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Abstract

We describe a method for identifying the source of a satellite interferer using a single
satellite. The technique relies on the fact that the strength of a carrier signal measured at
the downlink station varies with time due to a number of factors, and we use a quantum-
inspired algorithm to compute a ‘signature’ for a signal, which captures part of the pattern
of variation that is characteristic of the uplink antenna. We define a distance measure to
numerically quantify the degree of similarity between two signatures, and by computing
the distances between the signature for an interfering carrier and the signatures of the
known carriers being relayed by the same satellite at the same time, we can identify the
antenna that the interferer originated from, if a known carrier is being relayed from it. As
a proof of concept we evaluate the performance of the technique using a simple statistical
model applied to measured carrier data.

1 Introduction

The increasing demand for satellite communication links has led to an increasing number of
satellite signals, and to an increasing amount of uplink interference. The causes of this interfer-
ence include the growth in the number of small ground terminals, low quality equipment, poor
installations and maintenance, uplink personnel mistakes (human error), faulty equipment, in-
correctly pointed antennas, adjacent satellite interference, terrestrial service interference, and
sometimes intentional jamming [1, 2]. Satellite operators are therefore increasingly interested
in solutions not only for detecting interference, which is the main task of a satellite monitoring
system, but also to identify its source.
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The traditional approach is to geographically localize, or geolocate, the transmitting station
of an interferer. However, most localization systems need to receive the interference signal via
two adjacent satellites in order to perform geolocation [3, 4, 5, 6, 7], and there are a number
of limitations associated with this approach:

• An adjacent satellite must be available that is equipped with transponder(s) receiving
components of the interfering signal and a reference signal (same uplink frequency range,
same polarization).

• The interference and reference signals need to have enough crosstalk energy between the
primary and adjacent satellites to achieve a sufficient level of correlation.

• Accurate ephemeris data must be available for both satellites.

• The reference signal needs to be received from both satellites via transponders operating
with the same physical local oscillators (LOs) as the transponders re-transmitting the
interference signal.

• If the system is installed at only one earth station, the downlink signals of both satellites
need to be receivable at this earth station (downlink beams of both satellites need to
cover the measurement site location). If this is not possible (beams pointing to different
locations) the system needs to be installed at different locations inside the beams.

• A region is identified in which the transmitter is likely to reside, but additional steps are
often necessary to actually identify the transmitter.

Geolocation can also be performed using crosstalk measurements between signals received
from multiple antennas/beams belonging to the same satellite [8, 9], but this approach has
the drawback that additional payload resources are needed (antennas, transponders) or that
operations must be interrupted to release resources. It has also been shown that frequency
measurements of signals from a single satellite, taken at different times, can be used to locate
an unknown emitter [10, 11], but this approach is extremely susceptible to frequency insta-
bility introduced by the uplink terminal, which leads to very high localization errors unless
the terminal’s frequency stability is better than ±1 × 10−12 per day, which can be achieved
for example via synchronization with a Galileo/GPS/GNNS disciplined frequency reference
oscillator.

Here we describe a method able to identify the source of an interferer using a single satellite,
based on the variation of signal strength with time, measured at the downlink station. It is a
variant on a method that is the subject of Austrian patent [12] and of international, US, and
European patent applications [13, 14, 15]. The main benefit of our approach is that it enables
identification of unknown RFI transmitters based only on measurements of power variations.
This overcomes the constraints of the above methods. Even in the case that the position of the
transmitter of a ‘matching’ reference signal is not known, the result can be used for resolving
the interference case by contacting the satellite operator’s accounting department to get in
touch with the customer (the individual operating the uplink) who is potentially causing the
interference.

The main limitation of the approach is that the interferer must be from a known antenna
from which a known carrier is also being relayed. This means that the method only works for
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antennas that are transmitting at least two carriers, and that the interferer must be from a
known antenna. As an example, in 2018 roughly 30% of antennas pointing to a big satellite fleet
transmitted two or more carriers, and in 2012 Türksat reported that just 3% of interference
was due to unknown carriers [2], so our method is applicable in a significant number of cases.
It is not a substitute for the traditional geolocation approach with adjacent satellites (based
on TDOA/FDOA measurements), but in the case that the traditional approach does not work
(no adjacent satellite available; different beam coverage; not the same uplink frequency; etc.),
which happens more than 60% to 70% of the time, it offers an additional possibility.

The rest of this paper is structured as follows. Section 2 outlines our method and discusses
the power variations that it relies on, and the limitations of the approach, as well its quantum-
inspired aspects. In section 3 we explain in detail how to compute the signature, and in
section 4 how to quantify the similarity between signatures. Section 5 analyses the performance
of the method, and section 6 concludes.

2 Method

Our method relies on the fact that the signal strength of a carrier that is measured at the
downlink station varies with time due to a number of factors, and the technique is capable of
identifying the antenna that an interferer originated from if another ‘known’ carrier is being
relayed by the satellite at the same time from the same antenna. It turns out that there are
similarities in the patterns of variation of signal strength for carriers originating from the same
uplink antenna, and we found we were able to compute a ‘signature’ for the variation of signal
strength for each carrier, that captures part of the pattern of variation that is characteristic
of the uplink antenna.

In order to numerically quantify the degree of similarity or difference between two signa-
tures, we compute a ‘distance’ between them, which is a number between 0 and 1. If the
distance is close to zero, the signatures are similar (if they are identical the distance is zero),
and if it is close to one, they are very different. This distance between signatures turns out
to be lower on average for carriers from the same antenna than for carriers from different
antennas, and by comparing the signature for an interfering carrier with the signatures for the
other carriers being relayed by the same satellite, we can rank them according to their degree
of similarity.

The causes of power variations in a received carrier include:

• Power variations from signal-sending hardware (satellite modem, frequency converter,
power amplifier, etc.)

• Satellite movement versus antenna pattern and pointing mechanism (antenna tracking
the satellite position or constant bearing towards the satellite, antenna pointing varia-
tions due to wind)

• Atmospheric losses due gases and hydrometeors

• Faraday rotation in the ionosphere

• Noise contributions (terrestrial noise picked up from the surface of the earth, receiver
noise in both satellite and Rx ground station, atmospheric noise, extra-terrestrial noise
from the sun and moon, etc. )
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Our approach only works if the signal power is not strongly affected by the satellite
transponders, so it applies to transparent transponders working with constant gain (fixed
gain mode) and which are not saturated. In the case of saturation and/or if Automatic Level
Control (ALC) is applied, the sensitivity of the measurements can be severely reduced, re-
quiring different measurement settings (high averaging) and a reference carrier that is affected
by the same mode of transponder operation in order for the approach to work. It does not
work with regenerative transponders. The method works well with different transponders. A
small reduction in similarity is introduced by frequency dependency, meaning that if a carrier’s
frequency is different by e.g. 1 GHz (Ku-Band) the level of similarity in power fluctuation is
slightly reduced. More degradation of level of similarity comes from different polarization, but
the similarity is still high enough for successful detection.

The sensitivity of the measurement could perhaps be increased if downlink path influences,
such as the power variation of a beacon signal and/or the transponder noise floor and/or the
average power variation of all the signals on the downlink, were subtracted from the unknown
signal and the known signal.

2.1 A quantum-inspired algorithm

The algorithm we present here to calculate the similarity between two carriers is based on
the one described in the patent applications [12, 13, 14, 15], which is a so-called ‘quantum
inspired algorithm’, in which concepts from quantum information theory are applied to the
representation and processing of classical information [16, 17, 18]. The first step in developing
a quantum inspired algorithm is to find a suitable encoding of the information as quantum
states, which can then be manipulated using the well-developed mathematical techniques of
quantum information theory. In the patent applications the signal was encoded in terms of
qubits (quantum bits), which has advantages when the absolute value of the signal contains
significant information, but in this case we subtract a running average from it, so there is no
advantage in using the qubit encoding. In the qubit representation each signal value is mapped
to two values in a vector that is normalized to have an `2 norm (Euclidean norm) of 1, but
here we map each signal value to a single value in a normalized vector. Both kinds of vector
are valid representations of quantum states in a Hilbert space1. In the patent application
we used the Schmidt decomposition [19, 20] to analyse the 24-hour periodic structure of the
signal, and to extract its principal components [21], one of which served as a ‘signature’, and
we defined a natural distance measure in terms of the `2 norm. Here we use the singular value
decomposition, which is equivalent to the Schmidt decomposition, together with the same
distance measure.

Although the algorithm presented here was inspired by concepts from quantum information
theory, we have expressed it in terms of a finite-dimensional inner product space and the
singular value decomposition, which are familiar concepts in statistical signal processing.

1Although here we are working with vectors in a real inner product state, which is a special case of a Hilbert
space, this approach can be generalized to use complex vectors, as explained in [12, 13, 14, 15]
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3 Computing the Signature

The signature is computed from a sequence of satellite downlink EIRP (Equivalent Isotropically
Radiated Power) values representing the variation from the uplink signal, measured in dBW,
calculated as follows:

EIRP[dBW] = Psa[dBm] + Lfs[dB]−Gant[dB]−Gpath[dB]− 30dB, (1)

where Psa is the power at the input of the monitoring device (Spectrum Analyzer), Lfs is free
space loss, Gant is the receiving antenna gain, Gpath is the path gain from the antenna feed
to the spectrum analyzer, and 30dB is the conversion from dBm to dBW. The measurement
process takes into account the contribution of noise when calculating Psa, subtracting it from
the received signal (power + noise). The SNR limitation of this process is about 3 dB, meaning
that signals with SNR below 3 dB are not taken into account. This limit is chosen in order
to keep the additional error due to estimation and subtraction of noise small. If noise was not
subtracted, the measurement would suffer from sensitivity in terms of reduced amplitude of
power fluctuations

The EIRP values must be equally spaced in time, so if the raw data was not measured at a
fixed time interval, it must be interpolated to give values that are equally spaced in time. The
data used for the results presented in this paper was interpolated at three minute intervals,
which was roughly half the average interval between measurements in the raw data. For the
calculation of the signature it is the variation of the EIRP with time is important rather than
its absolute value, so the absolute value is removed in following steps.

3.1 Expressing EIRP values as a state vector

Given a vector of EIRP values (EIRP1, EIRP2, . . . , EIRPi, . . . , EIRPN ) corresponding to
times t1, t2, . . . , ti, . . . , tN , with equal intervals between them, we first subtract a running
average from the EIRP values, using a window of a specified width in time. This has the
effect that constant differences between the average EIRP values of two carriers, which are
not relevant to the signature, are not taken into account. To generate the results presented
here, we used a Gaussian window with a standard deviation of 6 hours, meaning that average
differences between one day and the next were also removed, and we call the resulting values
E = (E1, E2, . . . , Ei, . . . , EN ).

Now, for our quantum-inspired algorithm we wish to encode these values as a quantum
state vector, which we call

q = (q1, q2, . . . , qi, . . . qN ). (2)

To qualify as a state vector q must have a norm of one [20], i.e. ‖q‖ = 1, where for the special
case of a quantum state for which all of the qi are real numbers the norm is defined as2

‖q‖ =
√

qTq. (3)

This means that qTq =
∑

i q
2
i = 1, and the q2i values can be interpreted as probabilities because

they are between 0 and 1 and their sum is one. In quantum mechanics the qi values are known
as (probability) amplitudes and the q2i values correspond to the probabilities of particular

2For a general quantum state the qi are complex numbers and the norm is defined as ‖q‖ =
√

q†q
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outcomes of measurements. It is the amplitudes that are the fundamental quantities, so we
choose to encode the signal in terms of them. We first define

ei =
Ei + Emax

2Emax
, (4)

where Emax is the maximum absolute value of Ei for all i, that is, Emax = maxi |Ei|, so that
0 ≤ ei ≤ 1. We then let3

pi =
ei∑
j ej

, (5)

so that the pi values form a valid probability distribution, with 0 ≤ pi ≤ 1 and
∑

i pi = 1, and
we derive our qi values from the pi values, by defining q2i = pi, so that

qi =
√
pi, (6)

taking the positive square root, so that 0 ≤ qi ≤ 1.
It might be thought that it would be simpler to encode the data as a state vector by

defining e = (e1, e2, . . . , ei, . . . eN ) and r = e/‖e‖, thus avoiding the square root in equation 6,
but although r is a valid state vector, we found that the ‘quantum-inspired’ approach of
encoding the data as probability amplitudes in q gave slightly better results in terms of being
able to distinguish between pairs of carriers from the same antenna and from different antennas
when using the distance measure defined in section 4.

3.2 Generating ‘eigensignals’ for a state vector

Geostationary satellites are not completely stationary relative to stations on the ground, mov-
ing north-south and east-west due to their orbital inclination, eccentricity, and longitude drift.
This leads to a 24-hour variation in the signal strength at the receiving station, which can be
seen in the plots of qi in figures 1 and 2. It is also present in qi signals plotted in figures 3
and 4, though it is not as obvious in those plots. We use the singular value decomposition to
generate ‘eigensignals’ for state vectors, based on this 24-hour periodicity.

We consider EIRP data for m days, with n values per day, E = (E1, E2, . . . EN ), where
N = mn, and express the values as a state vector q using equations 4, 5, and 6, then we define
the Matrix M in terms of the elements of q to be

M =


q1 q2 . . . qn
qn+1 qn+2 . . . q2n
q2n+1 q2n+2 . . . q3n

...
...

...
q(m−1)n+1 q(m−1)n+2 . . . qmn

 , (7)

so that each row corresponds to data from one day. Taking the singular value decomposition
(SVD) of M, we can write:

M = USVT (8)

3We could have defined pi directly in terms of Ei + Emax, but we find it clearer to introduce ei as an
intermediary
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where U is an m×m orthogonal matrix, S is an m×n diagonal matrix containing non-negative
real numbers, and V is an n × n orthogonal matrix. The columns of V are called the right-
singular vectors of M, and they are orthonormal and are the principal components of the rows
of M. We refer to as vi, and in fact they are the eigenvectors of the covariance matrix MTM,
and hence we call them ‘eigensignals’, and they are characteristic for the 24-hour periods. In
a celebrated paper [22] this technique was applied to the classification of human faces. The
scalars αi are ordered so that α1 is the largest, and they decrease with increasing i, so the vi

vectors with small values of i make the greatest contribution to the sum, and therefore to the
signal. The columns of U are the left-singular vectors of M, and they contain the information
on the proportion of each eigensignal that is present in the signals for each day.

The v1 vector picks out the dominant part of the 24-hour variation in the signal, which
turns out not to be very characteristic of the uplink antenna, and to be rather similar for
all carriers sharing the same downlink. However, the v2 vector is characteristic of the uplink
antenna, and we therefore use v2 as the signature. Figure 1 shows qi and v2 for a carrier
transmitted from an antenna at a station in Rugby (England) over the 31 days in December
2012, and figure 2 shows the corresponding plots for another carrier transmitted from the
same antenna in Rugby during the same period. As can be seen, the v2 values are very similar
to each other. For comparison, figures 3 and 4 show the corresponding plots for two carrier
signals from an antenna in Mińsk Mazowiecki (Poland) during the same period, and again the
v2 values are very similar to each other, but quite different to the ones for the signals from
the antenna in Rugby.

Figure 1: qi vs i (left) and v2 (right), for a signal from Rugby
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Figure 2: qi vs i (left) and v2 (right), for a second signal from Rugby

Figure 3: qi vs i (left) and v2 (right), for a signal from Mińsk Mazowiecki

4 Quantifying the Similarity between Signatures

The scalar product of two quantum state vectors r and s with real components is rT s and we
can use this to define a measure D of the distance4 between the states,

D(r, s) =
√

1− |rT s|2 (9)

which is zero when the vectors are identical, and is one when they are maximally different
(orthogonal). Since the signatures (the v2 vectors from the SVD) are orthonormal, they have
a norm of one, and they are valid quantum state vectors, and we use D to calculate the distance
between pairs of them, to quantify their similarity. The distance for carriers from the same
antenna turns out to be lower on average than for carriers from different antennas.

4In the complex case D(r, s) =
√

1− |r†s|2
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Figure 4: qi vs i (left) and v2 (right), for a second signal from Mińsk Mazowiecki

5 Performance Evaluation

In order to quantitatively test this approach for identifying signals we developed a statistical
model based on histograms of distances between carriers, and applied the model to carrier data
that was monitored in Dubai in December 2012, consisting of 53 carriers from 32 antennas,
which were relayed by the SESAT2 satellite. We initially analysed data from the whole month,
and then investigated the performance for shorter periods of time.

5.1 Statistical model and results for data from one month

Figure 5 shows the frequency distributions of distances between pairs of different carriers, from
the same antenna, fs(D), and from different antennas, fd(D), using data for each carrier for
the whole month. For the 53 carriers there are

(
53
2

)
= 53× 26 = 1378 pairs, 70 of which were

from the same antenna, and 1308 of which were from different antennas. It can be seen that
the distances between most carriers from the same antenna are much lower than the distances
between carriers from different antennas, so fairly good separation can be obtained between
carrier pairs from the same antenna and pairs from different antennas.

The quality of the separation can be characterized using the corresponding relative cumu-
lative frequency distributions, for pairs of carriers from the same antenna, Fs(D), and from
different antennas, Fd(D), shown in figure 6. Fs(D) is an estimate of the probability that
the distance between a pair of carriers from the same antenna is less than D. For example,
the value of Fs(0.2) is approximately 0.71. Given the scenario that an interfering carrier is
coming from one of a number of known uplink antennas, but we don’t know which one, our
approach for identifying the antenna is to calculate the distances from the interferer to all the
known carriers from the satellite that is relaying the interferer, and to select those for which
the distance D is less than a specified threshold Dt, and we refer to those carriers as being in
the ‘result set’. Fs(Dt) is therefore an estimate of the probability that a given carrier from a
satellite is in the result set. Each carrier in the result set that is from the same antenna as
the interferer is a positive identification of the source of the interferer, so we refer to these as
positives.
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Figure 5: fs(D) (left) and fd(D) (right) - Dubai
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Figure 6: Fs(D) (left) and Fd(D) (right) - Dubai

5.1.1 Probability of at least one positive

Typically several carriers are transmitted from the same antenna at the same time, so the
probability that at least one carrier from the same antenna as the interferer is in the result set
is bigger than Fs(Dt), because Fs(Dt) is a probability estimate for a single pair, but on average
there is more than one of them. We call this probability pid, because it is the probability that
at least one carrier has been correctly identified as coming from the same antenna as the
interferer. For each known carrier, the probability that it is not in the result set is 1−Fs(Dt),
so for an antenna with k carriers the probability that none of them are in the result set is
(1 − Fs(Dt))

k. If the number of antennas that have k carriers is n(k), then averaged across
antennas, the probability that none of the carriers are in the result set, which we call p̄id, is

p̄id =

∑
k n(k)(1− Fs(Dt))

k∑
k n(k)

. (10)

Now, the sum in the denominator of this equation is equal to the total number of antennas,
which we call Na and the probability that at least one carrier in the result set came from the
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same antenna as the interferer is 1− p̄id, so

pid = 1− 1

Na

∑
k

n(k)(1− Fs(Dt))
k. (11)

For the Dubai data in December 2012, 27 of the 32 antennas had only one carrier, and the
other five antennas had two, three, six (twice) and nine carriers respectively, so if we choose
Dt = 0.4 for our threshold, for which Fs(Dt) = 0.714, the probability that the antenna we are
seeking is in the result set is approximately pid = 0.76.

5.1.2 Expected number of positives

We call the expected number of positives ni, because they are carriers that have been correctly
identified as coming from the same antenna as the interferer, and we call the average number
of carriers per antenna ns, because it is the average number of carriers from the same antenna.
Only carriers from the same antenna as the interferer can contribute towards ni, and on average
there will be ns of them. We can consider the decision as to whether the distance of each of
these carriers from that of the interferer is less than Dt as being independent trials, so so the
probability that a carrier from the same antenna as the interferer is in the result set (the trial
is a success) is equal to the number of successes ni divided by the number of trials ns, but
we know that this probability is given by Fs(Dt), so we have Fs(Dt) = ni/ns, which gives an
estimate for ni of

ni = nsFs(Dt). (12)

A more detailed analysis takes into account the distribution of the number of carriers per
antenna. We can consider the decisions as to whether the distances between each carrier from
the antenna and the interferer are less than Dt as being independent trials, so the probability
of obtaining k positives from an antenna with K known carriers, which we call P (k), will
follow a binomial distribution, and if we let p = Fs(Dt) and q = 1− p, then

P (k) =

(
K

k

)
pkqK−k. (13)

The expected value of k is known to be

k̄ =
∑
k

kP (k) = Kp, (14)

and given the distribution n(K), and averaging over K, the expected number of positives is

ni = 〈k̄〉 =
p

Na

∑
K

n(K)K = K̄p, (15)

where K̄ = ns, the average number of carriers from the same antenna, so we obtain the same
result as equation 12.

For the Dubai data in December 2012 the value of ns was approximately 1.66 and Fs(0.4)
was 0.71, so ni is therefore approximately 1.2.
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5.1.3 Expected number of false positives

In general the result set will also contain some carriers from antennas other than the one that
we are trying to identify, and the number of such false positives, which we call nf , can be
estimated using Fd(D), which is an estimate of the probability that the distance between a
pair of carriers from different antennas is less than D. A similar argument to the one that led
to equation 12 gives

nf = ndFd(Dt), (16)

where nd is the number of carriers from different antennas to the one that the interferer
originated from. We call the number of carriers relayed by the satellite is Ns, and we know
that of these, on average ns of them are from one particular antenna, so the average the
number that are from other antennas is

nd = Ns − ns, (17)

so we have
nf = (Ns − ns)Fd(Dt), (18)

For this example case, 53 carriers were relayed by the satellite, so Ns = 53, and given our
example threshold of Dt = 0.4, the value of Fd(0.4) is approximately 0.0061, so we have an
estimated number of nf = ndFd(Dt) = 51.34× 0.0061 false positives, which is approximately
0.31. Note that a slightly higher value of Dt, say Dt = 0.5, would give a higher expected
number of positives, of ni = 1.25, but also a much higher number of false positives, nf = 2.7.

Note also that we need not restrict our data to carriers relayed by the same satellite as the
interferer, since other satellites may also relay carriers from the antenna that is the source of the
interferer, but it was found that for the data at our disposal, including such carriers increased
the false positive rate significantly, with little or no increase in the number of positives.

5.1.4 Probability of one or more false positives

For a carrier from an antenna with K carriers there are Ns − K possible comparisons with
carriers from the other antennas, and if we now let p = Fd(Dt) then the probability of one or
more false positives, which we call pKf , as it applies to an antenna with K carriers, is

pKf = 1− (1− p)(Ns−K). (19)

Provided p is small, this approximates to

pKf ' (Ns −K)p, (20)

which happens to also equal the expected number of false positives for that antenna, which
we call nKf . Provided Ns is large and K is small, (20) is not a strong function of K, and with
this assumption

pKf = nKf ' Nsp ' 〈pKf 〉 = 〈nKf 〉, (21)

and this would be the expected result averaged over all the antennas, which we call pf = 〈pKf 〉,
and we have

pf ' Nsp = NsFd(Dt), (22)

For the Dubai data in December 2012 the probability of a false positive is therefore approxi-
mately pf = 0.32.
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5.2 Results for data from two days

So far we have presented data from a period of one month, but we also tried analysing data
from shorter periods of time, and found that results with ni > nf could be obtained for periods
right down to two days, which was the minimum amount of data necessary for the algorithm
to work in its original form. However, we found that the results were better for some two-day
periods than for others. This can be seen from figures 7 and 8, which show the frequency
distributions of distances between pairs of carriers from the same antenna, fs(D), and from
different antennas, fd(D), for data monitored by Dubai for two different two-day periods in
December 2012. Note that the number of counts in figure 7 (left) is roughly twice that of
figure 8 (left), which is because not all carriers were present for the whole month, and for each
period, only carriers were considered that were present for the whole of the period. The data
in figure 7 is for pairs taken from 68 carriers, and in figure 8 it is from 54 carriers. The average
number of carriers per antenna was also higher for the data in figure 7, which further boosted
the number of pairs.
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Figure 7: fs(D) (left) and fd(D) (right) - Dubai, 1-2 Dec. 2012
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Figure 8: fs(D) (left) and fd(D) (right) - Dubai, 15-16 Dec. 2012
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The best separation is shown by the data from 15-16 December 2012, for which a choice of
Dt = 0.7 gives pid = 0.64, ni = 0.97, nf = 0.19, and pf = 0.20.

5.3 Results for data from less than two days

The algorithm was designed to require a minimum of two days of data (two periods of 24
hours each), as it compared one day with the next, in order to remove the 24 hour variation
that is present in all carriers, and all of the results presented in the previous sections used
that version of the algorithm. We then decided to investigate whether the algorithm could
still identify characteristic features of carriers if it was modified to use periods of less than 24
hours, which would mean that the 24 hour variation was not removed. The modified algorithm
still compares data from equal-length periods, and there must be at least two of them, but
they can be of arbitrary length, and in particular, less than 24 hours.

Figure 9 shows the frequency distributions of distances between pairs of carriers from the
same antenna, fs(D), and from different antennas, fd(D), for one day’s data, monitored at
Dubai for December 15th 2012, split into two 12 hour periods. It can be seen that there is some
separation between carrier pairs from the same antenna and pairs from different antennas, and
choosing Dt = 0.85 gives pid = 0.62, ni = 0.93, nf = 0.92, and pf = 0.95.
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Figure 9: fs(D) (left) and fd(D) (right) - Dubai, 15 Dec. 2012

Figure 10 shows the frequency distributions of distances between pairs of carriers from the
same antenna, fs(D), and from different antennas, fd(D), for half a day’s data, monitored at
Dubai for the first 12 hours of December 15th 2012, split into two 6 hour periods. Again it
can be seen that there is some separation between carrier pairs from the same antenna and
pairs from different antennas, and choosing Dt = 0.85 gives pid = 0.33, ni = 0.33, nf = 0.69,
and pf = 0.71.

It is encouraging that the algorithm works at all for less than one day’s data, and although
the results presented here show that it works less well for shorter periods, this is based on a
fixed sampling rate of EIRP values, meaning that the shorter periods contain less data. As
long as the signal contains enough structure, a higher sampling rate should give better results.
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Figure 10: fs(D) (left) and fd(D) (right) - 0:00–12:00, Dubai, 15 Dec. 2012

6 Conclusion

We have described a method for identifying the source of a satellite interferer using a single
satellite, which relies on the variation with time of the strength of carrier signals measured
at the downlink station. The method uses a quantum-inspired algorithm to compute a signa-
ture for each carrier, and a distance between the signature for an interfering carrier and the
signatures of all known carriers being relayed by the same satellite. As a proof of concept
we have presented a simple statistical model to estimate the probability of successful identi-
fication of the source of an interferer, the expected number of carriers correctly identified to
have originated from the interfering transmitter, the expected number of false positives, and
the probability of one or more false positives, and we have used the model to evaluate the
performance of the technique using measured data for a sample of 53 carriers relayed by one
satellite. We presented results using data from one month, and also for two days and less. In
its original form the algorithm was designed to work with a minimum of two days’ of data,
and we found that the results were better for some two-day periods than others, but that in
some cases successful identification was possible. We also modified the algorithm to operate
on less than two days’ of data, and we found that the results were less good, but that positive
identification was still possible in some cases. However, the results were based on a fixed
sampling rate, meaning that the shorter periods contained less data, and a higher sampling
rate should give better results.
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[16] Michael Nölle, Bernhard Ömer, and Martin Suda. Quantum information algorithms – new
solutions for known problems. e & i Elektrotechnik und Informationstechnik, 124(5):154–
157, 2007.

[17] Michael Nölle and Martin Suda. Conjugate variables as a resource in signal and image
processing, August 2011.

[18] Michael Nölle, Martin Suda, and Winfried Boxleitner. H2SI - A new perceptual colour
space. In 18th International Conference on Digital Signal Processing, DSP 2013, Fira,
Santorini, Greece, July 1-3, 2013, pages 1–6, 2013.

[19] Yu. I. Bogdanov, N. A. Bogdanova, V. F. Lukichev, D. V. Fastovets, and A. Yu.
Chernyavskii. Schmidt decomposition and analysis of statistical correlations. Russian
Microelectronics, 45(5):314–323, 2016.

[20] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th
edition, 2011.

[21] I.T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer, 2002.

[22] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Proceedings. 1991
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages
586–591, Jun 1991.

17


	1 Introduction
	2 Method
	2.1 A quantum-inspired algorithm

	3 Computing the Signature
	3.1 Expressing EIRP values as a state vector
	3.2 Generating `eigensignals' for a state vector

	4 Quantifying the Similarity between Signatures
	5 Performance Evaluation
	5.1 Statistical model and results for data from one month
	5.1.1 Probability of at least one positive
	5.1.2 Expected number of positives
	5.1.3 Expected number of false positives
	5.1.4 Probability of one or more false positives

	5.2 Results for data from two days
	5.3 Results for data from less than two days

	6 Conclusion

