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Abstract

The practical interest of using ensemble methods has been highlighted in several works. Aggregating predictors leads very often
to improve the performance of a single one. A fruitful recipe is to generate several predictors from a single one by perturbing
the learning set and, instead of selecting the best one, to aggregate them. Bagging, boosting and Random forests are examples of
such strategies useful both for classification and regression problems. A key ingredient to properly analyse the improvement of
prediction performance is the diversity of the predictors ensemble.

In the regression case, aggregation is mainly interested on how to generate individual predictors to improve quadratic prediction
performance. We look for enhancing these methods by using the concept of diversity (also known as negative correlation learning).
We propose an algorithm to enrich the set of original individual predictors using a gradient boosting-based method by incorporating
a diversity term to guide the gradient boosting iterations. The idea is to progressively generate predictors by boosting diversity,
this modification induces some kind of suboptimality of the individual learners but improve the ensemble. Then, we establish a
convergence result ensuring that the associated optimisation strategy converges to a global optimum.

Finally, we show by means of numerical experiments the appropriateness of our procedure and examine not only the final
predictor or the aggregated one but also the generated sequence. First, on a simulated dataset, we illustrate and study the method
with respect to the family of predictors as well the parameters to be tuned (diversity weight and gradient step). Second, real-world
electricity demand datasets are considered opening the application of such ideas to the forecasting context.

Keywords: Boosting, Diversity, Ensemble, Regression, Trees

1. Introduction

The practical interest of using ensemble methods has been
highlighted in several works [28, 39, 45]. Ensemble meth-
ods are now used in very different domains: biology [5, 46],
medecine [24, 51], electricity management [15, 26, 47], com-
puter vision [27], physics [1], finance [14], ecology [6], in-
surance [34] or environmental sciences [13, 48]. Ensemble
methods are also very popular for machine learning challenges,
recent software libraries based on ensemble gradient boosting
methods such as XGBoost [17], CatBoost [40], LightGBM [31]
are widely used in that context.

The general idea is to build a better learner for a task by as-
sembling several individual or base learners. Either for classifi-
cation or regression tasks, these ensemble methods have proven
their efficacy by controlling at least one of the two compo-
nents of the classical error decomposition of the error between
a variance and a bias term. An important question is how to
choose and manage the different base learners. When using
tree-based learners, two well-known illustrations of ensemble
methods are Bagging for Bootstrap and AGGregatING [7] and
Random Forests [8]. In both cases the creation of the base learn-
ers involves adding controlled randomness to produce, to some
extent, independent learners.

Boosting techniques are iterative methods that consist in im-

proving the performance of several hypothesis or base predic-
tors of the same nature, combining them and reweighting at
each step the original data sample. Freund and Schapire de-
scribed Adaboost, the first boosting algorithm designed for bi-
nary classification problems and with classification trees as hy-
pothesis [19]. Various types of extensions for boosting exist,
in particular for multiclass classification and for regression and
they use different approaches [45].

For a given machine learning method and/or a given set of
experts, it is necessary to quantify a kind of ”diversifiability”
notion and it could be related to the notion of weak ”learnabil-
ity”. The capability of a given estimation method to generate
by boosting sufficiently diverse models or in other words the
conditions to check for the choice of a design method to gener-
ate models, has been mainly studied in the classification case.
Nevertheless, if in the classification case weak learnability is
well defined, this remains essentially to be done for regres-
sion problems. A related issue, is instability. Following [30,
p. 505-506], the control of bias and variance, and, hence, gen-
eralization error, is related to the idea of instability. A predictor
design method is unstable if a small perturbation of the learn-
ing set may induce important changes in the resulting predictor.
The instability of a predictor (or of a learning algorithm) can be
used to improve accuracy. For example, by using resampling, to
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stabilize a given method, as in Bagging to reduce variance and
Boosting to reduce bias. Focusing on conditions to make Ad-
aboost effective, [44] identifies some desirable properties of an
effective weak learning algorithm and highlights, in the classi-
fication context, two main aspects: diversity and coverage (ap-
proximation property). Reyzin claims that with high coverage,
diversity is easier to achieve while to allows diversity, and again
that instability is required. We use the concept of diversity
[11, 43] to propose a new algorithm to enrich the set of orig-
inal individual predictors. The formulation is inspired from the
Negative Correlation Learning for neural networks [35]. The
significance of the Ambiguity decomposition it that the error of
the mixture will be less than or equal to the average error of the
individuals, and then the ensemble has lower error than the av-
erage individual error: for sufficiently accurate predictors, the
larger the diversity term, the larger the reduction of ensemble
error. We modify the usual L2 cost function with the aim to find
a good predictor that will be at the same time “diverse” than
the mean of the predictors founded at the precedent steps, ac-
cording to the diversity formula. Of course this modification
induces some kind of suboptimality for the individual learner.
However, the hope is that the ensemble will be benefited since
the greater imposed diversity is expected to more than compen-
sate the reduction of optimality for the individual learners.

The paper is organised as follows. After this introduction,
Section 2 is devoted to methods. We first recall the usual boost-
ing framework, then boosting diversity is defined before prov-
ing a convergence result. Section 3 contains numerical exper-
iments. Since the methodological previous section provides a
general framework, to implement it, we start by recalling the
base learners considered in the sequel, from simple trees to
Random forests. Then, we show by means of numerical ex-
periments the appropriateness of our boosting diversity proce-
dure using simulated data and real-world electricity demand
datasets. Finally, Section 4 provides a short conclusion and a
discussion on perspectives.

2. Methods

2.1. Boosting in the general case
In the context of machine learning methods, boosting are se-

quential algorithms that estimate a function F : R → R by
minimising C(F) = E [Ψ(Y, F(X)], the expectation of a func-
tional Ψ : R × R → [0,+∞) that measures the cost commit-
ted for predicting F(X) instead of Y , using a training sample
{(yi, xi)}ni=1 and functional gradient descent techniques. More
precisely, considering a family of functions F = { f : Rd → R},
the method consists in estimate F by minimisation of the the
empirical expectation loss

Cn(F) =
1
n

n∑
i=1

Ψ(yi, F(xi)),

by looking for an additive function of the form FM =
M∑

m=1
αm fm

where αm ∈ R and fm ∈ F for all m = 1, . . . ,M [12, 20, 37].
Examples of cost functions are:

1. Exponential cost function or Adaboost cost function [19] :
Ψ(y, F) = exp(−yF) if y ∈ {−1, 1} for classification, with
population minimizer 1

2 log
(
P(Y=1|X=x)
P(Y=−1|X=x)

)
,

2. Logit cost function [21] : Ψ(y, F) = log2(1 + e−2yF) if
y ∈ {−1, 1} for classification with population minimizer
1
2 log

(
P(Y=1|X=x)
P(Y=−1|X=x)

)
,

3. L2 cost function [21] : Ψ(y, F) = 1
2 (y − F)2 if y ∈ R for

regression, with population minimizer E(Y |X = x).

Let L =
{
(y1, x1), . . . , (yn, xn)

}
be a sample and F a family of

functions.

1. Fit an initial learner F̂0 ∈ F such that

F̂0 = Argmin
f∈F

n∑
i=1

(
yi − f (xi)

)2

2. For m ∈ {1, . . . ,M}:

(a) Compute the negative gradient
ui = −

∂Ψ(yi,F)
∂F

∣∣∣∣
F=F̂m−1(xi)

∀ i = 1, . . . , n and

f̂m = Argmin
f∈F

n∑
i=1

(
ui − f (xi)

)2

(b) Choose the best step size

ŵm = Argmin
w

n∑
i=1

Ψ
(
yi, F̂m−1(xi) + w f̂m(xi)

)
(c) Update the aggregated predictor:

F̂m(x) = F̂m−1(x) + ŵm f̂m(x)

Outputs: a family of experts f̂1, f̂2, . . . , f̂M and the aggre-
gated predictor F̂M .

Figure 1: General Gradient Boosting method.

Searching a functional F over the linear span lin(F ) was
studied mainly in [21]. At step m using the Taylor approxima-
tion C(Fm)−C(Fm + w f ) ≈ −w〈∇C(Fm), f 〉µX , instead of usual
searching about a function f ∈ F maximizing −〈∇C(Fm), f 〉µX ,
where µX is the distribution of X and L2(µX) is the set of all
measurable functions such that

∫
f 2 < ∞. The empirical for-

mulation is Argmax
f∈F

{
− 1

n

n∑
i=1
∇C(Fm)(xi) f (xi)

}
and we look at

a least squares approximation in a class of functions F such
that fm+1 ∈ Argmin

f∈F

{
|| − ∇C(Fm) − f ||2µX

}
and in the empirical

setting fm+1 ∈ Argmin
f∈F

{
1
n

n∑
i=1

(−∇C(Fm)(xi) − f (xi))2
}

. Assum-

ing that Ψ(y, ·) is convex and continuously differentiable it is
straightforward that ∇C(Fm)(xi) = Ψx(yi, Fm(xi)). General al-
gorithm is given in Figure 1. The context of our work is in
regression, with an adaptation of the L2-cost function. In this
case as Ψ(y, x) = 1

2 (y − x)2 then ∇C(Fm)(xi) = yi − Fm(xi) and
the algorithm fits fm+1 to the residuals yi − Fm(xi), the classical
residual vector [12, 21].

2.2. Boosting based on diversity decomposition

In the spirit of L2-boost we propose a new algorithm which
encourage diversity of intermediate predictors. It is based on
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the negative correlation learning (NCL) framework [35] which
considers cooperation and interaction among the ensemble
learners. If we consider f1, . . . , fM different predictors and we

denote the aggregated predictor as F∗(xi) =
M∑

m=1
pm fm(xi) = ŷi,

the Diversity Formula or Ambiguity Decomposition is:

(̂yi − yi)2 =

M∑
m=1

pm( fm(xi) − yi)2

︸                   ︷︷                   ︸
weighted average error

of the individuals

−

M∑
m=1

pm( fm(xi) − ŷi)2

︸                   ︷︷                   ︸
diversity term

where
∑
m

pm = 1, pm ≥ 0. The first term corresponds to the

weighted average error of individual predictors and the sec-

ond is the diversity term,
M∑

m=1
pm( fm(xi) − F∗(xi))2 in equation

2.2, measuring the variability around the aggregated predictor.
As said in [11] and in [10], the significance of the Ambigu-
ity decomposition it that the error of the mixture will be less
than or equal to the average error of the individuals, and then
the ensemble has lower error than the average individual error:
larger will be the diversity term, larger will be the ensemble er-
ror reduction. In a simplified framework with uniform weights
pm = 1/M, in [42], the authors introduced the following loss
function

Ψκ(x, y) =
1
M

M∑
m=1

( fm(x) − y)2 −
κ

M

M∑
m=1

( fm(x) − f ∗m(x))2,

where κ ≥ 0, f1, . . . , fM are regression models and f ∗m(x) =

1
m

m∑
k=1

fk(x). As it is possible to rewrite Ψκ as

Ψκ(x, y) = (1 − κ)
1
M

M∑
m=1

( fm(x) − y)2 + κ( f ∗(x) − y)2,

varying κ from 0 to 1 implies training each individual predic-
tors independently through training the ensemble. Using this
last formula, they prove that if κ ∈ [0, 1] the average loss is
non negative, but if κ > 1 it is arbitrarily negatively high. In
this work, we modify the usual L2-cost function with the aim to
find a good predictor that will be at the same time “diverse” than
the mean of the predictors founded at the precedent steps, ac-
cording to the diversity formula. According to equation above,
we propose as new cost function

Ψ(y, F) =
1
2

(y − F)2 −
κ

2
(F − F)2, (1)

where κ is the parameter which modulate the importance given
to the diversity of the predictor to F, the average of the previous
one with F. As F can be write as F = c + αF, cost function is

Ψ(y, F) =
1
2

(y − F)2 −
κ

2
((1 − α)F − c)2,

where c is the average of the previous one and can be thought
as a constant. In fact if F is the average of M predictors, then
α = 1

M .

Boosting Diversity algorithm BoDi is detailed in Figure 2.
With BoDi algorithm, as in the classical boosting, we obtain
two final ensemble forecasts F∗M,κ and Fm,κ. Here we make the
dependency to κ explicit whereas other parameters (like the gra-
dient step, the size of the bootstrap sample) play a role. Notice
that the relative weight of the terms in the new loss function
varies with the iteration cycles. Consequently, it also does on
the gradient direction. We make explicit this fact by notating κm

the factor that multiplies the second term. Indeed, after m itera-
tions κm vanishes and thus the BoDi loss function converges to
the L2-Boost loss function. However, notice that a genuine gain
appears before the convergence as we shown through numerical
experiments (see Section 3).

2.3. Convergence of the algorithm

A recent and very elegant result from [3] proves the con-
vergence of several gradient boosting-based methods in a very
general framework. The result is stated in what follows, for
assumptions discussed below.

Theorem 1. If assumptions A1 to A3 hold true and if 0 < δ <
1/(2L) where L is the constant of A3 and δ the step of the Boost-
ing Diversity Algorithm, then

lim
t→∞
E(Ψ(y, Ft)) = inf

F∈lin(F )
E(Ψ(y, F))

where F is the family of functions we reach.

This result warranties that the optimisation strategy con-
verges to a global optimum. However observe that this con-
vergence result is not statistical.

The following three assumptions are required for the theorem
to hold true:

A1: C is convex and locally bounded where C(F) =

E(Ψ(Y, F(X)).

A2: For all y Ψ(y, ·) is λ−strongly convex1 and then C is λ-
strongly convex on L2(µX) where µX is the distribution of
X and L2(µX) is the set of all measurable functions such
that

∫
f 2 < ∞.

A3: For all y the function Ψ(y, ·) is continuously differentiable
and there exists a constant L > 0 such that for all (x1, x2) ∈
R2 and for all y:∣∣∣Ψx(y, x1) − Ψx(y, x2)

∣∣∣ ≤ L|x1 − x2|.

If we require that κ < 1
1−α , then the result holds for the expec-

tation of our convex cost function C(F) = E(Ψ(Y, F(X)) where
Ψ(y, F) = 1

2 (y − F)2 − κ
2 ((1 − α)F − c)2. We now prove that

C and Ψ satisfy the three assumptions of [3] to ensure conver-
gence established by Theorem 1.

1A function f is λ-strongly convex if for all (x1, x2) ∈ R2 and for all t ∈
[0, 1] we have that f

(
tx1 + (1− t)x2

)
≤ t f (x1)+ (1− t) f (x2)− λ

2 t(1− t)(x1− x2)2.
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Let L =
{
(y1, x1), . . . , (yn, xn)

}
be a sample, F a family of functions, κ > 0 and δ > 0. Split the data in two disjoint parts I = I1 ∪ I2

1. Fit an initial learner F̂1 ∈ F over I1 such that F̂1 = Argmin
f∈F

∑
i∈I1

(
yi − f (xi)

)2. Set F̂∗1(x) = F̂1(x).

2. For m ∈ {2, . . . ,M}:

(a) ∀ i ∈ I2, compute the negative diversity gradient of the cost function (see equation (1)) and evaluate it at F̂m−1(xi):

ui =
(
yi − F̂m−1(xi)

)
+ κm

(
F̂m−1(xi) − F̂∗m−1(xi)

)
with κm = κ

(
1 − 1

m−1

)
if m > 2, κ2 = 1 and f̂m = Argmin

f∈F

∑
i∈I2

(
ui − f (xi)

)2.

(b) Update boosting predictor as F̂m(x) = F̂m−1(x) + δ f̂m(x), compute F̂∗m(x) = 1
m

m∑
i=1

F̂i(x) and update I2 = I \ I1 with a new

bootstrap sample I1 of I.

Outputs: a family of experts f̂1, f̂2, . . . , f̂M and the aggregated predictors F̂M and F̂∗M .

Figure 2: Boosting Diversity method. The split of the original sample is not mandatory, it is only to compute the Out-of-Bag error over a test sample (in our case
I1).

Proof. 1. Looking at the derivatives of Ψ(y, F) = 1
2 (y−F)2−

κ
2 ((1−α)F−c)2 with respect to F, then ∂2Ψ

∂F2 (y, F) = 1−(1−
α)κ > 0 ⇔ κ < 1

1−α and then C is convex when κ < 1
1−α

and it is locally bounded.
2. For each y, we rewrite Ψ(y, F) as a polynomial in F of the

form p(F) = Ψ(y, F) = AF2 + BF + C. Then,

p(tx1 + (1 − t)x2)

=A(tx1 + (1 − t)x2)2 + B(tx1 + (1 − t)x2) + C

=At2x2
1 + Btx1 + tC + A(1 − t)2x2

2

+ B(1 − t)x2 + (1 − t)C + 2At(1 − t)x1x2

=t(tAx2
1 + Bx1 + C) + (1 − t)((1 − t)Ax2

2 + Bx2 + C)
+ 2At(t − 1)x1x2

≤t f (x1) + (1 − t) f (x2) − At(1 − t)(−2x1x2)

≤tp(x1) + (1 − t)p(x2) −
1 − κ

2
t(1 − t)(x1 − x2)2

Thus, p is (1− κ)− strongly convex and therefore C is (1−
κ)-strongly convex in L2(µX).

3. For all (x1, x2) ∈ R2 and for all y:

|Ψx(y, x1) − Ψx(y, x2)|

=
∣∣∣−(y − x1) − κ(x1 − c) −

(
−(y − x2) − κ(x2 − c)

)∣∣∣
=

∣∣∣(1 − κ)(x1 − x2)
)∣∣∣ = (1 − κ)|x1 − x2|

And then L > 1 − κ fulfils the requirement.

For the locally bounded condition of C and then its continu-
ity, we have that inf

F∈lin(F )
C(F) = inf

F∈lin(F )
C(F) and this infimum

is unique because of the strong convexity of C, i.e there exists
a unique function F∗ ∈ lin(F ) such that C(F∗) = inf

F∈lin(F )
C(F).

Observe that in our context, condition A1 means that κ must be
lower than M

M−1 .

Typically, the set of functions F could be the collection of all
binary trees using axis parallel splits with k terminal nodes. In
this case, each f of F can be written as f (x) =

∑k
j=1 1(x∈A j)a j.

and the problem of minimizing C(F) the quantity over the linear
combinations of square-integrable functions ofF is well-posed.

3. Numerical experiments

In this section, we will first introduce different tree-based
base learners from very weak to quite complex ones (from trees
with two leaves to Random forests) well suited to be used for
boosting. Then, a simulation study focuses on booting diversity
method and examines the influence of the diversity weight, the
gradient step and the base learner. Finally, we evaluate the per-
formance of our algorithm on a real data set as well as the gain
with respect to classical boosting.

3.1. Learners
As mentioned in [18], boosting was originally proposed as a

means for improving the performance of “weak learners” in bi-
nary classification problems. This amounts to building a model
by repeatedly fitting a regression tree to the residuals. Impor-
tantly, the tree is typically quite small, involving a small number
of splits, it is indeed a weak learner. Hastie et al. [28] claim that
larger trees allows to introduce higher-level interaction effects
among the input variables X, and then enlarge the approxima-
tion capability. So trees proved to be very efficient and flexible
base learners for classical boosting (see e.g. [17] and [31] for
recent powerful and highly used implementations, and [41] for
a variant using boosting).

Let L = {(y1, x1), . . . , (yn, xn)} be a learning set, consisting
on n independent copies of (y, x) supposed to be such that

y = f (x) + ε,
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with E[ε|x] = 0, x = (x1, . . . , xp), x ∈ Rp the explanatory vari-
ables and y ∈ R the response variable. In this context, f is the
regression function and Random forests as well as CART trees
build models providing estimators f̂ of f .

3.1.1. CART trees
CART [9] is a simple method to estimate f with respect to the

mean square risk function, using decision trees. A regression
tree is a piecewise constant function, where the splits are paral-
lel to the original axes defined by the explanatory variables, of
the following form:

f̂CART (x) =

K∑
k=1

1(x∈Ak)ak. (2)

The constant value ak in each cell Ak of the partition (or
equivalently each leaf of the tree) is equal to the mean value of
the response variable for the observations of the learning sam-
ple lying in Ak, that is 1

nk

∑
i: xi∈Ak

yi with nk = #{i : xi ∈ Ak}. The

construction is in two steps. A maximal tree is first obtained us-
ing splitting rules of the form (x j < t), by recursive partitioning
of the input space. Since maximal trees may be very complex
(too deep) and generally overfit the learning data therefore, a
pruning is then performed leading to an optimal parsimonious
tree.

Suboptimal trees can be considered by limiting the depth.
Stumps are simple trees (of depth 1, defined by a single split),
not interesting when considered alone but aggregating ensem-
ble of such trees can be of useful to study the action of boosting
diversity.

3.1.2. Random Forests
Breiman [8] proposed Random forests (abbreviated RF in the

sequel) to improve a single tree and stabilize the method. It con-
sists of aggregating a set of random trees, built over ntree boot-
strap samples L1, . . . ,Lntree of the training set L. The trees of a
RF are similar to CART trees but with two differences, leading
to speed up the computations while preserving statistical per-
formance. First, at each node, a fixed number of variables is
randomly picked to determine the best split among them. Sec-
ond, the trees are not pruned so all the trees of the forest are
maximal trees. The resulting learning rule is the aggregation of
all those trees, denoted by f̂ 1, . . . , f̂ntree . To make a prediction
at a new point x, the aggregation consists of taking the average
prediction value

f̂RF(x) =
1

ntree

ntree∑
k=1

f̂k(x).

To speed up calculations and make easier the theoretical
study of RF, mainly related to relax dependence of the splits
on the learning sample, a lot of simplified RF have been intro-
duced (see [4]). The simplest one is PRF (Purely RF) for which
the splits of tree nodes (splitting variable and splitting value) are
randomly drawn (for example uniformly) independently of the
learning sample. This variant is here of special interest since it
could clearly increase diversity.

In the sequel, we will compute the base-learners, stump, pure
forest (PRF) and Random forests (RF) with the R packages
rpart [49] for stumps and ranger [50] for both RF and PRF.
The PRF learner is obtained using the extratrees option of
ranger and for both RF and PRF the depth of the trees is set to
unlimited.

In our experiments, we show that, to be able to generate some
additional diversity by introducing an extra term measuring it,
F has to be a more complex learner. We obtained satisfactory
result choosing a Random forest as base learner.

3.2. Synthetic data

We use here a well-known simulated data set presented in
[22] and already used for example in [7] to demonstrate the
good performances of bagging. We use the R package mlbench
of [33] to reproduce these data. The inputs are 10 independent
variables uniformly distributed on the interval [0,1], only 5 out
of these 10 are actually used. Outputs y are generated according
to the formula:

yi = 10 sin(πx1,ix2,i) + 20(x3,i − 0.5)2 + 10x4,i + 5x5,i + εi,

where εi is N(0, σ2). As in [7] we simulated a learning set
of size n0 = 200 and a test set of size n1 = 1000 observa-
tions, σ = 1. We replicate the simulation 100 times. The per-
formance reported by Breiman’s bagging predictor in terms of
mean square error (MSE) on the test set is 6.2. The MSE re-
ported by our Random forest learner in Figure 4 and Table 1 is
about 7.1.

3.2.1. Influence of the diversity weight and the gradient step
Our first objective is to study the influence of the parame-

ter κ which drives the diversity. The first experiment was con-
ducted with the following inputs: base learner is a Random for-
est including all the 10 covariates with parameters mtry = 3,
ntree = 100, data splitting rate α = 0.5, gradient step δ = 0.08
and diversity weight κ ∈ {0, 0.5, 1, 1.5}. The results are pre-
sented in Figure 3. For κ not too large there is a clear im-
provement of the diversity boosting strategy over the original
Random forest learner, reducing the error by 3 after a sufficient
number of iterations (at least 100). For large κ, here correspond-
ing to 1.5 or more, the algorithm diverges after 100 iterations.
In the range of reasonable values of κ ≤ 1 ensuring convergence
of the algorithm, we clearly see the interest of choosing κ close
to 1 to encourage diversity as much as possible and improve
the forecasting errors, κ = 0 corresponding to classical boost-
ing. Curiously, even if the diversity boosting has been derived
so that to improve the ensemble forecast F∗m,κ we observe that
for all κ and m < 100 the error of Fm,κ is lower than the error
of F∗M,κ. thus, diversity boosting could be used as a variant of
classical boosting.

There is a link between the diversity weight κ and the gra-
dient step. To illustrate that we consider a PRF base learner
with again 100 trees. The mean MSE over 100 simulations of
F and F∗ along the boosting steps m are plotted on Figure 4.
We clearly see that the best results are obtained with κ = 0.9
showing again the interest of encouraging diversity. We also
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Figure 3: MSE as a function of boosting steps for κ = 0, 0.5, 1, 1.5 with Random forest (mtry=3, ntree=100) as base learner.
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and gradient steps (δ) with PRF (ntree=100) as base learner.

see the influence of δ on the convergence speed of MSE curves
similarly than in classical boosting. Choosing a small δ and a
high number of boosting steps seems a good choice, especially
when κ is large.

We can observe that classical boosting works well here and
improves significantly the forecast of the original RF. This is
also surprising as RF could be seen as a ”strong” learner in the
sense that it is not a weak learner as stump or other classical
weak learners in boosting.

Following the first conclusion of this simulation we will
compare more deeply, for different base learners, the diversity
boosting and the classical boosting in the next section.

3.2.2. Influence of the learner
We illustrate here that the diversity boosting performance is

dependant on the choice of the learner and its capacity to gener-
ate diversity. Intuitively, if a learner is too simple (e.g. a stump)
the possible set of models which can be obtained on the data
will be limited and so the gain induced by diversity boosting.

The results are presented in the tables 1 with columns corre-
sponding to simple boosting (Fκ=0 without averaging and F∗κ=0
with averaging), diversity boosting with κ = 0.9 (Fκ=0.9 without
averaging and F∗κ=0.9 with averaging) and base learners (stump,
PRF and RF). The MSE are computed using 200 boosting iter-
ations. Following the conclusions of section 3.2.1 we choose
to set κ = 0.9 to encourage diversity and δ = 0.15 so that each
of the methods converge after 200 steps. For each Monte-Carlo
run we compute the minimum MSE over gradient steps of each
method and present the mean value of it, the standard deviations
of this minimal MSE are also provided in brackets.

As expected, boosting and diversity boosting improves sig-
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Figure 5: MSE as a function of boosting steps for 3 base learners: Stumps, PRF
and RF.

nificantly over each base learner. Diversity boosting doesn’t
improve over boosting only for the stump learner which confirm
the intuition about the limited capacity of stumps to generate di-
versity. The best results are obtained by the RF but the relative
improvement over the original base learner is far more impor-
tant for PRF. Our explanation is that PRF can generate more
diversity than RF, inducing a large gain with diversity boosting.

Figure 5 represents the mean MSE (over 100 simulations)
of diversity boosting (solid line corresponds to F∗ and dashed
lines to F) as a function of m the number of boosting steps for
the 3 base learners. Note that the starting points of the curves
are a bit higher that the MSE reported in Table 1 due to the fact
that we subsample 50% of the data to fit the learners at each
steps. This confirm the good convergence of the algorithm and
its robustness regarding the choice of m.

3.3. Electricity consumption data
Our objective is to compare diversity boosting to classical

base learners/boosting on a real data set. We evaluate the perfor-
mance of our algorithm on a real data set of French electricity
consumption. These data are provided by the system operator
RTE (Réseau de Transport d’Électricité)2. Our dataset ranges
from the 1st of January 2012 to the 15th of March 2020 with
a 30 minutes sampling period. As electricity consumption de-
pends strongly on weather conditions we add national averaged
temperature from the website of the French weather forecaster
Météo-France3. Note that we consider observed temperatures
instead of forecasts so that this work is done with open data
sets and the results can be easily reproduced.

2https://opendata.rte-france.com
3https://donneespubliques.meteofrance.fr/
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Fκ=0 F∗κ=0 Fκ=0.9 F∗κ=0.9 F Learner
4.74 (0.40) 5.72 (0.48) 5.75 (0.49) 5.17 (0.46) 19.44 (1.32) Stump
5.71 (0.49) 6.31 (0.54) 4.45 (0.36) 5.38 (0.45) 14.05 (0.93) PRF
4.38 (0.43) 4.55 (0.45) 3.79 (0.34) 4.15 (0.37) 7.16 (0.56) RF

Table 1: MSE (standard deviations) for the best m with Stump, PRF and RF as a base learner.

We train the models on historical data from January 2012 to
the end of August 2019. To avoid outliers we drop the holidays
periods and bank holidays as well as the days before and after
these periods. We consider the consumption at 8 p.m. each
day and our goal is to forecast this consumption at a 24 hour
horizon.

As in the simulation study we consider a RF model with 100
trees as our benchmark. Target is the Load at 20h and covariates
are: Date a numerical variable indicating time since the begin-
ning of the data set, WeekDays a categorical variable indicating
the day of the week, DLS an indicator of winter/summer hour,
toy a real number belonging to [0, 1] indicating the position of
an observation along the year from 0 (1st January) to 1 (31st
December), Temp the national average temperature in France,
Temps95 and Temps99 exponential smoothings of this tempera-
ture with coefficient respectively of 0.95 and 0.99 to deal with
thermal inertia of the buildings, Temps99min and Temps99max the
min/max smoothed temperature per day, Load.48 lagged load
(day before) and Load.336 lagged load (week before).

The results (mean RMSE on the test set for the best m as in
section 3.2) are presented on Table 2. Figures 6 and 7 provide
the mean RMSE as a function of the boosting steps for κ = 0.5
(left) and κ = 0.9 (right) for respectively learners RF and PRF.
The best RMSE are obtained for Fκ, followed by F∗κ . Inter-
estingly, the overall best RMSE is achieved by Fκ=0.9 with the
PRF learner which confirms on real data the conclusion of the
simulation study: 1) PRF is a good base learner for diversity
boosting, 2) choosing κ close to 1 gives improves forecasting
performance as the learner can generate diversity. The RMSE
curves of Figures 6 and 7 show that for the PRF learner and
both values of κ the choice of the optimal number of boosting
iterations is quite robust and choosing m sufficiently large with
a small gradient step is again a good choice. For RF, the limited
capacity (comparing to PRF) to generate diversity at a certain
stage induces an increase of RMSE for κ = 0.9 after around 100
iterations, but even in that case the increase is slow and it could
probably be eliminated by considering a smaller gradient step
δ.

Fκ=0 F∗κ=0 Fκ F∗κ F type
1295 (56) 1323 (54) 1258 (62) 1279 (60) 1665 (35) RF, κ = 0.5
1301 (63) 1330 (62) 1239 (59) 1254 (57) 1665 (34) RF, κ = 0.9
1298 (79) 1464 (82) 1219 (67) 1360 (72) 2545 (96) PRF, κ = 0.5
1303 (76) 1470 (79) 1147 (57) 1258 (72) 2545 (96) PRF, κ = 0.9

Table 2: RMSE (best m) on test set with RF and PRF as a base learner for
κ = 0.5 and κ = 0.9.

To illustrate the capacity of diversity boosting to generate
forecasts that are more diverse than classical boosting we plot
the cumulative residuals of PRFκ=0 and PRFκ=0.9 in function of

time on Figure 8. Given a forecast at time t denoted ŷt and ob-
servations yt, the cumulative residuals over the interval [1,T ]
are defined as ε̄t =

∑t
i=1(yi − ŷi) for t ∈ [1,T ]. We clearly

see here that increasing κ generate trajectories of ε̄t with more
dispersion and this allows boosting predictors to achieve less
biased forecasts: cumulative residuals of PRFκ=0.9 are more
centred around 0 after a few rounds of convergence (deep blue
curves).

4. Conclusion and discussion

4.1. Conclusion
In this work, we propose a new boosting algorithm for re-

gression problems based on the diversity formula. This method
constructs at each step a base learner improving the diversity
term of the diversity formula and then, try to reduce the mean
square error. First experiments on simulated data and tree-based
base learners confirm the potentiality of the method when the
base learner is rich enough to generate diversity (RF and PRF).
This could be considered as a surprise even if combining Ran-
dom forests and boosting is a way to improve initial Random
forests. Indeed, the idea of building two Random forests, the
second obtained from the residuals of the first, and then add
them together is a bias correction method and has proved to ex-
perimentally efficient, see for example [25] for a recent contri-
bution on such one-step boosted forests. The authors sketched
also the analysis of iterating the boosting process to continue
to reduce the bias using the sum of all the estimates along the
boosting steps. In addition, in our case, we are especially in-
terested to use Random forests in the time series context often
exhibiting strong temporal dependencies which potentially gen-
erate additional bias and then both boosting and diversity are
welcome to improve the initial Random forest.

4.2. Improving diversity by sequential aggregation of experts
As illustrated on Figure 8, diversity boosting forecasters ex-

hibit interesting temporal properties (see the end of section 3.3)
that could be useful for online forecasting: where the observa-
tion are observed sequentially and the forecasts are updated in
a data stream fashion.

Ensemble methods have already been applied for online fore-
casting (see [32] for a recent survey) and the questions which
arise then is how to adapt these regression algorithms to non-
stationary data (breaks, drift...) under memory/time constraints.
Relevant approaches for that are online aggregation of experts
(see [16]) where the base learners are forecasts coming from
different methods or models and are called experts. The aggre-
gation is performed in a sequential way: experts make predic-
tions at each time instant and the forecaster must determine step
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Figure 6: RMSE on test set as a function of boosting steps for κ = 0.5 (left) κ = 0.9 (right) gradient steps (δ = 0.08) with RF (ntree=100, mtry=3) as base learner.
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Figure 8: Cumulative residuals in function of time on the test set for PRFκ=0 (left) and PRFκ=0.9 (right) as a function of m

.

by step the future values of an observed time series. To build
the prediction, the idea is to combine before each instant the
forecasts of a finite set of experts producing a mixture. This
has been successfully applied in e-commerce [29], air quality
[2, 36] and electricity load forecasting [23, 26]. Also, [38] re-
cently proposed to connect sequential expert aggregation with
Mondrian Forest. Further studies could be done on how to ex-
tend diversity boosting in the online setting and connections
with online aggregation of experts.
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