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Abstract

Hierarchical and k-medoids clustering are deterministic clustering algo-

rithms based on pairwise distances. Using these same pairwise distances,

we propose a novel stochastic clustering method based on random parti-

tion distributions. We call our method CaviarPD, for cluster analysis via

random partition distributions. CaviarPD first samples clusterings from a

random partition distribution and then finds the best cluster estimate based

on these samples using algorithms to minimize an expected loss. We com-

pare CaviarPD with hierarchical and k-medoids clustering through eight case

studies. Cluster estimates based on our method are competitive with those of

hierarchical and k-medoids clustering. They also do not require the subjec-

tive choice of the linkage method necessary for hierarchical clustering. Fur-

thermore, our distribution-based procedure provides an intuitive graphical

representation to assess clustering uncertainty.

Keywords: random partition distributions, dendrogram, Ewens-Pitman

attraction distribution, hierarchical clustering, k-medoids clustering
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1. Introduction

Cluster analysis seeks to partition data into distinct subsets, or clusters,

such that observations in the same cluster are more similar than observations

from different clusters. There are numerous methods for cluster analysis

with applications in many fields (Dubes and Jain, 1976; K. Jain et al., 1999).

As an unsupervised learning technique, there is little consensus on how to

validate the clustering obtained. With many available clustering techniques,

subjective choices must be made which influence the outcome of a clustering

procedure (Gareth et al., 2013). It is also difficult to quantify the uncertainty

associated with clustering estimates.

Among the various algorithms for cluster analysis, agglomerative hierar-

chical clustering remains one of the most used (Hennig et al., 2016). Agglom-

erative hierarchical clustering is a heuristic method that takes as its input

a matrix of pairwise distances among items. Beginning with every item in

its own cluster, the algorithm sequentially merges the most similar clusters

(based on the pairwise distances) until all observations are in a single clus-

ter. These nested clusters can be visualized as a dendrogram. There are

subjective decisions involved in hierarchical clustering; namely, the linkage

type used to build the tree and the tree-cutting method used to obtain a

clustering estimate.

Another commonly used class of clustering methods includes k-means

and k-medoids, which both seek to minimize the within-cluster distances

from each point to a point specified as its cluster center. k-means minimizes

squared Euclidean distances to each cluster centroid. In contrast, k-medoids

uses an actual data point for each cluster center and thus can take any
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dissimilarity measure as input (Kaufman and Rousseeuw, 1990). The same

input of a pairwise distance matrix makes k-medoids a comparable procedure

to hierarchical clustering. The most influential choice a user must make in

k-medoids clustering is the value of k, that is, how many clusters the estimate

should contain.

We propose CaviarPD: Cluster Analysis via Random Partition Distri-

butions. Like hierarchical clustering and k-medoids, CaviarPD is based on

pairwise distances, yet it provides a unique way to assess clustering uncer-

tainty. The CaviarPD method relies on sampling from a random partition

distribution that is based on pairwise distances, e.g., the Ewens-Pitman At-

traction (EPA) distribution (Dahl et al., 2017). Thus, like the other two

methods, the EPA distribution uses pairwise distances as input. Unlike hi-

erarchical and k-medoids clustering, this form of cluster analysis allows us

to make probability statements about clustering relationships, thereby quan-

tifying the uncertainty of the estimate. In doing so, CaviarPD provides an

alternate way to visualize clusterings by showing the pairwise probabilities

that items are clustered together. An implementation of the method is pro-

vided in the caviarpd package (Dahl et al., 2021a) in R, which is available

on CRAN.

To compare hierarchical and k-medoids clustering with our proposed

CaviarPD method, we evaluate how well each method performs in eight differ-

ent case studies where the true partition of the data is known. We compare

methods using two partition loss functions, namely, Binder loss (Binder,

1978) and VI loss (Meilă, 2007; Wade and Ghahramani, 2018). Through

the case studies, we show the advantages of CaviarPD over hierarchical and
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k-medoids clustering. All methods tend to estimate the true partition of

the data well; however, the hierarchical clustering results are highly varied

between linkages and choices of cutting the tree. There is little statistical

reasoning to guide the choice of linkage and tree cutting. Furthermore, be-

cause CaviarPD gives the probabilities that items are clustered together,

CaviarPD provides additional information about the clustering relationships

beyond what hierarchical or k-medoids clustering provide.

2. Existing Distance-Based Clustering Methods

2.1. Clustering Concepts and Terminology

We introduce common concepts used in both traditional clustering meth-

ods and CaviarPD. For a more thorough description of current clustering

practices, we suggest Hennig et al. (2016). A clustering c = (c1, ..., cn) gives

labels for n items in which items i and j are in the same cluster if and only

if ci = cj. Equivalently, a partition π = {S1, . . . , Sq} of integers 1, . . . , n

is composed of mutually exclusive, non-empty, and exhaustive subsets such

that i, j ∈ S implies that ci = cj. We use the terms ‘clustering’ and ‘par-

tition’ interchangeably and note that the term ‘cluster’ is synonymous with

‘subset’.

In cluster analysis, we seek to cluster n observations of a dataset D =

{x1, . . . ,xn} into distinct groups so that observations within a group are

more similar than observations from different groups. CaviarPD, like the

other two methods described, relies on distance information between ob-

servations in order to partition items into subsets. The pairwise distances

between observations xi and xj are calculated from a specified distance
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function d(xi,xj). One common distance function is Euclidean distance:

d(xi,xj) =
√

(xi − xj)′(xi − xj). The pairwise distances between all items

can be stored in an n × n distance matrix D, where dij = d(xi,xj). The

choice of distance metric is also an important consideration in the analysis,

but our task here is to compare distance-based clustering methods given the

user’s chosen distance matrix.

2.2. Hierarchical Clustering

In this section we highlight the decisions a user must make with hierar-

chical clustering. For a thorough introduction to hierarchical clustering, see

Rencher and Christensen (2012) or Gareth et al. (2013).

Recall that in agglomerative hierarchical clustering, each observation be-

gins in its own cluster and the most similar clusters are sequentially merged

until all data points are in a single cluster. The criteria used to define similar-

ity between clusters is called the linkage and is computed from the pairwise

distance between items in each cluster. Hierarchical clustering requires that

a user decide which linkage to use and how to cut the dendrogram to obtain

a partition estimate. For a more detailed explanation of the subset distance

computations for each linkage type, see Nielsen (2016).

We demonstrate how the choice of linkage leads to highly varied cluster-

ing estimates. Figure 1 shows the resulting dendrograms from four common

linkages applied to the wine recognition dataset using the function hclust in

R (R Core Team, 2021). The wine dataset contains many different chemical

attributes for samples of wine from three different cultivars. The distance ma-

trix was computed with Euclidean distance using all 13 chemical attributes.

The clustering structure represented in the dendrograms is very different for

5



1
2

3
4

5
6

7

Average Linkage

H
ei

gh
t

0
2

4
6

8
10

Complete Linkage

H
ei

gh
t

0
5

10
15

20
25

30
35

Ward Linkage

H
ei

gh
t

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Single Linkage

H
ei

gh
t

Figure 1: Clustering dendrograms for the wine dataset using complete, average, Ward and

single linkage.

all four linkages. Single linkage produces long chains of connected clusters.

Ward linkage seeks to create compact spherical clusters such that the den-

drogram shows more distinct clusters (Ward Jr, 1963). For the wine dataset,

the dendrograms for average and complete linkage show clustering structures

between the long chains of single linkage and compact clusters of Ward link-

age.

After choosing the type of linkage, the structure of the dendrogram is

used to cut the tree to obtain a clustering estimate. From the dendrogram

using Ward linkage, there appear to be three main clusters. Inspection of

the other dendrograms leads to less definite conclusions about the number of

clusters in the dataset as each tree varies drastically. Using complete linkage,

one could reasonably argue for a cut of the tree that gives anywhere from 2
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to 7 clusters. Langfelder et al. (2008) introduce a solution to the tree cutting

problem with the dynamic tree cut (DTC) algorithm. This procedure takes

into account the structure of the tree to detect clusters and also allows for the

tree to be cut at variable heights, providing greater flexibility in clustering

estimation.

The lack of agreement between the linkages and tree cutting estimates

is prominent and concerning. There appeared to be three main clusters for

ward linkage, yet the DTC produced a default estimate of 5 clusters. The

DTC applied to the complete linkage dendrogram resulted in an estimate

with 3 clusters. Likewise, DTC applied to the average linkage dendrogram

also resulted in 3 main clusters with a single observation in a fourth cluster

by itself. Lastly, the single linkage tree resulted in a clustering estimate with

all but 3 observations in a single cluster.

2.3. K-Medoids Clustering

k-means clustering remains one of the most common and popular clus-

tering approaches used today. The closely related k-medoids clustering, like

k-means, seeks to minimize the sum of distances between points in a cluster

and its cluster center. Unlike k-means, k-medoids uses actual data points

(exemplars or medoids) for the cluster centers. Thus, k-medoids only uses

the pairwise distance matrix as input, making it a comparable clustering

approach to hierarchical clustering and CaviarPD.

Since there are
(
n
k

)
combinations of medoids that can be tested to mini-

mize the total distance, finding the exact solution to the equation is difficult.

Kaufman and Rousseeuw (1990) proposed the PAM algorithm (partitioning

around medoids) to conduct a nonexhaustive but greedy search through the
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combination space. The PAM algorithm was then modified by Schubert and

Rousseeuw (2019) to reduce computation time even further at the expense of

some accuracy. Since the datasets in our case studies are all relatively small,

we can easily use the original PAM algorithm for our k-medoids comparison.

In our case studies we use the silhouette method, a straightforward proce-

dure for selecting k in k-means and k-medoids clustering (Rousseeuw, 1987).

The silhouette method is most reliable when the choices for k are narrowed

down to a reasonable range using some prior intuition about the data. As

with hierarchical clustering, the k-medoids approach offers no way to assess

uncertainty in the results. We use the pam function in the cluster package

(Maechler et al., 2021) since it has a built-in calculation for silhouette width.

3. Cluster Analysis Via Random Partition Distributions

We propose the CaviarPD method, a novel approach to clustering based

on random partition distributions. A reference implementation is available

on CRAN in the caviarpd package (Dahl et al., 2021a). CaviarPD is based

on the Ewens-Pitman Attraction (EPA) distribution, originally proposed as a

prior distribution for partitions in a Bayesian framework (Dahl et al., 2017).

In the proceeding subsections, we explain how the EPA distribution can

be used directly for cluster analysis along with the additional components

of CaviarPD. Since the EPA distribution is a probability distribution over

partitions, our simulation-based method provides as output probabilities of

pairs of items being clustered together.
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3.1. Ewens-Pitman Attraction Distribution

In the EPA distribution, observations are sequentially allocated to subsets

of a partition with probability proportional to the attraction of the item to

that subset. We use σ = (σ1, ..., σn) to denote the order of the n observations

that are sequentially allocated into subsets in order to form a partition. Thus

σt is the tth observation allocated in the partition. This sequential allocation

of items yields a sequence of partitions for each step of the allocation. Let

π(σ1, ..., σt−1) denote the partition of the first t − 1 observations at time

t − 1. At each time t, let Kt be the number of subsets in the partition

π(σ1, ..., σt). When t = 1, the first item is allocated to a new subset by

itself with probability 1 as shown in equation 2. For t > 1, σt can either

be allocated to one of the existing Kt−1 subsets or it can be allocated to a

new subset in the partition. The probability mass function is conveniently

expressed as the product of increasingly conditional probabilities:

p(πn|α, λ,σ) =
n∏
t=1

pt(α, λ, π(σ1, ..., σt−1)) (1)

pt(α, λ, π(σ1, ..., σt−1)) = Pr(σt ∈ A |α, λ, π(σ1, ..., σt−1))

=


t−1

α+t−1
·
∑
σs∈A λ(xσt ,xσs )∑t−1
s=1 λ(xσt ,xσs )

for S ∈ π(σ1, ..., σt−1)

α
α+t−1

for S being a new subset

(2)

The probability that σt is allocated into subset S is a function of the

similarity function λ and the mass parameter α.1 The similarity function

1Dahl et al. also include a discount parameter δ that further influences sampling from

the EPA distribution; For simplicity, we set δ = 0, yielding (2).
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λ(xi,xj) gives pairwise similarity between observations xi and xj for any

xi,xj ∈ D. Dahl et al. (2017) propose a general class of similarity func-

tions λ(xi,xj) = f(dij), where f is a non-increasing function of the pairwise

distance dij between observations xi and xj. dij is the same distance ma-

trix D used as input for hierarchical and k-medoids clustering. Two common

similarity functions are reciprocal similarity f(d) = d−τ and exponential sim-

ilarity f(d) = exp(−τd). The parameter τ ≥ 0 is the temperature, which

has the effect of accentuating or dampening the distance between items.

3.2. Sampling from the EPA Distribution

Sampling from the EPA distribution is a straight forward process (Dahl

et al., 2017). Because items are allocated with probability proportional to

the similarity to items in an existing subset, similar items are more likely to

be clustered together in simulation. In order to sample a partition πn from

the EPA distribution, we begin with a permutation (some ordering) of the

data and fixed α, λ. The first item σ1 is allocated to a subset by itself with

probability 1. The next item, σ2 can either the assigned to the subset with

σ1 or to a new subset by itself. The probability of each allocation is given in

equation 2. Let σ2 be randomly assigned to the existing subset or new subset

with the respective probabilities. For each subsequent item, the item σt+1

is randomly assigned to an existing subset or new subset with probability

respective to being assigned to S1, S2, ..., SK , SK+1. Here S1, ..., SK represent

the existing subsets of the partition and SK+1 is a new subset. Continue to

sequentially assign the items until a partition of the data is obtained. The

resulting partition is a single draw from the EPA distribution. Sampling can

be parallelized over many cores to simultaneously obtain many draws from
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the EPA distribution.

The order by which the data are sampled affects the resulting probabilities

of obtaining particular partitions. To remove this dependence on sampling

order, randomize the order by which the items are allocated into subsets for

each draw. This has the effect of making the probability of each partition

independent of any particular permutation of the data.

3.3. Visualizing Pairwise Probabilities

A key advantage of CaviarPD over traditional clustering is its ability to

quantify and visualize uncertainty in clustering estimates. This is done using

a heat map from a summary of the samples from the EPA distribution.

Each of the partitions π can be represented as an n× n association ma-

trix denoted γ(π), where the (i, j) element of the association matrix is an

indicator that observations xi and xj are in the same cluster. In short,

γij(π) = I(ci = cj). For B samples from the EPA distribution, there are B

γ(π) matrices. These matrices γ(π1), ..., γ(πB) can then be averaged together

element-wise to create a pairwise similarity matrix, which contains the esti-

mated pairwise probabilities that items appear in the same subset for a given

α and λ. The pairwise similarity matrix is an n×n matrix denoted Ψ, where

the ith, jth element is the relative frequency with which items i and j are

clustered together among the samples.

Pr(ci = cj) ≈ Ψij =
1

B

B∑
k=1

γij(πk)

Each element of the Ψ matrix is the estimated probability that observations

xi and xj are in the same cluster for a given λ and α. Ψ can then be

conveniently visualized in the form of a heat map.
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Figure 2: Heat map of the pairwise probabilities for the wine dataset with α = 0.90, δ = 0,

and τ = 10.

In the heat map, the color of a cell represents the probability that two

items are clustered together while also highlighting the actual clustering es-

timate. In Figure 2 we can see clearly that, for α = 0.90, there appear to

be 3 distinct clusters. In this visualization, the observations are ordered to

group similar items together, creating the block diagonal. The heat map be-

comes even more useful when the observations are ordered by an estimated

partition, thereby showing the probability relationships within and between

clusters. For example, clusters 1 and 2 appear much more similar than clus-

ters 1 and 3 because there is a darker shade of yellow in the off-diagonal blocks

for clusters 1 and 2, and a near-white shade of yellow in the off-diagonals for

clusters 1 and 3.
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3.4. Partition Estimation From Samples

The Bayesian literature provides multiple methods for obtaining a point

estimate of a random partition based on samples from a posterior partition

distribution (Dahl et al., 2021b). Again, our paper here is not Bayesian, but

we can draw upon the Bayesian literature on random partitions to obtain a

representative point estimate of a partition based on samples from the EPA

distribution.

In decision theory, a loss function is specified in order to pick an optimal

estimate that incurs minimal expected loss. For partitions, loss functions

evaluate how distant the estimated partition is from the true partition of the

data. Binder loss is a function of the number of disagreements between the

estimated and true partition for all possible pairs of observations (Binder,

1978). The function is a weighted sum of the two types of disagreements:

observations are in different clusters when they should be in the same cluster,

and observations are in the same cluster when they should be in different

clusters. Wade and Ghahramani (2018) demonstrate that when the weights

of the two errors are equal, w1 = w2, then the partition that minimizes Binder

loss is given by:

π̂binder = arg min
π∈Π

∑
i<j

(γij(π)−Ψij)
2.

Wade and Ghahramani (2018) also propose using the variation of informa-

tion, introduced by Meilă (2007) as a loss function. The variation of informa-

tion is developed from information theory and is the information present in

both clusters (partition entropy) minus the information shared between the

two clusters. Minimization by enumeration over the whole partition space is

unfeasible, so we use the SALSO method (Dahl et al., 2021b) as implemented
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in the R package salso (Dahl et al., 2021c).

3.5. Selecting the Mass Parameter

Most parameters in the EPA distribution have a default value. However,

the mass parameter α does not and it is highly influential in determining the

number of subsets in a partition estimate. An objective algorithm is needed

that can select a default mass parameter for any given dataset. Ideally, the

heat maps generated from estimates with this algorithm should show that

items in the same cluster are clustered together with high probability. They

should also show clear distinction between subsets of the partition in the

heat map (i.e. low probability regions between clusters). Figure 3 shows two

heat maps for the pairwise probabilities of the wine dataset with the mass

parameter set at 0.9 and 0.7, respectively. When the mass is 0.9, the result-

ing heat map shows overall higher pairwise probabilities within clusters as

compared to the mass set at 0.7. Likewise, there is less variance of the pair-

wise probabilities within clusters when the mass is 0.9. The estimated three

clusters appear more distinct because of the greater within-cluster pairwise

probabilities. The goal of the mass selection algorithm, in the case of the

wine dataset, is to pinpoint α around 0.9 instead of 0.7.

We propose an objective mass selection procedure based on the silhouette

method, which is also used to select k in k-means and k-medoids clustering

(Rousseeuw, 1987). The ‘silhouette width’ of a given observation in any clus-

tering estimate (not just k-medoids) is a measure of compactness. It is pro-

portional to the difference between the observation’s average within-cluster

distance and its average distance to points in the nearest cluster. The aver-

age silhouette width is the mean silhouette width for all points in a dataset;
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Figure 3: Heat maps of the wine dataset for two different mass parameters

seeking to maximize the average width is intended to result in more compact

and distinct clusterings. Thus, the average silhouette width is a numerical

summary that corresponds well to the properties outlined in the preceeding

paragraph of a “ideal” heat map. In our mass selection algorithm, the user

proposes a range of cluster counts to consider in estimation. Boundary mass

values are obtained for the minimum and maximum of this range, and a grid

search is performed between these boundary masses. The mass from the

clustering estimate that results in the maximum average silhouette width is

then used for α.

4. Case Studies

To compare CaviarPD with the other distance-based clustering methods,

we evaluate how well each method clusters data where the true partition of

the data is known. Datasets were obtained from the UC Irvine machine learn-

ing repository (Dheeru and Karra Taniskidou, 2017). In order to evaluate the

quality of the estimate we use Binder and VI loss, which both measure the
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similarity between two partitions. Both of these metrics are bounded to be

nonnegative, where lower values are indicative of a more accurate partition.

We compare average, complete, and Ward linkages to CaviarPD. Because

the possibilities for tree cutting are numerous, we cut the dendrograms using

the default settings for the cutreeDynamic function in the dynamicTreeCut

package in R to obtain a partition estimate for each of the linkages (Langfelder

et al., 2016).

For each of the datasets with numeric attributes, we centered and scaled

the data and computed the Euclidean pairwise distances. For datasets with

categorical attributes, we computed the Jaccard pairwise distances. Center-

ing and scaling the data coerces the mean and standard deviation of each

predictor to be 0 and 1, respectively. Though not always necessary, this

helps safeguard against attributes with large variance carrying more weight

in the distance computation. We use all three linkage types from hierarchical

clustering to give it the best chance at competing with CaviarPD. We also

choose k in k-medoids using the silhouette method. Despite these advantages

given to these other methods, CaviarPD still remains highly competitive.

In CaviarPD, we fixed the temperature τ at 10 for the exponential sim-

ilarity function λ. These defaults seem to be sufficient for the majority of

applications of CaviarPD. We used our mass selection algorithm to obtain

a default value for the mass α and corresponding partition estimate. When

using the mass selection algorithm, Binder loss and VI gave very similar clus-

tering estimates. For this reason, and for the sake of simplicity, we use only

the Binder loss CaviarPD estimates in our comparisons. Again, we use the

caviarpd function from the caviarpd package in R to carry out the analysis.
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Wine House Votes

K Binder VI K Binder VI

CaviarPD 3 0.09 0.68 2 0.22 0.99
Average: Default DTC 4 0.09 0.69 3 0.22 1.03
Complete: Default DTC 3 0.19 1.21 10 0.43 2.82
Ward: Default DTC 5 0.17 1.23 6 0.37 2.20
K-Medoids 3 0.12 0.68 2 0.23 1.10

Table 1: Clustering results for the wine and house votes datasets

4.1. Wine Dataset

For the wine dataset, CaviarPD estimates the true partition on par with

the main combinations of tree cutting and linkages from hierarchical clus-

tering. However, the partition estimates from hierarchical clustering are

inconsistent in their results. Without knowing the true partition of the data,

we would not know that average linkage produces the best estimate.

Table 1 gives the clustering results for the wine dataset, which was used

for demonstration in previous sections and contains 13 chemical attributes

on wines from 3 different cultivars. The number of clusters for a particular

estimate is given by K. The DTC default gives roughly the correct number

of clusters for average and complete linkage (the fourth cluster for average

linkage is a singleton cluster), but not for ward linkage. Overall, average

linkage and CaviarPD perform the best when compared to the true partition

under Binder loss; however, when using a VI comparison, CaviarPD and

k-medoids slightly outperform all of the DTC cuts. These differences are

minimal, but the estimates for Ward and complete linkage fall severely short

of the estimates produced by CaviarPD and average linkage. In any case, it
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Figure 4: Plot of Binder and VI loss across a grid of mass values for the house votes

dataset.

is worth noting the lack of consistency in the resulting estimates from hier-

archical clustering, and the ability of CaviarPD to cluster just as accurately

as the best DTC cut and k-medoids.

4.2. House Dataset

The house votes dataset contains voting records for the 1984 House of

Representatives. The class attribute is party affiliation, Republican or Demo-

crat. Having only two clusters yet nearly 500 total observations, this data

provides a rigorous test for all clustering methods. Results are displayed in

Table 1. CaviarPD and average linkage produce estimates with nearly iden-

tical loss metrics. However, note that CaviarPD also identifies the correct

number of clusters at 2 (along with k-medoids).

The house dataset is also an excellent example for visualizing each loss

function as a function of the mass α. Recall that the true partition is only
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2 clusters. Viewing Figure 4, note how the Binder loss starts out high and

immediately declines. This dip corresponds to the clustering estimate moving

from 1 cluster to 2 clusters as the mass increases. Since the true partition is

2 clusters, this 2-cluster range of mass values (between about α = .65 and

α = 1.0) results in the lowest Binder loss. Moving up to the VI loss function,

we see that VI loss penalizes less for a small underestimation of the cluster

count. As such, the 1-cluster estimate at α = 0.5 is still deemed somewhat

‘accurate’. However, once the estimate moves past the 2-cluster range, it

quickly increases (particularly for VI loss), making it clear that mass values

any higher than 1.0 will not yield adequate estimates. Thus, it becomes clear

the importance of selecting viable mass parameters.

4.3. Flea-Beetle Dataset

For smaller datasets, it is not uncommon to estimate the true partition

of the data. As an example, we take the flea-beetle dataset, which contains

measurements on three different species of beetles. It contains only 74 obser-

vations total. Both CaviarPD and Ward linkage (with the DTC cut) are able

to estimate the exact partition of the data. This results in the comparative

loss functions, both Binder and VI, being equal to 0.

4.4. Olive Dataset

With the olive dataset we demonstrate the use of the pairwise similarity

matrix to detect clusters within subsets of the estimated partition. The olive

dataset contains measurements on the levels of different oils in olives from

nine different regions of Italy.
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Flea-Beetle Olive

K Binder VI K Binder VI

CaviarPD 3 0.0 0.0 6 0.06 0.89
Average: Default DTC 2 0.19 0.83 10 0.07 1.05
Complete: Default DTC 2 0.27 1.08 14 0.12 1.69
Ward: Default DTC 3 0.0 0.0 9 0.11 1.25
K-Medoids 3 0.02 0.17 7 0.05 0.94

Table 2: Clustering results for the flea and olive datasets
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(b) Lymphography dataset, α = 1.1.

Figure 5: Heat maps of the olive and lymphography datasets

The CaviarPD estimate, despite having the lowest VI loss, has difficulty

separating some pairs of regions, resulting in an estimate with only 6 clusters.

k-medoids encounters a similar problem and only detects 7 clusters. On the

other hand, the average-linkage DTC estimate concentrates far too many

observations in the first 3 clusters, while also creating a 10th cluster with only

a few observations. The only hierarchical clustering linkage that correctly

estimates 9 clusters is Ward linkage; however, Ward linkage misclassifies too

many observations to be considered as accurate as the other estimates.

Heat maps from CaviarPD can be used to examine subcluster structure,
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as demonstrated by clusters 4 and 5 in Figure 5a. In cluster 4 of the heat map,

there appear to be two higher probability regions of items being grouped to-

gether within each cluster. The same is observed in cluster 5. In short, those

clusters merged olives from two different regions. Of course, post partition

processing is also possible in hierarchical clustering; however, in hierarchi-

cal clustering, these decisions have no basis on probabilities as they do in

CaviarPD.

4.5. Additional Datasets

The datasets in Table 3 further demonstrate the effectiveness of CaviarPD

for partition estimation. The yeast dataset, which contains 10 subsets in the

true partition, is an example of a larger dataset (approximately 1,500 ob-

servations) that makes running the entire mass selection algorithm compu-

tationally intensive. Though the algorithm is still feasible for a dataset this

size, it may not be practical for significantly larger sets. In such cases, we

recommend building heat maps for 3 to 5 different values of α and selecting

the mass for the plot with the most concentrated pairwise probabilities. The

lymphography dataset is an example of data for which the 4 cluster distinc-

tions are not well-represented by the attributes. This leads to poor estimates

by all three methods, and a relatively uninterpretable heat map as given in

Figure 5b. The E. coli dataset contains attributes for 8 different localization

sites of proteins in E. coli bacteria. Chemical composition measurements are

taken on 6 different glass products in the glass dataset.
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Yeast Lymphography

K Binder VI K Binder VI

CaviarPD 12 0.32 3.06 6 0.49 1.44
Average: Default DTC 5 0.51 3.00 4 0.41 2.25
Complete: Default DTC 19 0.24 4.83 4 0.44 2.53
Ward: Default DTC 16 0.24 4.70 4 0.41 2.56
K-Medoids 8 0.26 3.48 2 0.43 1.96

E. Coli Glass Products

K Binder VI K Binder VI

CaviarPD 6 0.12 1.22 6 0.35 2.92
Average: Default DTC 2 0.72 2.17 3 0.50 1.90
Complete: Default DTC 6 0.11 1.25 4 0.42 2.42
Ward: Default DTC 6 0.18 1.65 4 0.35 3.05
K-Medoids 6 0.17 1.80 6 0.34 2.93

Table 3: Clustering results for additional datasets

4.6. Discussion

We do not claim that CaviarPD vastly outperforms all hierarchical clus-

tering and k-medoids methods, as that was not usually the case in these eight

case studies. Rather, we have shown that CaviarPD performs comparably

to (and in some cases, slightly better than) the other methods. The benefit

of CaviarPD, however, is the ability to assess clustering uncertainty in the

form of the heat map plots from the pairwise similarity matrix.

In hierarchical clustering, there is no one linkage type or cutting tech-

nique that consistently produces the best cut of the tree. We compared the

best possible DTC cut of the dendrogram for each linkage, but there is no

cutting rule that will consistently guide the user to that result. In k-medoids

clustering, there is less variability, but still no way to express uncertainty.
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In contrast to these techniques, CaviarPD has a validating method to select

the mass parameter α. It also produces a pairwise similarity matrix which

provides a clear and consistent representation of how the data are grouped.

4.7. Other Distributions

The EPA distribution is suited for the CaviarPD method since it is a

random partition distribution taking pairwise distances as input. Most other

random partition distrtibutions in the Bayesian literature do not take pair-

wise probabilities and would therefore not be suitable for CaviarPD. There

is, however, one other partition distribution which does, called the distance-

dependent Chinese Restaurant Process (ddCRP) (Blei and Frazier, 2011).

The caviarpd function allows users to specify the ddCRP distribution rather

than the default EPA distribution. Hence, clustering with the ddCRP dis-

tribution from a coding standpoint is merely one additional argument. How-

ever, default parameters for clustering with the ddCRP distribution have

not been investigated, and we have not found a good method for selecting

optimal mass for the ddCRP.

In addition, while the ddCRP distribution does sometimes generate es-

timates that are comparable with CaviarPD, it does not appear to lead to

effective visualizations. As an example, we take the flea-beetle dataset in

Figure 6, for which CaviarPD (and Ward linkage) were able to estimate pre-

cisely the true partition. Plotting the estimate from the EPA distribution

shows clear distinction between the 3 clusters. All items in the same cluster

have high probabilities of being clustered together, and we can see that ele-

ments in clusters 2 and 3 are extremely unlikely to be grouped together. The

plot from the ddCRP estimate shows none of this - it is virtually monochro-
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Figure 6: Heat maps of the flea-beetle dataset. The EPA clustering estimates the exact

partition, while the ddCRP clustering estimates a near-exact partition.

matic (besides the diagonal 1.0 probabilities of each item being clustered

with itself).

Estimates with the ddCRP distribution do not seem to be any more

effective than those from the EPA. They also are unable to provide the key

insights that the EPA estimates do, and have far more subjectivity in tuning

the parameters. For these reasons, we do not currently recommend using the

ddCRP for the CaviarPD method.

5. Conclusion

Cluster analysis via random partition distributions simplifies the user’s

dilemma for clustering. In hierarchical clustering, the different linkages and

lack of consistent tree cutting rules present a user with many subjective

choices. These different choices in hierarchical clustering lead to highly var-

ied partition estimates. For both hierarchical and k-medoids clustering, there

are no probability statements one can make regarding the clustering. In con-
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trast, data driven statistics help guide the user in clustering estimation for

CaviarPD. The pairwise similarity matrix Ψ gives a probabilistic understand-

ing for how items are clustered together in a dataset. Algorithmic clustering

methods are not based on a probability distribution and therefore quantify

clustering uncertainty is difficult.

The central weakness of CaviarPD is the computational cost to select a

mass for large datasets. Hierarchical clustering, k-medoids (and the corre-

sponding k-means method) all have the potential to run more quickly in these

cases. It is also worth noting that while the heat maps can be very insightful,

they do not always visualize overall clustering structure as comprehensively

as a dendrogram would in hierarchical clustering (Sander et al., 2003). In

summary, CaviarPD is not the undisputed best clustering method in every

instance. Rather, it provides unique advantages over traditional approaches

in the majority of clustering problems.
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