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Abstract

The canonical technique for nonlinear modeling of spatial/point-referenced data is known
as kriging in geostatistics, and as Gaussian Process (GP) regression for surrogate modeling
and statistical learning. This article reviews many similarities shared between kriging and
GPs, but also highlights some important differences. One is that GPs impose a process that
can be used to automate kernel/variogram inference, thus removing the human from the loop.
The GP framework also suggests a probabilistically valid means of scaling to handle a large
corpus of training data, i.e., an alternative to so-called ordinary kriging. Finally, recent GP
implementations are tailored to make the most of modern computing architectures such as
multi-core workstations and multi-node supercomputers. We argue that such distinctions are
important even in classically geostatistical settings. To back that up, we present out-of-sample
validation exercises using two, real, large-scale borehole data sets involved in the mining of
gold and other minerals. We pit classic kriging against the modern GPs in several variations
and conclude that the latter can more economical (fewer human and compute resources),
more accurate and offer better uncertainty quantification. We go on to show how the fully
generative modeling appraratus provided by GPs can gracefully accommodate left-censoring
of small measurements, as commonly occurs in mining data and other borehole assays.

Keywords: ordinary kriging; Gaussian process regression; surrogate modeling; variogram; Vecchia
approximation; multiple imputation

1 Introduction

The modern literature on spatial nonparametric regression (e.g., “kriging”) traces its origins to the
mining analytics of Danie Krige and Henri de Wijs and the subsequent work of Matheron (Matheron,
1971). Similar ideas were developed independently around the same time to aid the early analysis of
computer simulation experiments, like those conducted in the study of nuclear weapons and energy,
however (unclassified) publications did not appear until later (e.g., Sacks et al. (1989)). The spatial
statistics community was responsible for much of the subsequent advances in methodology (e.g.,
Cressie (1993)), and software for kriging in use commercially (e.g., LeapFrog, Vulcan, Surfer, etc.)
and academically (e.g., GSLIB) in mining today.
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More recently, researchers in geospatial statistics, surrogate modeling of computer experiments,
and more broadly in statistical and machine learning communities, have pushed the boundaries of
fidelity and computational tractability as modeling ambition and scale of data collection continue to
grow, e.g., Gramacy (2020). These disparate literatures have converged around the nomenclature
of Gaussian process (GP) regression as a generative framework for the kinds of data and procedures
involved in kriging, but with a more cohesive and flexible approach to inference, approximation and
automation based upon the likelihood, which is the foundation to modern statistcal learning.

Common geoscience applications for spatial smoothing and interpolation include ore-grade es-
timation and reservoir characterization/simulation; however, software tools utilized for such appli-
cations lag the state-of-the-art (as outlined above) by a decade or more. For example, obtaining
fits requires expert human interaction with the software library and intuition in order to entertain
alternatives of spanning anisotropies, neighborhood sizes of ordinary kriging in the face of large
training data sets, and appropriate semivariogram forms modeling the decay of spatial correlation.
Recent advances from the statistics and data analytics communities automate many of these time-
consuming tasks, while offering substantial improvements in computational efficiency includeing the
use of contemporary computing architectures such as multi-core workstations and clusters.

The main goal of this paper is to provide a review which focuses on the similararties and
differences in these two frameworks. Ultimately we wish to advocate for the more modern, GP
perspective via open-source libraries such as for R such as GPvecchia (Katzfuss et al., 2021) and
laGP (Gramacy, 2016). These are just two of many which offer modern take on ordnary kriging,
embodying advances in engineering and statistical learning: likelihood-based criteria offloaded to
robust optimization libraries; human out-of-the-loop inference. Not only are they easy to use, but
they are also hard to misuse.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

High Gold
Low Gold

Figure 1: An example of borehole data as a 2d projection.

This narrative is backed up by empirical comparison. We consider two real data borehole-based
mining examples with data records on gold and other minerals, over spatial and depth coordinates,
sized in the hundreds of thousands. Figure 1 shows a 2d projection of a subset of the data described
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in more detail in Section 4; note the long stretches of observations all in a line. These data exhibit
many typical yet challenging features such as abrupt changes in dynamics, left-censoring of small
values due to the sensitivity of the measurement instrument, and large measurement gaps in space.
Using these data, we devise a cross-validation-based out-of-sample exercise which is careful to respect
the borehole nature of data collection. The outcome of that exercise is evidence that modern GP-
based methods are both more accurate, more hands-off, more economical (in terms of computing
resources), and offer better uncertainty quantification than their kriging-based analogues. They
also enable extensions which would be difficult to entertain without a fully probabilistic generative
framework. As a showcase, we entertain a multiple imputation scheme to handle left censoring that
involves only a few lines of code around library-based GP fitting and prediction subroutines.

The rest of the paper is outlined as follows. Section 2 contains a review of GP regression and
kriging. Building on those, Section 3 contains the main, large-scale GP regression and kriging
methods we compare using two real borehole ore data sets. Section 4 has cross validation results
comparing those methods on both time and accuracy, including extensions to faciliate (without
discarding) a large degree of left-censoring in one of the two data sets. Finally, Section 5 concludes
with a discussion and ideas for future work.

2 GPs versus kriging

We begin by introducing Gaussian process (GP) regression with an eye toward connecting to kriging.
At some level, they are the same thing. The biggest differences lie in vocabulary and inference for
unknown quantities, which is coupled with the degree of automation/human intervention.

2.1 Gaussian Process Regression

Suppose we wish to model a function f : Rd → R with a limited number of noisy evaluations
yi = f(xi) + εi, for i = 1, . . . , N . Let XN be an N × d matrix formed with d-dimensional x>i
in each of its rows. Similarly combine scalar outputs yi into an N -vector YN . Throughout this
paper, we privilege an input–output (x, y) notational scheme in keeping with the vast majority of
the statistical learning literature on regression, nonparametric and nonlinear or otherwise. In many
geospatial contexts (e.g., Banerjee, 2017), where f might be an environmental or geological process,
it is common to use si for (spatial) input sites and zi = Z(si), among many alternatives, for the
response. We think this unproductively biases thinking towards d = 2-dimensional point-referenced
(latitude and longitude) data, whereas these methods can be applied much more widely than that.
Machine learning (e.g., Rasmussen and Williams, 2006) and computer surrogate modeling (e.g.,
Gramacy, 2020) applications are typically in higher input dimension, and one of our goals in this
paper is to introduce this way of thinking into the mining literature.

A common nonparametric model for such data is a Gaussian process (GP), which assumes that
outputs YN follow a multivariate normal (MVN) distribution. Inputs XN are primarily involved
in the specification of the MVN covariance ΣN ≡ Σ(XN , XN) with a form for Σ(·, ·) that inverts
Euclidean distances between its arguments. For example,

YN ∼ NN(0,ΣN), where Σij
N follows S

(
1

Dist(xi, xj)

)
for some decreasing S. (1)
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In Eq. (1) we are being deliberately imprecise about the form of ΣN , a topic we shall detail shortly
in Section 2.2. For now, simply suppose correlation in outputs decays as a function of distance in
inputs: Corr(yi, yj) < Corr(yi, yk) if xi is “closer” to xk than it is to xj. We are also using a zero
mean specification, so that all of the modeling “action” is in the covariance. Extensions abound.

Although a Bayesian interpretation is not essential in characterizing GP regression, Eq. (1)
can be said to specify a prior over (noisy evaluations of) functions like f , abstracting as YN ∼ GP.
Choices for the mean (0) and variance (Σ) determine the modeling properties of f like its smoothness
and wiggliness. We shall largely leave those properties to our references, except as relevant to
particular choices for Σ(·, ·), again in Section 2.2. Then, if N ′ new locations X come along where
we do not yet have observations, Y (X ), we can summarize our understanding for those in light of the
(training) data we do have – a predictive distribution – through the lens of posterior conditioning:
Y (X ) | YN . First, extend the GP prior to cover Y (X ) jointly with YN :[

YN
Y (X )

]
∼ NN+N ′

([
0
0

]
,

[
ΣN Σ(XN ,X )

Σ(X , XN) Σ(X ,X )

])
.

In so doing, we may leverage that Y (X ) values are more highly correlated with YN values whose
XN entries are close to X ones by applying standard MVN conditioning rules, such as those found
in Kalpić and Hlupić (2011), Y (X ) | YN ∼ NN ′(µN(X ),ΣN(X )) where

µN(X ) = Σ(X , XN)Σ−1N YN (2)

ΣN(X ) = Σ(X ,X )− Σ(X , XN)Σ−1N Σ(XN ,X ).

Note that ΣN(X ) and Σ(X ,X ) are N ′ × N ′ matrices; the N subscript serves as a reminder of
conditioning on YN . Observe that µN(X ) is a (high dimensional) linear projection of those YN
values, where the “weights” involved are inversely proportional to the distance between their XN

values and those of X . Such conditioning identities apply for any MVN, based on a GP prior or
otherwise. The special thing about the regression context is the (inverse) distance-based dynamics
manifest as O(N) weights in each row of Σ(X , XN), and O(N2) in ΣN , involved in the projection,
rather than the usual O(d) or O(d2) weights in, say, an ordinary linear regression. That higher-
dimensional linear projection, µN(X ), has properties that transcend the Bayesian interpretation.
For example, under certain conditions it is a best linear unbiased predictor (BLUP). Although much
of modern statistical learning now understands Eq. (2) in a wider, primarily Bayesian GP context,
they are identical to the so-called kriging equations (Matheron, 1963), which have been instrumental
in geospatial/mining analysis for more than half a century.

To illustrate Eq. (2) consider f(x) = 2 + 2 sin(4πx), observed at N = 20 xi-values uniform in

[0, 1] as yi = f(xi) + εi, where εi
iid∼ N (0, 0.1). While GP regression is usually applied in higher

dimension, such as 2d and beyond, the 1d setting is convenient for visualization. These twenty
(xi, yi) pairs comprise of our “training data” (YN , XN). Now, suppose we had a dense testing grid
of N ′ = 1000 predictive locations X covering [0, 1]. Applying Eq. (2) would provide us with an
N ′ vector of predictive means µN(X ) and an N ′ × N ′ matrix of predictive covariances ΣN(X )
summarizing our regression of y onto x. Variances σ2

N(X ) along the diagonal of ΣN(X ) could be
used to build error-bars describing a predictive interval (PI) as roughly µN ±2σN for 95% coverage.

These quantities are shown for one example of such data in Figure 2. Noisy data evaluations
(solid dots) dance around the true unknown function f (black line); our prediction(s) µN and PIs
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Figure 2: A 1d example function in black with dots being the observed locations. The GP prediction
is in blue with dashed lines being the 90% predictive interval (PI). Kriging predictions are shown
in red and magenta with EB and NLS referring to different variography techniques.

in (blue/red lines, dashed respectively) in two variations (labeled “GP” and “Kriging”) accurately
distill the essence of the input-output relationship. All of this is modulo a fortuitous choice for
Σ(·, ·) which we have yet to detail. Its specification, and method of inference or unknown quantities,
comprises the wedge between modern GPs (red in the figure) and traditional kriging (blue).

2.2 Modeling

The discussion above hinges on a choice of Σ(·, ·), or S in Eq. (1). S was merely used as a notational
device to delay discussion until this moment; we shall not use S going forward. Yet, that Eq. (1)
formulation is attractive because it abstracts all modeling details down to this “one” choice. “One”
is in quotes because O(N2) quantities, one for each pair of N data elements (xi, yi), are actually
constrained by the covariance structure. This vast number of potentially tunable quantities, more
even than N , is why one refers to GPs as nonparametric. But of course, it’s neither practical nor
valid to allow oneself such unbridled freedoms. For example, we must choose Σ(·, ·) so that ΣN is
finite and positive definite for use as an MVN covariance.

An inverse-distance-based covariance is conventional as an intuitive spatial modeling device.
However, this is not a requirement and may not be ideal in all situations, e.g., when modeling
periodic effects. We may wish to allow flexibility in how distances are measured, in what coordinates
and with what decay in inversion, and to control how such choices relate signal to noise. Such
considerations lead to frameworks for choices of Σ(·, ·) whose tunable quantities, sometimes called
hyperparameters to acknowledge a nonparametric modeling apparatus, can be learned from data.

For example, if the range of the responses YN is unknown a priori we might wish to design Σ(·, ·)
to include a scale hyperparameter, say τ 2. If YN is noisy and/or contains measurement error, we may
wish to encode it as part signal, and part noise. Sometimes this is governed by a so-called nugget
hyperparameter, which we shall denote as g. We caution that the role of GP nugget is inspired by,
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but is subtly different from, a parameter of the same name in the geostatistics/kriging literature.
More in Section 2.4. We may wish to control the smoothness and rate of decay of correlation
of the signal in terms of (inverse) distance, and thereby the smoothness and other properties of
the underlying response surface. This may be accomplished through selection of a so-called kernel
function kθ(xi, xj) : Rd → [0, 1] whose hyperparameter θ can be used to describe the rate of radial
decay from kθ(xi, xj) = 1 for xi = xj down to zero as xj moves away from xi in an isotropic modeling
context. Kernels k may also re-scale and/or rotate the space for anisotropic effects.

One way to put these elements together is

Σ(xi, xj) = τ 2(kθ(xi, xj) + gδij) so that ΣN = τ 2(KN + gIN). (3)

Above, δij is the Kronecker delta function returning 1 when the index i = j, i.e., when the same
training data element appears in both arguments, and zero otherwise, and KN ≡ kθ(XN , XN)
applying k elementwise as Kij

N = kθ(xi, xj). Observe that the diagonal of ΣN is τ 2(1+g) and all off-
diagonal entries are less than or equal to τ 2, and strictly less than for all xi 6= xj. This discontinuity
between diagonal and off-diagonal, as long as g > 0, leads to smoothing of the predictive surface
when following Eq. (2). Otherwise, when g = 0 the surface interpolates. Again, this is a little
different than the typical geostatistics formulation as explained later in Section 2.4.

Choices for distance-based kernels k preserving positive definiteness and targeting certain other
properties abound. See, e.g., Abrahamsen (1997) or Wendland (2004). The two that are most
widely used are the power exponential and the Matérn. These are provided below in an isotropic
setting, i.e., with radial decay as a function of distance.

kPθ (xi, xj) = exp

{
−||xi − xj||

p

θ

}
kMθ (xi, xj) =

21−ν

Γ(ν)

(
||xi − xj||

√
2ν

θ

)ν

Kν

(
||xi − xj||

√
2ν

θ

) (4)

In both cases above the hyperparameter θ appears in the denominator, scaling (squared or square
root) Euclidean distances between xi and xj, and is thus sometimes called the characteristic length-
scale. Both have additional hyperparmeters, p and ν, respectively, which must be positive and
which our notation does not include in θ because they are usually specified, rather than inferred
with more discussion provided in Section 5. These control the of the resulting response surface.
When p = 2 the power exponential produces infinitely smooth (mean-square differentiable) realiza-
tions, and sometimes this special case is called the Gaussian kernel,1 which we denote as kGθ . When
p 6= 2, the surface is nowhere differentiable. While sometimes such pathological non-smoothness is
a reasonable assumption – and in spite of this the predictive surfaces (2) often look smooth – there
are better mechanisms for relaxing unreasonable (infinite) smoothness.

Many of the choices in our references above offer higher fidelity control over smoothness (beyond
none and infinite). Of those, the Matérn has percolated into the canonical position thanks largely to
persuasive technical arguments from Stein (1999). The parameter ν controls this aspect, with higher
values leading to greater smoothness, yielding surfaces which are dνe−1 mean-square differentiable.

1Gaussian here refers to the expression resembling the density of a Gaussian distribution; it has nothing to do
with making a Gaussian assumption, or its use in GP. Such kernels are used in a variety of other contexts.

6



Ultimately when ν →∞ the Gaussian kernel is recovered as a special case. However, the modified
Bessel function Kν can be difficult to work with computationally. Specific settings with ν ∈

{
3
2
, 5
2

}
have algebraic closed forms (no Bessel functions) which yield degree one and two differentiability,
with the latter being most often applied in practice because most interesting dynamics result from
at least twice (but not infinitely) differentiable processes.

Both the (isotropic) power exponential/Gaussian and Matérn are stationary kernels because they
are defined only in terms of displacement ||xi − xj||, so the resulting response surface would have
identical dynamics throughout the entire input space. Nonstationary modeling is also possible, but
is a lot more difficult in general. See, e.g., Sauer et al. (2021), and further discussion in Section 3.1.
However, one can still capture nontrivial dynamics with stationary kernels, for example by deploying
several of them simultaneously: sums, products, convolutions (and more) of valid kernels for GP
regression (i.e., are positive definite) are also valid. For details, see e.g., Rasmussen and Williams
(2006, , Section 4.2.4) or Gramacy (2020, , Section 5.3.3). One of the most common applications of
this result is to extend to axis-aligned anisotropy by taking a product of kernels applied univariately
in each coordinate direction: kθ(xi, xj) =

∏d
k=1 kθk(xik, xjk), abusing the notation somewhat. This

can be done with any kernel. Notice here we are introducing a d-dimensional lengthscale parameter
θ = (θ1, . . . , θd), controlling the rate of spatial correlation differentially in each coordinate direction.
For the Gaussian kernel, the result is identical to

kGθ (xi, xj) = exp

{
−

d∑
k=1

(xik − xjk)2

θk

}
, (5)

which is sometimes called the separable Gaussian kernel or the ARD Gaussian kernel. ARD stands
for automatic relevance determination (Liu et al., 2020), borrowing terminology from early neural
networks literature. The idea is that the data can inform on longer lengthscales (less relevant) or
shorter ones (more relevant) for each input variable separately. ARD/separable Matérn kernels are
also common, but their expression(s) are less tidy so we do not include it here. For more discussion,
consult Rasmussen and Williams (2006) or Gramacy (2020).

There is a one-to-one relationship between vectorized lengthscale in the ARD kernel formulation
and with re-scaling inputs XN , say as a pre-processing step. Rather than scaling each input differ-
ently, one can extend this idea to rotations and projections to accommodate less rigid anisotropy
either as preprocessing or as a hyperparameterized kernel formulation. For an example of a pre-
processing approach see Wycoff et al. (2021) and references therein; for learning rotations and
projects within a kernel see Gramacy and Lian (2012). We find that such high-powered approaches
are overkill for most applications, including the mining ones discussed later.

2.3 Inference

The models above have tunable quantities, or hyperparameters, that could be set by hand but
would ideally be learned from data. We restrict our focus to those which we introduced for Σ(·, ·),
particularly φ ≡ (τ 2, g, θ) with the latter usually vectorized in an ARD setting, but there could
potentially be additional quantities which must be estimated from data. There are many criteria
and algorithms across several literatures devoted to such “fitting” enterprises (e.g., Diggle and
Ribeiro, 2007). Yet there is a remarkable confluence in modern statistical learning practice when
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it comes to the near universality of likelihood-based methods when distributional assumptions are
being made (like the MVN in Eq. (1)). The reason is that no additional criteria need be introduced
to commence with learning. One may choose to impose additional assumptions, like priors on
aspects of φ for a Bayesian approach (Banerjee, 2017, which is still likelihood-based), or not –
simply maximize the likelihood. This is the approach we present here because it is tidy and fast.

Eq. (1) depicts how observations/outputs (like YN), are distributed in relation to inputs (like
XN) and parameters or other structure (like Σ(·, ·) via hyperhaprameters φ and kernels k). The
likelihood simply re-frames the density of that distribution, which assigns positive real values to YN
as a function of parameters (or hyperparameters φ, say), the other way around: providing positive
reals for φ given YN . Once in that context, it makes sense to seek out the parameterization that
makes the observed YN most likely, i.e., that maximizes the likelihood. There are two benefits
to this approach. One is that it reduces a statistical inference question to an optimization one
without introducing auxiliary criteria. The other is that the solution to this optimization, the so-
called maximum likelihood estimator (MLE), has special properties that can be used to quantify
uncertainty. For a review of likelihood-based inference, see Casella and Berger (2001).

By inspecting the MVN density (Kalpić and Hlupić, 2011), using a mean of zero and covariance
ΣN , one may obtain the following expressions for the likelihood and its logarithm.

L(φ;YN) = (2π)−
N
2 |ΣN |−

1
2 exp

{
−1

2
Y >N Σ−1N YN

}
(6)

`(φ;YN) = log(L(φ;YN)) = −N
2

log 2π − 1

2
log |ΣN | −

1

2
Y >N Σ−1N YN

Recall from Eq. (3) that the parameters φ are embedded in ΣN = τ 2(KN + gIN) via KN which is
built through pairwise application of kθ(·, ·). Technically, this is a marginal likelihood since it tacitly
defines both prior (which is integrated out) and observational variability. But this distinction is not
important for our discussion. The curious reader is referred to Section 5.3.2 of Gramacy (2020).
The log likelihood helps with maximization, easing differentiation but preserving critical points.

Consider τ 2 first. Observe that

`(φ;YN) = c1 −
N

2
log τ 2 +

N

2τ 2
Y >N Σ−1N YN

where c1 = −N
2

log 2π− 1
2

log |KN +gIN | is constant with respect to τ 2. Differentiating with respect
to τ 2, setting to zero and solving, is straightforward.

0
set
=
d`(φ;YN)

dτ 2
= − N

2τ 2
+

1

2(τ 2)2
Y >N (KN + gIN)−1Y >N → τ̂ 2 =

Y >N (KN + gIN)−1YN
N

(7)

If we then plug τ̂ 2 back into `(φ;YN) we get what is known as a concentrated, or profile log likelihood:

`(θ, g;YN) = `(φ;YN)
∣∣
τ2=τ̂2

= c2 −
N

2
log YN(KN + gIN)−1 − 1

2
log |KN + gIN |

where c2 is not a function of θ or g. Differentiation here is more challenging because the parameters
are buried within matrix inverses and determinants. But it is still doable. See, e.g., Eq. (5.9) in
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Figure 3: Log likelihood surfaces for the function in Figure 2. Left: Surface for g, holding τ 2 and θ
constant at their MLE values. Right: Surface for g and θ, holding τ 2 at its MLE value.

Gramacy (2020). We have

d`(θ, g;YN)

dg
=
N

2

Y >N ((KN + gIN)−1)2YN
Y >N (KN + gIN)−1YN

− 1

2
tr((KN + gIN)−1) (8)

d`(θ, g;YN)

dθ
=
N

2

Y >NK
−1
N K ′N(KN + gIN)−1YN
Y >N (KN + gIN)−1YN

− 1

2
tr((KN + gIN)−1K ′N),

where K ′N = dKN

dθ
. The former is actually a special case of the latter, taking instead θ as g, since

d(KN+gIN )
dg

= IN . When θ are lengthscales in kθ, K
′
N is formed of (K ′N)ij = dkθ(xi, xj)/dθ, i.e., with

component-wise derivatives of the kernel, say Gaussian or Matérn, with respect to θ. When θ is
vectorized, we may instead calculate ∂`(θ, g;YN)/∂θk, forming a gradient for k = 1, . . . , d.

The next step is to set these derivatives to zero, either simultaneously or separately, and solve.
However, no algebraic solution is known. Library-based numerical optimization, such as BFGS
(Byrd et al., 1995) provided in R’s optim function, can be used to find MLEs ĝ and θ̂. Convergence
is usually both robust and fast, even in high dimension d, when gradients (8) are provided since
the underlying `(θ, g;YN) surface is almost always convex. To illustrate, Figure 3 shows `(θ, g;YN)
using data associated with Figure 2. The left panel varies g conditional on a setting of θ, whereas
the right panel varies both. In both cases, τ̂ 2 has been concentrated out. Note that raw (un-logged)
likelihood surfaces are even more peaked than these figures present. Regardless, it is easy to eyeball
the MLE. R’s optim is able to find ĝ and θ̂, shown as blue diamonds in both panels in seventy-nine
iterations. Looking back at Figure 2, the blue curves correspond to predictive surfaces uses these
MLE hyperparamters. The red and magenta curves are detailed in the next subsection.

2.4 Kriging and Variography

The main difference between classical kriging and the GP presentation above regards inference for
unknown quantities and, in the case of the latter, a more up-front and highly-leveraged distribu-
tional assumption (Gaussian) for the response. Both use Eq. (2) to form predictions and quantify
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uncertainty. In geostatistics, these are known as the “kriging equations,” even when other aspects
historically associated with kriging are not faithfully replicated. Classical kriging focuses on lower
input dimension – particularly d ∈ {2, 3} in spatial contexts – and as such prefers isotropic modeling
after a suitable transformation of spatial inputs. Variography is used to select the kernel and its
hyperparameters, rather than the likelihood. This has advantages and disadvantages. Many of the
advantages are related to the historically larger training data sets encountered in spatial problems,
although that gap is narrowing in wider statistical learning and computer experiments contexts.
More on this in Section 3, wherein further distinctions arise. The main disadvantage is that input
pre-processing and variogram inspection are inherently hands-on, human driven enterprises, albeit
ones enhanced by computational tools. Other differences are more superficial, like naming, symbol
choice and applications of hyperparameters within variography.

The semivariogram, or half the variogram, denoted as γ(h), is the variance of two output y-
values that are distance h apart in the input x-space: γ(h) = 1

2
Var(Y (x + h) − Y (x)). Implicit

in this definition is an assumption of intrinsic stationarity, implying that E[Y (x + h)− Y (x)] = 0,
or that the covariance between two y values depends not on position but on relative distance
notated by the displacement h between them. If h is calculated using Euclidean distance, intrinsic
stationarity implies isotropy. When this is a limitation to effective spatial modeling, one may
prescale or rotate the coordinate system. This is often based on expert-judgment of the prevailing
variabilities within the input domain, like the direction of an ore body within the geologic topology.
As mentioned earlier, a modern GP approach would deploy separable lengthscales (5), or more
flexibly parameterized rotations and scales that are learned jointly with other unknowns.

The semivariogram is a theoretical/population construct that would be hard to specify a pri-
ori even with expert knowledge, but simple to observe empirically given data. One estimate
of an empirical semivariogram could be obtained by binning the data by distance and calcu-
lating sample covariances within those bins. Let N(hk) = {(xi, xj) : ||xi − xj|| ∈ Ik} where
I1 = [0, h1], I2 = (h1, h2], . . . , Ik = (hk−1, hk] denote a neighborhood structure striated by bands of
distance 0, h1, . . . , hk. Then estimate

γ̂(h) =
1

2|N(h)|
∑

(xi,xj)∈N(h)

(yi − yj)2. (9)

As defined continuously for any h, γ̂(h) is a step function. However it is customarily visualized
discretely as a scatter plot with (hi + hi+1)/2 as the x-axis coordinate. The left panel of Figure 4
shows these as dots for the 1d problem introduced in Figure 2 using a bin size (hi+1 − hi) of 0.05.

One can then match these empirical observations of spatial covariance with a parameterized form
for the population semivariogram. Here, similar constructs are used to model spatial dependence
as the kernels introduced earlier (4). Let γ(0) = 0 and for h > 0, power exponential and Matérn
model semivariograms are often written as

γPθ (h) = τ 2k + σ2

(
1− exp

{
−
(
h

R

)p})
γMθ (h) = τ 2k + σ2

(
1− 21−ν

Γ(ν)

(
h

√
2ν

R

)ν

Kν

(
h

√
2ν

R

))
.

(10)
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GP K-EB K-NLS
τ2 or σ2 1.99 3.17 2.48
τ2g or τ2k 0.145 0.018 0.00010
θ or R 0.172 0.17 0.13

Figure 4: A Gaussian kernel/semivariogram fit to the function in Figure 2. “EB” denotes a semivar-
iogram fit by hand, whereas “NLS” uses non-linear least squares; “GP” derives the semivariogram
from an MLE hyperparameterization. The table compares hyperparameter estimates.

Semivariogram parameters are known as nugget (τ 2k ),2 partial sill (σ2), and range (R).
Taking γ(0) = 0 is a contentious choice outside of the geospatial modeling literature. It implies

that there is no intrinsic variance in measurements. In part this is because such measurements are
inherently unrepeatable in certain contexts; you cannot dig a borehole in the same place twice.
But if you could, it stands to reason that you would get different measurements for such replicates
for all sorts of reasons, e.g., even without operator error the drill bit might interact with the
surface and ore body differently the second time. Primordial process producing the ore body are
subject to uncertainties that are best characterized as random variables even if the process is not
inherently stochastic. Thus, it is acknowledged that there will be small-scale variability between
nearby observations that are best described by noise. This noise, at all distances h = ε > 0, is what
is parameterized by the nugget τ 2k . The distinction with the GP nugget g, which characterizes the
noise as τ 2g at h = 0, is thus subtle. Choosing γ(0) = 0 has an impact on the kriging equations
(2), leading to discontinuities at the training data locations, where an otherwise smooth predictive
surface would be pocked with spikes of “interpolation.” We do not show these in the red curve by
deliberately omitting XN values from our predictive grid X for Figure 2 for aesthetic reasons.

Kriging-versus-GP distinctions between the other two kernel parameters are more superficial.
The partial sill σ2 controls the maximum covariance as h → ∞. This has a 1:1 correspondence
with the τ 2 from earlier. Sometimes the sill parameter, τ 2k + σ2, is preferred by geostatisticians
instead. The range R controls the distance between maximum and minimum covariance, and plays
an identical role as the square root lengthscale: R =

√
θ. It is not uncommon to instead specify a

decay parameter φ = 1/R, and such inversions are common in the GP literature as well.
Each setting of these parameters could be used to overlay a curve onto the left panel of Figure

4. For example, using the MLE hyparameters from our earlier GP analysis yields the curve in
blue. Alternatively, one could automate a search for the “best fitting” variogram parameteriza-

2A subscript k is not standard; we added it to distinguish with the GP scale τ2.
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tion with a generalized/nonlinear (possibly weighted) least-squares (NLS) criterion (Cressie, 1985).
This corresponds to the magenta curve. Observe that neither of these result in a terrific fit to
the semivariogram “data.” An outlying pair of dots near h = 0.5 drags these variograms down,
sacrificing fit for smaller pairwise distances. One reason these are outlying may be that we have
many fewer long-distance pairs in the data than short distance ones. A common remedy would be
to downweight or altogether ignore these when fitting the variogram parameters, focusing only on
the short distance readings. We refer to one such fit as the “eyeball” (or EB) variogram in the
figure, although in practice NLS may similarly be deployed. This can lead to more accurate predic-
tions out-of-sample, as we demonstrate momentarily. However it has the downside of introducing
non-statistical (e.g., NLS) and non-metric (determination of outlying semivariogram estimates) cri-
teria which diminishes reproducibility and automation, and incurs the expense of human expert
intervention. This enterprise is also sensitive to other choices such as bin size hi+1−hi and a choice
of maximum distance to calculate the empirical variogram. We chose hmax = 0.5 for Figure 4, but
could have gone out to hmax = 1, producing a much “noisier” empirical semivariogram.

Figure 4 details hyperparameter estimates for each of the three techniques. Lengthscale and
range settings exhibit high agreement. For scale/partial sill, NLS and GP MLE values are “drawn
down” by the noisier higher distance bins relative to our EB alternative which ignored those values.
The nugget is where things start to substantially diverge: τ 2g � τ 2k means our GP-MLE estimates
more noise/less signal than the kriging alternatives (EB and NLS). Notice that EB and NLS nuggets
are on different orders of magnitude. The tiny NLS τ 2k may be attributed to a lack of small distance
pairs, and consequently the optimizer converged at the boundary of our search space for that
parameter: 10−4, meaning very high signal/low noise. Although this seems innocuous when it
comes to the corresponding semivariograms on the left in the figure, the implications out-of-sample
are severe. This is foreshadowed in Figure 2, and evaluated empirically next.

2.5 Out of Sample Validation

In Figure 2 the EB kriging fit (solid-red) is visually similar to the GP-MLE fit (solid-blue) except
perhaps near x = 0.4. This is noteworthy in light of the disparate parameterization and semivari-
ograms in Figure 4, and in particular the human intervention required to ignore outlying values in
favor of short distances. Qualitatively, the red curve may be more accurate compared to the truth
(black), but closer inspection reveals a more pernicious concern despite apparent higher accuracy:
poor uncertainty quantification. The red 90% PI (error-bars) cover only about half of the train-
ing data locations, suggesting that nominal coverage has not been achieved. In contrast, the blue
(GP-MLE) error-bars cover many more of the data points.

There are many ways to be more precise about out-of-sample prediction accuracy. Consider a
testing set comprised of a grid of X -values of size N ′ with true values y(X ). Given predictions from
a kriging/GP fit (2), notated generically as µ(X ), the proper scoring rule (Gneiting and Raftery,
2007) is root mean square error (RMSE).

RMSE(y(X ), µ(X )) =

√√√√ 1

N ′

N ′∑
i=1

(yi(xi)− µi(xi))2 (11)
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1d GP K-EB K-NLS
RMSE 0.14 0.084 23.11
scoref 869 -4161 -1255140

Table 1: Out-of-sample RMSE and score for GP and kriging on the 1d toy problem.

Lower RMSE is better. The first row of the left panel of Table 1 shows that the mean predictions
for kriging via EB are indeed more accurate than via MLE.

If one also has covariances Σ(X ), or just variances σ2(X ) = diag(Σ(X )), associated with pre-
dictions, the proper scoring rule is more complex as accuracy must be normalized by uncertainty:

scoref(Y (X ), µ(X ),Σ(X )) = − log(|Σ(X )|)− (Y (X )− µ(X ))>Σ(X )−1(Y (X )− µ(X )) (12)

scorep(Y (X ), µ(X ), σ2(X )) = −
N ′∑
i=1

log(σ2
i )−

N ′∑
i=1

(
(Yi(xi)− µi(xi))2

σ2
i

)
.

In these equations an upper-case Y (X ) is used to convey that a comparison is being made to noisy
sample of Y -values following the data-generating mechanism, Observe that score based on full co-
variance (scoref) is the out-of-sample analog of the log likelihood (6), i.e., within an additive and
multiplicative constant of criteria deplored in-sample for GP hyperparameter inference. Conse-
quently, this criteria is sometimes called the predictive log likelihood (Gelman et al., 2014). The
“pointwise” analog (scorep) offers an approximation for the situation where full covariances cannot
be derived, as sometimes happens with big testing sets X . For now, we have full Σ(X ) for all three
predictors so Table 1 provides scoref-values. Notice that by score, the GP-MLE hyperparameteri-
zation is better, confirming our intuition that the PIs for K-EB are too narrow. Appendix A shows
a similar out-of-sample validation exercise comparing kriging to GPs on real data using the Meuse
river data (Pebesma, 2009) which is a common 2D kriging data set.

3 Large-scale modeling via localization

Likelihood-based GP inference for hyperparameters (6–8) and prediction (2) requires matrix de-
composition for the inverse and determinant of the covariance structure. Most kernels, e.g., Gaus-
sian and Matérn, produce dense KN (and thus ΣN), which require O(N3) decomposition, say via
Cholesky (which furnishes both inverse and determinant). This is prohibitive for N larger than a
few thousand. For example, decomposing a single 40, 000 × 40, 000 matrix on a workstation using
8 cores and specialized linear algebra libraries (Intel MKL) takes about 10 minutes. Numerical
optimization of hyperparameters might require hundreds of such decompositions in search of the
MLE via BFGS. With cubic scaling for larger N , computation time quickly explodes to hours or
days. O(N2) storage of the N ×N matrix can also become problematic even on the most powerful
workstations. Kriging-based inference for hyperparameters via variography bypasses the need to
work with an N ×N covariance matrix by binning the data. However, Eq. (2) still requires a dense
N ×N inverse to furnish predictions, which is still cubic in computational order.

In the modern age, datasets can easily push into the multimillions and the methods described in
Section 2 quickly become infeasible. For that reason, there are increasingly many approaches that
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seek a thrifty approximation to GP/kriging models. Heaton et al. (2019) give a thorough comparison
of about a dozen recently introduced spatial methods equipped to handle large data. Here we focus
on three representative approaches as a means of spanning myriad alternatives in a mining context:
Ordinary kriging (OK; Matheron, 1971) is the standard method in mining/geostats which makes
local (approximate) prediction after full-data variogram-based hyperparameter estimation; Local
Approximate Gaussian Processes (LAGP; Gramacy and Apley, 2015) can be seen as a likelihood-
based contemporary analog of OK developed in the surrogate modeling community, making it
a natural comparator to OK; finally, the scaled Vecchia approximation (SVecchia) Katzfuss et al.
(2021) uses a global approximation to estimate the full covariance structure based on similar locality
principles as LAGP/OK. Details for each of these follow in subsections below.

Lastly as a baseline, we consider subset GPs trained via a randomly selected, computationally
feasible, m � N -sized subset of the data points and use them to form an approximation to the
full model. Specifically, we build (Xm, Ym) ⊂ (XN , YN), using the likelihood for hyperparameter
inference via Eqs.(6–8) using (Xm, Ym) and prediction similarly following (2). We considerm ranging
from 1,000 to 8,000; we show later in Figure 8 that m > 8,000 is very slow and not competitive
with the other methods in terms of accuracy out-of-sample.

3.1 Transductive Modeling

Perhaps the most common solution to big-data matrix issues when predicting via kriging is to deploy
what is known as ordinary kriging (OK; Matheron, 1971). OK involves using full-data variography to
learn kernel hyperparameters, and then a local application of that learned kernel through predictive
equations (2) conditioned only on a small subset of the data nearby the predictive location(s) of
interest. Let x ∈ X denote the coordinates of one such location, and Xm(x) ⊆ XN denote the m
“closest” (e.g., via Euclidean distance) members of XN to x, and let Ym(x) be the m-associated
output values. These are sometimes called the m-nearest neighbors (NN) to x in XN . Then simply
apply Eq. (2) with (Xm(x), Ym(x)) rather than (XN , YN). When N is so large that the requisite
N×N matrix decompositions are intractable, choosing m� N like m = 50 can represent a thrifty-
yet-accurate alternative acknowledging that the discarded points XN \Xm(x) have vanishingly small
impact on the predictive equations especially when kernels involve exponential decay.

If a multitude of x ∈ X are of interest, these may be processed in serial or, as is increasingly
common with modern computing architectures, in parallel on multiple cores of a workstation and/or
nodes of a supercomputer. Vast predictive grids X can be processed efficiently in this manner.
There are several variations on this theme, many involving how the “neighborhood” Xm(x) and
its size m are defined. For example, one may work with a radius r instead, implicitly defining
m depending on the local nature of design locations XN nearby x. Suitable r from a modeling
perspective may be selected by the estimated range R of the semivariogram. However, this does
not guarantee a suitably-sized m for all x. One may end up with too small of a neighborhood to
make computationally stable calculations/reliable low-variance predictions, or too large of one to
be carried out efficiently from a computational perspective. Consequently, there are many hybrids
that are often deployed in this space (Wackernagel, 2003, Chapters 11-13).

The idea of tailoring a statistical calculation to a predictive task, using different data and possibly
different calculations depending on the predictive location x of interest, is now known as transductive
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learning (Vapnik, 2013). The transductive moniker is meant to contrast with the more typical
inductive learning setup where one trains first and predicts second. Under transductive learning,
the training happens bespoke to each x ∈ X , and usually on-demand/in real time. Examples span
the gamut of statistical modeling enterprises, often offering both speed and accuracy gains over the
inductive analog. Reviewing these would be a distraction here. Instead, we note that OK is an
example of transductive learning ahead of its time, albeit a somewhat limited one. Hyperparameter
learning with OK is inductive, whereas posterior predictive conditioning is transductive. It is this
latter stage where the nonparametric flexibility really comes from, although one might wonder
whether things could improve by enhancing the degree transductively, as it were.

A prime example of transductive GP modeling from the wider statistical learning literature is
the local approximate Gaussian process (LAGP; Gramacy and Apley, 2015). LAGP is similar to
OK, using Xm(x) ⊂ XN and Ym(x) analogously for prediction, but it is different in that it extends
the notion of locality to hyperparameter inference via the (local) likelihood. That is, the entire
process conditions only on (Xm(x), Ym(x)) for inference (6–8) and prediction (2). All inference is
off-loaded to numerical optimization. When the response surface is nonstationary, e.g., benefiting
by longer lengthscales for some x and shorter for others, LAGP offers enhanced reactivity compared
to single, global setting of hyperparameters. Any variation tailored to the full-GP is easy to port
to the local setting because LAGP is just many small GPs. Hybrids are possible too. One such
example alluded to earlier involves pre-scaling or rotating/projecting (e.g., Wycoff et al., 2021; Sun
et al., 2019) to handle non-axis-aligned anisotropy. However, the biggest difference between LAGP
and OK does not lie in potential for extension; it is how the neighborhood is defined.

Given fixed m, usually chosen via computational considerations (a common default is m = 50),
it has been known for sometime that the m-NNs in XN to x, whether via Euclidean distance or
otherwise, do not comprise of an optimal conditioning set (Xm(x), Ym(x)) under any reasonable
criteria (e.g., Stein et al., 2004). Example criteria include (Fisher) information about unknown
hyperparameters or, as is usually more relevant when predictive accuracy is concerned, predictive
uncertainty (a.k.a., mean-squared prediction error). We note that this, in turn, means that the OK
predictor is also sub-optimal as a transductive learner. However searching for the best conditioning
set (Xm(x), Ym(x)), again under almost any criteria, represents a computationally daunting task
because there are

(
N
m

)
alternatives to explore.

Here, another modern statistical learning idea comes in handy: active learning (AL). AL is a
branch of reinforcement learning/optimal control, or may be viewed as a modernization of old-
fashioned sequential design of experiments. In the AL literature, one can often show that a one-
step-at-a-time, greedy selection of training data is nearly as good as an exhaustive optimization of
some criteria by demonstrating that the criteria has a submodularity property (Wei et al., 2015).
For example, it can be shown that repeatedly acquiring training data (xn+1, yn+1) such that xi max-
imizes the predictive variance xn+1 = argmaxx σ

2
n(x) of a GP (2) or neural network model training

only on {(xi, yi)}ni=1 obtained previously (e.g., via similar greedy optimization), well-approximates
a so-called maximum entropy design, i.e., maximizing Shannon information about unknown hyper-
parameters (GP lengthscales) for the entire selection i = 1, . . . , N , say. This idea is due to MacKay
(1992) for neural networks, and dubbed ALM by Seo et al. (2000) in extension to GPs.

Intuitively, selecting points which have maximum variance will result in a space-filling design
because variance is higher away from the training data. Also, intuitively spreading points out will
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increase accuracy and reduce uncertainty throughout the input space. But this is coincidental.
Guaranteeing reduced predictive variance everywhere, or at a particular location (for choosing an
LAGP neighborhood), requires a criteria that squarely targets reduced variance in the region of
interest. A common choice is integrated mean-squared predictive error (IMSPE; Sacks et al., 1989):

IMSPE(xn+1) =

∫
X
σ2
n+1(x) dx ≈

∑
x∈Xref

σ2
n+1(x) = ALC(xn+1, Xref). (13)

The integral is usually taken over the entire input space, but X could be any set. This could be
interpreted as a criteria for the entire design Xn+1 = [Xn;xn+1]

>, or simply to select the next input
xn+1 in an active learning context: xn+1 = argminx∈X IMSPE(x). Due to submodulatirty, both
(approximately) optimize the IMSPE criteria over all Xn+1. Cohn (1996) developed this for neural
networks, and Seo et al. (2000) extended it to GPs. Notice that ALC approximates the integral as
a quadrature over a discrete reference set Xref . This is not necessary for GPs, because the integral
is analytic when following Eq. (2), but it is for neural networks.

For LAGP, the goal is to get as accurate of a prediction at x as possible, which can be interpreted
as a singleton {x} = X = Xref , effectively discarding the sum or integral. We can select a new
xn+1 = argminxn+1

ALC(xn+1, x), and repeated applications will approximate a “local” optimal
design for predicting at x. This would usually be applied for selecting new training data in an
AL context, but for LAGP we already have a fixed training data set (XN , YN) and so we desire a
subsample instead: xn+1 = argminxn+1∈XN\Xn

ALC(xn+1, x), which is even easier than a continuous
search potentially everywhere in the input space.
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Figure 5: ALC neighborhood for n = 50 on simulated borehole data.

In practice, early ALC acquisitions (small n) result in neighborhoods that are indistinguishable
from NN. However, later acquisitions (larger n), after many NNs have been conditioned upon near
x, the local ALC/IMSPE criteria prefers acquiring “satellite” points farther away. Intuitively,
information farther afield becomes more valuable as NNs accumulate near x: you want xn+1 to be
both close to x but far from Xn. At the start the former dominates, but eventually the latter has
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higher weight in the criteria. The end result for n = 50, seen in Figure 5, involves ten or so satellite
points, departing from an OK or NN subdesign set of the same size.

To a certain extent, LAGP has a “chicken or the egg” problem when dealing with anisotropy.
Neighborhoods selected for x are based on Euclidean distance to determine hyperparamters, like
θ̂k(x), but those values control notions of distance differently in each input coordinate through the
kernel. OK experiences this problem too, albeit to a lesser extent when anisotropy is handled by
the practitioner as a pre-processing step. Several remedies have been proposed. The original LAGP
paper (Gramacy and Apley, 2015) suggested initializing with a default, isotropic θ0 for all testing
locations x, upon which neighborhoods are built (e.g., via ALC) and local, anisotropic local θ̂(x) are
learned through local MLEs separately for each x. This can then be repeated, with neighborhoods
based on those θ̂(x), until things stabilize. Subsequently, a simpler/better approach was promoted
by Sun et al. (2019) that is more akin to OK pre-processing, but still completely automated. Liu
and Hung (2015) showed that unbiased (global) lengthscales θ̂ = (θ̂1, . . . , θ̂d) can be estimated via
MLEs from carefully constructed data subsets of large XN without expense cubic in N . Once these
have been learned, they can be used to pre-scale inputs X as Xk/

√
θk so that the implied MLE

global lengthscale is θ̂0 = 1 under squared-distance kernels like in Eq. (4). In this transformed space,
Euclidean distance can be used to determine neighborhoods. This pre-scaled LAGP has become
the default setup, and has since been extended to other input “warpings” by Wycoff et al. (2021).

Taken as a predictive field over a densely gridded testing set of x-values, both OK and LAGP
(NN or ALC) are discontinuous. Prediction at each point x ∈ X is processed independently, both
in a statistical and computation sense. So two testing locations right next to each other may have
substantively different predictions (in mean and/or variance) because different neighborhoods are
used for conditioning. This can be an asset when the response surface exhibits regime/abrupt
changes. In tamer, more stationary settings, a non-smooth prediction could be detrimental to
statistically efficient and aesthetically pleasing analysis.

3.2 The Scaled Vecchia Approximation

The Vecchia GP approximation (Vecchia, 1988) borrows the neighborhood idea while providing a
global model for smooth predictions. It relies on a familiar identity for joint distributions:

p(y) = p(y1)p(y2|y1) . . . p(yn|y1, y2, y3, . . . yn−1) =
N∏
i=1

p(yi|yk(i)) where k(i) = {j : j < i} (14)

≈
N∏
i=1

p(yi|yc(i)) where c(i) ⊂ k(i)

The first line above (equality) is true for any re-indexing of the variables y = y1, . . . , yn, and for
any y – not specifically for GPs. The approximation (second line) arises from dropping some of
those conditioning variables. Let m denote the maximum size of those sets, i.e., so that |c(i)| =
min(i− 1,m), controlling the fidelity of the approximation – more severely for m� i. The quality
of this approximation is determined by the indexing (i.e., the ordering of the conditionals), size m,
and which of the conditioning variables k(i) are dropped in c(i) when m < i.
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Specifically for GPs, one may view the likelihood (6), in this context:

L(φ;YN) ≈
N∏
i=1

L(φ; yi|yc(i)) (15)

= (2π)−
N
2

(
N∏
i=1

σ2
i

)− 1
2

exp

{
−

N∑
i=1

1

2σ2
i

(yi − Σ(xi, Xc(i))Σ(Xc(i), Xc(i))
−1yc(i))

2

}
where Σ(·, ·) is defined as in Section 2.1 and σ2

i = Σ(xi, xi)−Σ(xi, Xc(i))Σ(Xc(i), Xc(i))
−1Σ(Xc(i), xi)

is the predictive variance at location i given the conditioning set, c(i). Since distance in the input
space, via Σ(·, ·) is fundamental to GP inference and prediction, one can think of c(i) as defining
a “neighborhood.” In that context it makes sense (as it did for OK and LAGP) to include in the
neighborhood those indices whose input values Xc(i) are closer to xi.

Eq. (15) is similar to (6) except instead of performing one N × N matrix decomposition (for
inverse and determinant) in O(N3) time, the Vecchia approximation involves N smaller inversions
of m × m matrices, requiring O(Nm3) flops. If m is small, typically between 10 and 25 (Datta
et al., 2016; Katzfuss et al., 2021), O(Nm3) is quasilinear in N (Katzfuss et al., 2020a). Further
computational gains can be realized through sparse-matrix libraries and parallelization by re-writing
the likelihood through a Cholesky decomposition of the precision matrix of YN , denoted as U :

L(φ;YN) ≈ (2π)−
N
2

(
N∏
i=1

σ2
i

)− 1
2

exp

{
−1

2

N∑
i=1

(Y >N UiU
>
i YN)

}
(16)

= (2π)−
N
2 |UU>|

1
2 exp

{
−1

2
(Y >N UU

>YN)

}
,

where Ui is a 1×N vector whose jth entry is:

U
(j)
i =


1
σi

i = j

− 1
σi

(
Σ(xi, xj)

(
Σ(Xc(i), Xc(i))

−1)(j,j)) j ∈ c(i)
0 otherwise.

(17)

Observe that there are no N×N matrix decompositions involved, and that any inverses are implicit
in the Cholesky factor UU>, which is sparse.

One may maximize the likelihood (16) to estimate hyperparameters Guinness (2018). Prediction
follows the classical setup (2), forming Y (X ) | YN by stacking training and testing responses:[

YN
Y (X )

]
∼ NN+N ′

[0
0

]
,

[
UU> =

∑N
i=1 UiU

>
i

∑N
i=1 Ui

∑N ′

i=1 U
′>
i∑N ′

i=1 U
′
i

∑N
i=1 U

>
i U ′U ′> =

∑N ′

i=1 U
′
iU
′>
i

]−1 .

Here we have introduced a new N ′×N ′ matrix, U ′ following Eq. (17), via X rather than XN . Then,
the analog of Eq. (2) yields

µN(X ) = −(U ′U ′>)−1
N ′∑
i=1

U ′i

N∑
i=1

U>i YN and ΣN(X ) = U ′U ′>. (18)

18



So the Vecchia GP approximation provides a full joint distribution. Moreover, a single prediction
(X ≡ {x}), after training, requires just O(m3) additional time (Katzfuss et al., 2021), assuming
cached values of U . A total of O((N ′ + N)m3) flops are required for inference and prediction, as
opposed to O(N ′3 +N3) for an ordinary GP.

All that remains is to determine the ordering of indices i in yi and the composition of the neigh-
borhood sets c(i), since not all choices (when m� n) lead to equally good approximations (14–15).
One option is to follow the LAGP playbook and attempt to optimize over these variables. However
this has proved elusive in the literature because an exhaustive search over alternatives would be
combinatorially cumbersome, and there is no obvious greedy approach that enjoys submodularity
for active learning. Nevertheless there are rules of thumb that make sense intuitively. Many or-
derings work well (Stein et al., 2004; Guinness, 2018; Katzfuss and Guinness, 2021), but there is
a consensus in the literature (Stroud et al., 2017; Datta et al., 2016; Wu et al., 2022) for random
indexing. Likewise, those authors prefer NN conditioning sets c(i) comprised of indices j < i whose
xj-values are closest to xi. This choice has been dubbed NNGP by Datta et al. (2016), although it
is important to note that NN are not being used in the same way as LAGP or OK.

Since distances are involved in NN calculations, the Vecchia approximation faces the same
“chicken or the egg” problem as LAGP in the face of anisotropy. To help, Katzfuss et al. (2021)
describe a scheme similar to pre-scaling for LAGP which updates lengthscales θ̂k via Fisher scoring
(Osborne, 1992), then re-scales inputs so that NNs can be recalculated, and repeats. Katzfuss et al.
(2021) call this “scaled Vecchia” (SVecchia), and argue that it works best with a maximin (Johnson
et al., 1990) indexing. We adopt SVecchia as our preferred variation on this theme, in part because
it is neatly packaged in software [Section 4].
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Figure 6: Conditioning sets for two inputs using m = 10: point 4 (triangles) and 115 (circles). Left
shows the original space in coded inputs, and right shows x1 pre-scaled by 1/

√
θ1 = 2/3.

Figure 6 shows an illustration using simulated borehole data, providing conditioning sets of size
m = 10 for two points, labeled with indices i = 4 (triangles) and i = 115 (circles) respectively. The
left plot shows what the conditioning sets look like in the raw, unscaled space while the right is after
scaling x1 by 2

3
; both using the same maximin ordering for easy comparison. The scaling has no

effect on the small indices, since point 4, for example, can only condition on k(4) = c(4) = {1, 2, 3}.
See that the lower indices in c(4) (purple triangles) are spread out through space due to maximin
ordering. However, point 115 has |k(115)| = 114 points to choose from for it’s neighborhood c(115).
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Consequently, the conditioning sets are different between the unscaled and scaled versions. Observe
that point 97 is closer than point 34 in the scaled plot, but farther in the unscaled plot.

4 Empirical evaluation on ore data

Here we shall expand on our out-of-sample analysis from Section 2.5 in order to illustrate how
modern approximate GP and kriging alternatives [Section 3] compare on two, real and large-scale
ore data sets. The layout is as follows. We first introduce the data, evaluation metrics, and detail
software in Section 4.1. Section 4.2 presents our validation apparatus, which offers a subtle twist
on conventional methods to respect the borehole nature of data acquisition/measurement. Here
we also provide results from our first sets of comparisons. Finally, Section 4.3 presents one of
several potentially more nuanced analyses that, we believe, is only possible (with ease) in the fully
probabilistic GP setting: coping with left-censoring prevalent in ore measurements.

4.1 Implementation details

Our ore data involve three-dimensional inputs, indicated as longitude, latitude and depth in stan-
dard units. Although these data record measurements (potential ore outputs) for multiple elements,
our analysis here focuses on (log) gold concentration in parts per million. The two data sets are for
geographically disparate mining sites that are characterized by different ore forming processes. The
first one records more than 150,000 measurements from approximately four-thousand boreholes; the
second has N ≈ 500,000 from 8,000 holes. The second data set also has a substantial number of left-
censored values (i.e., thresholded measurements below the detection limits of the apparatus used to
sample the core). For example, about 40% of the gold measurements in these data are recorded as
0.05. There are a smaller number of higher limiting values as well. We shall detail how we handle
this with two different treatments in Sections 4.2 and 4.3. We are deliberately being vague about
many aspects of our data in order to honor confidentiality agreements with mine operators.

We wish to draw an out-of-sample comparison between the methods in Section 3 on these data.
In addition to RMSE and proper score (11–12), we also report time, considering both compute
(machine) time and practitioner (human) time. Machine time is measured precisely, in seconds, for
execution on an eight-core hyperthreaded Intel Core i9-9900K CPU at 3.6GHz with 128GB RAM
and Intel MKL linear algebra subroutines. Human time is more subjective/imprecise, and we shall
have more to say about that in due course. It is worth remarking that none of the small-data/exact
methods from Section 2 are applicable when N � 10,000, as we have here. Approximation is
essential. One simple option is to (randomly) subset the data to a manageable size and apply exact
inference on that subset. We consider variously sized “subset GPs” as a benchmark.

For the approximate methods of Section 3, we leverage the following software libraries. The laGP
package (Gramacy, 2016) for R (R Core Team, 2021) on CRAN accommodates subset GP, LAGP,
and SLAGP. Its implementation is primarily in C, with OpenMP for symmetric multi-processing
(SMP) parallelization. Only Gaussian kernels are supported by this software. We use defaults
throughout, including ALC neighborhoods of size m = 50. An SVecchia implementation is provided
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by Katzfuss et al. (2021),3 which piggy-backs off of two R packages: GpGp (Guinness, 2018) and
GPVecchia (Katzfuss et al., 2020b). Although primarily in R under-the-hood, Rccp (Eddelbuettel
and François, 2011) is used for key subroutines. These, and other calculations based on sparse
matrix libraries (Bates et al., 2022) for efficient linear algebra, are also SMP parallelized, although
to a lesser degree compared with laGP. Here we use the Matèrn kernel and other defaults throughout,
including a conditioning set size of m = 25. Conventional pre-processing is used to code spatial
inputs to the unit 3-cube as recommended by both laGP or SVecchia documentation.

OK is provided by GSLIB (Deutsch and Journel, 1997), which is in Fortran assisted by a shell
scripting interface. Whereas the other methods are plug-and-play modulo with few choices that
are largely relegated to defaults, interacting with GSLIB is a human-intensive endeavor, involving
extensive pre-processing. For example, the analyst must first generate an experimental semivari-
ogram (9) before fitting a positive-definite kernel function. When anisotropic spatial correlation is
suspected, the analyst may also have to prepare a variogram map to identify the principal directions
of spatial continuity, and then generate experimental semivariograms for two or three directions.
This task is also complicated by numerous choices that are part of the analysis, e.g., angular toler-
ances for directional search windows and different models for spatial autocorrelation (exponential,
spherical, Gaussian, etc.) When the variogram analysis is complete, the analyst may also have
to complete a coordinate axis rotation to align the dataset with the directions of maximum and
minimum spatial correlation, and also experiment with numerous choices for the OK algorithm
itself, e.g., search window size and shape, minimum/maximum observations to be use for each es-
timate. When working with spatially isotropic data, pre-processing may require only an hour or so
of additional work; this time expense increases dramatically when faced with anisotropic data.

4.2 Validation exercise

As mentioned in Section 2.5, it is important to compare metrics (11 & 12) on out-of-sample data.
Unlike Section 2.5, when dealing with real data, we cannot calculate these metrics on a dense grid
spanning the entire input space. In practice, out-of-sample validation occurs by training the model
on 90% of the data and testing on the other 10%. Appendix A shows this more in depth. Repeating
that randomization multiple times mitigates the so-called Monte Carlo (MC) error metrics like
RMSE and score. Here we use K = 10-fold cross validation (CV; Hastie et al., 2001, Chapter 7)
to average over train–test partitions while controlling MC error further by ensuring that each data
element is used exactly once for testing, and complementarily exactly nine times for training. CV
commences by first shuffling the data, and then evenly dividing it into a partition of K mutually-
exclusive folds, then iterating over those folds k = 1, . . . , 10, forming a testing set of the data in the
kth fold while taking the complement as the training set. In this way, K metric evaluations (like
RMSE, score or time) can be calculated and summarized for comparison.

Early attempts at a CV evaluation of the methods in Section 3, after this fashion, revealed a
shortcoming in the context of our borehole-driven ore data sets. Namely, the best predictors of a
particular held-out testing element were almost always comprised entirely of members of the training
data coming from the same borehole. With boreholes “holding” approximately thirty to sixty data
elements each, depending on the hole and the data set, this meant that it was highly probable that

3https://github.com/katzfuss-group/scaledVecchia
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an accurate prediction could be made trivially just by those nearby evaluations. This conveyed a
substantial advantage to OK and LAGP. We determined that it would be more realistic, and more
fair, to hold out entire boreholes for testing, rather than partitioning the data on individual data
elements regardless of which borehole they were in. The idea is to simulate what might happen if
we were to predict measurements for a new borehole that has not been drilled yet.

Toward that end, we built a custom CV which randomly partitioned our data into K folds of
roughly equally-sized boreholes instead. In this way, boreholes are “tested” all at once, without
being able to lean on other data within the same borehole for training. Figure 7 shows one such
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Figure 7: Testing and training sets for the 2d project from Figure 1 with ordinary CV on the left
and borehole-preserving CV on the right.

training and testing partition via a single fold of this “borehole-preserving CV.” Finally, it is worth
remarking that all of our comparator methods use exactly the same CV folds.

Ore data set one

With this setup, Figure 8 shows log RMSE (11), score (scorep from Eq. (12)) and compute time
for each of our methods for the first, smaller data set. The big takeaways are that SVecchia, OK
and SLAGP are all competitive with each other in terms of RMSE; SLAGP and SVecchia are
competitive in score with similar medians. Observe that SLAGP improves upon ordinary LAGP
for both RMSE and score. Score for OK could not be calculated because GSLIB does not furnish
predictive variances. GSLIB provides standard errors on the mean of the prediction, but those
can substantially under-estimate out-of-sample variance. In terms of time, SVecchia takes seconds
and LAGP takes a couple minutes to run, both with essentially zero “human time.” We report
that OK takes several hours of human time to perform a variography analysis, choosing between
competing kernel formulations and parameterization and to determine an appropriate rotation and
pre-scaling of the data in order to cope with an otherwise isotropic formulation. After that has been
done, training and prediction takes about the same amount of time as (S)LAGP. It is interesting
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Figure 8: Drillhole-presererving 10-fold CV summary for the first data set. Left: RMSE (smaller is
better); Middle: scorep (higher is better). Right: compute time (smaller is better).

that SLAGP is faster than LAGP despite involving more algorithmic steps: first fit a global subset
model, then local models on transformed inputs. The explanation is that, after pre-scaling, local
MLE calculations are easier: they require many fewer iterations to converge. Computation time for
the subset-GP methods explodes with O(m3) flops as m grows.

Our conclusion from this experiment is that, although SLAGP edges out SVecchia on accuracy
and UQ for this problem, SVecchia is slightly better overall because of its substantially lighter time
commitment. However, for an individual (or entire borehole) prediction, SLAGP times are orders
of magnitude faster – the times in the right panel of Figure 8 are for all boreholes in the fold –
because each calculation is independent of others. For a one-off prediction it is the clear winner.
Although raw accuracy is similar compared to OK, the modern GP methods are hands-off, provide
full UQ, and are faster to train/predict.

Ore data set two

A similar analysis for the second, larger data set, is nuanced because of the substantial left-censoring.
One option is to ignore the censoring and treat the recorded values as the actual values. If there
were a small number of such values, sporadically located in the input space, this might work well.
However, there are a sizable number (more than 40%), and they cluster nearby one another. Having
some responses smoothly vary in the input space, with others “flatlining” at 0.05, say, for most or
all of a borehole represents an almost pathological contrast to typical smoothness assumptions
underlying GP (and kriging) methods. So to start with, we removed these values, and dealt with
borehole-preserving CV only on the remaining 259,555 data records. In Section 4.3 we shall discuss
an imputation scheme for bringing these observations back into the folds. The remaining data still
contain a moderate degree of left-censoring which we largely ignore except when an entire borehole
contains the same (thresholded) gold response. In that case, we collapse those records into three
data points – two ends and midway point – all with the same gold value. This collapsing is especially
important for LAGP and OK because, due to their local nature, those methods occasionally have
neighborhoods consisting of data from one or two boreholes only. If those measurements lack
diversity due to thresholding, training can result in numerical singularities.
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Figure 9: Left: Histogram of log LAGP nuggets with SVecchia and subset8k nuggets. Right: An
example neighborhood using LAGP’s ALC for a point with low estimated variance.

Even after such modifications, we found that LAGP and OK struggled to predict at some testing
sites. GSLIB, implementing OK, would simply refuse to provide a prediction in these instances, or
similarly when there are no training data points within a user-specified radius (regardless of m),
returning an error code. In these data, that amounts to about 300 testing sites per fold. The laGP

software would furnish a prediction, but when comparing the corpus of other predictions in a fold
it was obvious that something was amiss, particularly with the estimated (local) nugget parameter
and, consequently, the predicted variance. To investigate, we plotted a histogram of the estimated
nuggets from all of the local fits, shown in the left panel of Figure 9, and compared these against
the global nugget(s) provided by subset and SVecchia methods. We observed that occasionally,
local nuggets were being estimated at the lower-threshold imposed by the laGP default search range
(leftmost-bin in the histogram). The local neighborhood for one, representative member of this
group is shown on the right panel of the figure. Observe that most of the points nearby have log
gold values above 1 (are similar shades of blue) with some satellite points having lower log gold
values. Thus a prediction of log gold a bit higher than 1 with low variance makes sense. However,
the true log gold value for this point is about 0.1, meaning the prediction is confident and wrong –
which would lead to a poor score evaluation.

Of course, we cannot know this location provides a bad prediction until we look at the testing
value for this predictive location. So we decided to replace local nuggets estimated at the lower-
bound of laGP’s’ search range with the median of the nuggets from the rest of the distribution. This
led to a substantial improvement in out-of-sample scores, described momentarily. If this sounds ad
hoc, that is because it is. But a prediction with UQ that is based on compromise and a limited
degree of post-hoc human intervention is better than no prediction at all (OK/GSLIB).

Figure 10 shows these results with black boxplots. (The red ones involve a study on imputation
in Section 4.3, so ignore those for now.) The story is similar to the first data set in Figure 8:
SLAGP, SVecchia, and OK outperform subsetting in terms of RMSE. Here, OK appears to be the
most accurate, but these RMSE calculations do not include any error-coded outputs (representing
more than 300 presumably “bad” predictions per fold). So this is not a holistic assessment of OK
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Figure 10: Drillhole-preserving 10-fold cross validation summary for the first data set. See Figure
8 caption. Red boxplots are discussion in Section 4.3.

accuracy. By score, which again cannot be calculated for OK, SVecchia is the clear winner, and the
second-fastest in this comparison. (S)LAGP, which is similar in spirit to OK, has inferior scores
despite modifications to address stability issues to do with the nugget (above).

4.3 Imputation

It is unsatisfying to discard data. Even a coarsely left-censored value contains information, which
can be used to enhance training. Perhaps even more importantly, one may wonder how accurately
those censored values may be predicted, thereby increasing the resolution of those measurements,
by borrowing information from higher-accuracy (training) data measurements nearby. This is a
standard enterprise in statistical learning when fully probabilistic generative modeling, like the GP,
is used. There are many options when handling “missing data,” of which censoring is one example
(Schafer, 1997; Little and Rubin, 2002).

One way to incorporate censored ore values, without destroying smoothness or stationarity
assumptions underlying GP spatial models, is through imputation (e.g., Little and Rubin, 2002,
Chapter 5). In our context, imputation basically means generating a plausible response Y -value for
censored locations that both respects the censored measurement, and the smoothness of the under-
lying spatial field learned through other, completely observed data. Once generated, the imputed
value may be treated as if it were a completely observed value going forward, say for prediction.
Of course, treating an imputed value as observed ignores the uncertainty in the imputation. Mul-
tiple imputation acknowledges that uncertainty by randomly imputing several possible values and
performing inference based on the corpus of those imputed values, e.g., through averaging.

Illustrating how this could work in our ore context requires some notational scaffolding. Let
DN = (Dobs, Dcens) represent the partition of the complete data set into its fully observed and
censored components, respectively. For example, Dobs = (Xobs, Yobs), may be the portion of the
second data set we were working with in Section 4.2, and Dcens = (Xcens, Ycens) was the part we
(temporarily) discarded. Imputed values Yimp(Xcens), may be used to augment Dobs to obtain
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Dimp = (Dobs, (Xcens, Yimp)) via truncated Gaussian simulation

Yimp ∼ NNcens(µobs(Xcens),Σobs(Xcens))I{Yimp≤Ycens}, (19)

where I{Yimp≤Ycens} is an indicator function, returning 1 if Yimp ≤ Ycens and 0 otherwise. Quantities
µobs(Xcens) and Σobs(Xcens) are the predictive moments (2) of a GP fit conditioned on Dobs.

Although software exists to sample from a truncated MVN directly (e.g., Wilhelm and G, 2022),
such as those in (19), in practice it can be difficult to generate a sufficient number of values below
Ycens when Ncens is of modest size, for example in the hundreds (Li and Ghosh, 2015). A more
customized approach that acknowledges the form of our (approximate/large-scale) spatial surrogates
helps. In the (S)LAGP context, we may use Eq. (14) to sample Yimp from the truncated MVN (19)
one at a time, conditioning on the previously sampled imputed values and the observed data. LAGP
is designed to look at each location in the testing set independently which makes this setup work.
On the other hand, SVecchia is designed to give a global model approximation, so doing a similar
one-at-a-time conditional imputation is too crude. We instead prefer a bespoke rejection sampling
(Casella et al., 2004) scheme that proceeds in epochs: first generate posterior samples from the
MVN (19) unconstrained, keeping any values that satisfy the censoring threshold. Then condition
on those imputations and the observed values, resampling at locations without an imputed value,
repeating until Yimp is completely filled in.

Algorithm 1: Multiple imputation for large scale GPs under left censoring

input Dobs and Dcens and testing locations X
for i = 1, . . . ,M do

if (S)LAGP then
D = Dobs

for j = 1, . . . , Ncens do
(µ, σ2) = (S)LAGP(D,Xcens[j]) // LAGP prediction: Sec. 3.1

Yimp[j] ∼ N1 (µ, σ2) I{Yimp[j]≤Ycens} // Posterior tnorm draw: Eq. (19)

D = (D, (Xcens[j], Yimp[j])) // Imputation step

(µi, σ
2
i ) = (S)LAGP(D,X ) // Predict at testing locations

if SVecchia then
D = Dobs

while |Xcens| > 0 do
(µ,Σ) = SVecchia(D,Xcens) // SVecchia prediction: Eq. (18)

Yimp ∼ N|Xcens|(µ,Σ) // Unconstrained posterior MVN draw

w = which(Ysamp < Ycens)
D = (D, (Xcens[w], Yimp[w])) // Imputation step

Xcens = Xcens \Xcens[w]

(µi,Σi) = SVecchia(D,X ) // Predict at testing locations

return (µi,Σi), for i, . . . ,m // where Σi = diag(σ2
i ) for (S)LAGP

Algorithm 1 provides pseudo-code for concreteness, wrapping a single imputation with a for

to obtain M multiple imputations. Rubin (1987) indicates that M between two and ten works

26



well, so we use M = 5 in our exercises. Each of the M imputed values are plausible realizations
of the censored measurements, which correspond to M posterior/predictive Gaussian distributions
for each testing location. Thus we may use Gaussian mixture moment equations (Reynolds, 2009)
to report the mean and variance predictions for the testing set:

µMI(X ) =
1

M

M∑
i=1

µi(X ) (20)

σ2
MI(X ) =

1

M

M∑
i=1

σ2
i (X ) +

1

M

M∑
i=1

µ2
i (X )−

(
1

M

M∑
i=1

µi(X )

)2

While this cannot completely account for all possible uncertainties due to imputation, because we
have not looked at all possible imputation values (only M), we can always increase M if desired. It
may be shown that these equations give an unbiased estimate of mean and variance for any M .

Imputation in practice

To begin with an illustration in a simple, controlled setting, the left panel of Figure 11 shows a
classical GP model with and without imputation. The true function is f(x) = 2sin(4πx) + ε where
ε ∼ N (0, 0.1) and an observation threshold of y = 1 with n = 20 randomly selected training points.
There are two main regions of censoring, one in the center and one at the upper end of inputs. In
the center, the model with imputation gets closer in mean to the truth. On the upper end, the
variance of our predictions is much lower when conditioning on imputed values. Observe that the
model with imputation is a better fit for the true curve.
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Figure 11: Left: Imputation illustration for 1d synthetic data. Right: CV log loss (21) from ore data
set two that are below the detection threshold using big data methods with and without imputation.

When working with real data, we do not have the luxury of knowing what the “true curve” is.
Consequently, it is much tougher to assess improvement in the quality of fit through imputation.
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RMSE and score on an out-of-sample testing set, say via CV, are problematic because censored
data values – as elements of the testing set – are not realizations from the same population as the
model/predictive quantities are (µn(x) and σ2

n(x)). The only “truth” we know about these points
is that they are measured to be below the threshold. The best we can to is determine if the model
accurately predicted the “parity” of its recorded value, either above or below the threshold. The GP
framework makes this transition simple. The probability of accurate prediction under a threshold
may be obtained through inverse Gaussian CDF evaluated at the threshold. The proper scoring
mechanism (Gneiting and Raftery, 2007) for such probabilities is the logarithmic loss (LL; Good,
1952), also known as cross-entropy loss in the neural network literature. Lower LL is better. When
all of the testing data are from one class (less than Ycens), LL boils down to:

LL(Xcens) = − 1

N ′cens

∑
x∈Xcens

log(P(Y (x) ≤ Ycens) = − 1

N ′cens

∑
x∈Xcens

log
(
Φ−1(Ycens;µ(x), σ2(x))

)
. (21)

Returning now to our second ore analysis from Section 4.2, we describe our experience with
multiple imputation on these data. We only explore (S)LAGP and SVecchia in this context. When
dealing with the subset methods, imputation is of limited additional value as completely observed
data are plentiful relative to the subset size. It is cumbersome, but not impossible to entertain
imputation under OK. Being faithful to the imputation scheme would require human intervention
to re-fit variograms after each new imputation is obtained. That would result in over 100K variogram
fits in this example! In this context, we see LAGP as an equivalent, automatic variation on OK
that can be more easily entertained in an imputation/censored values context.

The right plot of Figure 11 demonstrates that our imputation scheme yields improved LL (21)
across the board. For reference, − log(0.001) = 6.9 and − log(0.2) = 1.6, so fits leveraging impu-
tation provide a probability of 0.2 for being below thresholds, on average, compared to 0.001 or
worse for the models without imputation. At first, it is hard to square this improvement with what
appears to be contrary messaging from the imputation results in Figure 10 (red boxplots). If a
practitioner is certain that a particular region is high in gold concentration, a priori, then dropping
the censored values (i.e., no imputation), which are all low-measurements, leads to more accurate
results. Yet dropping thresholded values exposes the practitioner to confirmation bias: predictions
appear more accurate in one part of the space at the expense of massive over-predictions in another.
This is what the right panel of Figure 11 shows.

5 Conclusion

We have highlighted similarities and differences in GP modeling and kriging. On the one hand,
disparate terminology obscures a practically identical modeling apparatus. On the other, approaches
to hyperparameter estimation and the treatment of anisotropy can imply drastically different degrees
of automation/requisite human intervention. We demonstrated that with smaller training data sets,
expert intervention through variography can lead to (slightly) better fits. However, we advocate
for taking the human out of the loop even in this situation, and relying on the likelihood. We
are not saying the human should be eliminated entirely. Identifiability issues (Tang et al., 2021;
Kaufman and Shaby, 2013) inherent in separating signal from noise (i.e., inferring the nugget), and
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in determining smoothness (p and ν), mean it is always sensible to inspect outputs and challenge
downstream inferences against stylized facts about the system. But intimate human involvement
challenges reproducibility and limits scope for extension, such as with with censored data in our
mining context. Careful engineering atop of sound principles can improve upon many human labor-
intensive tasks – possibly a defining feature of the machine learning approach to statistics.

By introducing modern kriging/GP approximations, we have shown that when working with
large mining datasets in low dimension, the scaled Vecchia approximation is faster and at least as
accurate as LAGP/OK with the benefit of giving full joint posterior distributions. Throughout,
we leveraged off-the-shelf libraries with defaults settings. These represent the tip of an iceberg.
See, e.g., Heaton et al. (2019) for a survey of additional modern approaches to modeling spatial
data. Mining data often have some non-stationarity due to geological structures, e.g., faults, folds,
and fracture networks. Recently it has been suggested that a deep GP (Damianou and Lawrence,
2013; Sauer et al., 2022) may handle such non-stationary data more gracefully than ordinary GPs:
combining the accuracy of deep learning (deep neural networks) with the uncertainty quantification
(UQ) features of fully probabilistic (GP) modeling.

Finally, GP-based machinery – as opposed to kriging – is less intimately tied to low-dimensional
(2-3d) input spaces, allowing for the incorporation of more predictor variables. In the case of mining
for gold, measurements for other minerals (in a similar domain) can be used to help build models
that are more accurate and give better UQ. This can easily increase the input dimension to the tens
of variables. That challenges variography, but the GP approach remains essentially unchanged.

Code Availability. All examples/illustrations can be found on our Git repo on Bitbucket:

https://bitbucket.org/gramacylab/mining_code/src/master/

Data Availability. Data for the illustrative examples in Section 2 is provided either in-line with
our code (see git repo above), or as included with an open source library utilized by our code. The
mining data from our industrial partners is proprietary and we do not have permission to share it.
However, the data is in a standard CSV-column format, and our code for those examples (in the
repo above) may be utilized with any data that can be supplied in that form.
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Appendix A A common 2d kriging example

Consider the Meuse river data, which often serves as a tutorial-level example of kriging (Pebesma,
2009). These data consist of measurements of concentrations of metals in the topsoil of the Meuse
river in the Netherlands. Our analysis here focuses on 155 zinc measurements in parts per million
(ppm) taken at 2d spatial locations recorded as Rijksdriehoeks Coordinates (National Triangulation
Coordinates of the Neatherlands) distributed at varying uniformity along the river. To prepare
the data for analysis, we follow the statistical learning/surrogate modeling practice of coding these
inputs as XN in the unit cube [0, 1]2 and model the centered (i.e., empirically mean adjusted) natural
logarithm of zinc concentration as the response. This automatic pre-processing step helps initialize
the numerical solvers for hyperparameters at default settings, and makes a Gaussian assumption
on the response more compatible.
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Figure 12: Left: Variogram for kriging by eye in red, kriging by NLS in purple and GP in blue.
Middle: GP log MLE surface with optimum in blue. Right: Table comparing hyperparameters.

Figure 12 shows the variogram and MLE-based analysis in views similar to Figures 3 and 4 for
these data. Observe that the empirical semivariogram is much better behaved, compared to our first
example, and that consequently EB and NLS hyperparameter estimates and variogram fits are quite
similar. The main difference between the GP and these kriging alternatives is that the estimated
scale hyperparameter τ 2 is much larger. With similar nuggets and lengthscales, the rate of increase
in the variogram is about the same, but reaching a higher level. Since the estimated scale does
not impact the predictive mean µ(X ), see Eq. (2), it is perhaps not surprising that the predictive
surfaces (via X comprised of a 100 × 100 grid) for GP-MLE and K-EB are so similar in Figure
13. A surface for K-NLS is not shown because of the stark similarity with K-EB. Unfortunately,
we do not know the real response(s) on this predictive grid, so an out-of-sample analysis must be
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Figure 13: GP-MLE (left) and K-EB (right) predictions of log zinc.

Meuse GP K-EB K-NLS
RMSE 0.103 0.109 0.108
scoref 16.79 15.97 16.50

Table 2: RMSE and score for GP and kriging on the Meuse river data on a set of 15 hold out points.

more limited than our first example. As a pre-cursor to the cross-validation scheme introduced in
Section 4, we consider a simple random 90:10 train–test partition of our original 155 training data
records. This results in N = 140 values (XN , YN) that can be used for training our three models,
and N ′ = 15 values (X , Y (X )) quarantined away for testing to see which works best out-of-sample
by RMSE and score (again scoref from Eq.(11)). Observe that in this case there is no distinction
between “true” and random y-values as we only have the testing outputs from the data. In Figure
13, the random partition is indicated by coloring the 15 testing dots blue as opposed to black.
Table 2 records these values. Notice that while GPs edge out both kriging methods, the results are
comparable for all three. Ideally we would repeat this enterprise multiple times, with novel 90:10
splits. For the MLE-GP this is easy, but for the kriging alternative it can be labor intensive if
eyeballs are involved.
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