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SUMMARY

In the real environment, it is hard for a speech recog-
nizer to avoid misrecognitions completely. However, if
misrecognitions occur, user’s intentions are usually misun-
derstood by a conventional language understanding tech-
nique, which simply gives priority to the higher rank
hypothesis of a speech recognition result (N-best). The
utterances in a dialogue are coherent and correct user’s
intentions might appear in the lower rank hypothesis of
N-best. To understand user’s speech intentions in the real
environment, we propose the language understanding tech-
nique that utilizes the dialogue context and confidence
measure, which is the word posterior probability. The ex-
perimental results show that proposed technique is more
efficient (about 15%) than the conventional technique.
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1. Introduction

Spoken dialogue systems have recently attracted at-
tention as practical applications [1–4]. Speech interface has
some advantages, which are eyes-free and hands-free func-
tions, and do not need any extra practice. However, they
have some problems in dealing with spontaneous speech.
An example is speech misrecognition, which prevents
smooth dialogue and leads to repetitive correcting input,
which upsets users.

There are many studies which aim to reduce the
misrecognition. Some of them research utilizing directional
microphones for reducing surrounding noise, and learning
of a speech recognizer with speech data overlapped noise
[5]. Moreover, many spoken dialogue systems utilize con-
fidence measures as criteria which indicate reliability for a
recognition result [6–8]. However, the current technology
can reduce speech misrecognition but cannot avoid it com-
pletely. 

We consider that a spoken dialogue system needs to
take into account misrecognition in a real environment,
because speech recognizers have a difficult time completely
recognizing speech due to the surrounding noises and
speech ambiguity. If the systems have misrecognized or
misunderstood, they have to detect and modify the errors as
soon as possible. Otherwise they cannot create a smooth
dialogue and then the degree of user satisfaction drops.
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Some studies aim to detect a system’s misrecognitions or
misunderstanding. Some utilize acoustic features for user
utterances [9, 10]. Other studies detect the repetition of user
utterances [11] and the misunderstanding from the ques-
tion–answer dialogue [12]. Other studies aim to understand
a user’s intentions correctly with more information. They
utilize the dialogue context for the language understanding
[13–17] because a user’s utterances in a dialogue are coher-
ent. Still other studies aim to increase the degree of user
satisfaction. In Ref. 18, the dialogue manager does not
include doubtful information in system responses, because
the information which might be misunderstood decreases
the degree of user satisfaction.

We aim to develop a dialogue system that creates a
smooth dialogue with a high degree of user satisfaction. For
that purpose, our research utilizes the following concepts.

• When user’s utterance is not recognized correctly,
the correct sentence or a part of the correct sen-
tence is included in N-best in a lot of cases [19].

• User almost always corrects misrecognition im-
mediately [20].

• User’s utterances in a task-oriented dialogue are
coherent and have semantic relationship [21].

We propose a language understanding method which can
estimate correct user’s intention even if user’s utterance is
not recognized correctly. In the proposed method, we give
each keyword the criterion which is based on the confidence
measure and the context in the dialogue. The criteria are
updated whenever a new recognition result is received. In
this way, our proposed method estimates user’s intention in
consideration of the context.

In many of the studies mentioned above, the systems
rescore a speech recognition result N-best to estimate user’s
intention. Therefore, they never estimate correct user’s
intention when correct words are not included in N-best. In
our proposed method, the system has all keywords that are
likely to appear in recognition results and considers seman-
tic relationship of each keyword. Therefore, the system can
output keywords not included in N-best.

In this paper, we propose a language understanding
method using confidence measure and dialogue history,
which includes all recognition results and system re-
sponses, for estimating user’s intention even if user’s utter-
ance is recognized correctly. Moreover we describe
experimental results with the proposed method.

2. System Task

2.1. Dialogue task

In this paper, we selected a landmark setting in a car
navigation system as a dialogue task. When drivers use a

car navigation system, they should not use their hands or
eyes to direct the system while driving a car. Therefore,
speech input is much safer than handling a menu on the
display or a remote controller. In addition, engine noise and
voices of fellow passengers create more misrecognition.

Fig. 1. Relation of categories, classes, and keywords.

Table 1. Speech type

Speech
types Expositions and dialogue examples

Narrowing The utterance for adding new information
to system response.

 U1: In Shizuoka prefecture.
 S1: Shizuoka prefecture.
 U2: Hamamatsunishi interchange of Tomei

 expressway.

Correction The utterance for correcting the system
response.

 U1: Hamamatsunishi interchange of Tomei
expressway.

 S1: Are you going to the Hamamatsu
interchange of Tomei expressway?

 U2: No, Hamamatsunishi interchange.

Answer The utterance for answering system
question.

 U1: I’m going to Hamamatsunishi
interchange of Tomei expressway.

 S1: Which interchange of Tomei
expressway are you going to?

 U2: Hamamatsunishi interchange.

Re-input The utterance after system re-input request.
 U1: I’m going to the Hamamatsunishi

interchange.
 S1: Please say that once again.
 U2: Hamamatsunishi interchange.

U: user utterance, S: system response
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Users must input by voice landmark(s) name(s) along
driving routes. The landmarks names include the names of
interchanges, train stations, and cities. The users input
landmarks names (Landmarks) to the system. Users can
supplement Landmarks with prefectures (Prefectures) and
routes (Highway-Railways). Highway-Railways include
the names of railroad lines and expressways. In this paper,
Prefectures, Highway-Railways, and Landmarks are called
“categories.” The subcategories included in each category
are called “classes” (interchanges, train stations, railroad
lines, and so on). The relation of categories and classes is
shown in Fig. 1. The maximum number of keywords which
a user can input is three, for example, “Shizuoka prefec-
ture,” “Tomei expressway,” and “Hamamatsu interchange.”
The user can input three keywords at once or can input them
separately. The following utterance patterns were used.

2.2. Speech type

In our task, all user’s utterances are classified into
four speech types, which are narrowing, correction, answer,
and re-input. In narrowing, the user inputs new or additional
words which narrow the relationship with previous input.
In correction, the user corrects the system response. In
answer, the user answers a question from the system. In
re-input, the user re-inputs in formation in accordance with
a request from the system. Examples of each speech type
are shown in Table 1.

3. System Architecture

An outline of our spoken language system is shown
in Fig. 2. The system consists of a speech recognizer, a
generator of the confidence measure, a language under-

standing component, a response generator, a speech synthe-
sizer, and a GUI component [22].

The speech recognizer outputs the n-best hypotheses
ordered according to their acoustic probability. In this pa-
per, we use SPOJUS [23] as the speech recognizer.

The generator of the confidence measure outputs the
confidence measure of a word w for a given speech x is
estimated as a posteriori probability P(w|x), which is calcu-
lated from the likelihood scores of the n-best sentence
hypotheses, P(x|w) [6]. By the same process, the confidence
measure of a class c is also estimated.

For the language understanding component, the first
step is to calculate word scores and class scores, which are
criteria based on the confidence measures and the recogni-
tion history. The second step is to calculate the category
scores, which are criteria based on class scores, and further-
more to predict categories which the user uttered using the
criteria. This process is termed “category understanding.”
For example, if the user spoke keywords of a prefecture and
an interchange, the correct prediction in this process is that
Prefecture category and Landmark category are uttered.
The final step is to determine the word sequence that has
the highest score of all the word sequences of predicted
category combinations. The detailed process is described in
the next section.

The response generator outputs system response for
a confirmation, a question, or a request for next user utter-
ance utilizing word scores, class scores, and the language
understanding results. This process generates optimal sen-
tences based on various dialogue strategies. For example,
when the language understanding component outputs cer-
tain understanding result which is the first ranking candi-
date in the system belief but whose score is low, the system
pretends to have understood and requests next user utter-
ance. By this strategy the system does not output the infor-
mation which might be misunderstood and can draw out
more information. This strategy is the same idea as in Ref.
18, where asking casually or requesting other information
causes a higher degree of user satisfaction than does fre-
quently requesting for the next user utterance or confirming
system understanding.

A speech synthesizer conveys system responses by
synthesized speech, and a GUI component displays current
states of system understanding.

4. Language Understanding Component

This section describes the detailed process in the
language understanding component. The first step is to
calculate word scores and class scores, which are criteria
based on the confidence measures and the recognition
history. The second step is to calculate the category scores
and category understanding is performed on the scores. TheFig. 2. Outline of speech dialogue system.
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final step is to determine the word sequence that has the
highest score of all the word sequences of predicted cate-
gory combinations. These word scores and class scores are
utilized by not only language understanding but also system
response generating.

When a user adds new information, the system has to
add it into current system belief. On the other hand, when
the user corrects the system response, the system has to
modify current system belief. In our proposed method,
those processes are realized by the addition and the subtrac-
tion of word scores and class scores. Calculated word scores
and class scores are saved as integrated recognition results
based on the history.

4.1. Class score calculation

In class score calculation, whenever a new recogni-
tion result is input (turn t), the system judges speech types
(Table 2) with the recognition history and the latest recog-
nition result. According to the judgment, all classes are
calculated by each equation. 

Class score calculation is performed by two different
patterns. In one, the speech types are narrowing or answer.
When these utterance patterns are uttered, the system has
to add new information to current system belief. In the
other, the speech types are correction or re-input. When
these utterance patterns are uttered, the system has to mod-
ify current system belief. Utterance pattern judgment is
shown in Table 2. This judgment is based on our heuristics,
therefore there is a possibility that better judgment exists.

4.1.1. Class score calculation for narrowing or
answer

When the user utters a narrowing utterance or a
positive answer, the system can assume that the previous
recognition is successful. Therefore, the class scores related
to the current recognition results are added to the confi-

dence measures of that class. The class score of class c is
calculated according to the following equation. In this
paper, class scores of all classes picked up from the word
dictionary of the speech recognizer are initially set to 0, and
do not have the upper and lower limit.

Scoret(c) = Scoret−1(c) ∗ weightna + Conft(c) (1)

Score: class scores of recognition history
Conft: confidence measures of the latest
weightna: coefficient (0.0 < weightna < 1.0) recogni-

tion results
c: class to be processed

For considering previous user utterances, the class
score in the latest recognition result is added to the class
score in the recognition history. The class score in the
recognition history is reduced with the coefficient
weightna by the concept that “as information becomes older,
its reliability decreases.” This coefficient weightna is opti-
mized by the dialogue data described in Section 5. Calcu-
lated class scores are saved as integrated recognition results
based on the history.

4.1.2. Class score calculation for correction or
re-input

The calculation for the correction and re-input utter-
ances is fundamentally the same as that for the narrowing
and answer utterances, except that the confidence measures
of the different class in the same category are reduced from
the whole scores. This reduction contributes to recover
from misunderstanding.

Scoret(ca) = Scoret−1(ca) ∗ weightcr − Conft(cb) + Conft(ca)
(2)

Scoret: class scores of recognition history
Conft: confidence measures of the latest recognition

results
weightcr: coefficient (0.0 < weightcr < 1.0)
ca: class to be processed
cb: class different from ca in the same category

4.2. Category understanding

A category understanding process is performed to
understand user utterances roughly at category level. An
example of a category understanding process is shown in
Fig. 3. The category understanding process calculates cate-
gory scores from the class scores of the current recognition
results and the recognition history. Each category score is
the sum of all class scores belonging to each category, and
is judged by each threshold. If the score is over the thresh-
old, the judgment result is “1.” Otherwise it is “0.” The
logical addition of the judgment result for each category is
the category understanding result.

Table 2. Utterance pattern judgment

Condition Judgment

utterance after re-input re-
quest

correction or re-input

negation involved in recog-
nition result

correction or re-input

new category introduced
into the dialogue

narrowing or answer

otherwise correction or re-input 
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4.3. Word score calculation

The word scores are calculated using confidence
measures of the latest recognition results and previous word
scores of the recognition history. Word scores of all key-
words picked up from the word dictionary of the speech
recognizer are initially set to 0, and changes are calculated
by the following 10 strategies whenever a new recognition
result is input. By preparing word scores for all keywords
and using the following strategies (e.g., using the relation-
ship of each word in the latest recognition results and
recognition history), a word that does not exist in recogni-
tion results can be included in the understanding result. In
this paper, we do not set up upper and lower limits for word
scores.

Strategy (1): Strategy (1) is based on the concept that
if information becomes older, its reliability decreases.
Whenever a new recognition result is received, all word
scores in the history are lowered. The word score of “wA”
from the recognition history is calculated according to the
following equation:

Scoret(wA) = Scoret−1(wA) − weight1 (3)

Scoret: word scores of recognition history
weight1: coefficient (0.0 < weight1 < 1.0)
wA: word A

Strategy (2): When a word “wA” in the history and a word
“wB” in the latest results have a semantic relation (in this
paper, local relation: e.g., they belong to the same prefec-
ture), the word score of “wA” increases according to the
equation

Scoret(wA) = Scoret−1(wA) + weight2 ∗ Conft(wB) (4)

Scoret: word scores of recognition history

Conft: confidence measures of the latest recognition
results

weight2: coefficient (0.0 < weight2 < 1.0)
wA: word A
wB: word B

In this strategy (2), the strength of the semantic relation is
different, whether a word “wA” and a word “wB” are the
same word or not. Therefore, when a word “wA” and a word
“wB” are the same words, the coefficient weight2 is replaced
by another coefficient weight2

g .
Strategy (3): When a word “wA” in the history and a

word “wB” in the latest results do not have any semantic
relation (local relation), the word score of “wA” decreases
according to the equation

Scoret(wA) = Scoret−1(wA) + weight3 ∗ Conft(wB) (5)

weight3: coefficient (0.0 < weight3 < 1.0)
Strategy (4): When an affirmation word “wyes” (e.g.,

“yes”) is contained in the latest recognition results, the word
score of “wA” contained in the previous system increases
according to the equation

Scoret(wA) = Scoret−1(wA) + weight4 ∗ Conft(wyes) (6)

weight4: coefficient (0.0 < weight4 < 1.0)
wyes: an affirmation word

Strategy (5): When a negation word “wno” (e.g., “no”) is
contained in the latest recognition results, the word score
of “wA” contained in the previous system response de-
creases according to the equation

Scoret(wA) = Scoret−1(wA) − weight5 ∗ Conft(wno) (7)

weight5: coefficient (0.0 < weight5 < 1.0)
wno: a negation word

Strategy (6): When a word “wA” in the latest recognition
results and a word “wB” in the system response have a
semantic relation (local relation), the score of the word
“wB” increases according to the equation

Scoret(wB) = Scoret−1(wB) + weight6 ∗ Conft(wA) (8)

weight6: coefficient (0.0 < weight6 < 1.0)

Strategy (7): When a word “wA” in the latest recognition
results and a word “wB” in the system response do not have
a semantic relation (local relation), the word score of “wB”
decreases according to the equation

Scoret(wB) = Scoret−1(wB) + weight7 ∗ Conft(wA) (9)

weight7: coefficient (0.0 < weight7 < 1.0)

Strategy (8): If the system asks and the subsequent user
response contains possible answers for the question, the
word score of “wA” in the possible answers increases. For
example, the system asks “Which interchange?” and the
user responds “Hamamatsu interchange.” The word score

Fig. 3. Category understanding process.
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of “Hamamatsu interchange” increases according to the
equation

Scoret(wA) = Scoret−1(wA) + weight8 ∗ Conft(wA) (10)

weight8: coefficient (0.0 < weight8 < 1.0)

Strategy (9): As the ranking in n-best hypotheses
increases, the words possess higher reliability. Therefore,
the bonus scores based on the ranking are given to words
ranked higher in the recognition results (n-best hypothe-
ses).

Scoret(wA) = Scoret−1(wA) + weight9 ∗ Conft(wA) (11)

weight9: coefficient (0.0 < weight9 < 1.0)

The coefficient “weight9” takes different value for ranking
in recognition result.

Strategy (10): The speech recognizer in our system
has the behavior that longer utterances are easier to recog-
nize correctly. In other words, user’s utterance of only one
category is easier to recognize correctly than that of two or
three categories. For this reason, the bonus scores are given
based on the length of recognized word sequences. The
sentence including “wA” in a recognition result is longer,
and the bonus scores thus become larger.

Scoret(wA) = Scoret−1(wA) + weight10 ∗ Conft(wA) (12)

weight10: coefficient (0.0 < weight10 < 1.0)

The coefficient “weight10” takes different value for the
sentence length including “wA” in a recognition result.

The coefficients in each strategy are optimized by
training speech data mentioned in Section 5.1.

Word scores are calculated using the above strategies.
The calculated word scores are updated and saved as new
recognition history. These processes can increase the word
scores of the keywords not in the recognition results using
the relationship to the keywords in the recognition results.
The repetitive calculation of word scores with new recog-
nition results makes the scores of reliable words increase
and the scores of unreliable words decrease. As a result,
regardless of the ranking of the present recognition results
(n-best hypotheses), priority is given to words with the
highest possibility to appear in a given dialogue.

4.4. Word understanding

Word understanding is used to search most likely
word sequence in the dialogue for a certain goal (in this
paper, one landmark setting). An example of the word
understanding process is shown in Fig. 4. In this process,
the system selects the word combination which has the
maximum sum of word scores with category understanding
result. In Fig. 4, category understanding result is that Pre-

fecture and Landmark category are uttered. Therefore, the
sum of word scores belonging to Prefecture and Landmark
category is calculated. In this process the system utilizes
semantic restriction of words. In other words, this process
never outputs word sequences that do not exist. 

5. Experiment

5.1. Speech data

Our system uses many weights and thresholds in a
language understanding component. Many utterance pat-
terns are needed to optimize these parameters. Therefore,
we collect utterances in the following way. First, “U1-S1-
U2” pattern is assumed as a dialogue and it is not considered
whether to have completed the landmark setting. Second,
we record various possible utterance patterns by a sentence
when a user sets a landmark name. These utterances col-
lected in this way are called “speech data.” We input a part
of speech data which are appropriate for U1 to our system
and get system responses (S1). Then we select utterances
of speech data which are appropriate utterances following
S1. In this way we construct U1-S1-U2 dialogue, which is
called “imitation dialogue.”

We collected speech data for training our system.
First, we prepared 21 sentences (Table 3) about the
Hamamatsu-nishi interchange, which is one of the inter-
changes along the Tomei expressway in Shizuoka prefec-
ture, Japan. We asked five speakers to record each prepared
sentence three times in a sound booth. In consideration of
the real environment, car noise was mixed in with the
speech, and the recognition rate was lowered. We collected
315 sentences. Their recognition rate is 56.8%. In this

Fig. 4. Word understanding process.
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paper, the maximum number of candidates output by a
speech recognizer is 100, in other words N-best is 100-best.
Note that when the acoustic likelihood for a candidate is
lower than the thresholds, the speech recognizer never
outputs the candidate. Therefore, the speech recognizer
does not always output 100 candidates. The average number
of candidates for training speech data mentioned above is
about 30. Moreover, we investigated how “Shizuoka,”
“Tomei,” and “Hamamatsu-nishi” are misrecognized as
other words. As a result, the misrecognition from
“Shizuoka” to “Mie” (Mie Prefecture) is the strongest ten-
dency. The number of misrecognitions for 180 utterances
including “Shizuoka” is 73 utterances. The rate of misrec-
ognition from “Shizuoka” to “Mie” in 73 utterances is
20.5% (15/73). As a training set, we made 7530 imitation
dialogues from the training speech data. Using this training
set, we optimized the weights and thresholds in the lan-
guage understanding component. Here we define two cri-
teria for the evaluation. They are called dialogue accuracy
and word accuracy. The dialogue accuracy denotes the rate
which the keywords output by the system correspond to the
keywords in user’s utterance for all categories (Prefecture,
Highway-Railway, and Landmark category). For example,
when a user utters wA belonging to Prefecture category and
wB belonging to Landmark category and the system outputs
wA and wB, the dialogue accuracy is 100.0% (1/1). In this
case, the keywords output by the system correspond to the
keywords in user’s utterance in just proportion. If the sys-
tem outputs only wA, or wA, wA, and wA belonging to
Highway-Railway category, the dialogue accuracy is 0.0%
(0/1). The word accuracy denotes the rate which the key-
word output by the system corresponds to the keyword in
user’s utterance at a word level. For example, when user
utters wA belonging to Prefecture category and wB belong-
ing to Landmark category and the system outputs wA, wB,
and wC belonging to Highway-Railway category, the word
accuracy is 66.7% (2/3). The parameters are optimized so
that the dialogue accuracy might increase the most. The
dialogue accuracy with the optimized parameters is 71.5%
(5386/7530 dialogues) and the word accuracy is 87.0%
(19,655/22,590 words). Moreover, we investigate the rate
at which the categories estimated by the system correspond
to the categories uttered by user at category level, which is
called category understanding accuracy. The category un-
derstanding accuracy with the optimized parameters is
74.7% (5632/7530 dialogues). The denominator of the
word accuracy is three times the denominator of the dia-
logue accuracy, because the system has to estimate three
keywords by a dialogue. Even if user’s utterance includes
only two categories, the system has to specify the category
being uttered and the category not being uttered.

In the same way as for training speech data and
training imitation dialogues, we collected speech data and
made imitation dialogue for testing. We asked 10 speakers

Table 3.  Speech pattern

1 Shizuoka ken
(Shizuoka prefecture.)

2 Tomei jidousyadou
(Tomei expressway.)

3 Hamamatsu-nishi intah
(Hamamatsu-nishi interchange.)

4 Shizuoka ken no Hamamatsu-nishi intah
(Hamamatsu-nishi interchange in Shizuoka prefecture.)

5 Shizuoka ken no Tomei jidousyadou (Tomei expressway
in Shizuoka prefecture.)

6 Tomei jidousyadou no Hamamatsu-nishi intah
(Hamamatsu-nishi interchange of Tomei expressway.)

7 Shizuoka ken no Tomei jidousyadou no Hamamatsu-
nishi intah
(Hamamatsu-nishi interchange of Tomei expressway in
Shizuoka prefecture.)

8 Hai, Shizuoka ken
(Yes, Shizuoka prefecture.)

9 Hai, Tomei jidousyadou
(Yes, Tomei expressway.)

10 Hai, Hamamatsu-nishi intah
(Yes, Hamamatsu-nishi interchange.)

11 Hai, Shizuoka ken no Hamamatsu-nishi intah
(Yes, Hamamatsu-nishi interchange in Shizuoka
prefecture.)

12 Hai, Shizuoka ken no Tomei jidousyadou
 (Yes, Tomei expressway in Shizuoka prefecture.)

13 Hai, Tomei jidousyadou no Hamamatsu-nishi intah
(Yes, Hamamatsu-nishi interchange of Tomei
expressway.)

14 Hai, Shizuoka ken no Tomei jidousyadou no Hamamatsu-
nishi intah
(Yes, Hamamatsu-nishi interchange of Tomei
expressway in Shizuoka prefecture.)

15 Iie, Shizuoka ken
(No, Shizuoka prefecture.)

16 Iie, Tomei jidousyadou
(No, Tomei expressway.)

17 Iie, Hamamatsu-nishi intah
(No, Hamamatsu-nishi interchange.)

18 Iie, Shizuoka ken no Hamamatsu-nishi intah
(No, Hamamatsu-nishi interchange in Shizuoka
prefecture.)

19 Iie, Shizuoka ken no Tomei jidousyadou
(No, Tomei expressway in Shizuoka prefecture.)

20 Iie, Tomei jidousyadou no Hamamatsu-nishi intah
(No, Hamamatsu-nishi interchange of Tomei
expressway.)

21 Iie, Shizuoka ken no Tomei jidousyadou no Hamamatsu-
nishi intah
(No, Hamamatsu-nishi interchange of Tomei expressway
in Shizuoka prefecture.) 
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to record each prepared sentence three times in a sound
booth, and mixed car noise in with the speech. We collected
630 sentences. Their recognition rate is 67.7%. We made
29,670 imitation dialogues; the number of dialogues which
do not include correct words is 3305 dialogues.

5.2. Experiential method

For our evaluation, we prepared three spoken-lan-
guage understanding systems: SYS-A, SYS-B, and SYS-C.
SYS-A gives top priority to the highest-rank candidate of
the latest recognition results (N-best hypotheses), searches
the recognition history for words related to the candidate,
and outputs an understanding result. SYS-B uses the lan-
guage understanding method mentioned in this paper. SYS-
C is identical to SYS-B except that it uses the correct
category understanding result. In SYS-B, if a category
understanding fails, the system cannot output a correct
understanding result. To investigate the performance of
word score calculation independently, we prepared SYS-C.
These systems have the same performance except the lan-
guage understanding component.

5.3. Results and discussion

The dialogue accuracies of the systems, SYS-A,
SYS-B, and SYS-C, were 57.9, 72.2, and 89.2%, respec-
tively. SYS-B was about 15 points more accurate than
SYS-A. These results mean that our system is effective.
SYS-C is about 17 points more accurate than SYS-B.
Therefore, the understanding performance can be increased
by improving the accuracy of the category understanding.
The category understanding accuracy of SYS-B was 78.8%
(23,408/29,670 dialogues).

We separated a test set by four speech types. The
dialogue accuracy of each system is shown in Fig. 5. In this
figure, “U1:OK” means the first user’s utterance (U1) is
recognized correctly. “U1:NG” means that U1 is recog-
nized incorrectly. “SB:OK” means that the system belief
corresponds to keywords included in user’s utterances,
which are U1 and U2. The numerical value above the graph
means the number of dialogues of each speech type, and the
numerical value in the graph means the understanding rate.
This figure shows that the understanding rate is higher in
order of SYS-C, SYS-B, and SYS-A except correction
dialogues and a part of re-input dialogues. This result means
that the proposed method is effective except correction
dialogues even if user’s utterances are misrecognized at any
turns.

The word accuracies of SYS-A, SYS-B, and SYS-C
were 75.4, 87.1, and 95.5%, respectively. This means that
our system is effective at word level similarly. Figure 6
shows that the understanding rate is higher in order of

SYS-C, SYS-B, and SYS-A except correction dialogues
and a part of re-input dialogues. In Fig. 6, the numerical
value above the graph means the number of words of each
speech type. The word accuracies of SYS-B and SYS-C are
better than their dialogue accuracies. This means that the
systems can understand user’s intention partly even if they
cannot understand completely. The systems could under-
stand completely by continuing the dialogue. This evalu-
ation demonstrated our proposed method is effective for
spoken language understanding.

In Figs. 5 and 6, the correction dialogue accuracies
of the proposed method are lower. The reason for this is that
the number of correction dialogues in a training set is less
than other speech types and our system learned the ten-
dency which was not robust for correction dialogues. At the
same time, the response generator in our system is based on
the concept that the system response including misunder-
standing information decreases the degree of user satisfac-
tion. Therefore, the keywords with lower reliability are not
included in system responses, and the training set has less
correction dialogues. In addition, the speech data used for
training and test are recorded and then mixed in car noise,
therefore it is not necessarily the case that the speech data
correspond to utterances in a real environment. For these
reasons, we have to record utterances of a speaker who
actually drives a car and to evaluate with the speech data.

We investigated the effects of each strategy in the
word score calculation. We compared the largeness of op-
timized weightn (n = 1, . . . , 10) and the number of
applications in each strategy. We found that the weights in
strategies (1), (2), and (3) are smaller than the others, but
they are applied very frequently. Therefore, those strategies
have leverage over the word score calculation. The weights
in strategies (4), (7), and (8) are sometimes applied, but they

Fig. 5. Understanding results (dialogue accuracy).
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are larger than the others, therefore those strategies also
have leverage over the word score calculation. As to the
other strategies not mentioned above, our system often
understood correctly by the mutual influence of some
strategies included in the other strategies. In addition, the
weights get larger or smaller by training speech data or
tasks. Therefore, we do not consider that the strategies
which have less effect in this investigation are needless. It
is a future work to investigate qualitative effects of each
strategy.

As to the domain which can be used in the proposed
method, it is hard to use for any spoken dialogue tasks.
However, the keywords almost have hierarchic and depend-
ency relations as a tree structure in the slot-filling tasks or
information inputting tasks, which are the mainstream of
many spoken dialogue systems of the present time. In these
tasks, the proposed method is effective and can be used
widely. Some tasks might require some modifications and
additions regarding the word score calculation.

6. Conclusion

In this paper, we proposed a method for improving
spoken language understanding in car navigation systems
using confidence measures and a dialogue history. Experi-
mental results showed the understanding accuracy of our
method is more than 15% higher than the language under-
standing method that gives top priority to the higher-rank
candidate of the n-best hypotheses. Even when misunder-
standing has occurred, the system understands the user’s
intention partially. The system could understand com-
pletely by continuing the dialogue. It is also possible to

improve the understanding rate by improving the category
understanding accuracy.

Future work should consider speech data. Because
the speech data used for a training and test are recorded and
then mixed in car noise, it is not necessarily the case that
the speech data correspond to the utterances in a real
environment. We have to record utterances of a speaker who
actually drives a car. Other future work concerns the length
of a dialogue. Because the dialogues in this experiment are
U1-S1-U2, landmark setting in some dialogues are finished
and in others are on the way. Thus, we have to evaluate our
system in longer dialogues. Next, it is necessary to investi-
gate the understanding rate and the degree of user satisfac-
tion [24] when the system is used in conditions similar to
an actual driving situation (by using a drive simulator and
so on). Moreover, we have to investigate qualitative effects
of each strategy in word score calculation, because the
effects of the strategies are changed by training speech data
or tasks. Finally, we would extend the system to be able to
handle dialogues in complex situations. The situations are
that user searches the landmark and then sets, or does not
know exact landmark names.
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