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Abstract

For searching keywords against encrypted data, the public key encryption scheme with keyword
search (PEKS), and its an extension called secure-channel free PEKS (SCF-PEKS) have been proposed.
In SCF-PEKS, a receiver makes a trapdoor for a keyword, and uploads it on a server. A sender computes
an encrypted keyword, and sends it to the server. The server executes the searching procedure (called
the test algorithm, which takes as inputs an encrypted keyword, trapdoor, and secret key of the server).
In this paper, we extend the security of SCF-PEKS, calling it adaptive SCF-PEKS, wherein an adver-
sary (modeled as a “malicious-but-legitimate” receiver) is allowed to issue test queries adaptively, and
show that adaptive SCF-PEKS can be generically constructed by anonymous identity-based encryption
(anonymous IBE) only. That is, for constructing adaptive SCF-PEKS we need not require any additional
cryptographic primitive when compared to the Abdalla et al. PEKS construction (J. Cryptology 2008),
even though adaptive SCF-PEKS requires additional functionalities. Note that our generic construction
needs to apply the KEM/DEM framework (a.k.a. hybrid encryption), where KEM stands for key en-
capsulation mechanism, and DEM stands for data encapsulation mechanism. We also show that there
is a class of anonymous IBE that can be applied for constructing adaptive SCF-PEKS without using
hybrid encryption, and propose an adaptive SCF-PEKS construction based on this IBE. Although our
second construction is not fully generic, it is efficient compared to the first, since we can exclude the
DEM part. Finally, we instantiate an adaptive SCF-PEKS scheme (via our second construction) that
achieves a similar level of efficiency for the costs of the test procedure and encryption, compared to the
(non-adaptive secure) SCF-PEKS scheme by Fang et al. (CANS2009).

Keywords : Public-key Encryption with Keyword Search, Adaptive Security, Anonymous Identity-
Based Encryption
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1 Introduction

1.1 Public Key Encryption Scheme with Keyword Search (PEKS)

PEKS was proposed by Boneh et al. [9], and considers searching keywords from encrypted data. Briefly, the
flow of PEKS is as follows: A receiver makes a trapdoor tω for a keyword ω, and uploads it on a server. A
sender makes a ciphertext of a keyword ω′ by using the receiver’s public key, and sends it to the server. The
server outputs 1 if ω = ω′, by using tω, and 0 otherwise.

PEKS was investigated from both theoretical and practical perspectives. For example, several PEKS
schemes with additional functionality have been proposed thus far: PEKS schemes treating plural key-
words [11, 35, 43, 50], PEKS with public key encryption (PEKS/PKE) [3, 54], a decryptable PEKS scheme [28],
where a receiver can decrypt an encrypted keyword, and a public key encryption with an oblivious keyword
search scheme [14], wherein the server can obtain trapdoors without revealing the keywords. From the
theoretical perspective, a PEKS scheme based on Jacobi symbols has been proposed [17] (though almost
all PEKS schemes are constructed by using bilinear maps). The off-line keyword guessing attack was also
introduced in [13, 36, 45, 52], wherein an adversary can guess what keywords were used for computing trap-
doors. The notion of interactive PEKS, wherein the trapdoor is generated interactively by the sender and
the receiver, has also been proposed [16]. Moreover, PEKS with perfect keyword privacy has been considered
in [42] which treats the leakage of keywords from trapdoors. PEKS with trapdoor revocation has also been
considered in [24, 40, 53].

As a feasibility result of PEKS, Abdalla et al. [1] showed that a generic construction of PEKS based on
anonymous IBE is sufficient.

1.2 Security Conditions of Previous Secure-Channel Free PEKS (SCF-PEKS)
Schemes and the Theoretic Extension

PEKS schemes ensure that the server (or an outsider) learns nothing about keywords chosen by the sender
without trapdoor information. Namely, if trapdoors are revealed, then anyone can execute the test procedure.
Therefore, trapdoors cannot be sent via public (i.e., insecure) channels. So, in PEKS schemes, a secure
channel (such as secure socket layer (SSL) and transport layer security (TLS)) between a receiver and a
server is required, and establishing the channel requires additional setup costs. To solve this problem,
secure-channel free PEKS (SCF-PEKS) has been proposed [4, 26, 31, 32, 37], wherein the server has a
public/secret key pair, and the sender makes a ciphertext of a keyword ω′ (which is encrypted by the server’s
public key and the receiver’s public key), and sends it to the server. The server outputs 1 if ω = ω′ by using
the trapdoor tω and its own secret key, and 0 otherwise. Even if tω is sent via an insecure channel, no entity
(except the server) can run the test procedure.

Next, we discuss the security conditions of the previous SCF-PEKS. The security models of the previous
SCF-PEKS schemes [4, 26, 31, 32, 37] do not capture the test queries (i.e., no adversary can issue test queries
in security games). We point out that this definition does not capture the real environment as follows. Fig.1
illustrates how to instantiate test queries in the real world.

1. A malicious receiver computes (or eavesdrops on) a trapdoor, and uploads it to the server.

• From the viewpoint of the server, this is the same as uploading a trapdoor from a valid receiver.

2. The malicious receiver computes (or eavesdrops on) an SCF-PEKS ciphertext, and sends it to the
server.

• This is the same as sending a ciphertext from a valid sender.

3. The malicious receiver can obtain the result of the test algorithm.

Through the above procedure, the malicious receiver can obtain the result of the test algorithm. In other
words, the malicious receiver can use the server as the test oracle. SCF-PEKS therefore has to be secure, even
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Server (=Test Oracle) Malicious Receiver

1. Uploading a trapdoor

2. Sending a SCF-PEKS ciphertext

3. Getting the corresponding

test result

Figure 1: Instantiation of Test Queries in the Real World

if the malicious receiver can be admitted to issue test queries. The test queries were considered in [44], but
this definition is still weak (i.e., “Unquoted CCA-like” security [41]), since test queries cannot be repeated
adaptively as follows: Let λ∗ = [A∗

1, A
∗
2, . . . , A

∗
n] be the challenge ciphertext and tω∗

0
(resp. tω∗

1
) be the

trapdoors corresponding to the challenge keyword ω∗
0 (resp. ω∗

1). In the definition of [44], A is allowed to
issue (λ, tω) such that tω ̸∈ {tω∗

0
, tω∗

1
} and for all i ∈ [1, n], Ai ̸= A∗

i . This is not natural, since A may
compute a ciphertext λ and replace a part of λ with a part of λ∗. This scenario can easily be handled in
the above real world example by sending such a “replaced ciphertext” in the guess phase. By considering
the CCA2 security, SCF-PEKS must be secure even if a “malicious-but-legitimate” receiver can be admitted
to issue test queries adaptively. We insist that this adaptive (i.e., “CCA2-like”) security is theoretically the
natural extension of the SCF-PEKS security, which is called adaptive SCF-PEKS.

1.3 Our Contribution

In this paper, we propose a generic construction of adaptive SCF-PEKS based on anonymous IBE, selective-
tag chosen-ciphertext (IND-stag-CCA) secure tag-based encryption (TBE), and strongly existentially un-
forgeable (sUF) OTS. This is the first generic construction of SCF-PEKS. Note that IND-stag-CCA-secure
TBE can be constructed by selective-ID chosen plaintext (sID-CPA) secure IBE [38], and the digital signature
can be constructed by IBE [18]. Therefore, our result shows that adaptive SCF-PEKS can be constructed
by anonymous IBE only. That is, we show that for constructing adaptive SCF-PEKS no additional cryp-
tographic primitive is required when compared to the Abdalla et al. PEKS construction [1], even though
adaptive SCF-PEKS requires additional functionalities. This construction uses double encryption, wherein
TBE encrypts a ciphertext of an anonymous IBE. Since the ciphertext space of IBE is usually not equal
to the plaintext space of TBE, we apply the KEM/DEM framework [47] (a.k.a. hybrid encryption), where
KEM stands for key encapsulation mechanism, and DEM stands for data encapsulation mechanism.

Next, we show that there is a class of anonymous IBE that can be applied for constructing adaptive
SCF-PEKS without using hybrid encryption, and propose an adaptive SCF-PEKS construction based on
such an IBE. Although it is not fully generic, our second construction is efficient compared to the first one
since we can exclude the DEM part.

Finally, we instantiate an adaptive SCF-PEKS scheme based on the Gentry anonymous IBE scheme [29],
the Kiltz IND-stag-CCA-secure TBE scheme [38], and the Bellare-Shoup sUF OTS scheme [7], by using our
second adaptive SCF-PEKS construction. Our concrete adaptive SCF-PEKS construction (called the GKBS
construction due to the author’s name) achieves a similar level of efficiency for the costs of the test procedure
and encryption, compared to the (non-adaptive secure) SCF-PEKS scheme without random oracles proposed
by Fang et al [26] (see the comparison table (Table 2) in section 6.3).

Remark. Independent of our result, Fang et al. [27] proposed a concrete SCF-PEKS scheme with keyword
guessing attack resilience. They also considered the test oracle, and give a formal security definition. The
efficiency of our concrete instantiation (GKBS) and that of the Fang et al. SCF-PEKS scheme is almost
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Figure 2: TBE Experiment

IND-stag-CCA

ExpIND-stag-CCA
Π,A (κ) :=

[
(t∗, State)← A(κ); (pk, sk)← TBE.KeyGen(κ);

(M∗
0 ,M

∗
1 , State)← ADEC(find, pk, State); µ

$← {0, 1};
C∗

TBE ← TBE.Enc(pk, t∗,M∗
µ); µ′ ← ADEC(guess, C∗, State);

If µ = µ′, then output 1, and 0 otherwise
]

similar. Later, Guo and Yan [33] proposed more efficient SCF-PEKS scheme secure in the Fang et al. model.
Note that no generic construction is given in [27, 33], and therefore proposing a generic construction of
adaptive SCF-PEKS with keyword guessing attack resilience is an interesting future work.

2 Preliminaries

This section, we define the building tools for our generic adaptive SCF-PEKS construction. x
$← S means

that x is chosen uniformly from a set S. y←A(x) means that y is an output of an algorithm A under an
input x. We denote State as the state information transmitted by the adversary to himself across stages of
the attack in experiments.

2.1 Definitions of IND-stag-CCA Secure TBE

In the following, T AG andMTBE are a tag space of TBE and a plaintext space of TBE, respectively.

Definition 2.1 (Syntax of TBE). A TBE scheme [38] Π consists of the following three algorithms, TBE.KeyGen,
TBE.Enc and TBE.Dec:

TBE.KeyGen(1κ) : This algorithm takes as an input the security parameter κ ∈ N, and returns a public key
pk and a secret key sk.

TBE.Enc(pk, t,M) : This algorithm takes as inputs pk, a message M ∈ MTBE with a tag t ∈ T AG, and
returns a ciphertext CTBE.

TBE.Dec(sk, t, CTBE) : This algorithms takes as inputs sk, t, and CTBE, and returns M or ⊥.

Correctness is defined as follows: For all (pk, sk)← TBE.KeyGen(1κ), all M ∈MTBE , and all t ∈ T AG,
TBE.Dec(sk, t, CTBE) = M holds, where CTBE ← TBE.Enc(pk, t,M).

Next, we define the security requirement of TBE under selective-tag CCA (IND-stag-CCA) as follows.

Definition 2.2 (IND-stag-CCA). For any PPT adversary A and the security parameter κ ∈ N, we define the
experiment ExpIND-stag-CCA

Π,A (κ) in Figure 2, and define the advantage of A AdvIND-stag-CCA
Π,A (κ) as follows.

AdvIND-stag-CCA
Π,A (κ) :=

∣∣Pr [ExpIND-stag-CCA
Π,A (κ)

]
− 1

2

∣∣
Here, DEC is the decryption oracle where for input of a ciphertext (CTBE , t) for any tag t ̸= t∗, it returns
the corresponding plaintext M . A TBE scheme Π is said to be IND-stag-CCA secure if the advantage
AdvIND-stag-CCA

Π,A (κ) is negligible.
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Figure 3: IBE Experiments

IBE-IND-CPA

ExpIBE-IND-CPA
Π,A (κ) :=

[
(pk,mk)← IBE.Setup(1κ);

(M∗
0 ,M

∗
1 , ID

∗, State)← AEXT RACT (find, pk); µ
$← {0, 1};

C∗
IBE ← IBE.Enc(pk, ID∗,M∗

µ); µ′ ← AEXT RACT (guess, C∗
IBE , State);

If µ = µ′, then output 1, and 0 otherwise
]

IBE-ANO-CPA

ExpIBE-ANO-CPA
Π,A (κ) :=

[
(pk,mk)← IBE.Setup(1κ);

(ID∗
0 , ID

∗
1 ,M

∗, State)← AEXT RACT (find, pk); µ
$← {0, 1};

C∗
IBE ← IBE.Enc(pk, ID∗

µ,M
∗); µ′ ← AEXT RACT (guess, C∗

IBE , State);
If µ = µ′, then output 1, and 0 otherwise

]

2.2 Definitions of Anonymous IBE

In the following, ID andMIBE are an identity space and a plaintext space of IBE, respectively.

Definition 2.3 (Syntax of IBE). IBE scheme Π consists of the following four algorithms, IBE.Setup,
IBE.Extract, IBE.Enc and IBE.Dec:

IBE.Setup(1κ) : This algorithm takes as an input the security parameter κ ∈ N, and returns a public key pk
and a master key mk.

IBE.Extract(pk,mk, ID) : This algorithm takes as inputs an identity ID ∈ ID, and mk, and returns a secret
key corresponding to ID skID.

IBE.Enc(pk, ID,M) : This algorithm takes as inputs pk, ID ∈ ID, and a message M ∈MIBE, and returns
a a ciphertext CIBE.

IBE.Dec(skID, CIBE) : This algorithm takes as inputs skID and CIBE, and returns M or ⊥.

Correctness is defined as follows: For all (pk,mk) ← IBE.Setup(1κ), all M ∈ MIBE , and all ID ∈ ID,
IBE.Dec(skID, CIBE) = M holds, where CIBE ← IBE.Enc(pk, ID,M) and skID ← IBE.Extract(pk,mk, ID).

Next, we define the security requirement of IBE under chosen plaintext attack (IBE-IND-CPA) as follows.

Definition 2.4 (IBE-IND-CPA). For any PPT adversary A and the security parameter κ ∈ N, we define the
experiment ExpIBE-IND-CPA

Π,A (κ) in Figure 3, and define the advantage of A AdvIBE-IND-CPA
Π,A (κ) as follows.

AdvIBE-IND-CPA
Π,A (κ) :=

∣∣Pr [ExpIBE-IND-CPA
Π,A (κ)

]
− 1

2

∣∣
Here, EXT RACT is the extraction oracle for input of an identity ID it returns the corresponding secret

key skID. Note that ID∗ is not allowed as input to EXT RACT in the IBE-IND-CPA experiment.
An IBE scheme Π is said to be IBE-IND-CPA secure if the advantage AdvIBE-IND-CPA

Π,A (κ) is negligible.

Next, we define anonymity experiment of IBE under CPA (IBE-ANO-CPA).

Definition 2.5 (IBE-ANO-CPA). For any PPT adversary A and the security parameter κ ∈ N, we define the
experiment ExpIBE-ANO-CPA

Π,A (κ) in Figure 3, and define the advantage of A AdvIBE-ANO-CPA
Π,A (κ) as follows.

AdvIBE-ANO-CPA
Π,A (κ) :=

∣∣Pr [ExpIBE-ANO-CPA
Π,A (κ)

]
− 1

2

∣∣
ID∗

0 and ID∗
1 are not allowed as input to EXT RACT in the IBE-ANO-CPA experiment. An IBE scheme

Π is said to be IBE-ANO-CPA secure if the advantage AdvIBE-ANO-CPA
Π,A (κ) is negligible.
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Figure 4: OTS Experiment

one-time sUF-CMA

Expone-time sUF-CMA
Π,A (κ) :=

[
(Ks,Kv)← Sig.KeyGen(1κ); (M,State)← A(Kv);

σ ← Sign(Ks,M); (M∗, σ∗)← A(State, σ);
If (M∗, σ∗) ̸= (M,σ) and Verify(Kv, σ

∗,M∗) = 1, then output 1, and 0 otherwise]

Table 1: Oracles used in SCF-PEKS Experiments

T RAP T EST
This is the trapdoor oracle for an input keyword ω, This is the test oracle for an input (λ, tω)
it returns a trapdoor tω. Note that A cannot query which satisfies (λ, tω) ̸∈ {(λ∗, tω∗

0
), (λ∗, tω∗

1
)},

the challenge keywords ω∗
0 and ω∗

1 to T RAP. it returns the result of the test algorithm.

Definition 2.6 (Anonymous IBE). An IBE scheme is said to be anonymous IBE if the IBE scheme is both
IBE-IND-CPA secure and IBE-ANO-CPA secure.

2.3 Definitions of sUF OTS

In the following,MSig is a message space of OTS.

Definition 2.7 (Syntax of OTS). A strongly existentially unforgeable (sUF) OTS against adaptively chosen
message attack (CMA) (e.g., [7]) consists of the following three algorithms, Sig.KeyGen, Sign and Verify:

Sig.KeyGen(1κ) : This algorithm takes as an input a security parameter 1κ (κ ∈ N), and returns a sign-
ing/verification key pair (Ks,Kv).

Sign(Ks,M) : This algorithm takes as inputs Ks and a message M ∈MSig, and returns a signature σ.

Verify(Kv, σ,M) : This algorithm takes as inputs Kv, σ, and M , and returns 1 if σ is a valid signature of
M , and 0 otherwise.

Correctness is defined as follows: For all (Ks,Kv)← Sig.KeyGen(1κ) and allM ∈MSig, Verify(Kv, σ,M) =
1 holds, where σ ← Sign(Ks,M).

Definition 2.8 (one-time sUF-CMA). For any PPT adversary A and the security parameter κ ∈ N, we de-
fine the experiment Expone-time sUF-CMA

Π,A (κ) in Figure 4, and define the advantage of A Advone-time sUF-CMA
Π,A (κ)

as follows.

Advone-time sUF-CMA
Π,A (κ) := Pr

[
Expone-time sUF-CMA

Π,A (κ)
]

A signature scheme Π is said to be one-time sUF-CMA secure if the advantage Advone-time sUF-CMA
Π,A (κ) is

negligible.
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Figure 5: SCF-PEKS Experiments

Consistency

ExpSCF-PEKS-CONSIST
Π,A (κ) :=

[
(pkS , skS)← SCF-PEKS.KeyGenS(1

κ); (pkR, skR)← SCF-PEKS.KeyGenR(1
κ);

(ω, ω′)← A(pkS , pkR);ω ̸= ω′; λ← SCF-PEKS.Enc(pkS , pkR, ω); tω′ ← SCF-PEKS.Trapdoor(skR, ω
′);

If SCF-PEKS.Test
(
λ, skS , tω′

)
= 1, then output 1 and 0 otherwise

]
IND-CKA-SSK

ExpIND-CKA-SSK
Π,A (κ) :=

[
(pkS , skS)← SCF-PEKS.KeyGenS(1

κ); (pkR, skR)← SCF-PEKS.KeyGenR(1
κ);

(ω∗
0 , ω

∗
1 , State)← AT RAP(find, pkS , skS , pkR); µ

$← {0, 1}; λ∗ ← SCF-PEKS.Enc(pkS , pkR, ω
∗
µ)

µ′ ← AT RAP(guess, λ∗, State); If µ = µ′, then output 1, and 0 otherwise
]

Adaptive-IND-CKA-AT

ExpAdaptive-IND-CKA-AT
Π,A (κ) :=

[
(pkS , skS)← SCF-PEKS.KeyGenS(1

κ); (pkR, skR)← SCF-PEKS.KeyGenR(1
κ);

(ω∗
0 , ω

∗
1 , State)← AT EST (find, pkS , pkR, skR); µ

$← {0, 1}; λ∗ ← SCF-PEKS.Enc(pkS , pkR, ω
∗
µ);

µ′ ← AT EST (guess, λ∗, State); If µ = µ′, then output 1, and 0 otherwise
]

3 Definitions of Adaptive SCF-PEKS

In this section, we define security requirements of SCF-PEKS. In the following, K is a keyword space.

Definition 3.1 (Syntax of SCF-PEKS). An SCF-PEKS scheme Π consists of the following five algorithms,
SCF-PEKS.KeyGenS, SCF-PEKS.KeyGenR, SCF-PEKS.Trapdoor, SCF-PEKS.Enc and SCF-PEKS.Test:

SCF-PEKS.KeyGenS(1
κ) : This server key generation algorithm takes as input the security parameter 1κ

(κ ∈ N), and returns a server public key pkS and a server secret key skS.

SCF-PEKS.KeyGenR(1
κ) : This receiver key generation algorithm takes as input the security parameter 1κ

(κ ∈ N), and returns a receiver public key pkR and a receiver secret key skR.

SCF-PEKS.Trapdoor(skR, ω) : This trapdoor generation algorithm takes as input skR and a keyword ω ∈ K,
and returns a trapdoor tω corresponding to keyword ω.

SCF-PEKS.Enc(pkS , pkR, ω) : This encryption algorithm takes as input pkR, pkS, and ω, and returns a
ciphertext λ.

SCF-PEKS.Test(λ, skS , tω) This text algorithm takes as input λ, skS, and tω, and returns 1 if ω = ω′, where
ω′ is the keyword which was used for computing λ, and 0 otherwise.

A sender makes a ciphertext λ of a keyword ω′ using both pkS and pkR, and sends λ to the server. The
server runs SCF-PEKS.Test(λ, skS , tω), whose output is 1 if ω = ω′, and 0 otherwise.

We require the correctness property as follows: For all (pkS , skS)← SCF-PEKS.KeyGenS(1
κ), all (pkR, skR)←

SCF-PEKS.KeyGenR(1
κ), and all ω ∈ K, SCF-PEKS.Test(λ, skS , tω) = 1 holds, where λ← SCF-PEKS.Enc(pkR,

pkS , ω) and tω ← SCF-PEKS.Trapdoor(skR, ω).
Next, we consider two security requirements “consistency” and “keyword privacy”.

Definition 3.2 (Consistency). For any PPT adversary A and the security parameter κ ∈ N, we define the
experiment ExpSCF-PEKS-CONSIST

Π,A (κ) in Figure 5, and define the advantage of A AdvSCF-PEKS-CONSIST
Π,A (κ)

as follows.
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AdvSCF-PEKS-CONSIST
Π,A (κ) := Pr

[
ExpSCF-PEKS-CONSIST

Π,A (κ)
]

The SCF-PEKS scheme Π is said to be computationally consistent if the advantage AdvSCF-PEKS-CONSIST
Π,A (κ)

is negligible.

Next, we define two security notions for keyword privacy, “indistinguishability against chosen keyword
attack with the server’s secret key” (IND-CKA-SSK for short) and “indistinguishability against chosen key-
word attack with all trapdoors” (IND-CKA-AT for short). In the IND-CKA-SSK experiment, an adversary
A is assumed to be a malicious server. Therefore, A is given the server’s secret key skS , whereas A cannot
obtain the receiver’s secret key skR. Instead of obtaining skR, A can issue a query to a trapdoor oracle
T RAP, which is defined in Table 1. As in the definition of [44], A computes (pkS , skS), and gives pkS to
the challenger. So, we omit skS in the IND-CKA-SSK experiment.

Definition 3.3 (IND-CKA-SSK). For any PPT adversary A and the security parameter κ ∈ N, we define
the experiment ExpIND-CKA-SSK

Π,A (κ) in Figure 5, and define AdvIND-CKA-SSK
Π,A (κ) as follows.

AdvIND-CKA-SSK
Π,A (κ) :=

∣∣Pr [ExpΠ,AIND-CKA-SSK(κ)
]
− 1

2

∣∣
An SCF-PEKS scheme Π is said to be IND-CKA-SSK-secure if the advantage AdvIND-CKA-SSK

Π,A (κ) is
negligible.

Next, we define the adaptive-IND-CKA-AT experiment. In this experiment, an adversary A is assumed to be
a malicious-but-legitimate receiver or outsider. Therefore, A is given the receiver’s secret key skR, whereas
A cannot obtain the server’s secret key skS . This means that A knows all trapdoors. A can issue a query
to a test oracle T EST , which is defined in Table 1. Here we assume that tω is honestly generated.

Definition 3.4 (Adaptive-IND-CKA-AT). For any PPT adversary A and the security parameter κ ∈ N,
we define the experiment ExpAdaptive-IND-CKA-AT

Π,A (κ) in Figure 5, and define AdvAdaptive-IND-CKA-AT
Π,A (κ) as

follows.

AdvAdaptive-IND-CKA-AT
Π,A (κ) =

∣∣Pr [ExpAdaptive-IND-CKA-AT
Π,A (κ)

]
− 1

2

∣∣
An SCF-PEKS scheme is said to be adaptive-IND-CKA-AT-secure if the advantage is negligible for any

PPT adversary A in the following experiment.

4 Anonymous IBE Implies Adaptive SCF-PEKS

4.1 A Generic Construction of Adaptive SCF-PEKS

This section gives a generic construction of adaptive SCF-PEKS based on anonymous IBE, IND-stag-CCA
TBE, and sUF OTS. In our construction, a ciphertext of an anonymous IBE scheme (say CIBE) is used
as a “plaintext” of a TBE scheme to hide keyword information from an adversary. From the result of the
decryption of the TBE scheme, the ciphertext CIBE must be obtained. In addition, usually, CIBE ̸∈ MTBE .
To handle this condition, we apply the KEM/DEM framework [47] (a.k.a. hybrid encryption), where KEM
stands for key encapsulation mechanism, and DEM stands for data encapsulation mechanism. By using TBE
KEM (see section 6 of [38]), compute (K,CTBE)← TBE.Enc(pk, t), and encrypt CIBE as a plaintext of the
CCA secure DEM such that e = EK(CIBE). Note that a CCA-secure DEM can be generically constructed
from any pseudorandom functions without redundancy [39]. So, even if we assume that a CCA secure DEM
exists, we need no additional cryptographic primitive, except anonymous IBE, for constructing adaptive
SCF-PEKS. From here, we assume that CIBE ∈ MTBE and e = EK(CIBE) is implicitly included in CTBE
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(i.e., CIBE is obtained from the decryption of CTBE). Note that section 5 gives an extended construction
(which does not require hybrid encryption).

In the following construction, as in the Abdalla et al. PEKS construction [1], a keyword ω is regarded as
an “identity” of IBE. As in the Kiltz CCA-secure PKE construction [38] based on IND-stag-CCA TBE, a
verification key Kv is regarded as a “tag” of TBE. We use a target collision-resistant (TCR) hash function [6]
Htag : {0, 1}∗ → T AG. We setMSig = CTBE ×MIBE , where CTBE is a ciphertext space of the underlying
TBE.

Protocol 4.1 (Our First Adaptive SCF-PEKS Construction).

SCF-PEKS.KeyGenS(1
κ): Run (pkS , skS)← TBE.KeyGen(1κ), and output (pkS , skS).

SCF-PEKS.KeyGenR(1
κ): Run (pkR, skR)← IBE.KeyGen(1κ), and output (pkR, skR).

SCF-PEKS.Trapdoor(skR, ω): Run tω ← IBE.Extract(skR, ω), and output tω.

SCF-PEKS.Enc(pkS , pkR, ω): Generate (Ks,Kv)
$← Sig.KeyGen, compute t = Htag(Kv), choose R

$←MIBE,
run CIBE ← IBE.Enc(pkR, ω,R), CTBE ← TBE.Enc(pkS , t, CIBE), and σ ← Sign(Ks, (CTBE , R)), and
output λ = (CTBE ,Kv, σ).

SCF-PEKS.Test(λ, skS , tω): Let λ = (CTBE ,Kv, σ). Compute t = Htag(Kv), run C ′
IBE ← TBE.Dec(skS ,

t, CTBE) and R′ ← IBE.Dec(tω, C
′
IBE). Output 1 if 1=Verify(Kv, σ, (CTBE , R

′)), and 0 otherwise.

Obviously, correctness holds if the underlying TBE, IBE, and OTS satisfy correctness.
Intuitively, an adversary (in the IND-CKA-SSK experiment) that has the server’s secret key (i.e., a

decryption key of TBE) can compute CIBE from CTBE . However, since such an adversary does not have
trapdoors to the challenge keywords, no information about keywords leaks from a ciphertext of an anonymous
IBE, even if R is revealed from σ (without contradicting unforgeable property). In other words, we can reduce
from the IND-CKA-SSK experiment to the IBE-ANO-CPA experiment. TBE is applied to hide information
about keywords from an adversary (in the adaptive-IND-CKA-AT experiment) that has all the trapdoors. In
other words, the adversary loses the opportunity to apply trapdoors to challenge keywords to the challenge
ciphertext. In addition, due to the sUF property of the underlying signature scheme and the TCR property
of Htag, the adversary cannot issue a test query that the simulator cannot answer.

Non-adaptive SCF-PEKS construction: By observing our construction, a non-adaptive SCF-PEKS
(i.e., IND-CKA-AT without test queries, which has the same security requirement as Fang et al. [26]) can
be constructed by reducing the one-time signature part and replacing the TBE part with CPA-secure PKE
(i.e., chosen plaintext security is enough). A ciphertext is (CPKE , R), where CIBE ← IBE.Enc(pkR, ω,R)
and CPKE ← PKE.Enc(pkS , CIBE). As in our adaptive SCF-PEKS construction, we assume that CIBE ∈
MPKE , whereMPKE is the message space of the underlying PKE scheme. The test procedure is described
as follows. Compute C ′

IBE ← PKE.Dec(skS , CPKE) and R′ ← IBE.Dec(tω, C
′
IBE). Output 1 if R′ = R, and

0 otherwise.

4.2 Security Analysis of our First Adaptive SCF-PEKS construction

Theorem 4.1. The SCF-PEKS scheme constructed by our method is computationally consistent if the
underlying IBE scheme is IBE-IND-CPA secure and the underlying signature is one-time sUF-CMA secure.

Proof. Let A be an adversary who breaks the computational consistency of SCF-PEKS constructed by the
protocol 1, and CIBE be the challenger of the IBE-IND-CPA experiment. Then, we can construct an algorithm
B that breaks the IBE-IND-CPA security of the IBE scheme. First, CIBE runs IBE.Setup(1κ), and gives pk
to B. B sets pk as pkR, runs (pkS , skS)← TBE.KeyGen(1κ), and gives (pkR, pkS) to A. B obtains keywords

ω and ω′ from A. B chooses R0, R1
$←MIBE as the challenge messages, and sends (ω,R0, R1) to CIBE. CIBE

gives C∗
IBE ← IBE.Enc(pkR, ω,Rµ) to B, where µ ∈ {0, 1}. B gets a trapdoor tω′ by issuing an EXT RACT
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query. We consider two cases: (1) IBE.Dec(tω′ , C∗
IBE) ∈ {R0, R1}, and (2) IBE.Dec(tω′ , C∗

IBE) ̸∈ {R0, R1},
i.e., the decryption result of C∗

IBE is not the plaintext. In the case (1), let the output be Rµ′ . Then B
outputs µ′ and breaks the IND-CPA security of the IBE scheme.

In the case (2), we construct an algorithm B′ that breaks one-time sUF-CMA security as follows. Let
CSig be the challenger of the one-time sUF-CMA experiment that gives K∗

v to B′. B′ runs (pkS , skS) ←
TBE.KeyGen(1κ) and (pkR, skR) ← IBE.Setup(1κ) and gives (pkR, pkS) to A. B′ obtains keywords ω and

ω′ from A. B′ compute t∗ = Htag(K
∗
v ), choose R∗ $← MIBE , run C∗

IBE ← IBE.Enc(pkR, ω,R
∗), and

CTBE ← TBE.Enc(pkS , t
∗, C∗

IBE). Send (C∗
TBE , R

∗) to CSig. CSig sends σ∗ ← Sign(K∗
s , (C

∗
TBE , R

∗)) to
B′. Set λ∗ = (C∗

TBE ,K
∗
v , σ

∗) B′ computes tω′ ← IBE.Extract(skR, ω
′). Now, IBE.Dec(tω′ , C∗

IBE) ̸= R∗ but
SCF-PEKS.Test(λ∗, skS , tω′) = 1. That is, Verify(K∗

v , σ
∗, (C∗

TBE , IBE.Dec(tω′ , C∗
IBE))) = 1 holds. B′ outputs

(σ∗, (C∗
TBE , IBE.Dec(tω′ , C∗

IBE))) as a forged signature and message pair.

Theorem 4.2. The SCF-PEKS scheme constructed by our method is IND-CKA-SSK secure if the underlying
IBE scheme is IBE-ANO-CPA secure.

Proof. Let A be an adversary who breaks the IND-CKA-SSK security of SCF-PEKS constructed by the
protocol 1, and C be the challenger of the IBE-ANO-CPA experiment. Then we can construct an algorithm
B that breaks the IBE-ANO-CPA security of the underlying IBE scheme. First, C runs IBE.Setup(1κ), and
gives pk to B. B sets pk as pkR. A runs (pkS , skS) ← TBE.KeyGen(1κ), and gives pkS to B. For a T RAP
query ωi, B forwards ωi to C as an EXT RACT query of the IBE scheme, gets tωi

, and answers tωi
to A.

In the Challenge phase, A sends the challenge keywords ω∗
0 and ω∗

1 to B. B chooses R∗ $← MIBE , and
computes the challenge ciphertext as follows:

1. B sends (R∗, ω∗
0 , ω

∗
1) to C.

2. C gives C∗
IBE ← IBE.Enc(pkR, ω

∗
µ, R

∗) to B, where µ ∈ {0, 1}.

3. B generates (K∗
s ,K

∗
v )

$← Sig.KeyGen, and computes t∗ = Htag(K
∗
v ), C

∗
3 ← TBE.Enc(pkS , t

∗, C∗
IBE),

and σ∗ ← Sign(K∗
s , (C

∗
TBE , R

∗)).

4. B sends λ∗ = (C∗
TBE ,K

∗
v , σ

∗) to A.

Note that A can compute C∗
IBE ← TBE.Dec(skS ,Htag(K

∗
v ), C

∗
TBE). In addition, R∗ may be revealed from

σ∗ without contradicting unforgeability property. However, this situation is the same as in the IBE-ANO-
CPA experiment, where A inputs ID∗

0 := ω∗
0 , ID

∗
1 := ω∗

1 , and M∗ := R∗, and gets the challenge ciphertext
C∗

IBE . Finally, B outputs µ′, where µ′ ∈ {0, 1} is the output of A.

Theorem 4.3. The SCF-PEKS scheme constructed by our method is adaptive-IND-CKA-AT secure if the
underlying TBE scheme is IND-stag-CCA secure, the underlying signature is one-time sUF-CMA secure,
and Htag is a TCR hash function.

Proof. Let A be an adversary who breaks the adaptive-IND-CKA-AT security of SCF-PEKS constructed
by the protocol 1, and C be the challenger of the IND-stag-CCA experiment. Then, we can construct
an algorithm B that breaks the IND-stag-CCA security of the underlying TBE scheme. First, B runs
(K∗

s ,K
∗
v ) ← Sig.KeyGen(1κ), and sends t∗ := Htag(K

∗
v ) to C as the challenge tag. C runs TBE.KeyGen(1κ),

and gives pk to B. B sets pk as pkS . A runs (pkR, skR) ← IBE.Setup(1κ), and gives pkR to B. Let
(SCF-PEKS.Enc(pkS , pkR, ωj) := (CTBE ,Kv, σ), tωj ) be a T EST query, where ωj ∈ ID. B computes t =
Htag(Kv), and answers as follows:

t ̸= t∗ : B can use the DEC oracle of the underlying TBE scheme as follows.

1. B forwards (CTBE , t) to C as a DEC query of the TBE scheme.

2. C answers C ′
IBE ← TBE.Dec(sk, t, CTBE).

• Note that if t is not the legitimate tag of CTBE , then C answers ⊥. In this case, B answers 0.
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3. B computes R′ ← IBE.Dec(tωj , C
′
IBE).

4. If Verify(Kv, σ, (CTBE , R
′)) = 1, then B returns 1, and 0 otherwise.

t = t∗ : If Kv ̸= K∗
v , then B breaks the TCR property of Htag. If Kv = K∗

v (we call this a forge1 event),
then B gives a random answer in C, and aborts.

In the Challenge phase, A sends the challenge keywords ω∗
0 and ω∗

1 to B. B chooses R∗ $← MIBE , and
computes the challenge ciphertext as follows:

1. B computes CIBE,0 ← IBE.Enc(pkR, ω
∗
0 , R

∗) and CIBE,1 ← IBE.Enc(pkR, ω
∗
1 , R

∗).

2. B sends (M∗
0 ,M

∗
1 ) := (CIBE,0, CIBE,1) to C as the challenge messages of the IND-stag-CCA experiment

of the TBE scheme.

3. C gives C∗
TBE ← TBE.Enc(pkS , t

∗,M∗
µ) to B.

4. B computes σ∗ ← Sign(K∗
s , (C

∗
TBE , R

∗)), and sends λ∗ = (C∗
TBE ,K

∗
v , σ

∗) to A.
Again, let (SCF-PEKS.Enc(pkS , pkR, ωj) := (CTBE ,Kv, σ), tωj

) be a T EST query, where ωj ∈ ID. B
computes t = Htag(Kv), and answers as follows:

In the case tωj ∈ {tω∗
0
, tω∗

1
} :

t = t∗ : If Kv ̸= K∗
v , then B breaks the TCR property of Htag. If Kv = K∗

v (we call this a forge2
event), then B gives a random answer in C, and aborts.

t ̸= t∗ : Then B can use the DEC oracle of the underlying TBE scheme as follows. .

1. B forwards (CTBE , t) to C as a DEC query of the TBE scheme.

2. C answers C ′
IBE ← TBE.Dec(sk, t, CTBE).

• Note that if t is not the legitimate tag of CTBE , then C answers ⊥. In this case, B answers
0.

3. B computes R′ ← IBE.Dec(tωj
, C ′

IBE).

4. If Verify(Kv, σ, (CTBE , R
′)) = 1, then B returns 1, and 0 otherwise.

In the case tωj ̸∈ {tω∗
0
, tω∗

1
} :

(CTBE,Kv, σ) = (C∗
TBE,K∗

v , σ
∗) : B returns 0, since (C∗

TBE ,K
∗
v , σ

∗) is an SCF-PEKS ciphertext
of either ω∗

0 or ω∗
1 .

(CTBE,Kv, σ) ̸= (C∗
TBE,K∗

v , σ
∗) : B runs the same simulation as in the find stage.

If B does not abort, then our simulation is perfect. Finally, B outputs µ′, where µ′ ∈ {0, 1} is the output of
A.

Next, we prove that Pr[forge] := Pr[forge1 ∨ forge2] is negligible. We construct an algorithm B′ which can
win the sUF game with probability at least Pr[forge]. B′ obtains K∗

v from the sUF challenger, instead of
executing Sig.KeyGen(1κ). B′ runs (pkS , skS)← TBE.KeyGen(1κ), and gives pkS to A. A runs (pkR, skR)←
IBE.Setup(1κ), and gives pkR to B. Since B′ has skS , B′ can answer any T EST queries. In the challenge

phase of the adaptive-IND-CKA-AT experiment, B′ computes t∗ = Htag(K
∗
v ), chooses R∗ $← MIBE , runs

C∗
IBE ← IBE.Enc(pkR, ωµ, R), and C∗

TBE ← TBE.Enc(pkS , t
∗, C∗

IBE), sets M∗ := (C∗
TBE , R

∗), sends M∗ to
the sUF challenger, and obtains σ∗ from the sUF challenger. Therefore, B′ makes at most one signature
query. Note that we do not have to care about the value µ ∈ {0, 1}, since we only have to guarantee
that λ∗ = (C∗

TBE ,K
∗
v , σ

∗) is a valid SCF-PEKS ciphertext. In the forge events, A sends a T EST query
((CTBE ,Kv, σ), tωj

) with Kv = K∗
v .
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forge1 : In this case, B′ can obtain a signature without issuing the signature query. B′ computes CIBE ←
TBE.Dec(skS ,Htag(Kv), CTBE) and R′ ← IBE.Dec(tωj , CIBE). If ((CTBE , R

′), σ) is not a valid signa-
ture pair, then B′ returns 0 as the answer of this T EST query. Otherwise, if ((CTBE , R

′), σ) is a valid
signature pair, then B′ submits a forged pair ((CTBE , R

′), σ) to the sUF challenger and wins.

forge2 : Now tωj
∈ {tω∗

0
, tω∗

1
}. Then (CTBE , σ) ̸= (C∗

TBE , σ
∗). B′ computes CIBE ← TBE.Dec(skS ,

Htag(Kv), CTBE) and R′ ← IBE.Dec(tωj , CIBE). If ((CTBE , R
′), σ) is not a valid signature pair, then

B′ returns 0 as the answer of this T EST query. Otherwise, if ((CTBE , R
′), σ) is a valid signature pair,

then B′ submits a forged pair ((CTBE , R
′), σ) to the sUF challenger and wins.

Therefore, Pr[forge] := Pr[forge1 ∨ forge2] is negligible, since the underlying signature is sUF.

4.3 IBE with Partitioned Ciphertext Structure (PCS-IBE)

The role of the KEM/DEM framework in the first adaptive SCF-PEKS construction (presented in section
4) is that an IBE ciphertext is regarded as a TBE plaintext to hide keyword information from an adversary
that has mk (this adversary appears in the Adaptive-IND-CKA-AT experiment). In this section, we propose
an extension of the first SCF-PEKS construction, which need not require hybrid encryption. Unfortunately,
we assume that the underlying IBE belongs a special class, however, while previously known pairing-based
anonymous IBE schemes [10, 12, 14, 15, 19, 29, 46] belong to this class. In other words, we do not have to
apply hybrid encryption as long as a previously known anonymous IBE scheme (enumerated in the above
list) is used as a building tool of adaptive SCF-PEKS.

Here, we show that the KEM/DEM framework can be reduced if the underlying IBE satisfies the following
properties (called IBE with partitioned ciphertext structure (PCS-IBE)1).

Definition 4.1 (PCS-IBE). IBE is said to be PCS-IBE if its ciphertext CIBE can be split into two parts
CIBE := (CIBE,1, CIBE,2) with the following properties.

• CIBE,1 is a single group element.

– Note that the essential condition is CIBE,1 ∈ MTBE. However, since Kiltz [38] proposed a TBE
scheme with MTBE = G and MTBE = GT , respectively, where (G,GT ) is a bilinear group, it is
enough to require that CIBE,1 is a single group element.

• CIBE,1 only includes an identity ID (i.e., CIBE,2 is independent of ID).

• For any common message M and distinct identities ID and ID′ (ID ̸= ID′), CIBE,2 can be commonly
used for (CIBE,1, CIBE,2) ← IBE.Enc(pk, ID,M ; s) and (C ′

IBE,1, CIBE,2) ← IBE.Enc(pk, ID′,M ; s) if
the same random number s is used for both encryptions.

– That is, both (CIBE,1, CIBE,2) and (C ′
IBE,1, CIBE,2) are valid ciphertexts.

This structure is used for computing the challenge ciphertext in the proof of the adaptive IND-CKA-AT. In
the proof, no matter which plaintext (C0,IBE,1, C1,IBE,1) is encrypted, both C0,IBE,2 and C1,IBE,2 can be
used as a part of the challenge ciphertext, since C0,IBE,2 = C1,IBE,2 due to the PCS property.

Here, we explain the above structure in the Boneh-Franklin (BF) IBE scheme [10] case due to its easy-
to-understand structure as follows: For a message M and an identity ID, a ciphertext (CIBE,1, CIBE,2) is
described as CIBE,1 = M · e(Y,Hash(ID)s) and CIBE,2 = gs, where Y is a public key of the key authority,
and s ∈ Zp (with a prime order p) is a random number of an encryptor’s choice. Then, for the common
message M , an another identity ID′, and the same random number s, (C ′

IBE,1, CIBE,2) is also a valid
ciphertext, where C ′

IBE,1 = M · e(Y,Hash(ID′)s).
In the Gentry IBE case (which is used for our instantiations), for a message M and an identity ID, a

ciphertext (CIBE,1, CIBE,2) is described as CIBE,1 = (g′g−ID)s and CIBE,2 =
(
e(g, g)s,M · e(g, h)−s

)
. So,

1Note that our partitioned requirement is different from that of partitioned IBKEM [2].
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for the common message M , an another identity ID′, and the same random number s, (C ′
IBE,1, CIBE,2) is

also a valid ciphertext, where C ′
IBE,1 = (g′g−ID′

)s.

4.4 The Second Adaptive SCF-PEKS Construction based on PCS-IBE

Although SCF-PEKS.KeyGenS, SCF-PEKS.KeyGenR, and SCF-PEKS.Trapdoor are the same as these of the
first adaptive SCF-PEKS construction (protocol 2), for the sake of clarity, we descrbe these algorithms in
the following. Let a ciphertext space of the underlying PCS-IBE be CIBE = CIBE,1 × CIBE,2. We set
CIBE,1 =MTBE andMSig = CIBE,2 × CTBE ×MIBE .
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Protocol 4.2 (Our Second Adaptive SCF-PEKS Construction w/o Hybrid Encryption).

SCF-PEKS.KeyGenS(1
κ): Run (pkS , skS)← TBE.KeyGen(1κ), and output (pkS , skS).

SCF-PEKS.KeyGenR(1
κ): Run (pkR, skR)← IBE.KeyGen(1κ), and output (pkR, skR).

SCF-PEKS.Trapdoor(skR, ω): Run tω ← IBE.Extract(skR, ω), and output tω.

SCF-PEKS.Enc(pkS , pkR, ω): Generate (Ks,Kv)
$← Sig.KeyGen, compute t = Htag(Kv), choose R

$←MIBE,
run (CIBE,1, CIBE,2) ← IBE.Enc(pkR, ω,R), CTBE ← TBE.Enc(pkS , t, CIBE,1), and σ ← Sign(Ks,
(CIBE,2, CTBE , R)), and output λ = (CIBE,2, CTBE ,Kv, σ).

SCF-PEKS.Test(λ, skS , tω): Let λ = (CIBE,2, CTBE ,Kv, σ). Compute t = Htag(Kv), and run C ′
IBE,1 ←

TBE.Dec(skS , t, CTBE) and R′ ← IBE.Dec(tω, (C
′
IBE,1, CIBE,2)). Output 1 if 1=Verify(Kv, σ, (CIBE,2,

CTBE , R
′)), and 0 otherwise.

The security proofs are the same as the first ones, except the construction of the challenge ciphertext
in the adaptive-IND-CKA-AT experiment as follows: In the Challenge phase, B needs to compute the SCF-
PEKS challenge ciphertext λ∗, although B does not know µ ∈ {0, 1} chosen by the TBE challenger C. So,
our PCS property comes into effect to compute λ∗, since B can use both C0,IBE,2 and C1,IBE,2 (so we set
C∗

IBE,2 = C0,IBE,2). More concretely, in the Challenge phase, A sends the challenge keywords ω∗
0 and ω∗

1 to

B, B chooses R∗ $←MIBE , and computes the challenge ciphertext as follows:

1. B computes (C0,IBE,1, C0,IBE,2)← IBE.Enc(pkR, ω
∗
0 , R

∗) and (C1,IBE,1, C1,IBE,2)← IBE.Enc(pkR, ω
∗
1 ,

R∗) using the same random number (i.e., C0,IBE,2 = C1,IBE,2). B sets C∗
IBE,2 := C0,IBE,2.

• Note that both (C0,IBE,1, C
∗
IBE,2) and (C1,IBE,1, C

∗
IBE,2) are valid ciphertexts of the underlying

IBE scheme. This is the reason we require anonymous “PCS”-IBE.

2. B sends (M∗
0 ,M

∗
1 ) := (C0,IBE,1, C1,IBE,1) to C as the challenge messages.

3. C gives C∗
TBE ← TBE.Enc(pkS , t

∗,M∗
µ) to B, where µ ∈ {0, 1} is the challenge bit.

4. B computes σ∗ ← Sign(K∗
s , (C

∗
IBE,2, C

∗
TBE , R

∗)), and sends λ∗ = (C∗
IBE,2, C

∗
TBE ,K

∗
v , σ

∗) to A.

Then, λ∗ is a valid ciphertext due to the PCS property. Since B does not have to consider the bit µ chosen
by C, B can use C∗

IBE,2.
As in the first one, non-adaptive SCF-PEKS can be constructed by reducing the one-time signature part

and replacing the TBE part with CPA-secure PKE. Let the underlying IBE be PCS, then a ciphertext is
(CIBE,2, CPKE , R), where (CIBE,1, CIBE,2)← IBE.Enc(pkR, ω,R) and CPKE ← PKE.Enc(pkS , CIBE,1).

4.5 Comparison Between Our First/Second Adaptive SCF-PEKS Construc-
tions

In the first adaptive SCF-PEKS construction (protocol 1, section 4), the DEM part e = Ek(CIBE) is implicitly
included in CTBE . Here, we explicitly include e in a SCF-PEKS ciphertext as follows: λ1 = (e, CTBE ,Kv, σ)
(subscript 1 means that it is a ciphertext of the first adaptive SCF-PEKS construction). On the contrary,
λ2 = (CIBE,2, CTBE ,Kv, σ) in the second SCF-PEKS construction (proposed in this section, protocol 2,
subscript 2 means that it is a ciphertetxt of the second adaptive SCF-PEKS construction). Since the size
of e is at least the same size of CIBE , by excluding the DEM part, the size of the ciphertext of the second
construction (say |λ2|) is smaller than that of the first one (say |λ1|): i.e., |λ1| ≥ |CIBE,1| + |λ2|. Since
the ciphertext size is the most bottlenecked point of our adaptive SCF-PEKS construction compared to the
concrete constructions, we can say that the second adaptive SCF-PEKS construction is more efficient than
the first, though it is not fully generic.
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Table 2: Comparison between our constructions and the Fang et al. SCF-PEKS

Comp. λ Comp. Test Length of λ Adaptive
Security

Fang et al. [26] 2ME(G) + 3ME(GT ) ME(G) + 2ME(GT ) + 2BM 2|G|+ 2|GT | No
(11ME(G)) (7ME(G) + 2BM) (2382 bits)

GBBS 4ME(G) + 2ME(GT ) ME(G) +ME(GT ) +BM 3|G|+ 3|GT | No
construction (10ME(G)) (4ME(G) +BM) (3573 bits)

GKBS 8ME(G) + 2ME(GT ) 5ME(G) +ME(GT ) +BM 7|G|+ 2|GT |+ |Zp|+ κ Yes
construction (14ME(G)) (8ME(G) +BM) (3577 bits)

5 A Concrete Instantiation of Adaptive SCF-PEKS

5.1 The GKBS Construction

Here, by using the extended version of our adaptive SCF-PEKS construction, we instantiate an adaptive SCF-
PEKS scheme based on the Gentry (PCS) anonymous IBE [29], the Kiltz IND-stag-CCA-secure TBE [38],
and the Bellare-Shoup sUF one-time signature [7]. We call it the GKBS construction by picking up the
authors name. Let G and GT be cyclic groups of prime order p, e be an efficiently computable bilinear map
e : G×G→ GT , and Hsig : {0, 1}κ × {0, 1}∗ → Zp be a CR hash function, where each κ-bit key K specifies
a particular hash function H(K, ·) with domain {0, 1}∗. We assume that e(g, g) and e(g, h) are included in
public keys to reduce pairing computations.

Protocol 5.1. An adaptive SCF-PEKS scheme without random oracles (the GKBS construction)

SCF-PEKS.KeyGenS(1
κ): Choose g1

$← G and x1, x2, y1, y2
$← Zp. Choose g2, z ∈ G with gx1

1 = gx2
2 = z.

Compute u1 = gy1

1 and u2 = gy2

2 . Output (pkS , skS) =
(
(g1, g2, z, u1, u2), (x1, x2, y1, y2)

)
.

SCF-PEKS.KeyGenR(1
κ): Choose g, h

$← G and α
$← Zp, compute g′ = gα, and output (pkR, skR) =(

(g′, h, e(g, g), e(g, h)), α
)
.

SCF-PEKS.Trapdoor(skR, ω): For a keyword ω ∈ Zp, choose rω
$← Zp, compute hω = (hg−rω )

1
α−ω , and

output tω = (rω, hω).

SCF-PEKS.Enc(pkS , pkR, ω): Choose R
$← GT , s, r1, r2, x, y

$← Zp, and K
$← {0, 1}κ. Compute X = gx,

Y = gy, set Kv = (K,X, Y ), and compute t = Htag(Kv), CIBE,1 = (g′g−ω)s, CIBE,2 =
(
e(g, g)s, R ·

e(g, h)−s
)
, CTBE =

(
gr11 , gr22 , (ztu1)

r1 , (ztu2)
r2 , CIBE,1 · zr1+r2

)
, c = Hsig

(
K,Y ||(CIBE,2, CTBE , R)

)
,

and σ = c+ yx mod p. Output λ = (CIBE,2, CTBE , σ,Kv).

SCF-PEKS.Test(λ, skS , tω): Parse skS = (x1, x2, y1, y2), tω = (rω, hω), CIBE,2 = (f1, f2), CTBE = (v1, v2, v3,

v4, v5), and Kv = (K,X, Y ). Compute t = Htag(Kv), and check vtx1+y1

1
?
= v3 and vtx2+y2

2
?
= v4. If

not, then output 0. Otherwise, compute C ′
IBE,1 = v5/(v

x1
1 · v

x2
2 ), R′ = frω

1 · e(C ′
IBE,1, hω) · f2, and

c = Hsig

(
K,Y ||(CIBE,2, CTBE , R

′)
)
, and check gz

?
= Y Xc. If not, then output 0. Otherwise, output

1.

We assume the difficulty of the one-more-discrete-log (omdl) problem [5]2, the decisional augmented bilinear
Diffie-Hellman exponent (decisional ABDHE) problem [29], and the gap decision linear (gap DLIN) prob-
lem [38], and the collision resistance of Htag and Hsig. Then, the above SCF-PEKS instantiation is adaptive
secure in the standard model.

2We can use a discrete-log-based sUF one-time signature [30, 51] with one more Zp element.
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Next, we estimate the efficiency of the GKBS construction. Although concrete SCF-PEKS schemes have
been proposed [4, 31, 32, 44], these schemes are proved in the random oracle model. As a well-known fact,
efficient cryptographic schemes can be constructed easily if the random oracle is assumed. So, we focus
on SCF-PEKS schemes proposed by Fang et al. [26] and Khader [37], respectively, which are secure in the
standard model. Khader [37] shows that PEKS and SCF-PEKS can be constructed by using k-resilient
IBE [34] (which is an IBE scheme, wherein an adversary can obtain at most k private keys of IDs). Since
k-resilient IBE [34] is designed by applying a DDH-hard group without pairings, the Khader PEKS/SCF-
PEKS also enables pairing-free constructions. Unfortunately, the Khader PEKS/SCF-PEKS schemes require
k-dependent large number of public keys and high encryption costs. Therefore, here we compare our GKBS
construction to the Fang et al. SCF-PEKS scheme [26] in Table 2 (the Fang et al. SCF-PEKS scheme is
introduced in the Appendix). In addition, for comparison, we instantiate a non-adaptive SCF-PEKS scheme
(using the second construction). We call this the GBBS construction which is based on the Gentry IBE
scheme [29] and the linear encryption scheme presented by Boneh, Boyen, and Shacham [8] (the actual
construction of this non-adaptive SCF-PEKS scheme is given in the Appendix). The GBBS construction
achieves the same security level as that of the Fang et al. construction.

Let ME(G) and ME(GT ) be the computational costs of multi-exponentiation in G and GT , respectively,
BM be that of one bilinear map computation, and |G|, |GT |, and |Zp| be the bit-length of the representation
of an element of G, GT , and Zp, respectively. More precisely, we assume that the security parameter κ = 170.
Therefore, p is a 170-bit prime, |G| = 171 bits and |GT | = 1020 bits: i.e., we assume that G is an elliptic
curve defined over finite field Fp and GT is a multiplicative group on finite field F×

pk with the embedded
degree k = 6. In this case, the computational complexity over GT is approximately three times higher than
that of G. So, we estimate ME(GT ) = 3ME(G), and write them in Table 2 in parentheses. Although in
the GKBS construction the length of the ciphertext is larger than that of the Fang et al. construction, the
computation of the Test algorithm is faster (if BM < ME(G) which usually holds). Therefore, there is not
much efficiency difference between our GKBS construction and the Fang et al. scheme, although the GKBS
construction enables adaptive security.

6 Conclusion

In this paper, from a theoretical perspective, we show that no additional cryptographic primitive is required
compared to the Abdalla et al. PEKS construction, even though adaptive SCF-PEKS requires additional
functionalities.

From a practical perspective, since malicious receivers can use the server as the test oracle, our adaptive
security notion is applicable in practice. In addition, our concrete adaptive SCF-PEKS construction (the
GKBS construction) achieves a similar level of efficiency for the costs of the test procedure and encryption,
compared to the (non-adaptive secure) SCF-PEKS scheme without random oracles proposed by Fang et al,
even though adaptive SCF-PEKS requires additional functionalities.
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[19] Léo Ducas. Anonymity from asymmetry: New constructions for anonymous HIBE. In CT-RSA 2010,
pages 148–164, 2010.

[20] Keita Emura. A generic construction of secure-channel free searchable encryption with multiple key-
words. In Network and System Security, pages 3–18, 2017.

17



[21] Keita Emura, Katsuhiko Ito, and Toshihiro Ohigashi. Secure-channel free searchable encryption with
multiple keywords: A generic construction, an instantiation, and its implementation. Journal of Com-
puter and System Sciences, 114:107–125, 2020.

[22] Keita Emura, Atsuko Miyaji, and Kazumasa Omote. Adaptive secure-channel free public-key encryption
with keyword search implies timed release encryption. In ISC 2011, pages 102–118, 2011.

[23] Keita Emura, Atsuko Miyaji, Mohammad Shahriar Rahman, and Kazumasa Omote. Generic construc-
tions of secure-channel free searchable encryption with adaptive security. Security and Communication
Networks, 8(8):1547–1560, 2015.

[24] Keita Emura, Le Trieu Phong, and Yohei Watanabe. Keyword revocable searchable encryption with
trapdoor exposure resistance and re-generateability. In IEEE TrustCom, pages 167–174. IEEE, 2015.

[25] Keita Emura and Mohammad Shahriar Rahman. Constructing secure-channel free searchable encryption
from anonymous IBE with partitioned ciphertext structure. In SECRYPT 2012, pages 84–93, 2012.

[26] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. A secure channel free public key
encryption with keyword search scheme without random oracles. In CANS, pages 248–258, 2009.

[27] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. Public key encryption with keyword
search secure against keyword guessing attacks without random oracle. Inf. Sci., 238:221–241, 2013.

[28] Thomas Fuhr and Pascal Paillier. Decryptable searchable encryption. In ProvSec, pages 228–236, 2007.

[29] Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT, pages
445–464, 2006.

[30] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures.
In ASIACRYPT, pages 444–459, Shanghai, China, 2006.

[31] Chunxiang Gu and Yuefei Zhu. New efficient searchable encryption schemes from bilinear pairings.
International Journal of Network Security, 10(1):25–31, 2010.

[32] Chunxiang Gu, Yuefei Zhu, and Heng Pan. Efficient public key encryption with keyword search schemes
from pairings. In Inscrypt, pages 372–383, 2007.

[33] Lifeng Guo and Wei-Chuen Yau. Efficient secure-channel free public key encryption with keyword search
for EMRs in cloud storage. Journal of Medical Systems, 39(2):11, 2015.

[34] Swee-Huay Heng and Kaoru Kurosawa. k-resilient identity-based encryption in the standard model.
IEICE Transactions, 89-A(1):39–46, 2006.

[35] Yong Ho Hwang and Pil Joong Lee. Public key encryption with conjunctive keyword search and its
extension to a multi-user system. In Proceedings of Pairing 2007, pages 2–22, Tokyo, Japan, 2-4 July
2007. Springer-Verlag, Berlin.

[36] Ik Rae Jeong, Jeong Ok Kwon, Dowon Hong, and Dong Hoon Lee. Constructing PEKS schemes secure
against keyword guessing attacks is possible? Computer Communications, 32(2):394–396, 2009.

[37] Dalia Khader. Public key encryption with keyword search based on k-resilient IBE. In ICCSA, pages
1086–1095, 2007.

[38] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Proceedings of TCC 2006, New
York, NY, USA, pages 581–600. Springer-Verlag, Berlin, 4-7 March 2006.

[39] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM J. Comput., 17(2):373–386, 1988.

18



[40] Yinbin Miao, Jianfeng Ma, and Zhiquan Liu. Revocable and anonymous searchable encryption in
multi-user setting. Concurrency and Computation: Practice and Experience, 28(4):1204–1218, 2016.

[41] Steven Myers and Abhi Shelat. Bit encryption is complete. In Proceedings of FOCS 2009, pages 607–616,
Atlanta, Georgia, 25-27 October 2009. IEEE Computer Society, Washington, DC, USA.

[42] Mototsugu Nishioka. Perfect keyword privacy in PEKS systems. In Proceedings of ProvSec 2012, pages
175–192, Chengdu, China, 2012.

[43] Dong Jin Park, Kihyun Kim, and Pil Joong Lee. Public key encryption with conjunctive field keyword
search. In WISA, pages 73–86, 2004.

[44] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. Improved searchable public key
encryption with designated tester. In ASIACCS, pages 376–379, 2009.

[45] Hyun Sook Rhee, Willy Susilo, and Hyun jeong Kim. Secure searchable public key encryption scheme
against keyword guessing attacks. In IEICE Electronics Express Vol 6 (5), pages 237–243, 2009.

[46] Jae Hong Seo, Tetsutaro Kobayashi, Miyako Ohkubo, and Koutarou Suzuki. Anonymous hierarchical
identity-based encryption with constant size ciphertexts. In Public Key Cryptography, pages 215–234,
Irvine, CA, USA, 18-20 March 2009. Springer-Verlag, Berlin.

[47] Victor Shoup. Using hash functions as a hedge against chosen ciphertext attack. In EUROCRYPT
2000, pages 275–288, 2000.

[48] Tatsuya Suzuki, Keita Emura, and Toshihiro Ohigashi. A generic construction of integrated secure-
channel free PEKS and PKE. In ISPEC, pages 69–86, 2018.

[49] Tatsuya Suzuki, Keita Emura, and Toshihiro Ohigashi. A generic construction of integrated secure-
channel free PEKS and PKE and its application to EMRs in cloud storage. Journal of Medical Systems,
43(5):128:1–128:15, 2019.

[50] Qiang Tang. Revisit the concept of PEKS: Problems and a possible solution. In Technical Report
TR-CTIT-08-54, Centre for Telematics and Information Technology University of Twente, Enschede.,
2008.

[51] Hoeteck Wee. Public key encryption against related key attacks. In Public Key Cryptography, pages
262–279, 2012.

[52] Wei-Chuen Yau, Swee-Huay Heng, and Bok-Min Goi. Off-line keyword guessing attacks on recent public
key encryption with keyword search schemes. In ATC, pages 100–105, 2008.

[53] Yong Yu, Jianbing Ni, Haomiao Yang, Yi Mu, and Willy Susilo. Efficient public key encryption with
revocable keyword search. Security and Communication Networks, 7(2):466–472, 2014.

[54] Rui Zhang and Hideki Imai. Generic combination of public key encryption with keyword search and
public key encryption. In CANS, pages 159–174, 2007.

Appendix.A

Here, we introduce the SCF-PEKS scheme proposed by Fang et al. [26]. Let G and GT be cyclic groups of
prime order p, e be an efficiently computable bilinear map e : G × G → GT and g ∈ G be a generator. We
assume that e(X,Q), e(g, g), and e(g, h) are included in public keys to reduce pairing computations.

Protocol 6.1 (The Fang et al. SCF-PEKS scheme).
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SCF-PEKS.KeyGenS(1
κ): Choose x

$← Zp and Q
$← G, compute X = gx, and output (pkS , skS) = ((X,Q, e(X,Q),

e(g, g)), x).

SCF-PEKS.KeyGenR(1
κ): Choose y

$← Zp and h
$← G, compute Y = gy, and output (pkR, skR) = ((Y, h, e(g, h)), y).

SCF-PEKS.Trapdoor(skR, ω): For a keyword ω ∈ Zp, choose rω
$← Zp, compute hω = (hg−rω )

1
y−ω , and

output tω = (rω, hω).

SCF-PEKS.Enc(pkS , pkR, ω): For a keyword ω, choose s, r
$← Zp, compute C1 = gs, t = H(e(X,Q)s),

C2 = (Y g−ω)r/t, C3 = e(g, g)r, and C4 = e(g, h)r, and output λ = (C1, C2, C3, C4).

SCF-PEKS.Test(λ, skS , tω): Compute t = H(e(C1, Q)x), and check e(Ct
2, hω)C

rω
3

?
= C4. If the equation holds,

output 1, and 0 otherwise.

The Fang et al. SCF-PEKS scheme is secure (in the sense of the non-adaptive security) if the decisional
Bilinear Diffie Hellman (DBDH) assumption holds. This is the first SCF-PEKS scheme without random
oracles. Note that the Fang et al. SCF-PEKS scheme is not adaptive secure, since there is a trivial attack
as follows. Let a challenge ciphertext be λ∗ = (C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 ) = (gs

∗
, (Y g−W∗

µ )r
∗/t∗ , e(g, g)r

∗
, e(g, h)r

∗
),

where t∗ = H(e(X,Q, )s
∗
). In the adaptive-IND-CKA-AT experiment, A chooses r′

$← Zp, and computes

C ′
2 := (C∗

2 )
r′ , C ′

3 := (C∗
3 )

r′ , and C ′
4 := (C∗

4 )
r′ . Then λ′ := (C∗

1 , C
′
2, C

′
3, C

′
4) is a valid ciphertext for the

keyword ω∗
µ, and λ∗ ̸= λ′. Therefore, A can issue a test query (λ′, tω∗

1
), and outputs 1 if the answer to

this query is 1, and 0 otherwise. We should notice that this attack is positioned in outside of their security
models.

Appendix.B

Here, we instantiate a non-adaptive SCF-PEKS based on the Gentry (PCS) anonymous IBE [29] and linear
encryption presented by Boneh, Boyen, and Shacham [8]. We assume that e(g, g) and e(g, h) are included
in public keys to reduce pairing computations.

Protocol 6.2 (A non-adaptive SCF-PEKS scheme (the GBBS construction)).

SCF-PEKS.KeyGenS(1
κ): Choose x, y ∈ Zp and u, v, z ∈ G with ux = vy = z. Output (pkS , skS) =(

(u, v, z), (x, y)
)
.

SCF-PEKS.KeyGenR(1
κ): Choose g, h

$← G and α
$← Zp, compute g′ = gα, and output (pkR, skR) =(

(g′, h, e(g, g), e(g, h)), α
)
.

SCF-PEKS.Trapdoor(skR, ω): For a keyword ω ∈ Zp, choose rω
$← Zp, compute hω = (hg−rω )

1
α−ω , and

output tω = (rω, hω).

SCF-PEKS.Enc(pkS , pkR, ω): Choose R
$← GT and s, r1, r2

$← Zp. Compute CIBE,1 = (g′g−ω)s, CIBE,2 =(
e(g, g)s, R · e(g, h)−s

)
, and CPKE =

(
ur1 , vr2 , CIBE,1 · zr1+r2

)
. Output λ = (CIBE,2, CPKE , R).

SCF-PEKS.Test(λ, skS , tω): Parse skS = (x, y), tω = (rω, hω), CIBE,2 = (f1, f2), and CPKE = (v1, v2, v3).

Compute C ′
IBE,1 = v3/(v

x
1 · v

y
2 ) and R′ = frω

1 · e(C ′
IBE,1, hω) · f2. Check R′ ?

= R. If not, then output
0. Otherwise, output 1.

The GBBS construction is secure (in the sense of the non-adaptive security) if the decisional ABDHE
assumption and DLIN assumption hold. Note that the GBBS construction is not adaptive secure, since
there is a trivial attack as follows. Let λ∗ = (e(g, g)s

∗
, R∗ ·e(g, h)−s∗ , C∗

PKE , R
∗) be the challenge ciphertext.

Then, choose R′ ∈ GT , and compute R′ ·
(
R∗ · e(g, h)−s∗

)
and R′ · R∗. Then λ′ = (e(g, g)s

∗
, R′ · R∗ ·
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e(g, h)−s∗ , C∗
PKE , R

′ ·R∗) is a valid ciphertext. Therefore, A can issue a test query (λ′, tω∗
1
), and outputs 1

if the answer to this query is 1, and 0 otherwise. To avoid such an attack, TBE and OTS are required in
our adaptive SCF-PEKS constructions.
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