic model reduction algorithm. Similarly, the Fiedler-mid-

avg and Fiedler-mid-sum methods also appear to be repeatedly well-performing reduction

techniques.

There also are three perpetually poorly performing algorithms: the Fiedler-zero meth-

25

(a) (b)

(c) (d)

Figure 13: Clustering via k-means for system S2 following fault scenario 1 with r = 4.

Representative generators are in red in each plot.

ods. Recall from Section 3.3.1 that the standard method of Fiedler partitioning is to

split the set of vertices according to positive or negative Fiedler value. However, in this

application, it is clear that splitting at the midpoint of the Fiedler values is much more

advantageous. Especially in the larger S1 system, splitting at the zero point can yield

a degenerate partition. Even in the smaller S2 system, despite not creating degenerate

partitions, the Fiedler-zero methods also perform poorly.

Lastly, the spectral method ranks in the middle of our list of average area under the

curve for both test systems. However, looking at its performance on specific r values, there

is high fluctuation. Recall that the final step of the spectral clustering method involves

using k-means. Given our earlier conclusions that k-means may not be consistently reliable,

it is not unexpected to draw the same conclusion about the spectral clustering method.

Overall, given the analysis of these specific methods on these two relatively small sys-

tems, we recommend that (a) dynamic model reduction techniques should not rely on any

26

kind of k-means clustering tools; (b) SVD is useful if a quick solution is needed, there are

many widely available software packages for calculating SVDs, and it tended to be repeat-

edly well-performing, if perhaps not always the top method; (c) if more time is available

for a test study on a specific system of interest, we suggest that SVD be compared against

Fiedler-mid-sum and Fiedler-mid-avg methods to see which performs best on that system

for a desired r value. This paper provides a useful method for comparing performance

using performance profiles given full and reduced model simulation data.

7 Acknowledgements

This work was supported in part by the Applied Mathematics Program of the Office of Ad-

vanced Scientific Computing Research within the Office of Science of the U.S. Department

of Energy (DOE) through the Multifaceted Mathematics for Complex Energy Systems

(M2ACS) project.

The authors wish to thank the reviewers of this paper for their helpful comments and

suggestions which substantially improved the manuscript.

References

[1] A. C. Antoulas, D. C. Sorensen, and S. Gugercin. A survey of model reduction methods

for large-scale systems. Contemp. Math., 280:193–219, 2001.

[2] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynamical

systems. Appl. Numer. Math., 43(1-2):9–44, 2002.

[3] N. M. Bertagnolli, J. A. Drake, J. M. Tennessen, and O. Alter. SVD Identifies Tran-

script Length Distribution Functions from DNA Microarray Data and Reveals Evolu-

tionary Forces Globally Affecting GBM Metabolism. PLoS One, 8(11):1–18, 2013.

[4] C. A. Canizares, N. Mithulananthan, F. Milano, and J. Reeve. Linear performance

indices to predict oscillatory stability problems in power systems. IEEE Trans. Power

Syst., 19(2):1104–1114, 2004.

27

[5] J. Chow, P. Accari, and W. Price. Inertial and slow coherency aggregation algorithms

for power system dynamic model reduction. IEEE Trans. Power Syst., 10(2):680–685,

1995.

[6] N. J. Dingle and N. J. Higham. Reducing the influence of tiny normwise relative errors

on performance profiles. ACM T. Math. Software, 39, 2013.

[7] E. D. Dolan and J. J. Moore. Benchmarking optimization software with performance

profiles. Math. Program., 91:201–213, 2002.

[8] M. Fiedler. Algebraic connectivity of graphs. Czech Math. J., 23, 1973.

[9] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its

application to graph theory. Czech Math. J., 25:619–633, 1975.

[10] R. W. Freund. Reduced-Order Modeling Techniques Based on Krylov Subspaces and

Their Use in Circuit Simulation, pages 435–498. Birkhäuser Boston, Boston, MA,

1999.

[11] J. E. Gentle. Numerical Linear Algebra for Applications in Statistics, chapter Singular

Value Factorization, § 3.2.7, pages 102–103. Springer-Verlag, 1998.

[12] G. H. Golub and C. F. Van Loan. Matrix Computations, 3rd edition. The Johns

Hopkins University Press, Baltimore, MD, 1996.

[13] D. J. Higham and N. J. Higham. MATLAB Guide, Second Edition. SIAM, 2005.

[14] E. Hogan, E. Cotilla-Sanchez, M. Halappanavar, S. Wang, P. Mackey, P. Hines, and

Z. Huang. Towards effective clustering techniques for the analysis of electric power

grids. In Proc. 3rd Workshop on HiPCNA-PG, 2013.

[15] M. Honarkhah and J. Caers. Stochastic simulation of patterns using distance-based

pattern modeling. Math. Geosci., 42(5):487–517, 2010.

[16] D. N. Kosterev, C. W. Taylor, and W. A. Mittelstadt. Model validation for the August

10, 1996 WSCC system outage. IEEE Trans. on Power Syst., 14:967–979, 1999.

28

[17] D. Lin and X. Wu. Phrase clustering for discriminative learning. In Annual Meeting

of the ACL and IJCNLP, pages 1030–1038, 2009.

[18] U. von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17(4):395–416, 2007.

[19] R. Pinnau. Model Reduction via Proper Orthogonal Decomposition, pages 95–109.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[20] A. Pothen, H. D. Simon, and K-P Liou. Partitioning sparse matrices with eigenvectors

of graphs. SIAM J. Matrix Anal. Appl., 11(3):430–452, 1990.

[21] G. Rogers. Power System Oscillations. Power Electronics and Power Systems.

Springer, 2000.

[22] H. Rudnick, R. I. Patino, and A. Brameller. Power-system dynamic equivalents: co-

herency recognition via the rate of change of kinetic energy. IEEE Proc.-C, 128(6):325–

333, 1981.

[23] M. Sahidullah and T. Kinnunen. Local spectral variability features for speaker verifi-

cation. Digit. Signal Process., 50:1–11, 2016.

[24] S. Sastry and P. Varaiya. Coherency for interconnected power systems. IEEE Trans.

Autom. Control, AC-26(1):218–226, 1981.

[25] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[26] S. Z. Selim and M. A Ismail. K-means-type algorithms: A generalized convergence

theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach.

Intell, PAMI-6(1):81–87, 1984.

[27] K. Sun, S. Likhate, V. Vittal, V. S. Kolluri, and S. Mandal. An online dynamic security

assessment scheme using phasor measurements and decision trees. IEEE Trans. Power

Syst., 22(4):1935–1943, 2007.

[28] R. Tiako, D. Jayaweera, and S. Islam. Real-time dynamic security assessment of power

systems with large amount of wind power using case-based reasoning methodology. In

2012 IEEE Power and Energy Society General Meeting, pages 1–7, July 2012.

29

[29] S. Wang, S. Lu, G. Lin, and N. Zhou. Measurement-based coherency identification

and aggregation for power systems. In 2012 IEEE Power and Energy Society General

Meeting, 2012.

[30] S. Wang, S. Lu, N. Zhou, G. Lin, M. Elizondo, and M. A. Pai. Dynamic-feature

extraction, attribution, and reconstruction (DEAR) method for power system model

reduction. IEEE Trans. Power Syst., 29(5):2049–2059, 2014.

[31] Y. Xue, Y. Yu, J. Li, Z. Gao, C. Ding, F. Xue, L. Wang, G. K. Morison, and P. Kundur.

A new tool for dynamic security assessment of power systems. Control Eng. Pract.,

6(12):1511–1516, 1998.

30

	1 Introduction
	2 Test Systems and Data
	2.1 Evaluated Test Systems

	3 Identifying Representative Generators
	3.1 Singular Value Decomposition (SVD)
	3.2 k-Means
	3.3 Graph Clustering
	3.3.1 Recursive Spectral Bipartitioning
	3.3.2 Spectral Clustering

	3.4 Choosing Cluster Representatives

	4 From Representative Generators to a Reduced Model Simulation
	5 Comparative Study Approach and Results
	5.1 Measures for Comparison
	5.2 Performance Profiles
	5.3 Results of Comparison
	5.3.1 System S1
	5.3.2 System S2

	6 Conclusion
	7 Acknowledgements

