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Abstract. Meet-in-the-Middle (MitM) fault analysis is a kind of powerful cryptanalytic
approach suitable for various block ciphers. When applying the method to analyze the
security of block ciphers, it is very crucial to find effective MitM characteristics based on
some fault models. In this paper, we investigate the security of word-oriented SPN block
ciphers by means of MitM fault analysis, and observe that if the diffusion layers of the
ciphers have some special properties, it is easy to derive effective MitM characteristics
under the condition of single-word fault model, which can lead to efficient fault attacks
on the ciphers. In order to demonstrate the effectiveness of our observation, we apply it
to ARIA and AES, and obtain some effective MitM characteristics respectively, then we
present efficient MitM fault attacks on the ciphers in terms of these characteristics. It is
expected that our work could be helpful in evaluating the security of word-oriented SPN
block ciphers against fault attack. We also hope that this work could be beneficial to the
design strategy of diffusion layers of block ciphers.

Key words: MitM Fault Analysis, Word-oriented SPN Structure, Block Cipher, ARIA,
AES

1 Introduction

Since the fault analysis was first introduced in 1997 by Boneh et al [1], it has
drawn much attention from cryptanalysts all over the world and has become a
very efficient cryptanalytic tool in analyzing various cryptographic devices. As a
matter of fact, fault analysis is a class of implementation attacks that disturb
cryptographic computations so as to recover secret keys. More precisely, an ad-
versary can find the key of a cipher by exploiting information derived from correct
and faulty ciphertexts. Currently, several techniques are known to induce faults
during cryptographic computations such as triggering a spike on the power sup-
ply, a glitch on the clock, or using external methods based on laser, Focused Ion
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Beam, or electromagnetic radiations [2]. Specially, a laser with certain energy and
wavelength could interfere fixed parts of the memory /registers without damaging
them, resulting in a single-bit error or single-byte error at some internal states
accurately [3].

Up to now, much research work has been devoted to fault analysis on block
ciphers and such work can be mainly diversified into three directions. The first
direction is to find efficient differential fault attacks for a block cipher. So far, DES
[4,5], Triple-DES [6], AES [7-15], IDEA [16], CLEFIA [17], SMS4 [18], ARIA [19,
20], Camellia [21] and KATAN32 [22] have been analyzed by means of differential
fault analysis (DFA). The second direction is to further improve the fault analysis
results on a block cipher by exploring faults induced at an earlier round, reducing
the number of required faults or weakening the fault injection model. For example,
Derbez et al. [23] presented fault attacks on AES in which faults were triggered
at an earlier round compared to the previous related work, Kim [20] introduced
fault attacks on ARIA which used fewer faults to retrieve the 128-bit cipher key
in comparison with [19]. The third direction is to extend fault analysis so as to
make it more efficient. For instance, Phan et al. [24] gave an idea of amplifying
fault attack with techniques from various cryptanalytic approaches, Derbez et al.
[23] proposed new kinds of fault attack, i.e., MitM fault attack and impossible
differential fault attack, Liu et al. [25] showed the feasibility of applying linear
characteristics in fault analysis and presented a novel fault attack called linear
fault analysis.

For a given block cipher, we denote the relation of some intermediate states
of the cipher (for instance, a linear equation of some internal state bits) as a
MitM characteristic of the cipher. If a MitM characteristic of a cipher could be
exploited to mount an attack better than exhaustive attack on the cipher, we call
it an effective MitM characteristic. MitM fault analysis is a kind of powerful fault
cryptanalytic tool, which uses effective MitM characteristics to facilitate fault
attacks on block ciphers. More specifically, MitM fault analysis can be described
as follows:

— For a given block cipher, choose plaintexts to encrypt and get the ciphertexts.

— Encrypt the same plaintexts as above and induce faults during encryption
processes so as to obtain the corresponding faulty ciphertexts.

— Try to derive some effective MitM characteristics by exploring relations among
the intermediate states corresponding to the correct and faulty ciphertext
pairs.

— Mount an efficient key recovery attack on the cipher based on the above MitM
characteristics.
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So far MitM fault analysis has been successfully applied to AES cipher [23]
and KATAN32 cipher [22], and the attack results are the currently best fault
cryptanalytic results on AES and KATAN32 respectively. In order to devise a
good strategy for MitM fault attack on a block cipher, one needs to obtain effec-
tive MitM characteristics of the cipher given a fault model. But how can we get
effective MitM characteristics of a block cipher? Are there any particular features
in the diffusion layer of a cipher which could be used to construct effective MitM
characteristics? As a matter of fact, some research work (e.g. [26]) has been done
to explore the properties of diffusion layers of block ciphers with similar structures
which make the ciphers subject to certain cryptanalytic tools such as differential
cryptanalysis, linear cryptanalysis, impossible differential cryptanalysis, and so
on. However, to the best of our knowledge, there has not been any known work
for investigating such properties with respect to MitM fault analysis so far.

In this paper, we study the security of word-oriented SPN block ciphers by
using MitM fault analysis, and find that if the diffusion layers within the ciphers
have some specific properties, one can easily get effective MitM characteristics
under the condition of single-word fault model, thus leading to efficient fault
attacks on the ciphers. For the purpose of illustration, we apply our observation
to ARIA and AES, and attain some effective MitM characteristics of the ciphers
respectively, then in terms of these characteristics, we present efficient MitM fault
attacks on the ciphers. For ARIA, our attack result together with the previously
known fault attack results are given in Table 1. As to AES, we can derive the

Table 1. Summary of Fault Attacks on ARIA

Type of Attack Fault Model |Fault Injection Round Number of
Faulty Ciphertexts
DFA [19 Single-byte Fault| penultimate round 45
DFA [20 Multi-byte Fault| penultimate round 13
MITMFA (This paper)|Single-byte Fault|antepenultimate round 44

DFA: Differential Fault Attack, MITMFA: MitM Fault Attack.

MitM characteristics used in [23] by applying our observation to the cipher, thus
following the attack procedure given in [23], an efficient MitM fault attack could
be mounted on the cipher.

The rest of the paper is organized as follows. Section 2 introduces the notations
used throughout this paper, and gives the fault model and assumption adopted in
this work. Section 3 shows our observation on word-oriented SPN block ciphers,
with which one can derive good strategies for MitM fault attacks on the ciphers.
Section 4 and 5 apply our observation to ARIA and AES respectively, and present



4 Zhigiang Liu'?, Ya Liu?, Qingju Wang"?, Dawu Gu!, Wei Li*

efficient MitM fault attacks on the ciphers. Finally, Section 6 summarizes the
paper.

2 Preliminaries

The following notations are used throughout the paper.
— @ denotes bitwise exclusive OR (XOR).

— 0x denotes the hexadecimal notation.

— |S| denotes the cardinality of the set S.

— || denotes the concatenation operation.

—set 1\ set 2 denotes the set {z|x € set 1, = ¢ set 2}.
—set 1N set 2 denotes the set {x|z € set 1, = € set 2}.

2.1 Single-word Fault Model

For a given block cipher, an adversary is able to choose plaintexts to encrypt
(under an unknown cipher key), and during the encryption process, he can induce
single-word faults into one round and obtain the corresponding right and faulty
ciphertexts. Note that the values and/or positions (within the impacted round)
of the faults injected by the adversary are unknown and uniformly distributed.

3 Our Observation on Word-oriented SPN Block Ciphers

Let E be an n-round word-oriented SPN block cipher with d-bit word size and m-
word block size. Let I; = (Lio, Li1, .-, lim—1) € GF(29)™ be the input of the i-th
(1 S 1 S n) round of E. Let Xz = (Xi,0> Xi,l; e >Xi,m—1)a }/z = (}/i,(b }/i,la ceey )/i,m—l) S
GF(29)™ be the input and output of the substitution layer of the i-th round, re-
spectively.

The ¢-th round function of F is depicted in Fig. 1, where the round key addition
is to XOR the i-th round key, \5; ; (0 < 7 <m—1) is anon-linear word permutation
which operates on Xj ;, and the diffusion layer is essentially a linear transformation
P: GF(2Y9)™ — GF(2%)™ which is performed on Y;.

Let AL = (ALig, ALy, ..., Al ;1) € GF(2%)™ be the input difference of the
i-th round of E. Let AY; = (AY; 0, AYiy, ..., AYim 1) € GF(24)™ be the output
difference of the substitution layer of the i-th round.

Note that in this paper we will only consider a kind of MitM characteristics
of E, that is, linear equations on the words of I; (or AL).

We observe that if the diffusion layer within E satisfies Property 1 and 2 given
below, one can easily derive some effective MitM characteristics of the cipher
under the condition of single-word fault model.
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Fig. 1. The i-th round function of F

Property 1. Let (ag,ai,...,am_1), (bo,b1,...,bm_1) € GF(29)™ be the input
and output of the diffusion layer, respectively. Then there exist some pairs of
subscript sets (13,17), (T5,13), ..., (T, T} ) such that

Da=Pb, 1<1<L

teT; teT/

where T}, T are subsets of {0,1,...,m — 1}, and 2 < L < 2™,
Property 2. For a given iy (1 <ig < n — 2), suppose that AY;, satisfies

AY;, = (0x00, . .., 0x00, AY;, ;,,0x00, . .., 0x00),

is an unknown nonzero value. Then for
TleT~

lo)

where 0 < jo < m — 1, and AY] j,
some integer ry (1 < 19 < n —ig— 1), there exist subscript sets Tj,, Ty

11
.oy T1,, Ty, such that 1
T \T; CJ and T\ T, CJ, 1<A<A,

where J = {j|AVipsro; =0, 0< 5 <m—1}, 1y # 1\ (1 <1y, 0y <L), and Tj,, 1y
are the subscript sets given in Property 1.

Next we will show the reasonability of our observation in detail. Suppose that
the cipher E has the above two properties. We find that the effect of injecting
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single-word fault before the diffusion layer in the ip-th round of E, is somewhat
like inducing a difference in Y;, (More specifically, AY;, is an m-word vector with
one word being nonzero and the other m — 1 words being zero). Thus according
to Property 1 given above, we can obtain the following equations:

@ A}/io—i—ro,t = @ Alio+ro+1,t7 1 S A S Aa (]-)
teTy, teTl’A
@ AY’ioJrro,t = @ A[ioJr?"oJrl,ta I<A<S A (2>
ety teTl’~A

Moreover, following the Property 2, we have

@ AY;(H—To,t - @ A)/io-f—To,t) ]- S )\ S A (3)

teTy, tETl;\

Combining the equations (1), (2) and (3), we get multiple MitM characteristics
of F under the single-word fault model as shown below:

@ AIio-l—To-}—l,t = @ AIio-l—To-}—l,ta 1 S A S A. (4)

teTy; teT-
A 5N

Furthermore, we find that if the diffusion layer within £ meets Property 3 and
4 given below, one can obtain some effective MitM characteristics of the cipher
under the condition of single-word fault model.
Property 3. Let (ag, ay, ..., am-1), (bo, b1, ..., bm_1) € GF(29)™ be the input and
output of the diffusion layer respectively. Then there exist some pairs of subscript
sets (Vi, VY), (Vo,V3), ..., (Vi, V};) such that each element in {b,|v € V}/} is the
linear combination of all the elements in {a,|v € V},}, where V},, V)| are subsets of
{0,1,....m—1},and 1 <h < H.
Property 4. For a given iy (1 < iy < n — 2), suppose that AY;, satisfies

AY;, = (0x00, .. .,0x00, AY;, ;,, 0x00, . . ., 0x00),

0,70

where 0 < jo < m — 1, and AY] j, is an unknown nonzero value. Then for some
integer ro (1 < rg < mn —ig— 1), there exist subscript sets Vj,, Vi,, ..., V4, such
that

Wl =1, 1<w<,

where Jy,, = {j|AYiy4r0; # 0,7 € Vi, }, 1 < h, < H, and V},, is the subscript set
given in Property 3.
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Suppose that the cipher E satisfies Property 3 and 4. As mentioned above,
AY;, is an m-word vector with one word being nonzero and the other m — 1
words being zero in the case of triggering single-word fault before the diffusion
layer in the ip-th round of £. Thus for any two elements in { ALy 41.[v € V) },
1 <w < 2 we can easily get a linear equation on the two elements (i.e., a MitM
characteristic of E') according to Property 3 and 4.

With the help of the above MitM characteristics, one can mount key recovery
attacks on E much better than exhaustive attack. Next, we will illustrate how
to mount efficient MitM fault attacks on word-oriented SPN block ciphers by
applying our observation to ARIA and AES respectively.

4 MitM Fault Attack on ARIA

4.1 A Brief Description of ARIA

ARIA [27] is a word-oriented SPN block cipher with 8-bit word size and 128-bit
block size. It accepts keys of 128, 192 or 256 bits and the number of rounds is 12,
14 or 16 respectively. In the following parts, we will focus on the ARIA cipher
with 128-bit key size unless otherwise stated.

The input and output of each round of ARIA could be treated as 16-byte vec-
tors (also denoted as states), and each byte within the vectors could be regarded
as an element in GF(2%). Each round of ARIA consists of the following three
basic operations (except the last round, where the DL operation is replaced by an
additional RKA operation):

Round Key Addition (RKA): XOR the 128-bit round key. All round keys are
derived from the cipher key according to the key schedule.

Substitution Layer (SL): Apply 16 non-linear 8 x 8-bit S-boxes to the 16 bytes
of the intermediate vector respectively. ARIA has two types of substitution layers,
i.e., type 1 and type 2, where type 1 is used in the odd rounds and type 2 is used
in the even rounds.

Diffusion Layer (DL): A linear transformation LT : GF(28)'6 — GF(28)16 is
performed on the intermediate 16-byte vector. Note that LT~! = LT.

Please refer to [27] for detailed information about the substitution layer, the
diffusion layer and the key schedule adopted in ARIA.

4.2 MitM Characteristics of ARIA under Single-byte Fault Model

After investigating the diffusion layer adopted in ARIA in detail, we find that the
cipher has two properties given in Section 3 as shown below.



8 Zhigiang Liu'?, Ya Liu?, Qingju Wang"?, Dawu Gu!, Wei Li*

(a). Let (ag,ai,...,a15), (bo,b1,-..,b15) € GF(2%)' be the input and output of
the diffusion layer of ARIA respectively. Then there exist 6 pairs of subscript sets

(T, T)) = ({0,3,12,15}, {0, 3,12, 15}),

(T», Ty) = ({1,3,5,7},{0,2,4,6}),
(T3, T3) = ({2,3,10,11},{0,1,8,9}),
(T4, Ty) = ({1,2,13,14},{1,2,13,14}),
(Ts,T:) = ({0,1,8,9},{2,3,10,11}),
(T, Tg) = ({0,2,4,6},{1,3,5,7})

@at:@bt, 1<1<6.

teT tETl/

such that

(b). Case 1: For a given iy (1 < iy < 10), suppose that AY;, satisfies
AY;, = (AY,, o, 0x00, .. ., 0x00),

where AY; ¢ is an unknown nonzero value. Then for ro = 1,let J; = {j|AYi1ry,; =
0, 0 < j < 15}, there exist 2 pairs of subscript sets (71, T3), (T, T3) such that

T\Ty, Tbo\T\, Th\ T3, T3\ Ty C Jy,

T1 HTQ :T1 ﬂTg
Case 2: For a given ig (1 < iy < 10), suppose that AY;, satisfies

AY;, = (0x00, 0x00, AY;, 5, 0x00, . . ., 0x00),

where AY;, 5 is an unknown nonzero value. Then for ro = 1, let Jo = {j|AYiy4ro,; =
0, 0 < j < 15}, there exist 2 pairs of subscript sets (Ts,Ty), (T4, Ts) such that

To\Ty, Ty\Ty, Ty\Ts, Ts\Ty C J,
TonNTy=T,NT5.
Case 3: For a given ig (1 < iy < 10), suppose that AY;, satisfies
AY;, = (000, 0x00, 0x00, AY;, 5, 0x00, . .., 0x00),

where AY;, 5 is an unknown nonzero value. Then for ro = 1,let J3 = {j|AYiy1ro; =
0, 0 < j < 15}, there exist 2 pairs of subscript sets (71, 7Ts), (T5, T) such that

Ty\Ts, Te\T, T5\Ts, Ts\T5 C Js,
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T1HT6:T5HT6.

Thus we can obtain the following MitM characteristics of ARIA under the
single-byte fault model:

A[i0+271 ) A[i0+2,8 @ A[io+2,9
= AIZ'0+2,2 D AI@'0+2,4 % AIZ'0+2,6 (5>
= Alio+2,3 () AIZ‘0+2,12 b A-[i0+2,15a

Aligi00 D Alijgi04 © Aljo
= AlLjj121 D AlLjj1013 B Aljy4214 (6)
= Aliyy23 D Aljgy210 @ Aljj1211,

A[i0+270 @D A[i0+2,12 S A]Z'o+2,15
= Ali0+2’1 %, AIZ'0+2,5 D Alz‘o+2,7 (7)
= AIZ'0+2,2 S5 AI@'0+2,10 S A]io-i-?,ll'

Next, we will demonstrate an effective key recovery attack on ARIA in terms
of the characteristics (5), (6) and (7).

4.3 Attacking ARIA

Let ek; = (ekio,ekia,...,ekiis) € GF(2%)' be the round key of the i-th (1 <
i < 12) round of ARIA. Let ekiz = (ekiso, €ki31, ..., ekiz15) € GF(2%)1 be the
additional round key of the 12th round. We now present a key recovery attack on
ARITA under the condition of single-byte fault model. Since there isn’t any known
fault attack on ARIA which is done by inducing faults at the round earlier than the
penultimate round of the cipher so far, the general countermeasure against fault
attack on ARIA could be implemented by protecting the last two rounds of the
cipher if taking into account the efficiency of the implementation. However, our
effective attack shows that MitM fault analysis could be a threat to the protected
implementation of ARIA.

The basic idea of our attack is as follows. Firstly, collect ciphertext pairs each
of which consists of a right ciphertext under ARIA and a corresponding faulty
ciphertext derived by provoking single-byte fault before the diffusion layer in the
antepenultimate round (i.e., the 10th round). Then we can recover all bytes of
eky3 with the help of the MitM characteristics (5), (6) and (7) given in Section
4.1. After that, we decrypt the last round by using ek;3 and mount an attack
similarly to the above and obtain all bytes of eki5. Repeat this procedure until
we get the values of eky; and ekyy. Finally, the cipher key can be derived from
ekyg, ekq1, ekio and eky3 according to the key schedule of ARIA. Following gives
the detailed description of our attack in two phases.
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Phase 1. Retrieving the round key ek

Let S; jl denote the inverse of the S-box S, ;,
as below:

Step 1. Under the single-byte fault model, we assume that single-byte faults
can be triggered on the first byte of the intermediate state before the diffusion
layer in the 10th round, then do as follows:

(a). For a given plaintext P,, encrypt it seven times under the unknown cipher
key so as to collect six pairs of ciphertexts, each pair consisting of the right
ciphertext C, and the corresponding faulty ciphertext C’}’? (1 <k <6) derived by
the above means.

(b). Let C, ;, C’]?’j denote the (j + 1)-th bytes of C, and C”Jf respectively. Let
A¥ denote 51_2%]'(07“,]' ®ekis;) B Sﬁ%j(clf,j ® ek ;). According to the characteristic
(5), we can obtain

1<:<12,0<L 75 <15. Then do

AaAboAi=Abap Ao AE 1<k<6, (8)

and
A Ao A=A A}, @AY, 1<k<6. (9)

Fig. 2 gives a schematic description of the MitM characteristics of ARIA.

(c). Let Af g9, A5, ¢ denote A & A§ @ Af and Af & A} @ Af respectively. For
each possible value of {eki31, ekizs, eki39}, A’i&g’s (1 <k <6) are calculated for
the above six ciphertext pairs, and the results are stored in a hash table with the
input index coming from Ajgo[|Afgol| AT 5o/l AT g0l| AT 50/l AT g9 and the output
being the value of eky3 1 ||ek:13 8||ek:13,9 Then for each guess of {61{?13’2, ek13 4, €k136},
compute the values of A} 468 (1 <k <6) for the six ciphertext pairs, and query
in the above hash table by using A5 461l A5 4611 A3 4 611 A5 4 61| A3 4 61| AS 46 as the
search criteria, if a value of ekjs | ekiss|ekisg is included in the query result,
take this value together with the guessed value of {eki32, ekis4, €kiz6} as the
correct key information.

As a matter of fact, each equation in (8) holds with probability 278, thus for
each candidate of {eki3 1, eki32, eki34, ekisg, ekizs, ekizo}, the equality

A;,4,6”A3,4,6”A§,4,6”A 46HA 46HA 6_A 89HA 89HA 89”A SQHA 89”A189

holds with probability 278, Since there are totally 2*® candidates of {eki3 1, ek13.2,

ekisa, €kiszg, ekizs, ekizo}, it is expected that only one candidate will be left as
the correct key information after the above procedure, so we recover ekis 1, ekis 2,
€l€13,4, 61{?13,6, 6k‘13,8 and €k‘13,9-

(d). For the correct value of {eki32, eki34, eki36} obtained before, derive the
values of A, ¢’s for the three ciphertext pairs (C,, CF) (1 < k < 3). Let A§ , 5
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;///> Single-byte fault injection
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vRKA
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. 4 SL > The 10th round
HEEEEEEEEEEEEEEN
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v SL > The 11th round
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> The 12th round

I:I : Nonzero differences I:I : Zero difference

: Any possible differences : Any possible differences

Lo » The byte differences in these positions (numbered from left to right) are denoted E
as Ak , Ak , Ak R Ak , Ak , Ak R Ak ) A]iz and AIS respectively, and these 1

byte differences satisfy the conditions A\ @ Ay ® AY = A, ® A, ®A!, and |

AN, BN =N DA, DA, .

Fig. 2. Schematic Description of the MitM Characteristics of ARIA

represent A @ AX, @ Ak Then for each guess of {eki3 3, eki3 19, €k1315}, calculate
the values of Af , s for the three ciphertext pairs (C,,C}) (1 < k < 3), and
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check whether the values of Ay 5| A3 1515|143 15,15 and A 4 6[| A3 4 6]| A3 46 are
equal or not, if yes, keep the guessed value of {ek;3 3, €k13 12, €k13,15} as the correct
key information and discard it otherwise. In terms of the analysis similar to step
1(c), it is expected that only one candidate of {ek133, ek1312, €k1315} can pass the
check and be left as the correct key information, so we retrieve ekis 3, ekiz 12 and
€7€13,15-

Step 2. Suppose that single-byte faults can be provoked on the third byte of
the same intermediate state as that in step 1, then do as follows:

(a). Encrypt the plaintext P, three times so as to collect three pairs of right
and faulty ciphertexts (C,, C}), 7 <k < 9.

(b). According to the characteristic (6), we can get

AvgAb, oAl = Ak Abo Al T<k<9, (10)

and
At Abe A=Ak AN o AR T<k<9. (11)

(c). Thus with the help of the analysis similar to steps 1(c) and 1(d), we can
recover the subkey bytes ekis, €ki3 10, €ki311, €ki313 and ekig 14.

Step 3. Assume that single-byte faults can be induced on the fourth byte of
the same intermediate state as that in step 1, then do as follows:

(a). Do the encryptions twice for the plaintext P, in order to obtain two pairs
of correct and faulty ciphertexts (C;, Cf), 10 < k < 11.

(b). Based on the characteristic (7), we can acquire

At A, oAl = A Abo AR 10< k<11, (12)

(¢). Then following the analysis similar to step 1(d), we can retrieve the subkey
bytes ekis5 and ekjs 7. After that, all the bytes of ek;3 are obtained.

Phase 2. Recovering the cipher key

Now we can decrypt the last round by using ek;3 and mount an attack similarly
to phase 1 and get all bytes of ek;s. Repeat this procedure until we retrieve ek
and ekyg. After that, the cipher key can be recovered from ekyq, ekii, ekio and
eky3 according to the key schedule of ARIA.

4.4 Theoretical Complexity of the Attack

The theoretical complexity of the above attack should be measured in three as-
pects, that is, data complexity, time complexity as well as memory complexity of
the attack. To do so, we only need to evaluate the data, time and memory com-
plexities required in Phase 1, from which the overall complexities of the attack
could be deduced easily.
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— Data complexity of Phase 1. It is measured in the number of faulty cipher-
texts used in this phase. Since 6, 3, 2 faulty ciphertexts are needed in the steps
1, 2 and 3 respectively, the data complexity of phase 1 is 11 faulty ciphertexts.

— Time complexity of Phase 1. Among all the steps in phase 1, step 1(c)
dominates the time complexity, thus the time complexity of phase 1 can be
estimated as 224 x 6 x 16i12 x 2 ~ 22158 ARIA encryptions plus 22* x log, 22 ~
22858 memory accesses. More specifically, the time complexity of step 1(c)
mainly consists of two parts. One part corresponds to 2% x 6 x 2 partial
decryptions which are used to derive Af g4 and Af, ¢ for all possible values of
{eki31, ekizs, eki39} and {ekiso, ekiza, ek}, 1 < k < 6, and each partial
decryption can be roughly approximated as 16% ARITA encryption. The other
part is related to 22* table lookups in a hash table with 224 records, resulting
in about 22* x log, 22* ~ 22858 memory accesses.

— Memory complexity of Phase 1. Regarding the memory complexity of
phase 1, it is primarily owing to storing the hash table in the step 1(c), conse-

quently, it can be approximated as 224 x 3 ~ 22°58 bytes.

Since we adopt the procedures similar to phase 1 to retrieve eko, eki; and ek
respectively, the data and time complexities of the attack could be estimated as
four times those of phase 1 (Note that the time complexity of deriving the cipher
key from ek, eki1, ekis and eky3 can be ignored compared with that of phase
1). Moreover, the memory complexity of the attack is just the same as that of
phase 1 because the procedures for retrieving ekis, ekis, eky; and ekig could be
implemented sequentially. Thus the overall data, time and memory complexities
of the attack are about 44 faulty ciphertexts, 223-°® ARIA encryptions plus 23%-%®
memory accesses, 22> bytes respectively.

4.5 Experiments and Results

We use a PC with Intel Pentium Dual Core E6500 processor (2.93 GHz) and
4G DDR memory to do the experiments of our key recovery attack on ARIA.
The software platform of the experiments is Visual C++, and fault injections are
simulated in this platform. Under this condition, we implement 500 experiments
of our attack on ARIA with randomly generated cipher keys and divide all the
experiments into 10 groups, each of which includes 50 experiments.

The main procedure of each experiment is as follows. Firstly, follow phase
1 to retrieve the round key eki3. Generally, 11 faulty ciphertexts are sufficient
for obtaining ek;3, but more faulty ciphertexts could be collected to derive ek3
if needed. Secondly, do similarly to recover the round keys ekis, eki; and ek
respectively. Finally, the cipher key is deduced from ekyq, ek, ek and eky3 with
the help of the key schedule of ARIA.
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The experimental results show that our attack needs 44.39 faulty ciphertexts
in average to recover the cipher key. Moreover, the average time and memory
complexities of all the experiments are comparable to the theoretical ones given
above. Since data complexity is the key factor for a fault attack with practical
time and memory complexities, we only list the experimental results related to
data requirements in our attack in Table 2. It can be seen that our experimental

Table 2. Data Requirements in the Experiments of Our Attack on ARIA

Group No.|#AFC to recover|#AFC to recover|#AFC to recover|#AFC to recover|#AFC to recover
ekis ekis ek11 ek1io the cipher key
1 11.06 11.08 11.14 11.14 44.42
2 11.10 11.12 11.08 11.04 44.34
3 11.16 11.08 11.06 11.08 44.38
4 11.12 11.10 11.10 11.08 44.40
5 11.08 11.14 11.04 11.06 44.32
6 11.16 11.06 11.14 11.12 44.48
7 11.14 11.04 11.08 11.10 44.36
8 11.08 11.20 11.10 11.06 44.44
9 11.06 11.08 11.06 11.10 44.30
10 11.10 11.06 11.18 11.12 44.46

#AFC represents the average number of faulty ciphertexts for a group of experiments.
results match the theoretical analysis given in Section 4.4 well.

5 MitM Fault Attack on AES

5.1 A Brief Introduction of AES

AES [28] is a word-oriented SPN block cipher with 8-bit word size and 128-bit
block size. It accepts keys of 128, 192 or 256 bits and the number of rounds is 10,
12 or 14 respectively. Note that we will focus on the AES cipher with 128-bit
key size.

In this paper, we treat the input and output of each round of AES as 16-byte
vectors, and each byte within the vectors could be regarded as an element in
GF(28). These 16-byte vectors are also denoted as states or byte matrices of size
4 x 4, which can be shown as

byte 0 byte 4 byte 8 byte 12
byte 1 byte 5 byte 9 byte 13
byte 2 byte 6 byte 10 byte 14
byte 3 byte 7 byte 11 byte 15
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Each round of AES consists of the following four basic operations (except the last

round, where the MixColumns operation is replaced by an additional AddRound-

Key operation):

AddRoundKey: XOR the 128-bit round key. All round keys are derived from

the cipher key according to the key schedule.

SubBytes (Substitution Layer): Apply 16 non-linear 8 x 8-bit S-boxes to the

16 bytes of the intermediate vector respectively.

Diffusion Layer: It consists of the Shift Rows operation and the MixColumns

operation, where the former cyclically shifts the i-th (i = 0, 1,2, 3) row of the above

byte matrix by ¢ bytes to the left, and the latter multiplies the j-th (j = 0, 1,2, 3)

column of the above byte matrix with a constant 4 x 4 matrix over GF(2%).
Please refer to [28] for detailed information about the substitution layer, the

diffusion layer and the key schedule adopted in AES.

5.2 MitM Characteristics of AES under Single-byte Fault Model

After investigating the diffusion layer adopted in AES in detail, we find that the
cipher has two properties given in Section 3 as shown below.

(a). Let (ag,a1,...,a15), (bo,b1,...,b15) € GF(2%)! be the input and output of
the diffusion layer of AES respectively. Then there exist 4 pairs of subscript sets

(1, V) = ({0,5,10,15},{0,1,2,3}),
(‘/27 ‘/2/) - ({37 4,9, 14}7 {4a 9,6, 7})7
(Vg, Vgl) = ({2, 7,8, 13}, {8, 9,10, 11}),
(VZ;, VZ) = ({1, 6,11, 12}, {12, 13,14, 15})

such that each element in {b,|v € V}/} is the linear combination of all the elements
in {a,|v € V3, }, where 1 <h < 4.
(b). For a given iy (1 < iy < 8), suppose that AY;, satisfies

AY;, = (0x00, AY;, 1, 0x00, . . ., 0x00),

where AYj, ; is an unknown nonzero value. Then for ry = 1, there exist subscript
sets V1, V,, V3 and Vj such that

‘Jh|21, 1< h<A4,
where Jj, = {j|AY;‘o+To,j 7£ 0,7 € Vh}

Thus for any two elements in {Al 2,|v € V)/}, we can easily obtain a linear
equation on the two elements. More specially, suppose that single-byte faults can
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be injected on the second byte of the intermediate state before the diffusion layer
in the 7th round, we can derive the following MitM characteristics of AES:

AIQ,l = A[gp, A[g72 = 3A[g70, and A[g73 = 2A[g70.

Then in terms of these MitM characteristics, we can mount an efficient key re-
covery attack on AES according to the attack procedure given in [23]. The data
complexity of this attack is about 10 pairs of correct and faulty ciphertexts. The
time and memory complexities of the attack are approximately 3 x 219 AES en-
cryptions and 2% bytes, respectively. Please refer to Section 3.2 in [23] for more
details about the attack procedure.

As a matter of fact, the above attack is the currently best fault cryptanalytic
result on AES. This means that by using the observation given in Section 3, we
could get some effective MitM characteristics of AES which can be used to mount
a very efficient fault attack on the cipher.

6 Conclusion and Further Work

By exploring the security of word-oriented SPN block ciphers with the help of
MitM fault analysis, we have observed that if there are some special properties in
the diffusion layers of the ciphers, one can devise good strategies for MitM fault
attacks on the ciphers under the condition of single-word fault model. In order
to demonstrate the effectiveness of our observation, we have applied it to ARIA
and AES respectively, and obtained some effective MitM characteristics by which
efficient MitM fault attacks could be mounted on the ciphers.

Our results may be beneficial to fault attack on word-oriented SPN block
ciphers as well as the design strategy of diffusion layers of such ciphers. Further
work could be done to investigate whether our observation could be applied to
Feistel ciphers with SP (or SPS) round functions.
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