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Abstract

A common issue for classification in scientific research and industry is the existence of im-
balanced classes. When sample sizes of different classes are imbalanced in training data, naively
implementing a classification method often leads to unsatisfactory prediction results on test
data. Multiple resampling techniques have been proposed to address the class imbalance is-
sues. Yet, there is no general guidance on when to use each technique. In this article, we
provide a paradigm-based review of the common resampling techniques for binary classification
under imbalanced class sizes. The paradigms we consider include the classical paradigm that
minimizes the overall classification error, the cost-sensitive learning paradigm that minimizes a
cost-adjusted weighted type I and type II errors, and the Neyman-Pearson paradigm that mini-
mizes the type II error subject to a type I error constraint. Under each paradigm, we investigate
the combination of the resampling techniques and a few state-of-the-art classification methods.
For each pair of resampling techniques and classification methods, we use simulation studies
and a real data set on credit card fraud to study the performance under different evaluation
metrics. From these extensive numerical experiments, we demonstrate under each classification
paradigm, the complex dynamics among resampling techniques, base classification methods,
evaluation metrics, and imbalance ratios. We also summarize a few takeaway messages regard-
ing the choices of resampling techniques and base classification methods, which could be helpful
for practitioners.

Keywords: Binary classification, Imbalanced data, Resampling methods, Imbalance ratio,

Classical Classification (CC) paradigm, Neyman-Pearson (NP) paradigm, Cost-Sensitive (CS) learn-

ing paradigm.

1 Introduction

Classification is a widely studied type of supervised learning problem with extensive applications.

A myriad of classification methods (e.g., logistic regression, support vector machines, random

forest, neural networks, boosting), which we refer to as the base classification methods in this
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paper, have been developed to deal with different distributions of data [Kotsiantis et al., 2007].

However, in the case where the classes are of different sizes (i.e., the imbalanced classification

scenario), naively applying the existing methods could lead to undesirable results. Some promi-

nent applications include defect detection [Arnqvist et al., 2021], medical diagnosis [Chen, 2016],

fraud detection [Wei et al., 2013], spam email filtering [Youn and McLeod, 2007], text categoriza-

tion [Zheng et al., 2004], oil spills detection in satellite radar images [Kubat et al., 1998], land

use classification [Ranneby and Yu, 2011]. To address the class size imbalance scenario, there

has been extensive research on developing different methods [Sun et al., 2009, López et al., 2013,

Guo et al., 2017]. Some popular tools include resampling techniques [López et al., 2013, Alahmari,

2020, Anis et al., 2020], direct methods [Lin et al., 2002, Ling et al., 2004, Zhou and Liu, 2005,

Sun et al., 2007, Qiao et al., 2010], post-processing methods [Castro and Braga, 2013], as well as

different combinations of these tools. The most common and understandable class of approaches

is resampling techniques. However, there lacks a consensus about when and how to use them.

In this work, we aim to provide some guidelines on using resampling techniques for imbalanced

binary classification. We first disentangle the general claims of undesirability in classification results

under imbalanced classes, via listing a few common paradigms and evaluation metrics. To decide

which resampling technique to use, we need to be clear on the paradigms as well as the preferred

evaluation metrics. Sometimes, the chosen paradigm and the evaluation metric are not compatible,

which makes the problem unsolvable by any technique. When they are, we will show that the

optimal resampling technique depends on both the paradigm and the base classification method.

There are different degrees of data imbalance. We characterize this degree by the imbalance

ratio (IR) [Garćıa et al., 2012b], which is the ratio of the sample size of the majority class and that

of the minority class. In real applications, IR can range from 1 to more than 1, 000. For instance, a

rare disease occurs only in 0.1% of the human population [Beaulieu et al., 2014]. We will show that

different IRs might demand different combinations of resampling techniques and base classification

methods.

This review conducts extensive simulation experiments as well as a real data set on credit card

fraud to concretely illustrate the dynamics among data distributions, IR, base classification meth-

ods, and resampling techniques. This is the first time that such dynamics are explicitly examined.

To the best of our knowledge, this is also the first time that a review paper uses running simulation

examples to demonstrate the advantages and disadvantages of the reviewed methods. Through

simulation and real data analysis, we give practitioners a look into the complicated nature of the

imbalanced data problem in classification, even if we narrow our search to the resampling tech-

niques only. For important applications where data distributions can be approximately simulated,

practitioners are encouraged to mimic our simulation studies and properly evaluate the combina-

tions of resampling techniques and base classification methods. In the end, we summarize a few

takeaway messages regarding the choices of resampling techniques and base classification methods,

which could be helpful for practitioners.

The rest of the review is organized as follows. In Section 2, we describe three classification

paradigms and discuss their corresponding objectives. Then, we introduce a matrix of classification

algorithms as pairs of resampling techniques and the base classification methods in Section 3.
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Section 4 provides a list of commonly used evaluation metrics for imbalanced classification. In

Sections 5 and 6, we conduct a systematic simulation study and a real data analysis to evaluate the

performance of different combinations of resampling techniques and base classification methods,

under different paradigms, data distributions, and IRs, in terms of various evaluation metrics. We

conclude the review with a short discussion in Section 7.

2 Three Classification Paradigms

In this section, we review three classification paradigms that are defined by different objective

functions. Concretely, we consider the Classical Classification (CC) paradigm that minimizes the

overall classification error (Section 2.1), the Cost-Sensitive (CS) learning paradigm that minimizes

the cost-adjusted weighted type I and type II errors (Section 2.2), and the Neyman-Pearson (NP)

paradigm that minimizes the type II error subject to a type I error constraint (Section 2.3).

Assume X ∈ X ⊂ R
d is a random vector of d features, and Y ∈ {0, 1} is the class label. Let

IP(Y = 0) = π0 and IP(Y = 1) = π1 = 1− π0. Throughout the article, we label the minority class

as 0 and the majority class as 1 (i.e., π0 ≤ π1). Also, for language consistency, we call class 0 the

negative class and class 1 the positive class. Please note that the minority class might be referred

to as “positive” in medical applications.

2.1 Classical Classification paradigm

A classifier is defined as φ : X → {0, 1}, which is a mapping from the feature space to the label space.

The overall classification error (risk) is naturally defined as R(φ) = IE[1I(φ(X) 6= Y )] = IP(φ(X) 6=
Y ), where 1I(·) is the indicator function. In binary classification, most existing classification methods

focus on the minimization of the overall classification error (risk) [Hastie et al., 2009, James et al.,

2013]. In this article, this paradigm is referred to as Classical Classification (CC) Paradigm. Under

this paradigm, the CC oracle φ∗ is a classifier that minimizes the population risk; that is,

φ∗ = argmin
φ

R(φ) .

It is well known that φ∗ = 1I(η(x) > 1/2), where η(x) = IE(Y |X = x) is the regression function

[Koltchinskii, 2011]. In practice, we construct a classifier φ̂ based on finite sample {(Xi, Yi), i =

1, · · · , n} using some classification method.

Popular the CC paradigm is, it may not be the ideal choice when the class sizes are imbalanced.

By the law of total probability, we decompose the overall classification error as a weighted sum of

type I and II errors, that is,

R(φ) = π0R0(φ) + π1R1(φ) ,

where R0(φ) = IP(φ(X) 6= Y |Y = 0) denotes the (population) type I error (the conditional proba-

bility of misclassifying a class 0 observation as class 1); and R1(φ) = IP(φ(X) 6= Y |Y = 1) denotes

the (population) type II error (the conditional probability of misclassifying a class 1 observation

as class 0). However, in many practical applications, we may want to treat type I and II errors

differently under two common scenarios. One is the asymmetric error importance scenario. In
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this scenario, making one type of error (e.g., type I error) is more serious than making the other

type of error (e.g., type II error). For instance, in severe disease diagnosis, misclassifying a dis-

eased patient as healthy could lead to missing the optimal treatment window while misclassifying

a healthy patient as diseased can lead to patient anxiety and incur additional medical costs. The

other is the imbalanced class proportion scenario. Under this scenario, π0 is much smaller than

π1, and minimizing the overall classification error could sometimes result in a larger type I error.

For applications that fit these two scenarios, the overall classification error may not be the optimal

choice to serve the users’ purpose, either as an optimization criterion or as an evaluation metric.

Next, we will introduce two other paradigms that have been used the address the asymmetric error

importance and imbalanced class proportion issues.

2.2 Cost-Sensitive learning paradigm

In the asymmetric error importance and imbalanced class proportion scenarios introduced at the

end of Section 2.1, the cost of type I error is usually higher than that of type II error. For example,

in spam email filtering, the cost of misclassifying a regular email as spam is much higher than

the cost of misclassifying spam as a regular email. A popular approach to incorporate different

costs for these two types of errors is the Cost-Sensitive (CS) learning paradigm [Elkan, 2001,

Zadrozny et al., 2003]. Let C(φ(X), Y ) being the cost function for classifier φ at observation pair

(X,Y ). Let C0 = C(1, 0) and C1 = C(0, 1) being the costs of type I and II errors, respectively. For

the correct classification result, we have C(0, 0) = C(1, 1) = 0. Then, CS learning minimizes the

expected misclassification cost [Kuhn and Johnson, 2013]:

Rc(φ) = IEC(φ(X), Y )

= C0IP(φ(X) = 1, Y = 0) + C1IP(φ(X) = 0, Y = 1)

= C0IP(φ(X) = 1|Y = 0)IP(Y = 0) + C1IP(φ(X) = 0|Y = 1)IP(Y = 1)

= C0π0R0(φ) + C1π1R1(φ) .

There are primarily two types of approaches in the literature on CS learning. The first type is

called direct methods, which builds a cost-sensitive learning classifier by incorporating the different

misclassification costs into the training process of the base classification method. For instance,

there has been much work on CS decision tree [Ling et al., 2004, Bradford et al., 1998, Turney,

1994], CS boosting [Sun et al., 2007, Wang and Japkowicz, 2010, López et al., 2015], CS SVM

[Qiao and Liu, 2009], and CS neural network [Zhou and Liu, 2005]. The second type is usually

referred to as postprocessing methods, in such a way that we adjust the decision threshold with

the base classification algorithm unmodified. An example of this can be found in Domingos [1999].

Some additional references on cost-sensitive learning include López et al. [2012, 2013], Guo et al.

[2017], Voigt et al. [2014], Zhang et al. [2016], Zou et al. [2016].

In this review, we focus on the postprocessing methods as it combines well with any existing

base classification algorithm without the need to change its internal mechanism, which is also

better understood among practitioners. In addition, it serves the purpose of making an informative

comparison among different learning paradigms across different classification methods. On the
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population level, with the knowledge of C0 and C1, the CS oracle is

φ∗
c = argmin

φ

Rc(φ) = 1I

(

η(x) >
C0

C0 + C1

)

,

which reduces to the CC oracle φ∗ when C0 = C1.

Although CS learning has its merits on the control of asymmetric errors, its drawback is also

apparent because it is sometimes difficult or immoral to assign the values of costs C0 and C1. In

most applications, including the severe disease classification, these costs are unknown and can-

not be easily provided by experts. One way to extricate from this dilemma is to set the major-

ity class misclassification cost C1 = 1 and the minority class misclassification cost C0 = π1/π0

[Castro and Braga, 2013].

2.3 Neyman-Pearson paradigm

Besides requiring the knowledge of costs for different misclassification errors, the CS learning

paradigm does not provide an explicit probabilistic control on type I error under a pre-specified

level. Even if the practitioner tunes the empirical type I error equal to the pre-specified level, the

population-level type I error still has a non-trivial chance of exceeding this level [Tong, Feng, and Zhao,

2016, Tong, Feng, and Li, 2018]. To deal with this issue, another emerging statistical frame-

work to control asymmetric error is called Neyman-Pearson (NP) paradigm [Cannon et al., 2002,

Rigollet and Tong, 2011, Tong, 2013, Tong et al., 2016, 2018], which aims to minimize type II error

R1(φ) while controlling type I error R0(φ) under a desirable level. The corresponding NP oracle is

φ∗
α = argmin

φ:R0(φ)≤α

R1(φ) ,

where α is a targeted upper bound for type I error. It can be shown that φ∗
α(·) = 1I(η(·) > D∗

α)

for some properly chosen D∗
α. Unlike 1/2 or C0/(C0 + C1), D∗

α is not known unless one has

access to the distribution information. Tong et al. [2018] proposed an umbrella algorithm for NP

classification, which adapts existing scoring-type classification methods (e.g., logistic regression,

support vector machines, random forest) by choosing an order-statistics based thresholding level

so that the resulting classifier has type I error bounded from above by α with high probability.

This thresholding mechanism, along with the thresholds 1/2 and C0/(C0 + C1) for CC and CS

paradigms respectively, will be systematically studied in combination with several state-of-the-art

base classification methods in numerical studies.

2.4 A summary of three classification paradigms

For readers’ convenience, we summarize the three classification paradigms with their corresponding

objectives and oracle classifiers in Table 1.

3 A Matrix of Algorithms for Imbalanced Classification

In this section, we introduce a matrix of algorithms for imbalanced classification, which consists of

combinations of resampling techniques and base classification methods.
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Table 1: Three types of classification paradigms in binary classification.

Paradigm Objective Oracle Classfier

Classical Minimize the overall classification error φ∗ = argminφR(φ)

Cost-Sensitive Minimize the expected misclassification cost φ∗
c = argminφRc(φ)

Neyman-Pearson
Minimize type II error while controlling φ∗

α = argmin
φ:R0(φ)≤α

R1(φ)
type I error under α

To fix idea, assume among the n observation pairs {(Xi, Yi), i = 1, · · · , n}, there are n0 observa-

tions with Yi = 0 (the minority class) and n1 observations with Yi = 1 (the majority class). Then,

the imbalance ratio IR = n1/n0.

3.1 Resampling techniques

To address the imbalanced classification problem under one of the three classification paradigms

described in Section 2, resampling techniques are often used to create a new training dataset by

balancing the number of data points in the minority and majority classes in order to alleviate the

effect of class size imbalance in the process of classification. López et al. [2013] pointed out that

about one-third of their reviewed papers have used resampling techniques. They are usually divided

into three categories: undersampling, oversampling, and hybrid methods.

The undersampling methods directly discard a subset of observations of the majority class. It in-

cludes two main versions: the cluster-based undersampling and random undersampling [Yen and Lee,

2009, Kumar et al., 2014, Sun et al., 2015, Guo et al., 2017]. In the cluster-based undersampling, a

clustering algorithm is applied to cluster the majority class such that the number of clusters is equal

to that of the data points in the minority class (i.e., n0 clusters), and then one point is randomly

selected from each cluster. Nevertheless, the clustering process could be quite slow when n1 is large.

Random undersampling is a simpler and more efficient approach, which randomly eliminates the

data points from the majority class to make it of size n0. By undersampling, the processed training

data set is a combination of n0 randomly chosen data points from the majority class and all (n0)

data points from the minority class. However, undersampling may lead to loss of information as a

large portion of the data from the majority class is discarded.

The oversampling method, on the other hand, increases the number of data points in the mi-

nority class from n0 to n1 while keeping the observations from the majority class intact. The

leading two approaches are random oversampling and SMOTE [Han et al., 2005, He et al., 2008,

Garćıa et al., 2012a, Beaulieu et al., 2014, Nekooeimehr and Lai-Yuen, 2016]. Random oversam-

pling, as a counterpart of random undersampling, is perhaps the most straightforward approach

to duplicate the data points of minority class randomly. One version of the approach samples

n1 − n0 observations with replacement from the minority class and add them to the new training

set. The approach SMOTE is the acronym for the “Synthetic Minority Over-sampling Technique”

proposed by Chawla et al. [2002]. It generates n1 − n0 new synthetic data points for the minority

class by interpolating pairs of k nearest neighbors. We review the details of SMOTE in Algorithm

1. Compared with undersampling, oversampling methods usually require longer training time and
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could cause over-fitting. A popular extension of SMOTE is the Borderline-SMOTE (BLSMOTE)

[Han et al., 2005], which only oversamples the minority observations near the borderline and the

essential step to generate the data point is similar to the SMOTE algorithm in Algorithm 1 (see

Han et al. [2005] for a detailed description for BLSMOTE).

Algorithm 1: SMOTE [Chawla et al., 2002]

For any data point of minority class Xi = (Xi1,Xi2, . . . ,Xid)
⊤, the multiple N = IR − 1,

number of nearest neighbors K
Step 1: Find the K nearest neighbor points of Xi in the minority class: Xi1 , . . . ,Xik ;
Step 2: for j = 1 : N do

randomly choose one of the K nearest neighbor points: Xij = (Xij1,Xij2, . . . ,Xijd)
⊤;

generate a random number rs ∼ Unif [0, 1];

generate the synthetic data point for the minority class as X∗
j = (X∗

j1,X
∗
j2, . . . ,X

∗
jd)

⊤,
where X∗

js = Xis + rs ∗ (Xijs −Xis), s = 1, . . . , d.

end

Return X∗
1 , . . . ,X

∗
N as new synthetic data points.

The hybrid method is just a combination of undersampling and oversampling methods [Cao et al.,

2014, Cateni et al., 2014, Dı́ez-Pastor et al., 2015, Sáez et al., 2015]. It simultaneously decreases

the number of data points from the majority class and increases the number of data points from the

minority class to nh, where the above described undersampling and oversampling methods can be

used. The hybrid method could serve as an option that balances the goodness of fit, computational

cost as well as robustness of the classifier.

3.2 Classification methods

Using any of the resampling methods, we will arrive at a new training dataset that has balanced

classes. Naturally, we can apply any existing base classification method on this new dataset coupled

with one of the paradigms described in Section 2.

Many classification methods have been extensively studied. The well-known ones include deci-

sion trees (DT) [Safavian and Landgrebe, 1991], k-nearest neighbors (KNN) [Altman, 1992], Linear

discriminant analysis (LDA) [McLachlan, 2004], logistic regression (LR) [Nelder and Wedderburn,

1972], näıve bayes (NB) [Rish et al., 2001], neural network (NN) [Rumelhart et al., 1985], ran-

dom forest (RF) [Breiman, 2001], support vector machine (SVM) [Cortes and Vapnik, 1995], and

XGBoost (XGB) [Chen and Guestrin, 2016], among others.

To learn more about these methods, we refer the readers to a review of classification methods

[Kotsiantis et al., 2007] and a book on statistical learning [Hastie et al., 2009].

3.3 A summary of the matrix of algorithms

In numerical studies, we consider a matrix of classification algorithms shown in Figure 1, as com-

binations of resampling techniques described in Section 3.1 and four (out of many) state-of-the-art

classification methods described in Section 3.2.

In Figure 1, “Original” refers to no resampling, “Under” refers to random undersampling and

“Hybrid” refers to a hybrid of random undersampling and SMOTE. Note here we chose random

7



Resampling
Techniques:

Original, Under, BLSMOTE,
SMOTE, Hybrid

Base 
Classification

Methods:

LR, RF, SVM, XGB

Figure 1: A summary of the matrix of algorithms.

undersampling, SMOTE, and BLSMOTE as representatives of undersampling and oversampling

methods due to their popularity among practitioners. The readers can easily study other types

of resampling technique and classification method combinations by adapting the companion code

from this review.

In the numerical studies, we will conduct a comparative study on those 20 combinations de-

scribed in Figure 1 under each of the three paradigms introduced in Section 2 with the IR varying

from 1 to 128, in terms of different evaluation metrics which will be introduced in the next section.

A flowchart demonstrating our imbalanced classification system can be found in Figure 2.

4 Evaluation Metrics

In this section, we will review several popular evaluation metrics to compare the performance of

different classification algorithms.

For a given classifier, suppose that it classifies the i-th observation Xi to Ŷi (Yi denotes the

true label). Then, the classification results can be summarized into the four terms: True Positives

TP =
∑n

i=1 1I(Yi = 1, Ŷi = 1), False Positives FP =
∑n

i=1 1I(Yi = 0, Ŷi = 1), False Negatives

FN =
∑n

i=1 1I(Yi = 1, Ŷi = 0), and True Negatives TN =
∑n

i=1 1I(Yi = 0, Ŷi = 0). These four terms

are usually summarized in the so-called confusion matrix (Table 2).

Table 2: Confusion matrix for a two-class problem.

Predicted Class 0 Predicted Class 1
True Class 0 TN FP
True Class 1 FN TP

Note that in Table 2, the class 0 is being regarded as the “negative class”. In practice, sometimes

we may need to set class 0 as the “positive class”.

Then, the empirical risk can be denoted as

R̂ = π̂0R̂0 + π̂1R̂1 =
FP + FN

TP + FP + TN + FN
,

where π̂0 = (TN + FP )/(TP + FP + TN + FN), π̂1 = (FN + TP )/(TP + FP + TN + FN)
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Minority Class Majority Class

Training data

Classical
Classification

Paradigm

Cost-Sensitive
Learning
Paradigm

Neyman-Pearson
Paradigm

Resampling
Techniques+Base

Classification
Methods

Classifer

New data

Labels

Figure 2: A flow chart for imbalanced classification with a paradigm-oriented view.
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are the empirical proportions of Class 0 and 1; R̂0 and R̂1 are the empirical type I and II errors,

respectively, that is,

R̂0 =
FP

TN + FP
, R̂1 =

FN

FN + TP
.

Similarly, for given costs C0 and C1, the empirical misclassification cost is expressed as

R̂c = C0π̂0R̂0 + C1π̂1R̂1 .

Another popular synthetic metric in the imbalanced classification literature is the F -score (also

F1-score or F -measure, [Bradley, 1997]) for class 0, which is the harmonic mean of Precision and

Recall: where Precision0 = TN/(TN + FN) and Recall0 = TN/(TN + FP ). Similarly, we can

also define F -score for class 1 as

F -score (class 1) =
2

Precision−1
1 +Recall−1

1

,

where Precision1 = TP/(TP +FP ) and Recall1 = TP/(TP +FN). Here, we set F -score (class 0)

or F -score (class 1) to 0 if the corresponding precision or recall is undefined or equal to 0.

When the parameter in a classification method (e.g., the threshold of scoring functions) is

varied, we usually get different trade-offs between type I and type II errors. A popular tool to

visualize these trade-offs is the Receiver Operating Characteristic (ROC) curve [Bradley, 1997,

Huang and Ling, 2005]. The area under the ROC curve (ROC-AUC) provides an aggregated mea-

sure for the method’s performance. ROC-AUC has been used extensively to compare the per-

formance of different classification methods. However, when the data is highly imbalanced, the

ROC curves can present an overly optimistic view of classifiers’ performance [Davis and Goadrich,

2006]. Precision-Recall (PR) curves and their AUCs (PR-AUC) have been advocated as an al-

ternative metric when dealing with imbalanced data [Goadrich et al., 2004, Singla and Domingos,

2005]. Note that we also have two versions of PR-AUC, depending on which class we call “positive”:

PR-AUC (class 0) and PR-AUC (class 1).

Now, we summarize all of the metrics discussed in Table 3.

Table 3: Various evaluation metrics.
Metric Formula

Risk (FP + FN)/(TP + FP + TN + FN)

Type I error(R̂0) FP/(TN + FP )

Type II error(R̂1) FN/(FN + TP )

Cost C0π̂0R̂0 + C1π̂1R̂1

F -score (class 0) 2/(Precision−1
0 +Recall−1

0 )

F -score (class 1) 2/(Precision−1
1 +Recall−1

1 )
ROC-AUC The area under the ROC curve

PR-AUC (class 0) The area under the PR curve when class 0 is negative
PR-AUC (class 1) The area under the PR curve when class 0 is positive
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5 Simulation

In this section, we conduct extensive simulation studies to compare the matrix of 20 combinations

of classification methods and resampling approaches introduced in Section 3 under each of the

three classification paradigms described in Section 2 when the IR varies, using evaluation metrics

reviewed in Section 4.

5.1 Data generation process

We consider the following two examples with different data generation mechanisms.

Example 1. The conditional distributions for each class are multivariate t4 distributions with a

common covariance matrix but different mean vectors. Concretely,

Class 0 : X|(Y = 0) ∼ t4
(

µ0,Σ
)

, Class 1 : X|(Y = 1) ∼ t4
(

µ1,Σ
)

,

where µ0 = (0, 0, 0, 0, 0)⊤ , µ1 = (2, 2, 2, 0, 0)⊤ , and

Σ =













1 0.5 0.25 0 0
0.5 1 0.5 0 0
0.25 0.5 1 0 0
0 0 0 1 0
0 0 0 0 1













.

(a) To have a precise control on the imbalance ratio (IR), we explicitly generate n0 = 300 obser-

vations from the minority class (class 0) and n1 observations from the majority class, where

IR = n1/n0 is a pre-specified value varying in {2i, i = 0, 1, · · · , 7}. This leads to a training

sample {(Xi, Yi), i = 1, · · · , n} where n = n0 + n1. Following the same mechanism, we also

generate a test sample with size m consisting of m0 = 2000 and m1 = m0 × IR observations

from class 0 and 1, respectively. This generation mechanism guarantees the same IR for both

training and test samples.

(b) To observe the influence of different IR for test samples, we fix IRtrain = 8 for training

samples and vary IRtest in {2i, i = 0, 1, · · · , 7} for test samples. The parameters n0 and m0

are 300 and 2000 respectively; and n1 = 300 × 8 = 2400, m1 = m0 × IRtest.

Example 2. The conditional distributions for each class are multivariate Gaussian vs. a mixture

of multivariate Gaussian. Concretely,

Class 0 : X|(Y = 1) ∼ N
(

1

2
(µ0 + µ1),Σ

)

, (1)

Class 1 : X|(Y = 0) ∼ 1

2
N

(

µ0,Σ
)

+
1

2
N

(

µ1,Σ
)

, (2)

where µ0, µ1 and Σ are the same as Example 1. The remaining data generation mechanism is the

same as in Example 1. As a result, we also have Example 2(a) with the same training and testing

IR and 2(b) where we fix the training IR and vary the testing IR.
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5.2 Implementation details

Regarding the resampling methods, we consider the following four options.

• No resampling (Original): we use the training dataset as it is without any modification.

• Random undersampling (Under): we keep all the n0 observations in the minority class and

randomly sample n0 observations without replacement from the majority class. Then, we

have a balanced data set in which each class is of size n0.

• Oversampling (SMOTE, BLSMOTE): we keep all the n1 observations in the majority class.

We use SMOTE and BLSMOTE (R Package smotefamily, v1.3.1, Siriseriwan 2019) to gen-

erate new synthetic data for the minority class until the new training set is balanced. Then,

we have a balanced data set in which each class is of size n1. Following the default choice in

smotefamily, we set the number of nearest neighbors K = 5 in the oversampling process.

• Hybrid methods (Hybrid): we conduct a combination of random undersampling and SMOTE

with the final training set consists of nh minority and majority observations with nh =

⌊√n0 ∗ n1/n0⌋ ∗ n0 where ⌊·⌋ is the floor function.

Regarding the base classification methods, we apply the following R packages or functions with

their default parameters.

• Logistic regression (glm function in base R).

• Random forest (R Package randomForest, v4.6.14, Liaw and Wiener 2002).

• Support vector machine (R Package e1071, v1.7.2, Meyer et al. 2019).

• XGBoost (R Package xgboost, v0.90.0.2, Chen et al. 2019).

Regarding the classification paradigms, some specifics are listed below.

• CS learning paradigm: we specify the cost C0 = IR and C1 = 1.

• NP paradigm: we use the NP umbrella algorithm as implemented in R package nproc v2.1.4,

and set α = 0.05 and the tolerance level δ = 0.05.

Denote by |S| the cardinality of a set S. Let O = {CC, CS, NP}, T={Original, Under, SMOTE,

BLSMOTE, Hybrid}, C = {LR, RF, SVM, XGB} and B = {2i, i = 0, 1, 2, . . . , 7}. Hence, there

are |O| × |T | × |C| × |B| (480) classification systems studied in this paper for a given imbalanced

classification problem.

For each ensemble system, we evaluate the performance of different classifiers in terms of the

following metrics reviewed in Section 4: overall classification error (Risk), type I error, type II error,

expected misclassification cost (Cost), F -score (class 0), and F -score (class 1). When the threshold

varies for each classification method, we also report the area under ROC curve (ROC-AUC) and

the area under PR curve (PR-AUC (class 0) and PR-AUC (class 1)).

We repeat the experiment 100 times and report the average performance in terms of mean,

standard error, and winning methods for each metric and classification paradigm combination.

The results are summarized in Figures 3 to 15 as well as in Tables 4, 5, 6 and 7.
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5.3 Results and interpretations

For each figure, we present the results of classification methods under each IR in the first four panels,

while the last panel shows the optimal combination of resampling technique and base classification

method under each IR.

Next, we provide some interpretations and insights from the figures and tables under each

classification paradigm.

For Example 1(a), where we vary the training and testing IR at the same time, we present the

ROC-AUC in Figure 3 as an overall measure of classification methods without the need to specify

the classification paradigm. First of all, LR is surprisingly stable for all resampling techniques

across all IRs. Another study on the robustness of LR for imbalanced data can be found in Owen

[2007]. Then, from the panels corresponding to RF, SVM, and XGB, we suggest that it is essential

to apply specific resampling techniques to keep the ROC-AUC at a high value when IR increases.

For Example 1(b) where we fix the training IR and vary the testing IR, the ROC-AUC in Figure

4 is more robust across the board. In addition, we report the range of the standard errors for each

base classification method in the captions of Figures 3 and 4, and they are all very small. Thus, the

standard error does not affect the determination of the optimal combination. We omit the plots of

ROC-AUC for Example 2 as they look similar.
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Figure 3: ROC-AUC of different methods in Example 1(a). The minimum and maximum of
standard error: LR(0.0003, 0.0005), RF(0.0004,0.0007), SVM(0.0003,0.0029), XGB(0.0005, 0.0013).
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Figure 4: ROC-AUC of different methods in Example 1(b). The minimum and maximum of
standard error: LR(0.0003, 0.0005), RF(0.0003,0.0006), SVM(0.0003,0.0010), XGB(0.0005, 0.0008).

5.3.1 Classical classification paradigm.

We first focus on analyzing the results for Example 1. Figures 5 and 6 exhibit the risk of different

methods. We observe that the empirical risk of all classifiers without resampling is smaller than

that with any resampling technique in most cases, and decreases as IR increases. This is in line

with our intuition that if the risk is the primary measure of interest, we would be better off not

applying any resampling techniques. In addition, we observe that only undersampling leads to a

stable risk when the IR increases for all four base classification methods considered. Finally, the

resampling techniques can make risk more stable across all IRs in Figure 6.

As mentioned in Section 2, minimizing the risk with imbalanced data could lead to large type

I errors, demonstrated clearly in Figure 7. By using the resampling techniques, however, we can

have much better control over type I error as IR increases. In particular, undersampling works well

for all four classification methods. Lastly, we note that the optimal choices when IR > 1 all involve

resampling techniques.

The figures for Example 2 convey a similar message as in Example 1 that we do not need any

resampling if the goal is to minimize the risk. On the other hand, applying certain resampling

techniques is critical to bring down the type I error and increase the ROC-AUC value. Again, we

omit these figures to save space.
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Figure 5: Risk of different methods under CC paradigm in Example 1(a). The minimum and
maximum of standard error: LR(0, 0.0011), RF(0,0.0014), SVM(0,0.0012), XGB(0, 0.0014).
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Figure 6: Risk of different methods under CC paradigm in Example 1(b). The minimum and maxi-
mum of standard error: LR(0.0001, 0.0018), RF(0.0002,0.0016), SVM(0.0001,0.0016), XGB(0.0002,
0.0016).
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Figure 7: Type I error of different methods under CC paradigm in Example 1(a). The minimum
and maximum of standard error: LR(0, 0.0037), RF(0,0.0032), SVM(0,0.0034), XGB(0, 0.0027).

5.3.2 Cost-Sensitive learning paradigm.

When we are in the CS learning paradigm, the objective is to minimize the expected total misclas-

sification cost. We again first look at the results from Example 1. Naturally, we would like to see

the impact of the resampling techniques on different classification methods in terms of empirical

cost, which is summarized in Figures 8 and 9. From the figures, we observe that no resampling

leads to the smallest cost in most cases. When IR is large, BLSMOTE leads to the smallest cost

for SVM.

Now, we look at the results for type I error in Figures 10 and 11, where we discover that all

classification methods benefit significantly from resampling techniques with undersampling being

the best choice for most scenarios.

5.3.3 Neyman-Pearson paradigm.

The NP paradigm aims to minimize type II error while controlling type I error under a target level

α. In the current implementation, we set α = 0.05. From Figures 12 and 13, we observe that the

type I errors are well-controlled under α throughout all IRs for all base classification methods in

Examples 1(a) and 1(b).

When we look at Figure 14, the benefits that resampling techniques can bring are apparent

in most cases. Undersampling or hybrid resampling leads to a type II error well under control.

Moreover, Type II error is more robust when different IRs are selected for the test data set.

For Example 2, we have the same conclusion that resampling techniques can help to reduce
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Figure 8: Cost of different methods under CS learning paradigm in Example 1(a). The minimum
and maximum of standard error: LR(0.0006, 0.0066), RF(0.0007,0.0068), SVM(0.0004,0.0113),
XGB(0.0004, 0.0066).
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Figure 9: Cost of different methods under CS learning paradigm in Example 1(b). The minimum
and maximum of standard error: LR(0.0006, 0.0061), RF(0.0008,0.0054), SVM(0.0003,0.0075),
XGB(0.0005, 0.0065).
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Figure 10: Type I error of different methods under CS learning paradigm in Example 1(a). The
minimum and maximum of standard error: LR(0.0002, 0.0014), RF(0.0002,0.0017), SVM(0,0.0078),
XGB(0.0007, 0.0019).
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Figure 11: Type I error of different methods under CS learning paradigm in Example
1(b). The minimum and maximum of standard error: LR(0.0006, 0.0010), RF(0.0006,0.0015),
SVM(0.0008,0.0019), XGB(0.0010, 0.0017).
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Figure 12: Type I error of different methods under NP paradigm in Example 1(a). The min-
imum and maximum of standard error: LR(0.0010, 0.0014), RF(0,0.0015), SVM(0.0009,0.0015),
XGB(0.0009, 0.0013).
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Figure 13: Type I error of different methods under NP paradigm in Example 1(b). The minimum
and maximum of standard error: LR(0.0009, 0.0014), RF(0.0010,0.0017), SVM(0.0009,0.0015),
XGB(0.0009, 0.0014).
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Figure 14: Type II error of different methods under NP paradigm in Example 1(a). The min-
imum and maximum of standard error: LR(0.0142, 0.0182), RF(0,0.0219), SVM(0.0015,0.0149),
XGB(0.0081, 0.0140).
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Figure 15: Type II error of different methods under NP paradigm in Example 1(b). The minimum
and maximum of standard error: LR(0.0137, 0.0174), RF(0.0126,0.0232), SVM(0.0023,0.0153),
XGB(0.0097, 0.0136).
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type II error with the type I error well-controlled under α.

5.3.4 Summary.

In addition to the plots, we summarize in Tables 4, 5, 6, 7 the winning frequency of resampling

techniques and classification methods in terms of each evaluation metric of all IRs in Examples

1(a), 1(b), 2(a), and 2(b), respectively. The number in each cell of tables represents the winning

frequency for each base classification method or each resampling technique for the given metric.

The numbers in bold represent the most frequent winning combination of resampling techniques and

classification methods. Clearly, the optimal choices differ for different evaluation metrics, IRs, and

data generation mechanisms. From these tables and the above figures, we can draw the following

conclusions:

(a) All the classifiers can control the type I error under a certain level α under the NP paradigm

(see Figures 12 and 13).

(b) For most base classification methods, ROC-AUC can usually benefit from resampling tech-

niques, whether or not the test class proportion is at the same level of imbalance as the

training set (see Figures 3 and 4).

(c) Resampling techniques, in general, bring down the type I error regardless of the classification

paradigm (see Figures 7 and 11).

(d) The optimal combination of base classification method and resampling technique should be

interpreted together with both the paradigm and evaluation metric. For example, in Table

4, the combination “LR+Under” leads to the minimal type I error under the CC paradigm.

(e) When the training class proportion is fixed and IR varies for the test data set, the results are

robust in most cases (see Figures 6, 11, and 15).
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Table 4: The frequency of winning methods in Example 1(a).

Metric
Method

LR RF SVM XGB BLSMOTE Hybrid Original SMOTE Under

AUC 0 0 8 0 0 0 1 0 7

PR-AUC(0) 0 5 3 0 1 0 6 0 1
PR-AUC(1) 0 0 8 0 0 0 1 0 7

CC-Type I 8 0 0 0 3 0 1 0 4

CS-Type I 4 0 4 0 2 0 1 0 5

NP-Type I 0 8 0 0 1 0 7 0 0

Type I 12 8 4 0 6 0 9 0 9

CC-Type II 1 0 7 0 0 0 8 0 0
CS-Type II 1 0 4 3 1 0 7 0 0
NP-Type II 0 1 7 0 0 0 1 0 7

Type II 2 1 18 3 1 0 16 0 7

CS-Cost 8 0 0 0 0 0 8 0 0

CC-Risk 2 3 3 0 0 0 8 0 0
NP-Risk 0 1 7 0 0 0 1 0 7

Risk 2 4 10 0 0 0 9 0 7

CC-F -score(0) 3 4 0 1 5 0 1 2 0
CS-F -score(0) 2 0 4 2 1 0 7 0 0
NP-F -score(0) 0 2 6 0 0 0 1 0 7

F -score(0) 5 6 10 3 6 0 9 2 7

CC-F -score(1) 2 1 5 0 0 0 8 0 0
CS-F -score(1) 1 0 4 3 1 0 7 0 0
NP-F -score(1) 0 1 7 0 0 0 1 0 7

F -score(1) 3 2 16 3 1 0 16 0 7

Total 32 26 77 9 15 0 75 2 52
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Table 5: The frequency of winning methods in Example 1(b).

Metric
Method

LR RF SVM XGB BLSMOTE Hybrid Original SMOTE Under

AUC 0 0 8 0 0 0 0 0 8

PR-AUC(0) 0 5 3 0 0 0 8 0 0
PR-AUC(1) 0 0 8 0 0 0 0 0 8

CC-Type I 8 0 0 0 7 0 0 0 1
CS-Type I 8 0 0 0 0 0 0 0 8

NP-Type I 0 8 0 0 1 0 7 0 0

Type I 16 8 0 0 8 0 7 0 9

CC-Type II 2 2 4 0 1 0 5 2 0
CS-Type II 0 0 8 0 0 0 8 0 0
NP-Type II 0 0 8 0 0 0 0 0 8

Type II 2 2 20 0 1 0 13 2 8

CS-Cost 3 0 5 0 1 0 6 0 1

CC-Risk 2 2 4 0 1 0 5 2 0
NP-Risk 0 0 8 0 0 0 0 0 8

Risk 2 2 12 0 1 0 5 2 8

CC-F -score(0) 3 2 3 0 2 0 4 2 0
CS-F -score(0) 2 0 6 0 0 0 8 0 0
NP-F -score(0) 0 0 8 0 0 0 0 0 8

F -score(0) 5 2 17 0 2 0 12 2 8

CC-F -score(1) 1 2 5 0 1 0 6 1 0
CS-F -score(1) 1 0 7 0 0 0 8 0 0
NP-F -score(1) 0 0 8 0 0 0 0 0 8

F -score(1) 2 2 20 0 1 0 14 1 8

Total 30 21 93 0 14 0 65 7 58
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Table 6: The frequency of winning methods in Example 2(a).

Metric
Method

LR RF SVM XGB BLSMOTE Hybrid Original SMOTE Under

AUC 0 0 8 0 0 0 1 0 7

PR-AUC(0) 0 0 8 0 0 0 1 0 7

PR-AUC(1) 0 0 8 0 0 0 1 0 7

CC-Type I 0 0 8 0 0 0 1 0 7

CS-Type I 6.1 0 1.9 0 0.9 1.4 1 2.4 2.3
NP-Type I 3 5 0 0 2 0 5 0 1

Type I 9.1 5 9.9 0 2.9 1.4 7 2.4 10.3

CC-Type II 7 0 1 0 0 0 8 0 0
CS-Type II 0 0 3 5 1 0 7 0 0
NP-Type II 0 5 3 0 0 2 1 0 5

Type II 7 5 7 5 1 2 16 0 5

CS-Cost 0 3 4 1 6 0 1 1 0

CC-Risk 7 0 1 0 0 0 8 0 0
NP-Risk 0 4 4 0 0 2 1 0 5

Risk 7 4 5 0 0 2 9 0 5

CC-F -score(0) 0 0 8 0 0 0 1 0 7

CS-F -score(0) 0 0 7 1 5 0 1 1 1
NP-F -score(0) 0 5 3 0 0 2 1 0 5

F -score(0) 0 5 18 1 5 2 3 1 13

CC-F -score(1) 7 0 1 0 0 0 8 0 0
CS-F -score(1) 0 0 3 5 1 0 7 0 0
NP-F -score(1) 0 5 3 0 0 2 1 0 5

F -score(1) 7 5 7 5 1 2 16 0 5

Total 30.1 27 74.9 12 15.9 9.4 55 4.4 59.3
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Table 7: The frequency of winning methods in Example 2(b).

Metric
Method

LR RF SVM XGB BLSMOTE Hybrid Original SMOTE Under

AUC 0 0 8 0 0 0 0 0 8

PR-AUC(0) 0 0 8 0 0 0 0 0 8

PR-AUC(1) 0 0 8 0 0 0 0 0 8

CC-Type I 0 0 8 0 0 0 0 0 8

CS-Type I 8 0 0 0 2 2 0 2 2

NP-Type I 0 8 0 0 2 0 6 0 0

Type I 8 8 8 0 4 2 6 2 10

CC-Type II 8 0 0 0 0 0 8 0 0
CS-Type II 0 0 0 8 0 0 8 0 0
NP-Type II 0 6 2 0 0 3 0 0 5

Type II 8 6 2 8 0 3 16 0 5

CS-Cost 1 1 2 4 1 0 4 1 2

CC-Risk 7 0 1 0 0 0 7 0 1
NP-Risk 0 6 2 0 0 4 0 0 4

Risk 7 6 3 0 0 4 7 0 5

CC-F -score(0) 0 0 8 0 3 1 0 0 4

CS-F -score(0) 0 1 4 3 4 0 3 1 0
NP-F -score(0) 0 6 2 0 0 4 0 0 4

F -score(0) 0 7 14 3 7 5 3 1 8

CC-F -score(1) 8 0 0 0 0 0 8 0 0
CS-F -score(1) 0 0 0 8 0 0 8 0 0
NP-F -score(1) 0 6 2 0 0 3 0 0 5

F -score(1) 8 6 2 8 0 3 16 0 5

Total 32 34 55 23 12 17 52 4 59

6 Real Data-Credit Card Fraud Detection

The Credit Card Transaction Data is available at http://kaggle.com/mlg-ulb/creditcardfraud.

It includes credit card transactions made in September 2013 by European cardholders. In partic-

ular, it contains transactions that occurred in two days, where we have 492 frauds out of 284,807

transactions. Therefore, this data set is highly imbalanced with an imbalance ratio (IR) about

578 (284,315/492). Due to confidentiality issues, the website does not provide the original features

and more background information about this data set. Features V1, V2, . . ., V28 are the principal

components obtained with PCA. The only features which have not been transformed with PCA

are “Time” and “Amount”. Feature “Time” contains the seconds elapsed between each transaction

and the first transaction in the data set. The feature “Amount” is the transaction amount. They

are scaled to zero mean and unit variance. Using the feature “Class”, we redefine “0” as the fraud

class (class 0) and “1” as the no-fraud class (class 1). We use the features V1, V2, . . ., V28, Time

and Amount as predictor variables for the classification methods.

We specify the imbalance ratio (IR) as 128 for training data set and extract a subsample from
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this large dataset. In particular, we randomly sample n0 = 300 data points from class 0 (fraud)

and n1 = n0 ∗ IR = 38, 400 from class 1 (no-fraud). This procedure creates our training data set.

The test data set contains a random sample of m0 = 192 for class 0 and m1 = m0 ∗ IRtest for class

1 from the remaining data, where IRtest varies in {2i, i = 0, 1, · · · , 7}. This splitting mechanism

implies that IR will be different for the training and test data sets.

The remaining implementation details are the same as in Section 5.2. We still repeat the

experiment 100 times and report the average performance and frequency of winning methods by

the mean for each metric and classification paradigm combination. The frequency of winning

methods were summarized in Table 8 and report Figures 16 and 17 and omit the other figures since

they convey similar information to that in Section 5.3.

From Figures 16 and 17, resampling techniques are in general beneficial for the metrics in most

cases. In addition, most of the results are robust when the test IR increases. This is consistent with

the simulation results. Table 8 shows that the combination “RF+Hybrid” has the top performance.

Note that this appears to be different from the choices implied by Tables 4-7, which again show

that the best performing method highly depends on the data generation process. This actually

agrees with our understanding of SVM vs. RF in that RF may be more effective than SVM in

a more complex scenario. Moreover, the optimal methods depend on the learning paradigm and

evaluation metrics. For example, if our objective is to minimize the overall risk under the CC

paradigm, “RF+SMOTE” is the best choice in Table 8; if our objective is to minimize the type

II error while controlling the type I error under a specific level, “RF+Hybrid” performs the best.

Therefore, there is no universal best combination for the imbalanced classification problem.

0.94

0.95

0.96

0.97

1 2 4 8 16 32 64 128

IR

LR

0.965

0.970

0.975

0.980

1 2 4 8 16 32 64 128

IR

RF

0.95

0.96

0.97

0.98

1 2 4 8 16 32 64 128

IR

SVM

0.978

0.979

0.980

0.981

1 2 4 8 16 32 64 128

IR

XGB

0.9825

0.9826

0.9827

1 2 4 8 16 32 64 128

IR

Optimal

Method BLSMOTE Hybrid Original SMOTE Under

Method Hybrid SMOTE Classifier RF

Figure 16: ROC-AUC of different methods in real data. The minimum and maximum of standard
error: LR(0.0005, 0.0089), RF(0.0005,0.0009), SVM(0.0005,0.0014), XGB(0.0005, 0.0007).
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Figure 17: Type I error of different methods under CC paradigm in real data. The minimum
and maximum of standard error: LR(0.0020, 0.0086), RF(0.0019,0.0024), SVM(0.0019,0.0036),
XGB(0.0018, 0.0023).

7 Discussion

In this paper, we review the imbalanced classification with a paradigm-based view. In addition

to the few take-away messages we offered in the simulation section, the main message from the

review is that there is no single best approach to imbalanced classification. The optimal choice

for resampling techniques and base classification methods highly depends on the classification

paradigms, evaluation metric, as well as the severity of imbalancedness (imbalance ratio).

Admittedly, we only considered a selective list of resampling techniques and base classification

methods. There are many other combinations that are worth further consideration. In addition, we

presented results from two simulated data generation processes as well as a real data set, which could

be unrepresentative for specific applications. We suggest practitioners adapt our analysis process

for evaluating different choices for imbalanced classification to align with their data generation

mechanism.

Furthermore, in our numerical experiments, all base classification methods were applied using

the corresponding R-packages with their default parameters. Note that although we didn’t tune

the parameters due to the already-extensive simulation settings, it is well known that parameter

tuning could further improve the performance of a classifier in certain situation. For example,

the parameter k in SMOTE Chawla et al. [2002] can be selected via cross-validation. We leave a

systematic study of the impact of parameter tuning on imbalanced classification as a future research

topic.
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Table 8: The frequency of winning methods when IR of test data varies in credit fraud detection.

Metric
Method

LR RF SVM XGB BLSMOTE Hybrid Original SMOTE Under

AUC 0 8 0 0 0 2 0 6 0
PR-AUC(0) 0 8 0 0 0 0 0 8 0
PR-AUC(1) 0 8 0 0 0 8 0 0 0

CC-Type I 7 0 0 1 0 0 0 0 8

CS-Type I 0 0 8 0 0 0 0 0 8

NP-Type I 0 8 0 0 0 0 8 0 0

Type I 7 8 8 1 0 0 8 0 16

CC-Type II 0 0 4 4 0 0 8 0 0
CS-Type II 0 0 0 8 0 0 8 0 0
NP-Type II 0 6 2 0 0 6 0 0 2

Type II 0 6 6 12 0 6 16 0 2

CS-Cost 0 1 0 7 0 2 3 3 0

CC-Risk 1 3 0 4 0 3 1 4 0
NP-Risk 0 6 2 0 0 6 0 0 2

Risk 1 9 2 4 0 9 1 4 2

CC-F -score(0) 1 3 0 4 0 4 1 3 0
CS-F -score(0) 0 0 0 8 0 0 6 2 0
NP-F -score(0) 0 8 0 0 0 8 0 0 0

F -score(0) 1 11 0 12 0 12 7 5 0

CC-F -score(1) 1 4 0 3 0 3 1 4 0
CS-F -score(1) 0 0 0 8 0 0 6 2 0
NP-F -score(1) 0 6 2 0 0 6 0 0 2

F -score(1) 1 10 2 11 0 9 7 6 2

Total 10 69 18 47 0 48 42 32 22

Lastly, we focused on binary classification throughout the review. We expect similar interpre-

tations and conclusions from multi-class imbalanced classification.
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