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Summary

The Mars Curiosity rover carries an instrument, ChemCam, designed to measure the
composition of surface rocks and soil using laser-induced breakdown spectroscopy
(LIBS). The measured spectra from this instrument must be analyzed to identify the
component elements in the target sample, as well as their relative proportions. This
process, which we call disaggregation, is complicated by so-called matrix effects,
which describe nonlinear changes in the relative heights of emission lines as an
unknown function of composition due to atomic interactions within the LIBS plasma.
In this work we explore the use of the plasma physics code ATOMIC, developed at
Los Alamos National Laboratory, for the disaggregation task. ATOMIC has recently
been used to model LIBS spectra and can robustly reproduce matrix effects from
first principles. The ability of ATOMIC to predict LIBS spectra presents an exciting
opportunity to perform disaggregation in a manner not yet tried in the LIBS commu-
nity, namely via Bayesian model calibration. However, using it directly to solve our
inverse problem is computationally intractable due to the large parameter space and
the computation time required to produce a single output. Therefore we also explore
the use of emulators as a fast solution for this analysis. We discuss a proof of concept
Gaussian process emulator for disaggregating two-element compounds of sodium
and copper. The training and test datasets were simulatedwithATOMIC using a Latin
hypercube design. After testing the performance of the emulator, we successfully
recover the composition of 25 test spectra with Bayesian model calibration.

KEYWORDS:
Bayesian calibration, laser-induced breakdown spectroscopy, LIBS, ATOMIC, Gaussian process, emula-
tion, disaggregation, modular calibration

1 INTRODUCTION

One of the main scientific drivers of the Mars rover Curiosity
is to determine whether Mars has ever been host to forms of
life [13]. ChemCam, one of the instruments on board, devel-
oped by Los Alamos National Laboratory and L’Institut de
Recherche en Astrophysique et Planétologie, is designed to
record detailed data about the surface soil and rocks of the

planet. The instrument uses laser-induced breakdown spec-
troscopy (LIBS) to measure the abundance of all chemical
elements by firing a laser onto a small patch of rock or soil
surface, producing a plasma. As the high-temperature plasma
cools, it emits light that ChemCam records via a spectrometer
and CCD camera, producing a detailed spectrum over a range
of wavelengths. Intensity peaks in such a spectrum can be used
to identify the presence and relative abundance of chemical
species in the sample of rock or soil. The absence or presence
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of certain elements could hold important evidence about the
possibility of life on the rocky planet.
Curiosity can obtain hundreds of these spectra every day, but

analyzing them remains a slow manual process. To success-
fully analyze, or disaggregate1, each spectrum,wemust answer
two questions: what elements were present in the sample, and
what are their relative proportions or abundances?
An expert can often answer the first question, identifying

component elements by the presence of signature peaks in
the spectrum at specific wavelengths. Estimating the relative
abundance of these constituent species, however, can be quite
difficult due to atomic interactions within the plasma. Due to
these interactions, the relative heights of emissions lines of
two elements can have a nonlinear dependence on the rela-
tive abundance of those species. Thesematrix effects—where
matrix refers to the components of the target rather than to
the mathematical concept — complicate our disaggregation
problem: the spectrum of a multi-species target is not sim-
ply the linear combination of the spectra for each individual
element. These nonlinear effects pose significant challenges
for disaggregation of LIBS data, particularly because we don’t
have a closed form expression of the effects.
Clegg et al. [2] introduced the use of multivariate

approaches, such as partial least squares regression, to improve
the ability to determine the elements present in a sample and
estimate their relative proportions in the presence of matrix
effects. More recently, scientists at Los Alamos National Lab-
oratory adapted a first-principles plasma physics code called
ATOMIC [12] to provide a forward model for the emission
from LIBS plasmas, including their matrix effects [3, 4, 8].
The new existence of this forward model presents an exciting
opportunity to explore the use of Bayesian model calibration
[9] to compute estimates, with associated uncertainties, of the
components of a target and their relative abundances. That is,
we want to solve the inverse problem to determine the input
parameters for ATOMIC, which include the elements present
and their proportions, that produce the simulated spectrum that
is most like an unknown measured spectrum.
Bayesian model calibration in the context of high-

dimensional outputs [7], of which LIBS spectra are an
example, has a successful history in a variety of scientific
applications. For example, in materials science, these methods
have been applied to estimate strength parameters of aluminum
alloys in hydrodynamic shock experiments [16].
We draw inspiration from Judge et al. [8], who demonstrated

the impact of matrix effects on sodium peak heights in a sim-
ple two-element mix of sodium and copper measured with

1Note that we use the term disaggregation for our work to allow for eventual
consideration of other types of problems, such as estimating the devices drawing
power from a household given a single measurement of the household’s total power
usage. The chemistry community uses the term calibration for this task, which also
introduces some vocabulary overloadingwith our use of Bayesianmodel calibration.

LIBS. The authors also demonstrated the ability of ATOMIC
to replicate those effects from first principles. In particular,
their experimental observations, supported by ATOMIC’s the-
oretical calculations and modeling, showed that the sodium
lines increased significantly in emission intensity as more cop-
per was added to the target. This effect is explained by an
increase in electron density, due to the copper, leading to
increased recombination within the plasma.
In this paper we will also use simplified two-element targets

of sodium and copper to begin to explore our ability to use
Bayesian model calibration with ATOMIC to perform disag-
gregation. As we look forward to more complex targets drawn
from the large parameter space of all possible elements, and
particularly in the context of the high data-collection rate of
ChemCam on Curiosity, we recognize that using ATOMIC
directly in this framework will be computationally intractable.
We therefore also present our results building and evaluating
emulators to provide fast approximations to the computation-
ally expensive ATOMIC runs.
Emulators are well-established tools in the context of slow

computer models and their use for modeling spectra has been
demonstrated in the field of cosmology. Large N-body simula-
tions of the universe are prohibitively expensive, and emulat-
ing the matter power spectrum of the universe on cosmological
scales was shown to be an effective solution [10]. Although
these spectra have very different physical origins from those of
LIBS, these prior results provide some context for our efforts
presented here.
Our team’s ongoing and preliminary work [1] includes

success at estimating the plasma temperature and density of
simple, fixed compounds, taking into account a structured dis-
crepancy between ATOMIC simulations and measured LIBS
data. While Judge et al. [8] showed that ATOMIC can repli-
cate the matrix effects in experimental data, the discrepancy
study in Bhat et al. [1] and our own explorations showed some
as yet unresolved challenges when comparing ATOMIC and
measured LIBS spectra in the quantitative way required to sup-
port Bayesian model calibration. Therefore we focus here on
the methodology of performing disaggregation in the presence
of matrix effects in a simplified scenario, using a test set of
simulated ATOMIC spectra rather than of measured spectra
as would be our ultimate intent. This allows us to demonstrate
the feasibility of using modular Bayesian model calibration to
perform disaggregation with LIBS data.
We present an overview of theATOMIC simulations, inputs,

and outputs in the following section. In Section 3 we outline
the statistical framework of emulation andBayesian calibration
used in this work, and we discuss their application to simula-
tion data in Section 4. We conclude with further discussion of
the relevance and context of our results and future directions.
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2 PLASMA SIMULATIONS

Computer model calibration relies on a small number of runs
of a high-fidelity simulation, tiled across parameter space. This
set of simulations can then be used to build emulators which
can quickly approximate the computer model at new param-
eter settings. In the context of the analysis of LIBS data, the
model of interest is the ATOMIC forward model, a general
purpose plasma modeling and kinetics code. It was devel-
oped to simulate the emission spectra of chemical compounds
using first principles theoretical atomic physics [12], in par-
ticular, emission or absorption spectra from plasmas either in
local-thermodynamic equilibrium (LTE) or in non-LTE.
ATOMIC simulations require a few primary inputs: the tem-

perature and density of the plasma, and a model describing the
atomic structure and scattering data of the material(s) consti-
tuting the plasma. These last, which include quantities such as
energy levels and transition probabilities, are generated from
the Los Alamos suite of atomic physics codes [6]. The results
in the simulations discussed here were generated from the
CATS code [5] with modifications made for plasmas generated
from LIBS [4]. For a given temperature and density, ATOMIC
then models the emissivity of the plasma by computing its
average ionization.
As motivated above, the simulations discussed in this paper

are of sodium copper (NaCu) plasmas with varying ratios of
sodium (Na) to copper (Cu), inspired by Judge et al. [8]. In
addition, we vary the input plasma temperature T and the mass
density � of the plasma. In particular, we run simulations over
the following space of these three parameters:

1. plasma temperature T , in units electron volts (eV) and
range [0.5, 1.5]

2. mass density �, in units of g/cm3 and range [−7,−4] on
the log10 scale

3. composition of the plasma, defined as the proportion of
one of the two elements in our compound. We have arbi-
trarily chosen to use the proportion of sodium in the
plasma, %Na, in the range [0, 1]. %Cu can be retrieved
by using 1 − %Na.

A few comments are in order about the third input parame-
ter,%Na. It is by solving the inverse problem for this parameter
that we are doing disaggregation — i.e., identifying the ele-
ments present and estimating their proportions. The validity
of this particular parameterization, where %Cu = 1 − %Na,
holds only because our simulations are run in an artificially
simplified scenario without atmosphere, components of which,
such as carbon and oxygen, would usually be present in the
plasma in unknown quantities. Thus we know a priori that the
only elements that could be present are sodium and copper.

This enormously simplifies the first part of the disaggregation
problem: identifying which elements are present. Our thinking
is that success in this very constrained regime will establish a
foundation for addressing the challenges faced by ChemCam
on Mars, such as the presence of atmosphere and much larger
sets of candidate elements.
The output of the ATOMIC simulation is a spectrum with

intensity as a function of wavelength for a particular set of
the above inputs, i.e. a spectrum for a particular compound at
some plasma density and temperature. The simulation provides
intensity as power per volume per photon energy per unit solid
angle. ATOMIC predictions do not account for any effects aris-
ing from the spectrometer, but do include matrix effects. The
computation time for a single ATOMIC run depends on the
chemical complexity of the compound of interest, and typ-
ically varies from minutes to hours on a high-performance
computing system.
The ATOMIC simulations used in this analysis were

selected using two Latin hypercube designs over the three input
parameters: a training set of 500 simulations, and an indepen-
dent test design of 25 points to which we added noise before
analysis, as described in Section 4.2. The training set parame-
ter design, as well as a few of the resulting spectra, are shown in
Figure 1 . We have labeled the peak locations for two sodium
peaks and one copper peak along the top wavelength axes, and
will show these markers throughout this work when relevant.
These are not the complete set of peaks for sodium or copper
and are simply meant to provide some reference to the eye.
We note, in the left panel of Figure 1 , the orders of mag-

nitude over which the simulation output varies. This motivates
a rescaling to the log scale, as shown in the middle panel,
before statistical analysis, due to anticipated difficulty captur-
ing small, yet potentially important, details in the presence
of these large variations in amplitude. While this log trans-
form is not standard practice in the spectroscopy community,
exploratory analysis confirmed that emulators built for the
spectra on their original scale performed significantly worse
than the results presented here. Additional motivations for
modeling on the log scale are discussed in Bhat et al. [1].

3 MODULAR BAYESIAN CALIBRATION

The aim of this work is to demonstrate the application of
Bayesian calibration methods to the problem of disaggregating
LIBS spectra — identifying the elements present and esti-
mating their proportions. We start with a brief overview of
computer model calibration from Kennedy and O’Hagan [9].
In this context, computer model calibration entails estimating
the input parameters of a computer model (here, ATOMIC)
that most likely generated some given observed experimental
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FIGURE 1 Three examples of ATOMIC simulations used for training along with the design for the training set. Left panel:
three example training spectra, with intensity in units of power per volume per photon energy per unit solid angle. Middle: The
same three examples plotted as log intensity, thereby reducing the orders of magnitude variation across the data. Right panel:
simulation input design for the 500 training spectra, scaled to the [0, 1] range for all parameters. The parameter settings for the
three examples shown in the previous panels are highlighted in color.

or simulated data. A key assumption is that our observed data,
y, are a noisy version of the simulator output at some unknown
parameter setting �:

y = �(�) + � (1)

We will assume that the data y have been centered and scaled
according to the mean vector � and scalar standard deviation
� of the training data.
Following the well-established literature on calibration, we

denote the ATOMIC computer model as �(t), which takes a
p-dimensional parameter vector t as input to produce a LIBS
spectrum. Here, p = 3 for the three input parameters described
in Section 2. The vector � represents the parameter values
that yield the model output � that most closely resembles the
observed data. Note that we are working here with y and �(t)
as log scaled versions of the measured and modeled spectra.
We estimate � for a given observation y by exploring the

posterior p(�|y) with Markov chain Monte Carlo (MCMC).
This posterior is calculated, via Bayes rule, as the product of
the data likelihood p(y|�) and the parameter prior p(�). We
will first define the data likelihood, and the choice of prior is
discussed below. Equation 1 describes how the data are gen-
erated given the parameters �. The noise � determines the
sampling function for the data. Here we take � to be nor-
mally distributed with mean 0 and variance Σy, which gives
the following likelihood:

y|� ∼
(

�(�),Σy
)

(2)

This is in principle all we need (along with a prior) to per-
form MCMC. There is a significant computational challenge,

though, as the ATOMIC model � is slow to compute: given
some vector t, evaluating �(t) takes order of minutes or hours,
rendering exploration via MCMC extremely slow. We will fol-
low the standard approach to overcome this through use of an
emulator: a statistical model that provides a fast approximation
of the simulator output.
In the following subsections we discuss first the approach

of emulating the ATOMIC outputs using Gaussian processes,
then details of Bayesian model calibration.

3.1 Gaussian process emulation
As mentioned above, we define a statistical model to pro-
vide fast approximations of the slow ATOMIC outputs. This
emulator will be some unknown function conditioned on a
training set of m simulator runs {�(t1), ..., �(tm)} at fixed
inputs t1, ..., tm. For simplicity, we scale these inputs such that
t ∈ [0, 1]p. Before we describe the details of the emula-
tor, we address a second computational bottleneck due to the
high-dimensionality of the data. Each simulator output � has
n� = 32, 000wavelength bins. Naive MCMC implementations
might require the inversion of a 32, 000m × 32, 000m matrix
or 32, 000 m × m matrices at each step to calculate the pos-
terior. The solution to this problem, as developed in Higdon
et al. [7], relies on using dimensionality reduction to find a
reduced set of basis vectors. This set of n�-dimensional vec-
tors {ki, i = 1, ..., q} describes the model for any input t in the
following way:

�(t) =
q
∑

i=1
kiwi(t) (3)
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where the weightswi(t) hold the dependence on the input t. We
denote the number of components included in the reconstruc-
tion by q, with a maximum value of m, the size of training set.
Typically smaller values ∼ 10 suffice for good performance.
This formalism reduces the computational complexity of the
problem enormously: we can now emulate and sample just
q ∼ 10 weights instead of n� ∼ 105 wavelength bins.
We find this new basis via a singular value decomposition

(SVD) of the training simulation matrix X. Each of the m
columns of X holds a simulation of length 32, 000. The SVD
factorization of X, in terms of orthogonal matrices U, V and
diagonal matrix S of singular values of X, can be written:

X = USV T = KW (4)

The second equality relates the SVD to Equation 3 in matrix
form, with K a column matrix of all the kis and the weightsw
in row vector W . We have defined K = US∕

√

m and W =
V T

√

m.
In terms of the data described in Section 2, this decomposi-

tion results in a set of principal components K , each of which
has length n� = 32, 000, that are common between all the
spectra, and a set of weights which now hold the dependence
on the input parameters and which vary between each spec-
trum. The first four of these principal components (PCs) are
shown in Figure 2 along with the associated weights for the
500 training and 25 test simulations.
Our ATOMIC emulator will take the form of Equation 3,

with K calculated from the set of training simulations. The
weights wi define a surface in parameter space for each com-
ponent i (see Figure 2 ): as is common in the literature, we will
represent each of these by a Gaussian process (GP):

wi(t) ∼
(

0, �2wiRi(t)
)

(5)

where �2wi is the marginal variance for weight i and Ri(t) is
a correlation matrix with each entry given by the correlation
function:

corr(t, t′; li) =
3
∏

j=1
exp

(

−
|tj − t′j|

2

2l2ij

)

(6)

where lij is the length scale hyperparameter for weight i and
parameter j.
Whereas it is common to perform the estimation of the GP

hyperparameters concurrently with the calibration, we treat
these in a modular way as in [11], fixing the hyperparam-
eters by maximum likelihood estimation and keeping them
fixed during the Bayesian calibration. This approach greatly
speeds up the estimation process because we do not need to
rebuild and reinvert the covariance matrices at each step of
the MCMC. During calibration, we use the GPs to predict
the value of each weight for parameter settings not present in
the training simulations. The prediction of weight i for some
parameters � can be found using properties of conditional

normal distributions:

ŵi|� ∼
(

ri(�)R−1i wi, �wi[1 − ri(�)TR−1i ri(�)]
)

(7)

Here ri(�) is the m × 1 vector found by applying the GP
covariance function in Equation 6 (with hyperparameters for
weight i) to � and the set of training simulation parameters
{t1, ..., tm}. The m × m matrix Ri is the correlation matrix of
the training parameters, and wi is the m × 1 vector of training
weights for principal component i.

3.2 Model calibration
We now describe the process of estimating the input parame-
ters of the simulations via Bayesian model calibration. As seen
in Equation 2, we assume our data y is given by a simulator
run �(�), with some fixed, diagonal covariance which can be
parameterized by a precision �y: Σy = �−1y I .

y|�(�) ∼
(

�(�), �−1y I
)

(8)

We have seen in the previous section how to express our
data in a new basis of principal components K and parameter-
dependent weightsW . The emulator output �(�), given param-
eters �, is expressed in the new basis using the weights
predicted by the GPs (see Equation 7):

�(�) = Kŵ(�) (9)

To cast a new observed spectrum y into this basis, we use:

wobs = K̃y (10)

where K̃ = (KTK)−1KT , and we define wobs as the vector of
q weights corresponding to the observation y.
We use Equations 8, 10, and 9 and properties of Gaus-

sian distributions to find the sampling of the observed weights
given ŵ(�), the GP predictions:

wobs|ŵ(�) ∼
(

K̃Kŵ(�), K̃�−1y IK̃
T
)

(11)

=
(

ŵ(�), (�yKTK)−1
)

(12)

Finally, since each predicted value ŵi is drawn from aGaussian
process, these weights are normally distributed given parame-
ters �, as in Equation 7. This means that the observed weights
wobs, given some parameter vector �, are given by:

wobs|� ∼
(

�w, (�yKTK)−1 + Σw
)

, (13)

where �w is a vector with entry i given by ri(�)iR−1wi, i =
1, ..., q and Σw is a q × q diagonal matrix with element ii given
by �wi[1 − ri(�)TR−1i ri(�)], where the i denotes that these are
calculated from the covariance matrix with hyperparameters
for weight i. Equation 13 is the likelihood we will use for
MCMC exploration.
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FIGURE 2 Exploring the singular value decomposition of the LIBS simulations. The left panel shows the first four basis
components and the right panel shows the associated weights (in grey for each of the 500 training simulations; in black for 25
noise-added test examples) as functions of the three input simulation parameters, which are each scaled to lie in [0, 1].

4 RESULTS AND DISCUSSION

We applied the methods above using the Python Scikit-learn
implementation of Gaussian processes [14] and the Monte
Carlo sampling in PyMC3 [15]. We chose a value of q = 15
principal components in the emulator used to generate all the
results discussed in this section. The SVD reconstruction with
these 15 components explains > 99.995% of the variance of
the training set. In addition, the emulator and calibration errors
did not significantly improve with added components beyond
this point. Indeed, when a larger value is chosen for q, the
additional weights added are less and less constraining for
calibration since their associated sampling variances (see the
likelihood in Equation 13) increase with weight index. Adding
more weights, then, is not expected to result in more accurate
calibration results.
Both emulation performance and calibration results are cal-

culated based on a test set of 25 ATOMIC simulations run on
a Latin hypercube design independent from the training set, to
which we added noise.

4.1 Emulator performance
Figure 3 summarizes the emulator performance for the set-
tings listed at the start of this section. The performance is
calculated on 25 test simulations.
We quantify emulator performance by two metrics: R2 and

percent error, both calculated point-wise for each wavelength
modeled. We calculate these by:

• R2 = 1−�2res∕�
2
raw, where �

2
raw is the variance of the test

simulations around their mean, and �2res is the variance
of the residuals (emulator output - truth).

• %error = 100× �(�(�)−y)
�y+�

, calculated for each test example
and where �, � are the mean vector and scalar standard
deviation of the training set.

Overall, these errors lie between ±1%, with the exception
of the test run plotted in yellow which we discuss below. We
conclude that the emulator is performing well.
We expect that the information most important for our even-

tual goal of disaggregation should lie near the peaks associated
with constituent elements. For example, the locations of some
important sodium and copper peaks are indicated in Figure 4.1
by tick marks and vertical dashed lines. We see that the per-
centage error is greater at peak locations than at most other
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FIGURE 3 Summary of the emulator performance. Left: The R2 and percent error as functions of wavelength (see Section 4.1
for details). The percent error for each of the 25 test runs is overlaid in the bottom panel. The yellow curve shows the percent
error for the test run with the largest percent median absolute error, as shown in the right panel. Right: The test set design colored
by percent median (over all wavelengths) absolute error of the emulator prediction for each point. The training design is shown
in grey.

points along the wavelength axis. The dataset contains a wide
range of sodium concentrations, implying high data variance
at these peak locations. In absolute terms, the percent error
shows that this variation is harder for the emulator to capture
fully. However, the spikes inR2 value at those locations are not
significantly worse than at many other wavelengths, indicating
that the emulator is performing well relative to the variance of
the data. In summary, the emulator is able to capture impor-
tant variations in the data which we expect to be indicative of
sodium concentration.
The right panel in Figure 4.1 shows the test design, each

point colored according to the median percentage absolute
error of the emulator predictions. The test run in yellow stands
out as having the highest median error by far. Given its loca-
tion on the very edge of parameter space for all three inputs, it
is not surprising that the emulator has trouble with it. The per-
centage error of this test run is highlighted in yellow in the left
hand panel, and we will discuss it further below.
In summary, both the percentage errors and theR2 values of

the emulator predictions are indicative of strong performance,
so we proceed with calibration.

4.2 Calibration results
The Bayesian calibration was performed for noise-added ver-
sions of the 25 test spectra, following Equation 8with precision
�y = 4. In addition to the 25 two-element NaCu compounds
with varying proportions of Na, we also ran the calibration for
50 spectra of single-element simulations, with the composition

for 25 fixed at 100% and 25 fixed at 0% Na. These single-
element simulations were run with the same input design for
plasma temperature and density as the 25 two-element test
simulations. During analysis these single-element spectra were
treated identically to the two-element test examples.
The summary of these calibration results is shown in Figure

4 . The left three panels of this figure show very encourag-
ing calibration results for the two-target simulations, with the
points colored according to the emulator errors as in the right
panel of Figure 3 . The leftmost panel shows successful dis-
aggregation for all 25 test spectra. Of particular interest is the
test run with highest emulator error that we discussed ear-
lier, indicated in yellow. Recall that its true parameters are the
highest %Na in the design, relatively high temperature T , and
very low density �. We find that the calibration results for this
challenging test run are on par with the rest of the test set.
Our single-element simulation results are summarized by

the histograms in the last panel of 4 . Our success in recog-
nizing pure Na and pure Cu demonstrates the ability of the
emulator trained on the two-element NaCu simulations to cor-
rectly identify examples of single elements. We had had some
concern that the difference between a target with a vanishingly
small amount of one element and one with none at all would
look like a discontinuity of some sort that would be difficult to
capture with our emulators, and these results suggest that our
emulators are robust to that difference.
Figure 5 shows bivariate marginal distributions of the

MCMC samples alongside the log scaled test spectrum for two
two-element test examples. Results for the example with high
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FIGURE 4 Summary of calibration results. The left three panels show the posterior mean of 15,000 MCMC samples for
25 noise-added test simulations, using the same color scheme as in the right panel of Figure 3 to indicate emulator errors.
Panels show results for estimated %Na, temperature T , and density �, compared to the true parameter value. Right: histogram
of estimated %Na from single target simulations (see Section 4.2), for sodium-only targets in the upper panel and copper-only
in the lower panel.

emulator error discussed previously are displayed in the top
panel, while a randomly selected example was chosen for the
lower panel. Both spectra and true parameter values are shown
in colors corresponding to their median absolute percent errors
discussed in Section 4.1. All three parameter combinations
show some evidence of correlations between the samples, most
notably between density and temperature in the upper panel.

5 CONCLUSIONS

In this work we show promising first results toward the goal
of disaggregating LIBS data from ChemCam with Bayesian
model calibration. The emulation and Bayesian calibration
methods discussed here successfully perform disaggregation
in the presence of matrix effects in noise-added simulations of
two-element compounds.
An important next step is to test this approach on measured

LIBS data. There are a number of challenges to overcome
before this can succeed. While ATOMIC simulations compare
very well to experimental data on many metrics and for other
applications [3, 4, 8], the wavelength-by-wavelength matching
that drives the emulation in this work is not one of them. For
example, we have found that the peak shapes, widths, and to
some extent even locations, differ between ATOMIC outputs
and measured LIBS spectra. These small effects have not been
straightforward to accommodate with the methods presented
here.
In addition, LIBS spectra measured “in the wild” onMars or

even in a laboratory setting typically contain extraneous peaks
that don’t provide information about the target of interest. For

instance, when measured in air, the plasmas include contribu-
tions from the atmosphere in unknown proportions that appear
as peaks in the spectra. And laboratory targets of even simple
two-element compounds like NaCu typically are formed using
binders such as stearic acid that introduce still more peaks
whenmeasured via LIBS. These extraneous components of the
plasmas exacerbate matrix effects and complicate our analy-
sis. A possible path forward that we are exploring is to limit
the set of wavelengths in our analyses to those around expert-
identified peaks of interest, rather than considering the entire
spectrum shown in the work here.
In addition, instrument response and other effects should

be accounted for when comparing simulations to measure-
ments. Standard practice for ChemCam data is to correct for
some of these effects, and we have begun exploring how these
corrections impact our ability to perform disaggregation.
While we continue those explorations toward comparing

simulations with measurements as a separate line of research,
we will build on our successes with simulated data that we
presented here in order to provide a proof of principle for
disaggregating increasingly complex multi-element targets.
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