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ABSTRACT

Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges—some
inherited from wireless sensor networks (WSNs), some unique to themselves—that require a new key management scheme
to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme
that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense
that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when
bootstrapping or extending a network. One of KALwEN’s key features is that it allows sensor devices from different
manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other.
KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports
secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and
future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes
a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and
practitioners alike. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Specialized wireless sensor networks (WSNs) called body
sensor networks (BSNs) are facilitating a revolution in
the healthcare industry. A BSN is a wireless network of
small, low-cost, biosensors worn (i.e., implantable sensors
are excluded from this study as they require a different
approach) by a human user, for the purpose of monitor-
ing the user’s physiological parameters, e.g., ECG, SpO2,
blood pressure etc [1].

The classic architecture of a BSN consists of a network of
biosensors and an on-body local processing unit (LPU)—a
device with a GUI and an input interface such as a PDA or
mobile phone—directly or indirectly connected to a remote
server storing the user’s records [2]. An LPU is also simply
called a controller by some researchers. However, for prac-
tical purposes that include avoiding a single point of failure,
in our reference architecture, we do not stipulate the pres-

ence of an LPU. The number of nodes is up to a few dozens.
All nodes are capable of far-field (radio) communication.

The security and privacy problems related to healthcare
systems are real [3]. As a recent study has demonstrated,
medical devices that do not support any confidentiality
and authentication function are prone to eavesdropping and
attacks [4]. Solving these problems requires data confiden-
tiality and authentication. Providing data confidentiality and
authentication in turn requires a key management scheme
to put the cryptographic keys in place. A practical key man-
agement scheme has to take into account the constraints
of a BSN. To properly motivate these constraints, we first
review two user scenarios.
User Scenario 1 One of the classical applications for BSNs
is real-time fall detection, because tripping is known to be
one of the major causes of death among the elderly [5]. A
typical system consists of multiple sensors embedded in the
user’s shoe soles. With existing technology, these sensors

Copyright © 2010 John Wiley & Sons, Ltd. 1309
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can detect after a fall event has happened, so as to alert the
caregiver. In this case, a mobile phone connected to the sen-
sors can be programmed to send a text to the caregiver in
case of emergency. The ultimate goal however is to detect
when a fall is about to happen, and prevent it from happen-
ing. A recent study shows that by applying vibratory stimuli
to the sole, it is possible to stabilize the user [6]. In a system
like this, vibratory actuators implement the countermea-
sure, rendering an LPU redundant. A subset of the security
requirements is as such: communication from the sensors
to the LPU should be authenticated, to prevent prank text
messages to be sent; communication from the sensors to the
actuators should be authenticated, to minimize discomfort
for the user.
User Scenario 2 We give another user scenario from the
Ambient Living with Embedded Network (ALwEN) project
(https://www.alwen.nl). Patients who suffer from chronic
obstructive pulmonary disease (COPD) often experience
dyspnea (shortness of breath). For fear of triggering dyspnea
by exercising, COPD patients are often trapped in a vicious
cycle between lack of exercise and deteriorating health. A
sensor system is being designed to measure a patient’s ECG
and breathing, and record his/her activity, with the primary
objective of encouraging the patient exercise more without
triggering dyspnea. To correlate the ECG and respiratory
signal, time synchronization among the nodes is required.
To prevent false alarm, the nodes need to exchange infor-
mation to generate the proper context, e.g., ‘the patient’s
heartbeat is accelerating in correlation with emotion’, ‘the
patient’s heartbeat is accelerating in correlation with exer-
cise’ etc.
Constraints and requirements In view of User Scenar-
ios 1 and 2, here are the constraints and requirements that
KALwEN is designed to address:

1. Usability: The key management process has to be
autonomous enough so that barring some simple
instructions a user has to follow, it requires no expert
knowledge whatsoever of the user. It should be intu-
itive enough so that the user can operate the system
in the comfort of his/her own home, without the need
for a medical personnel or healthcare worker.

2. Interoperability: Sensor devices from different man-
ufacturers should interoperate. For example, their
hardware IDs should be globally unique. Also, due
to their different origins, these nodes should not be
required to store any pre-shared secret. The nodes
must be able to establish session keys without relying
on specific sensing capabilities.

3. Hardware: BSNs have the same hardware constraints
as WSNs do, i.e., limited computational power, lim-
ited memory, limited bandwidth, and limited energy.
Moreover, a sensor node is typically not tamper-
resistant.

4. LPU: When BSNs evolve from WSNs, they lose the
dependability of a base station, because a BSN might
not be connected to a base station at all times as the
user moves about. In many designs, the LPU replaces

the base station as the trusted third party, despite the
outcome that the LPU becomes the single point of
failure, and the fact that the LPU could be physically
just as vulnerable as other nodes in the network. In
our reference architecture, we relax the assumption
of a base station and an LPU. This seemingly harsh
constraint caters for all the foreseeable reasons why
an LPU might not be available: most of the time it
puts a weight on the user without achieving much; it
is potentially costly; it could be hard to operate by an
elderly. By not assuming either a base station or an
LPU to be a permanent fixture of a BSN, we make
it possible for KALwEN to be applicable to diverse
network architectures, with the added benefit of being
inter-manufacturer operable. To apply KALwEN to a
network where an LPU is available, we treat the LPU
as a regular node.

5. In-network processing: The main motivation for sen-
sor networks is processing data in the network instead
of collecting raw data. This is essential for context
generation as evident in User Scenario 2, and for
reducing usage of bandwidth, energy, and storage.

While it is paramount for implantable medical devices
to provide emergency accessibility mechanisms, BSNs are
generally only for monitoring and it is likely that an emer-
gency personnel has and should prefer to use their own
equipment to diagnose the user, so emergency accessibil-
ity of a BSN is less critical. Since we are not addressing
implantable sensors, any sensor that ‘gets in the way’ can
just be switched off and set aside.
Contribution Our objective is to propose a key manage-
ment scheme under the above constraints. Our contribution
is KALwEN (short for Key management for ALwEN).
KALwEN combines the most relevant techniques in the
literature in a complete framework. KALwEN satisfies the
above-mentioned constraints or requirements, and supports
the three basic communication modes: global broadcast,
local broadcast, and local unicast, while preserving past
key secrecy and future key secrecy (FKS). Using for-
mal verification, we show that the cryptographic protocols
of KALwEN are secure. KALwEN is an unconventional
design with the primary purpose of creating a level playing
field for body sensor vendors, in which devices of different
manufacturers can interoperate; and the secondary purpose
of freeing the users from the burden of operating a computer
and carrying an LPU.
Organization The rest of the paper is organized as follows.
Section 2 discusses related work. Section 3 introduces the
building blocks of KALwEN. Section 4 gives an overview
of KALwEN. Section 5 describes the threat model and
the assumptions based on which KALwEN is built. Sec-
tions 6– 10 specify the protocols for the factory phase,
bootstrap phase, deployment phase, and operation phase
of a BSN. Sections 11 and 12 present our formal verifica-
tion and experimental results, respectively. In Section 13,
we discuss in detail the merits of KALwEN compared to
some existing schemes, and attempt to dissolve some com-

1310 Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd.
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mon misunderstanding and criticism of KALwEN. Finally,
Section 14 concludes the paper.

2. RELATED WORK

BSNs, being descended from WSNs, can benefit from the
many ideas that have already been proposed for WSNs. In
fact, key management ideas can be borrowed from many
other areas. Our discussion is divided into the following
subsections: WSNs, ubiquitous computing, and healthcare
sensor networks.

2.1. Wireless sensor networks

Perrig et al. [7] pioneer the use of one-way hash chains in
the form of µTESLA to achieve authenticated broadcast in
WSNs. Anderson et al. [8] suggest that during the boot-
strapping phase of a network, keys can be exchanged in
the clear. LEAP+ [9] and its improved variants [10] sug-
gest that during the short time before a node is likely to
be compromised, a node can use its so-called initial key
(a system-wide transitory master key) to establish secure
channels with all its neighbors, before deleting the initial
key. Kuo et al. [11] propose establishing a pairwise key
between a base station and each node in a Faraday cage.
However, for bootstrapping multiple nodes at the same time,
the nodes are required to be of the same type. Kuo et al.
also recommend using software attestation [12] to make
sure all the nodes are uncompromised before the pairwise
keys are transmitted in the clear within the Faraday cage.
In combination with Diffie–Hellman key agreement, soft-
ware attestation can be used for key establishment [13]. The
catch is, software attestation works only (i) when the veri-
fier has the same software as the prover’s, and (ii) when a
verifier knows the exact make and model of a sensor node’s
CPU. Castellucia et al. describe more pitfalls of software
attestation in a recent work [14].

The random key pre-distribution paradigm is pioneered
by Eschenauer et al. [15] and later extended by Liu et al. [16]
and Du et al. [17]. The idea is to prepare a pool of ‘keying
material’ (which can be single symmetric keys [15], polyno-
mials [16], or matrices [17]), called the key pool; and to each
sensor node, distribute a fixed-size subset of keying material
randomly chosen from the key pool (a node’s keying mate-
rial is called the node’s key ring). Two neighbors are able
to establish a pairwise key when they share at least a key.
Two neighbors that do not share a key must use a common
trusted neighbor to establish a pairwise key—the number of
neighbors that are involved in the process is called the key-
path length. The paradigm is particularly useful for limiting
key storage per node in large-scale WSNs.

Later extensions of random key pre-distribution intro-
duce deterministic, combinatorial designs—each key ring
is drawn from the key pool in a deterministic fashion
according to some combinatorial rules. For brevity, we call
this paradigm combinatorial key pre-distribution. Various

combinatorial designs have been proposed [18--20]. With
respect to a fixed key ring size, the various designs enable
different trade-offs on the following parameters: probabil-
ity of key-share, average key-path length, resilience to node
capture. The conclusion so far is that except for really small
networks (if the number of nodes n is small, a node can
afford to store n − 1 keys, one for every other node), com-
binatorial key pre-distribution seems to be the direction
forward for WSNs, and by extension BSNs.

2.2. Ubiquitous computing

Ideas from ubiquitous computing can also be useful. The lit-
erature of this area primarily focuses on secure pairing [21].
Secure pairing is a solution to the key establishment prob-
lem between two strangers with no prior shared secret.
The standard solution is to use a band-limited side chan-
nel to exchange short secrets and based on the short secrets
establish a session key. The usage of four-digit PINs in Blue-
tooth is a classic example, although a relatively insecure
one. Saxena et al.’s ‘Blink ’Em All’ [22] uses the visual
channel as the band-limited side channel and the wireless
channel as the insecure public channel. The wireless chan-
nel is used for transmitting initial commitments whereas
the visual channel is used for transmitting short authen-
ticated strings, as part of the protocol designed by Laur
et al. [23]. Another example is to exchange keys in the
open, e.g., by signaling in the source field of the packets, as
long as an attacker cannot tell where the packets originate
from [24,25]. Another paradigm is to derive a common key
by sampling similar side channels. For example, co-located
devices experience similar radio environments [26]; devices
shaken together can establish a common key [27]. Other
examples that are based on this paradigm involve a pair of
human users exchanging visual information, but these are
not as useful [28,29] for BSNs. By extension, two devices
sensing the same or similar physiological signals should
be able to derive a common key. This biometric exten-
sion is first proposed by Cherukuri et al. [30] for BSNs.
Later work investigates the feasibility of using the heart
rate variability [31], the interval pulse [32], the electrocar-
diogram [33,34] as the biometrics. When all the nodes in
a network are capable of sensing the same type of signal,
these results are applicable, and all the nodes can estab-
lish a common group key. Our goal is to handle the general
case, i.e., where there is a chance that there is no overlap in
sensing capabilities among the nodes.

2.3. Healthcare sensor networks

Complete key management schemes have only started
appearing in recent years. Blinking LEDs Indicated Group
(BLIG) is an approach where nodes exhibit a synchro-
nized blinking pattern when they are securely grouped [35].
BLIG is different from Blink ’Em All, in that the former
uses public-key cryptography for key establishment and the

Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd. 1311
DOI: 10.1002/sec

 19390122, 2011, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sec.256 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [07/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KALwEN: Y. W. Law et al.

visual channel only for verification by a human user that
the protocol completes successfully [36], whereas the latter
uses the visual channel for signaling short strings. BLIG
has been incorporated by Keoh et al. [37] and Li et al. [38]
into their protocols. In Section 13, we provide a detailed
comparison between BLIG, Keoh et al.’s scheme [37], Li
et al.’s scheme [38], and KALwEN.

Some key management architectures rely on a local base
station to authenticate sensor nodes biometrically [39,40].
In another architecture [41], secure interaction between
‘patient security processors’, ‘clinician security proces-
sors’, ‘nurse security processors’, and a central server is
facilitated by a key establishment scheme. These architec-
tures are more useful for dedicated healthcare facilities than
for ambient-assisted living scenarios.

3. PRELIMINARIES

This section introduces the ‘building blocks’ that we use
to construct KALwEN. Table I partially summarizes the
symbols used in this paper.

3.1. Elliptic curve Diffie–Hellman (ECDH)

Without any prior shared secret, two nodes can establish a
session key using the Diffie-Hellman (DH) key agreement

protocol [42]. Over the years, the original DH protocol has
been heavily extended. Among the numerous variants that
exist in the literature, the variant discussed here is the ellip-
tic curve Diffie–Hellman (ECDH) scheme [43, Section 6.1]
using the elliptic curve cofactor Diffie–Hellman primitive
(which is resistant to small subgroup attacks compared to
the original primitive) [43, Section 3.3.2]. The security of
ECDH hinges on the intractability of finding l such that
lG = Q given G, a point on an elliptic curve of large prime
order, and Q, a scalar multiple of G. Recent implemen-
tation results show that while ECDH is computationally
expensive, it is achievable at a time cost of the order of
seconds, a ROM cost of under 20 KB, and a RAM cost of
around 2 KB, i.e., within the capabilities of a typical sensor
node [44].

An elliptic curve cryptosystem is built on a set of domain
parameters denoted by (q, FR, a, b, G, n, h) (see Table
I for explanation). Suppose node u has private/public key
pair (du, duG) whereas node v has private/public key pair
(dv, dvG). Then the session key Kuv between u and v

is derived as follows: (i) u and v exchange their public
keys; (ii) u computes (x, y) = hdudvG and v computes
the same point; (iii) if (x, y) = (0, 0) then stop, other-
wise Kuv = KDF (x), where KDF () is a key derivation
function (that typically invokes a hash function multi-
ple times). The reason for using KDF () is that x may
have some bits that can be predicted with non-negligible
advantage [45].

Table I. Partial list of symbols.

{·}K Encryption function using key K

[·]K Message authentication function using key K

H (·) Cryptographic hash function
‖ Concatenation operator
R← Uniformly chosen at random from

≫ Right shift operator
VSFC Set of all nodes excluding the key distribution center in a Smart Faraday Cage
Nv Set of all neighbors of node v

IDv ID of node v

NID Network ID
(q, FR, a,b, G, n, h) Domain parameters of an elliptic curve: q is the order of the finite field on which the curve is defined; FR is the

field representation; a and b are the coefficients of the curve; G is the base point on the curve; n is a prime
of order G; h is the number of rational points on the curve divided by n

K Key space
KM Membership key (Section 8)
P, P Key pool (Section 2),P = |P|
�v , K Key ring of node v (Section 2), K = |�v |
CD(P, IDv ) A function that returns to the node v , its key ring and corresponding key indexes drawn from the key pool P
KID An array of key indices
KG Global key (Section 4)
K ′ Renewed version of key K

Nv Nonce sent by v

� The least number of nodes removed that will alert the user; threshold of a secret sharing scheme
l Number of keys in a one-way hash chain
m Length of a hash
c Length of a counter
q Order of a finite field, or number of oracle queries, depending on the context

1312 Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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3.2. Combinatorial key pre-distribution

We are solely interested in the type of scheme that ensures
that any pair of nodes have at least one key in common,
to ensure every pair of neighbors can establish a pariwise
key. While this type of schemes are in general less resilient
to node capture attacks than random key pre-distribution
schemes, these schemes are more user-friendly because they
incur less communication overhead at deployment. Further-
more, an attacker cannot capture too many nodes without
alarming the user. Therefore high probability of key-share
takes precedence over resilience.

Suppose the key ring size is fixed at K. The simplis-
tic approach of setting the key pool size P = 2K − 1 and
assigning one of the

(
2K−1

K

)
combinatorial patterns to a node

would make sure any pair of nodes share at least a key [46],
but the resilience of this scheme is unsatisfactory (captur-
ing a node compromises half of the key pool). A better
approach is symmetric designs [20]. For a key ring size
of K, there exists a symmetric design that supports up to
(K − 1)2 + (K − 1) + 1 nodes, and that ensures any pair
of nodes share exactly one key. The supported network size
seems to be sufficient for BSNs, for example, when K = 10,
the maximum network size is 91, which is more than the
size expected of a typical BSN. In case the maximum sup-
ported network size is exceeded, a symmetric design can

be extended to support up to
(

(K−1)2+(K−1)+1
K

)
nodes [20],

at the cost of reducing the probability of key-share. We
write CD() to denote a function that outputs the key ring
and key identifiers allocated from a key pool to a node,
i.e., (κv, KIDv) = CD(P, IDv). Each ‘key’ in a key ring
in this context can actually be a single symmetric key or
a polynomial [47] (an implementation of the polynomial-
based variant for BSNs has been reported [48]), depending
on the desired level of trade-off: using polynomials gives
better resilience at the cost of memory usage. The decision
on whether to use polynomials or symmetric keys can be
safely deferred to the time of actual implementation without
sacrificing the soundness of KALwEN.

3.3. One-way hash chain

The one-way hash chain [49] is a lightweight replace-
ment for asymmetric-key digital signatures. To bootstrap
the protocol, the sender s first generates a one-way hash
chain {Hs,l−1, Hs,l−2, ..., Hs,0}, where Hs,i = H(Hs,i+1) (i =
0, . . . , l − 2), H() is a cryptographic hash function (the
security requirements of which will be determined shortly);
and distributes Hs,0 (called the commitment of the hash
chain) to the receivers securely. To send message Mi to
the receivers, the sender broadcasts Mi‖[Mi]Hs,i

. When the
sender is sure all the receivers have received the message
(which is trivial to achieve in a single-hop network), the
sender discloses Hs,i. The receivers successfully authen-
ticate Mi if (i) there exists a past key Hs,j = H (i−j)(Hs,i)
(0 ≤ j < i); and if (ii) Hs,i generates [Mi]Hs,i

.

The one-way hash chain is provably secure if the hash
function is l-wise independent [50]. However, the probabil-
ity of choosing such a function from the set of all functions
from {0, 1}m to {0, 1}m is impractically small when l is large.
In practice, a larger domain for the hash function should
be used; for example, by coupling the hash chain with a
chain of salts [51], i.e., Hs,i = H(salts,i+1‖Hs,i+1). Mean-
while, Bradford et al. [52] propose using a separate chain
of counters which do not need to be transmitted; they also
propose Hs,i = H(Hs,i+1‖Hs,i+2‖...). Throughout our ensu-
ing discussion, for clarity, we continue to write the one-way
hash chain in its original form, with the implicit understand-
ing that in implementation, the hash chain is coupled with a
chain of salts or counters. Moreover, to facilitate the proof
of Proposition 1, the hash function must also be always
preimage-resistant (aPre-secure [53]) and indifferentiable
from a random oracle [54].

3.4. Threshold secret sharing

The standard technique for sharing a secret between n par-
ties such that any τ or more parties can reconstruct the secret
is (τ, n)-threshold secret sharing [55]. If the secret to be
shared is S, then a random polynomial over a finite field
of order q, f (x) ∈ Zq[x], is generated, such that f (x) =∑τ−1

i=0 aix
i ∈ Zq[x], where a0 = S, and q is larger than the

largest possible value of S. The shares are distributed as
f (IDi) (i = 1, . . . , n), where IDi’s are the individual IDs of
the participants. Any τ or more shares are enough to recon-
struct S via Lagrange interpolation. τ − 1 or less shares
reveal no information at all about S.

4. SCHEME OVERVIEW

We begin the overview by identifying the essential keys that
need to be established. Then we describe the architecture of
a node in terms of its life cycle, hardware architecture and
finite state machine (FSM). At the end of this section, we
also describe the equipment that is needed to support the
nodes.

KALwEN’s mission is to support authentication in these
communication modes: (i) local unicast, (ii) local broad-
cast, (iii) global broadcast. The first two communication
modes are the basic operations of a medium access pro-
tocol. Local broadcast is also a primitive for in-network
processing. Global broadcast is necessary for announcing
network-wide events. KALwEN supports the communica-
tion modes with the following key types:

� Confidential and authenticated local unicast by the
nodes: pairwise key

� Confidential and authenticated local broadcast by the
nodes: global key and cluster hash chain

� Confidential and authenticated global broadcast by the
key distribution center (KDC): global key and global
hash chain

Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd. 1313
DOI: 10.1002/sec
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Figure 1. (a) Essential key types; (b) simplified finite state machine of a node connecting the different phases.

A pairwise key is shared between two neighboring nodes.
The global key is shared among all the nodes. The com-
mitment of a cluster hash chain is shared by a node with
its neighbors. The commitment of the global hash chain is
shared by the KDC with all other nodes. The KDC will
be discussed later. Figure 1(a) illustrates the distribution of
these keys in a network.
Node architecture We divide the life cycle of a node into
the following phases:

� Factory phase: Happens after the node is manufactured
and before the node is bootstrapped for the first time.

� Bootstrap phase: Happens when the user bootstraps the
node in a controlled environment, and before the user
deploys the node.

� Deployment phase: Happens after the user bootstraps
the node, but before the node starts operating. This is
the time when the node tries to discover its neighbors.

� Operation phase: Happens after the node has discov-
ered all its neighbors.

� Limbo phase: Happens after the node is removed from
the network. Before the node can be deployed again,
it must be re-bootstrapped.

When a node is switched on, its boot loader copies the
operating system (OS) from the external program memory
to the internal program memory, and then transfers control
to the OS in the internal program memory. All ephemeral
cryptographic keys are stored in the RAM, so that when a
node is switched off, all keys are lost. To reduce acciden-
tal switch-ons/offs, a mechanism should be in place that
requires a certain amount of cognitive effort from the user
to switch on/off the device. An analogy for this mechanism
is readily found on most of today’s mobile phones (switch-
ing on a phone requires the hang-up button to be pressed
for a few seconds).

Figure 1(b) depicts the simplified finite state machine
(FSM) of a node. The inner working of this FSM shall
become clear as we describe the protocols in later sections.
Equipment To bootstrap a network, and to add a node to
a network, an additional equipment is needed: a ‘Smart
Faraday Cage’ (SFC). A Faraday cage is a metal enclosure

for containing the electromagnetic fields of the equipment
within. A Faraday cage, although not yet commercially
available for BSNs, can already be purchased for individual
mobile devices.† The kind of SFC we require is a Faraday
cage with imbued intelligence such that it can also act as
a KDC for the nodes to be bootstrapped, i.e., the SFC and
the KDC are the same entity. The conceptual design of the
SFC consists of the following components:

1. a knob that can be set to one of the three modes: (i)
‘Bootstrap’ for bootstrapping nodes to form a new
network; (ii) ‘Standby’ for writing everything in its
volatile memory to its nonvolatile memory before
going to sleep; (iii) ‘Add’ for bootstrapping nodes to
be added to the previously bootstrapped network;

2. an indicator showing one of the three states: ‘Work-
ing’, ‘Done’, and ‘Error’;

3. and a jammer, attached to the exterior of the SFC,
that constantly transmits a noise signal when the knob
points to ‘Bootstrap’ or ‘Add’.

One security requirement of the SFC is that it must be
dimensioned such that any two nodes in it are within the
range of each other. The functional requirements of the
SFC are defined by the protocols the KDC has to follow, as
described in the following sections. It is to be emphasized
that an SFC is only needed when bootstrapping a network
or adding a node to a network. The SFC is a personal device
and is only used to bootstrap the owner’s sensor nodes.

5. THREAT MODEL AND
ASSUMPTIONS

An attacker is computationally bounded. This is a standard
cryptographic assumption, implying even if the attacker has
access to supercomputers, its computing power is at most
polynomial.

† For example, http://www.mobilecloak.com

1314 Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd.
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Y. W. Law et al. KALwEN:

Due to the small scale of the human body, a BSN is fully
connected. There exists a range around a BSN outside which
no attacker can eavesdrop on the messages of the BSN, even
with advanced skills and equipment [56].‡ When an attacker
is in range, the attacker can forge, intercept, and arbitrar-
ily manipulate any message, as dictated by the Dolev–Yao
model [57]. When an attacker is out of range, the attacker
can only forge messages.

The above are standard assumptions. Below we list
assumptions specific to KALwEN:

Assumption 1 Hardware-wise, an SFC is tamper-
resistant whereas a normal node is not. The SFC acts
as a ‘control center’ for BSNs much like a base station
acts as a center of command for WSNs. If the center
of command is compromised, enforcing any form of
security is meaningless. The essential rationale behind
this assumption is that it is easier to safeguard the secu-
rity of a single component rather than a host of smaller
components that are far less physically manageable.

Assumption 2 The time to read cryptographic keys out
of the RAM of a sensor node (in the order of hours) is
longer than the interval between the keep-alive pack-
ets of a network (in the order of minutes). We note
that it is demonstrably possible to extract keys from
a Crossbow MICA2 node in under one minute [58],
but MICA2 is mostly a research-purpose device with
the Joint Test Action Group (JTAG) interface fully
exposed. Removing the JTAG interface, using ball
grid array chips for the memory components [59,
p.293], applying a layer of epoxy around the memory
components are just some of the low-cost measures
to make a production device considerably harder to
tamper with.

Assumption 3 Physically, an attacker can get in-range
with a BSN for an indefinite amount of time, but an
attacker cannot try to remove τ or more nodes without
the user noticing. At the same time, a node in a BSN
has at least τ − 1 neighbors, i.e., the network degree
≥ τ − 1. This assumption should be realistic because
τ is typically quite low (it is not easy to ignore a few
nodes missing from one’s body).

6. FACTORY PHASE

In the factory phase, every nodev is embedded with the same
set of domain parameters (q, FR, a, b, G, n, h) (Section 3.1).

For all the protocols of KALwEN, it is vital that a node
can generate pseudorandom numbers with sufficient ran-
domness. There are ways to collect entropy for this purpose,

‡ Hancke shows that the forward channel of ISO 14443A and ISO 15693
near-field communication can be eavesdropped as far as 10 m away,
even though these systems are advertised to operate within 10 cm. It
can be safely assumed that commodity far-field communication can be
eavesdropped at more than 10 m away.

Figure 2. Procedure for bootstrapping nodes.

for example, by sampling the radio or on-board sensors. As
a supplement, every node can be embedded with a unique
seed, to be used as an input to the built-in pseudorandom
number generators.

All of the above also applies to SFCs.

7. BOOTSTRAP PHASE

The bootstrap process takes place in a controlled environ-
ment. Apart from the nodes themselves, the user needs an
SFC. The instructions a user has to follow are (see Figure 2):

1. set the SFC to ‘Bootstrap’, then switch on or reset the
nodes in close proximity of the SFC;

2. put the nodes in the SFC;
3. seal the SFC;
4. wait for the ‘Done’ indicator and then deploy the

nodes.

The technical detail behind the instructions is given below.
Denote a node by v. When v is switched on, it senses the

medium for a signal. If a noise signal is sensed,v sets a wake-
up timer and goes to sleep until the wake-up timer times out.
This process continues until v wakes up and senses no noise
signal. This is the time when v has been put into the SFC. It
is clear at this stage that the purpose of the jammer is two-
fold: to prevent the nodes from initiating bootstrap outside
the SFC, and to prevent residual radiation from within the
SFC from being useful to any potential eavesdropper.

Once v senses the channel is clear, it broadcasts a HELLO
packet. All nodes contend for the medium to send their
HELLO packets. Once the KDC stops hearing HELLO
packets, based on (i) the number of distinct HELLO packets
the KDC has received so far (which is |VSFC| if all nodes have
sent their HELLO packets, but in anticipation for expansion,
the KDC should add some margin to the network size), and
(ii) the minimum size of a key ring K, the KDC computes
the necessary key pool size and generates a key pool P of
that size. With each node v, the KDC establishes a pairwise
key Ksv using ECDH. For v, the KDC allocates κv, a block
of K keys from P. To v, the KDC then dispatches κv and
other keying material encrypted using Ksv. Denote the KDC
by s, and the protocol is as follows:

Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd. 1315
DOI: 10.1002/sec
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KALwEN: Y. W. Law et al.

Protocol 1. (Closed environment in the SFC)

∀v ∈ VSFC,

v : rv

R←[1, n − 1]

v → ∗ : IDv‖ID∗‖HELLO‖rvG‖Nv

s : rs

R←[1, n − 1]

Ksv is derived per Section 3.1

KM

R←K (detail later)

(κv, KIDv) = CD(P, IDv)

KG

R←K, Hs,l−1
R←{0, 1}m

Hs,i−1 = H(Hs,i)∀i ∈ {1, . . . , l − 1}
θ = IDs‖IDv‖BOOT‖rsG‖Ns‖NID‖τ
‖{KM‖κv‖KIDv‖KG}Ksv

‖Hs,0

s → v : θ‖[θ‖Nv]Ksv

v → s : IDv‖IDs‖[Ns]Ksv

Some notes about protocol listings:

� In Protocol 1, every message is explicitly prepended
with a source field and a destination field. Hereafter
however, the source field and the destination field will
be made implicit. If a message is appended with a mes-
sage authentication code (such as the message s → v),
the code is implicitly calculated over the source field
and the destination field as well.

� Whenever we use the same key for encryption and
message authentication in the same message, we are
in fact using separate sub-keys derived from the same
key. For example, for the last message in Protocol 1, we
are actually using [1]Ksv

and [2]Ksv
as the encryption

key and the message authentication key, respectively,
consistent with convention [7]. For brevity, we use Ksv

to denote both sub-keys.
� While using message authentication code (MAC)

is the standard technique for message authentica-
tion, an efficiency-enhancing alternative is to use
H(key‖message) if H can be modeled as a random
oracle [60].

As Protocol 1 does not authenticate public keys, it is open
to impersonation attacks. However, if say a malicious node
tries to impersonate v or the KDC, such action is imme-
diately detectable by v or the KDC, because every node is
within range of each other. If the attack is against v, v would
immediately alert the KDC, and the KDC would immedi-
ately signal ‘Error’ to the user. If the attack is against the
KDC, the KDC would directly signal ‘Error’ to the user.
Consequently, impersonation attacks and hence man-in-
the-middle attacks are detectable in the specific environment
of the SFC.

KM is called the membership key because it will be used
to establish pairwise keys between neighboring nodes in the
deployment phase. After broadcasting KM , the KDC only
keeps H(KM) instead of KM itself. Doing so serves two
purposes: (i) even when the KDC itself is compromised,
an attacker cannot obtain KM ; (ii) the hash can be used in
Protocol 3 to verify if the shares are correctly recovered
(more on this in Section 9).

If the protocol goes well without any impersonation
attack, after the KDC has finished bootstrapping all nodes,
the KDC signals ‘Done’ to the user and the nodes are ready
for deployment.

8. DEPLOYMENT PHASE

Neighbor discovery takes place during the deployment
phase. Every node sets up a pairwise key with each of its
neighbors. Using the pairwise keys, the node distributes the
commitment of its cluster hash chain to all its neighbors,
per Protocol 2.

Protocol 2.

∀u ∈ V,

u → ∗ : JOIN‖{NID‖KIDu}KM

∀v ∈ Nu,

v : Kuv ← H(x) where x ∈ κu ∩ κv

θ1 = KIDv‖Hv,0‖Nv

v → u : θ1‖[θ1]Kvu

u : Kuv ← H(x) where x ∈ κu ∩ κv

u → v : Hu,0‖[Hu,0‖Nv]Kuv

All legitimate nodes are supposed to have obtained KM

in the bootstrap phase. Any outsider without KM is unable
to join the network.

After neighbor discovery (signalled by a certain time-
out), every node generates deterministically a function

f (x) =
τ−1∑

i=0

aix
i ∈ Zq[x], (1)

where a0 = KM , ai = Hi(a0), and q is larger than both the
largest possible membership key and the largest possible
ID. Since f (x) is generated deterministically, all nodes get
the same coefficients ai (i = 0, . . . , τ − 1). Each node v

then evaluates f (IDv), and discards all the coefficients, as
well as KM . This secret sharing scheme ensures that at least
τ shares of KM are required to reconstruct KM and this
is the principle behind the process of node addition, to be
discussed later. Deleting KM ensures that KM cannot be
used to perform illegitimate node addition.

At the end of the bootstrap phase, each node is capable
of secure unicast and secure local broadcast. Each node
can also authenticate broadcast from the KDC, when the

1316 Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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Y. W. Law et al. KALwEN:

broadcast is relayed by a delegate node, as we shall discuss
in the next section.

9. NODE ADDITION

Since a new node is considered trusted to be added to a
network, there seems to be no incentive in enforcing past key
secrecy (not to be confused with ‘perfect forward secrecy’),
which is the requirement that a new member must not know
old group (global) keys [61]. However, the new node may
actually turn out to be rogue, in which case it is prudent to
refresh the global key before admitting the new node into
the network.

The easiest but most inefficient way to add a node to the
network is to reset and bootstrap all nodes again. An alter-
native solution is to have new nodes pre-bootstrapped. For
example, during the previous bootstrap phase, 20 nodes are
bootstrapped but only 10 are deployed. The other 10 nodes
that are not deployed are considered pre-bootstrapped.
However, this solution stresses too much on foresight; and
would not work at all if there are no extra nodes to start with
in the first place.

For a new node to join the network, the user must under-
take a procedure that is hard for an attacker but easy for
him/herself to accomplish. Upon successful completion of
the procedure, there should be a viable cryptographic means
for the new node to establish the necessary keys for support-
ing all the basic communication modes. Our rationale is to
require the user to use a fair number of nodes to help boot-
strap the new node, as under our assumption it is hard for an
attacker to acquire that many nodes from the user without
raising the user’s suspicion.

To add a node to the network, a user has to follow these
instructions (Figure 3):

1. set the SFC to ‘Add’, then switch on or reset the new
node in close proximity of the SFC;

2. put the new node, and any τ of the operating nodes
into the SFC;

3. seal the SFC;
4. wait for the ‘Done’ indicator and then deploy the

nodes, with the old nodes first and the new node last.

The technical detail behind the instructions is given
below.

Figure 3. Procedure for adding a node where � = 2.

Denote the new node by w. When w is switched on, it
senses the medium for a signal. If a noise signal is sensed,
w sets a wake-up timer and goes to sleep until the wake-
up timer times out. This process continues until w wakes
up and senses no noise signal. This is the time when w

has been put into the SFC. Once w senses the channel is
clear, it broadcasts a HELLO packet. If there are more than
one new node, the other new nodes will also contend for
the medium and broadcast their HELLO packets. Once the
KDC stops hearing HELLO packets, it broadcasts an ADD
packet (reminder: the KDC has been set to ‘Add’ mode). The
protocol is as follows, assuming the latest released hash-
chain hash by the KDC is Hs,i−1:

Protocol 3. (Closed environment in the SFC)

w : rw

R←[1, n − 1]

w → ∗ : HELLO‖rwG‖Nw

s → ∗ : ADD‖[ADD]Hs,i

s → ∗ : Hs,i

∀v ∈ VSFC\{w},
v → s : {f (IDv)}Ksv

‖[{f (IDv)}Ksv
]Ksv

v : rs

R←[1, n − 1]

Ksv is derived per Section 3.1

K′
M

R←K, (κw, KIDw) = CD(P, IDw)

K′
G = [0]KG

θ1 = BOOT‖rsG‖Ns‖NID‖ �

‖{K′
M‖κw‖KIDw‖K′

G}Ksw
‖Hs,i

s → w : θ1‖[θ1‖Nw]Ksw

w → s : [Ns]Ksw

s : u
R← VSFC\{w}

θ2 = DLGT‖{K′
M‖Hs,i+1}Ksu

s → u : θ2‖[θ2]Ksu

The pairwise keys Ksv (∀v ∈ VSFC \ {w}) are used to
transport the key shares f (IDv) to the KDC. If there are
less than τ operating nodes, the KDC would not be able
to reconstruct the membership key KM , and the KDC
would not give w the necessary keying material to join the
network. If there are enough key shares to reconstruct KM ,
the KDC would verify if the hash of the reconstructed KM is
the same as the stored H(KM), and if verification succeeds,
the KDC dispatches the necessary keying material to w.

u (randomly chosen) is delegated the task of broadcasting
K′

M encrypted to existing members of the network. This del-
egation is necessary because the SFC would not be around
when the nodes are deployed later. In order for u to do this, u
must be able to relay the KDC’s message in an authenticable
fashion. Getting Hs,i+1 from the KDC allows u to do this.

Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd. 1317
DOI: 10.1002/sec
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KALwEN: Y. W. Law et al.

Delegation to u After the nodes ∈ VSFC \ {w} have been
taken out of the SFC and returned to their original locations,
u broadcasts a RENEW packet:
Protocol 4.

u : θ = RENEW‖{K′
M}KG

u → ∗ : θ‖[θ]Hs,i+1

u → ∗ : Hs,i+1

∗ : K′
G = [0]KG

K′
M is encrypted with KG so that only existing operating

nodes can receive K′
M . Authentication is provided by Hs,i+1.

All nodes refresh the global key as K′
G = [0]KG

.
Neighbor discovery by w After the new node w has been
taken out of the SFC and fixed at its intended location, it ini-
tiates neighbor discovery, by broadcasting a JOIN packet.
It is possible that when w broadcasts its JOIN packet, w’s
neighbors have not received K′

M yet, so would ignore w’s
request. w would have to keep on trying until any of its
neighbors respond, or until a certain retry limit is reached,
depending on which event occurs first. A neighbor v, on
hearing the w’s JOIN packets in its operating phase instead
of its deployment phase, would respond by unicasting the
necessary keying material to w. After neighbor discovery
(delineated by a certain time-out), w becomes a regular
member of the network. The protocol is as follows:
Protocol 5.

w → ∗ : JOIN‖{NID‖KIDw}K′
m

∀v ∈ Nw,

v : Kvw ← H(x) where x ∈ κv ∩ κw

θ1 = KIDv‖Hv,iv‖Nv

v → w : θ1‖[θ1]Kvw

w : Kvw ← H(x) where x ∈ κv ∩ κw

w → v : Hw,0‖[Hw,0‖Nv]Kvw

After neighbor discovery (signalled by a certain time-
out), every node generates deterministically a function f (x)
based on K′

M per Equation (1), stores f (IDv) and discards
all the coefficients as well as K′

M . The old key share is also
deleted.

Proposition 1. Suppose an attacker is within range of
the BSN and hence has control over the air interface of
the BSN throughout the operation lifetime of the BSN, but
does not have physical access to any of the nodes. Suppose
the hash chain Hs,i = H(Ci+1‖Hs,i+1) is used, where Ci is
the counter corresponding to the ith hash, and |Ci| = c.
Provided H : {0, 1}c+m → {0, 1}m is a aPre-secure hash
function that is indifferentiable from a random oracle, the
attacker’s advantage in adding a node to the BSN is at most
1 − (1 − 2−m)q, where q is the number of calls of H() made
by the attacker.

Proof. By definition, an attacker successfully adds a
node w to the network when w successfully establishes a
secure channel with at least one of w’s neighbors. However,
w’s neighbors would only respond to w’s JOIN request after
they have received a RENEW command. To achieve this,
the attacker needs to forge a RENEW command, which
requires the attacker to forge Hi+1 (subscript s is dropped
for simplicity) at the very least. The attacker’s advantage in
forging Hi+1 is the probability of the attacker, with knowl-
edge of the released keys H0, H1, . . . , Hi, finding x such
that H(Ci+1‖x) = Hi. Formally, the attacker’s advantage,
using an algorithm A, is the conditional probability

Adv(A) = Pr
[
x ← A(Hi) : (x ≫ m) = Ci+1 ∧ H(x)

= Hi|Hi−1 ← H(Ci|Hi) ∧ . . . ∧ H0

← H(C1|H1)
]

Note: ∧ represents logical AND, not intersection. Provided
that H() is indifferentiable from a random oracle,

Adv(A) = Pr
[
x ← A(Hi) : (x ≫ m)

= Ci+1 ∧ H(x) = Hi

]

Let us define algorithm A0 as follows (where X is the
domain, y is the target hash value, and q is the number
of queries).

Algorithm A0(h,y,q)
choose X0 ⊆ X: |X0| = q ∧ (x ≫ m) = Ci+1, ∀x ∈ X0

foreach x ∈ X0 { if H(x) = y then return x }
return FAILURE

In the random oracle model, every x ∈ X0 has a probability
of 2−m being mapped to y. The success probability of algo-
rithm A0 is therefore εA0 = 1 − Pr[nox is mapped to y] =
1 − (1 − 2−m)q. In fact, algorithm A0 can be shown to be
the optimal algorithm, i.e., using any other algorithm A,
εA ≤ εA0 . We prove this by induction on q. Let q = 1. A

might start with a subset X0 that does not contain only
elements that have prefix Ci+1. Among the x’s that have
prefix Ci+1, each of them has a probability of 2−m of being
mapped to y, so εA ≤ εA0 for q = 1. Suppose εA ≤ εA0 for
q = k − 1. When q = k, εA = Pr[preimage not found in the
previous k − 1 steps]Pr[preimage found in the kth step] +
Pr[preimage found in the previous k − 1 steps], i.e.,

εA ≤ (1 − 2−m)k−12−m + 1 − (1 − 2−m)k−1

= 1 − (1 − 2−m)k

Hence, εA ≤ εA0 also holds for q = k. The above result can
actually be obtained by comparing algorithm A0 with algo-
rithm FindPreimage [62]—they are the same except on how
X0 is chosen.

Algorithm FindPreimage(h,y,q)
choose X0 ⊆ X with |X0| = q

1318 Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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Y. W. Law et al. KALwEN:

foreach x ∈ X0 { if H(x) = y then return x }
return FAILURE

Therefore, Adv(A) ≤ 1 − (1 − 2−m)q. �

10. NODE REMOVAL

When a node is removed from a BSN (detectable by time-
out), future key secrecy (FKS) must be enforced, i.e., new
group (global) keys must not be known by old mem-
bers [61].

To remove a node, the only instruction a user has to
follow is to switch off the node. All the keys are sup-
posed to be stored in the RAM of the node, so once the
node is switched off, all the keys are lost, and FKS is
preserved. As mentioned, to reduce accidental switch-offs,
a mechanism should be in place that requires a certain
amount of cognitive effort from the user to switch off the
device.

What might happen is that an attacker might steal one or
more of the nodes to read out the global key. Since there
is no KDC in the network, there is no means to refresh
the global key immediately, the strategy is to ensure each
sensor monitor its neighbors’ keep-alive packets. A node
considers itself removed from the network when it received
at most τ − 2 keep-alive packets for a keep-alive interval.
Consider τ ≥ 2 for now; τ = 1 will be considered as a spe-
cial case later. Once a node considers itself removed from
the network, it erases all keys in its RAM. The rationale
for this algorithm is as follows. If a node is removed from
a network together with at most τ − 2 neighbors, then the
node will receive at most τ − 2 keep-alives per keep-alive
interval, and the node will consider itself removed from the
network. If a node is removed from a network together with
at least τ − 1 neighbors, or in other words, at least τ nodes
have been removed from the network, then by Assumption
3, the user will become aware of the attack attempt. Note the
special case of τ = 1: a node does not check for keep-alive
packets, because by Assumption 3, a user is aware of the
theft of even a single node.

There are a few design considerations regarding this algo-
rithm:

� Keep-alive packets must be authenticated and fresh to
prevent an attacker from forging keep-alive packets
or replaying past keep-alive packets. This is readily
achievable by using cluster hash chains.

� A keep-alive interval must be less than the time
required by an attacker to successfully read out the
keys in the RAM of the node, but more than the
time required for putting τ nodes in an SFC. Per
Assumption 2, a keep-alive interval can be as high
as 60 min, but more experience with the users and
the actual hardware is needed to finetune the tim-
ing for the optimal tradeoff between usability and
security.

11. FORMAL VERIFICATION OF
PROTOCOLS

While Proposition 1 gives the probability of an attacker
adding a node to a BSN, it rules out active attacks like the
planting of malicious nodes in the BSN that actively attack
the protocols (notice the phrase ‘not have physical access’
in Proposition 1). In the face of active attacks, we prove
the security of Protocols 1 to 5 by formal verification. For
this, we use the automated tools ProVerif§ and Scyther.‖

ProVerif is a theorem prover that represents a protocol by a
set of Horn clauses. ProVerif supports unbounded number
of sessions and unbounded message space. Scyther is a tool
that uses symbolic analysis with backwards search based
on partially ordered patterns (which represent infinite sets
of traces). Scyther supports unbounded number of sessions
but only guarantees termination for bounded number
of sessions.

We use Scyther as our primary tool because (i) to specify
simple protocols, its security protocol definition language
is easier to use, and (ii) it has a convenient user interface.
However, since Scyther does not support DH, we resort
to ProVerif for Protocol 1 and 3. To simulate the SFC in
Protocol 1 and Protocol 3, we declare a private free
channel in ProVerif. To simulate DH, we use the equa-
tion construct:

fun dh/2. fun g/1.
equation dh(x,g(y)) = dh(y,g(x)).

Using Scyther is rather straightforward for the other proto-
cols. For each of the protocols, we verify that the secrecy of
the relevant keys is maintained, and that mutual authentica-
tion property among the principals is achieved. Specifically,
for Protocols 2 and 5, we have verified that even when KM

is compromised, the session key Kuv (or Kvw) is secure as
long as the key shared by v and u (or w) is not compro-
mised. Finally, since neither ProVerif and Scyther support
the delayed preimage disclosure mechanism used in the
one-way hash chain, verification of Protocol 4 has not been
performed. The ProVerif script for Protocol 1 is provided
in the Appendix. The Scyther scripts for the other protocols
are available on the first author’s home page.¶

12. EXPERIMENTAL RESULTS

The experiments are carried out on two major hardware
platforms: Crossbow TelosB and Crossbow IRIS running
TinyOS 2.x to evaluate the practicality of KALwEN. These
two platforms are chosen because of their opposing char-
acteristics: TelosB has more RAM than IRIS (10 KB vs.
8 KB) but IRIS has a larger Flash memory than TelosB

§ http://www.proverif.ens.fr
‖ http://people.inf.ethz.ch/cremersc/scyther
¶ http://sites.google.com/site/yeeweilaw

Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd. 1319
DOI: 10.1002/sec
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KALwEN: Y. W. Law et al.

Figure 4. Performance and resource usage of (i) hardware AES-CBC-MAC, (ii) software AES-CBC-MAC, (iii) Skipjack-CBC-MAC, (iv)
TuLP, (v) TuLP-128 on TelosB (top row), and IRIS (bottom row). Note: IRIS does not support hardware AES-CBC-MAC; stack size

information is not available for IRIS.

(128 KB vs. 48 KB); TelosB’s transceiver CC2420 supports
hardware AES encryption but IRIS does not. Our IRIS
implementation uses the Flash memory as much as pos-
sible, for example, the tables of a block cipher are all stored
in the Flash memory.

We benchmark the bootstrap protocol (Protocol 1)
because it involves the most public-key cryptographic oper-
ations. We first choose the key size. For a security margin
of 2012, a symmetric key of at least 80 bits should be
used [63]. The definition of security margin here follows
that of Lenstra and Verheul [63]: suppose (1) cDES is the
number of computations required to break DES, (2) cX is
the number of computations required to break algorithm
X, and (3) an attacker that can afford cDES computations
starting from year 1982 can afford cX computations start-
ing from year y, then the security margin of algorithm X is
y. Corresponding to a security margin of 2012, an ECC key
bit-length of between 149 and 165 should be used [63]. So
we pick 160-bit ECC keys.

In the benchmarking results below, by convention, we
write ROM size to refer to the size of the text (program
code) and data (initialized data) segments; and RAM size
to refer to the size of the data and bss (uninitialized data)
segments. Maximum run-time stack size on the TelosB,
obtained using MSPSim, is also provided. There is currently
no instruction-level simulator for measuring run-time stack
usage on the IRIS.
Block cipher 80-bit cipher Skipjack has been chosen by
Karlof et al. [64], and by Law et al. [65] for applications
with low security requirements. However, TelosB supports
hardware AES encryption, so we use AES for TelosB and
expand the block cipher key size to 128 bits on TelosB. On
IRIS, Skipjack is used. For hardware-accelerated AES, we
use Zhu’s code# whereas for Skipjack we use Law et al.’s

# http://cis.sjtu.edu.cn/index.php/The Standalone AES Encryption of
CC2420 (TinyOS 2.10 and MICAz)

code [65], which uses less RAM than the implementation
in TinySec [64].
MAC The natural choice for a MAC to be used with a
block cipher is CBC-MAC because it is simple and prov-
ably secure [66]. Our implementation of CBC-MAC follows
the ‘length prepending’ variant [66, p.395]. Figure 4 com-
pares AES-CBC-MAC, Skipjack-CBC-MAC, TuLP and
TuLP-128 [67]. TuLP and its more secure variant TuLP-128
are two MAC algorithms proposed recently for resource-
constrained devices [67]. TuLP and TuLP-128 have similar
code size as AES, but significantly lower RAM usage
than AES. Performance-wise however, TuLP and TuLP-128
fare worse than AES-CBC-MAC and Skipjack-CBC-MAC.
Gong et al.’s results suggest that TuLP and TuLP-128
are more suitable for hardware implementation [67]. Of
particular interest is that on TelosB, hardware-accelerated
AES-CBC-MAC is slower than software AES-CBC-MAC
and Skipjack-CBC-MAC. As the implementation only
makes use of the internals of TinyOS, namely the compo-
nents ActiveMessageC, HplCC2420PinsC, CC2420SpiC,
CC2420SpiWireC, the performance bottleneck of the hard-
ware AES routine is thought to lie amidst one or some of
these components. We are aware of an article that reports a
better performance result for CC2420-accelerated AES [68]
but the authors are not able to provide their code. We opt to
use hardware-accelerated AES-CBC-MAC on TelosB any-
way, in the hope that this performance bottleneck will be
removed in the future. On IRIS, Skipjack-CBC-MAC is the
clear all-around winner.
ECDH To implement ECDH, we use the publicly avail-
able TinyECC [44]. We are aware of more optimized ECC
implementations, such as NanoECC [69] and Driessen
et al.’s [70], but they are not publicly available. We
choose the domain parameters secp160r1 [71]. According
to Table II, secp160k1 offers the best code size; secp160r2
is similar to secp160k1 in speed but worse than secp160k1
in size; secp160r1 offers the best key agreement time. We
choose secp160r1 for our experiments. Many researchers

1320 Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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Y. W. Law et al. KALwEN:

Table II. Comparison of domain parameters in terms of (i) the ini-
tialization time of ECDH in seconds, (ii) the ECDH key agreement
time in seconds, (iii) the ROM size of the domain parameters in
bytes, (iv) the maximum run-time stack size of ECDH in bytes,
(v) the ROM size of ECDH excluding the domain parameters in
bytes, and (vi) the RAM size of ECDH in bytes. Domain parame-

ters by themselves use 0 RAM.

(i) (ii) (iii) (iv) (v) (vi)

TelosB
secp160k1 2.62 2.78 530 750 11166 1866
secp160r1 2.61 2.66 532 740
secp160r2 2.60 2.79 544 750

IRIS
secp160k1 1.88 2.10 492 N/A 14480 1774
secp160r1 1.86 1.76 776 N/A
secp160r2 1.87 2.12 576 N/A

choose secp160r1 by default but to our knowledge, this is
the first time the selection is justified performance-wise.
When using TinyECC, all the optimizations are enabled for
reasonable performance in human terms (seconds are good,
tens of seconds are too long).
Hash function On TelosB, it is possible to take advantage
of the hardware AES to construct a hardware-accelerated
hash function using the Davies-Meyer construction [72],
that could be faster [73] than SHA-1. This approach is
employed by Andersen [36]. However, SHA-1 is the only
supported hash function in the ECC standard [43], so we
use SHA-1 as the hash function.
Network bootstrapping For benchmarking the bootstrap
protocol (Protocol 1), up to 12 regular nodes are first
switched on, followed by an additional node acting as the
SFC. We measure the time between when the first HELLO
packet arrives at the SFC and when the last BOOT packet
arrives at a regular node. Note that the acknowledgement
packets on the last line of Protocol 1 are not taken into
account because these packets can be piggybacked on the
suitable messages in Protocol 3 (on line 6 to be exact). The
results are in Figure 5. The optimal case is when the SFC
bootstraps each node right after another. When this happens,
ignoring computation time except for ECDH key agree-
ment, and ignoring communication times (backoff timers,
transmission latencies etc.), the time to bootstrap a network
of N nodes is 2.66N for TelosB, and is 1.76N for IRIS
(we get the constants 2.66 and 1.76 from Table II). Figure 5
shows that the times to bootstrap nodes are reasonably close
to the optima. For example, the time to bootstrap 12 nodes is
a little under 25 s, which should be acceptable to most users.
Clearly, the bootstrap latency can be further improved by
using a more capable processor or an ECC accelerator for
the SFC (an ECC processor has even become feasible on an
RFID tag nowadays [74]).
Network deployment During deployment, the nodes per-
form neighbor discovery to establish pairwise keys and
distribute the commitment of their cluster hash chain to
their neighbors (Protocol 2). In the protocol, each node

Figure 5. Timing figures for the bootstrap protocol (Protocol 1)
on TelosB and IRIS. Dashed lines represent the optima.

sends O(n − 1) messages, so the total number of messages
isO(n(n − 1)). In our implementation, at the start of deploy-
ment, every node sets a time-out of 2000 clock ticks. Before
the time-out, every node contends for the medium to send
its JOIN packet. At time-out, every node knows how many
neighbors it has based on the JOIN packets it received. It
sorts the neighbor IDs, and determines the position of its ID
among the sorted neighbor IDs. Say its ID ranks at the ith
place among the neighbor IDs, then it will schedule to trans-
mit its replies to JOIN requests (i − 1)(n − 1) × 20 ticks
later. Note that there are (n − 1) JOIN requests to reply
to, and 20 ticks are allocated to the transmission of each
reply. Using this algorithm, the time required to deploy n

nodes is

(2000 + n(n − 1) × 20)/1024 s (2)

Figure 6 shows the experimental times required to deploy
up to 12 nodes, which are close to the prediction using (2).
Although the time is quadratic in n, taking under 4.5 s to
deploy 12 nodes seems reasonable.

Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd. 1321
DOI: 10.1002/sec
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KALwEN: Y. W. Law et al.

Figure 6. Timing figures for the neighbor discovery protocol (Pro-
tocol 2) on TelosB and IRIS. Dashed lines represent prediction

using (2).

13. DISCUSSION

In this section, we first describe how KALwEN can be
applied to User Scenarios 1 & 2 in Section 1. Then, we
compare in detail KALwEN with three complete BSN key
management schemes: BLIG [35,36], the KLS scheme [37]
as well as the LYLR scheme [38]. Finally, we address some
of the potential criticism against KALwEN.

13.1. Applying KALwEN to user
scenarios 1& 2

Suppose an elderly COPD patient is prescribed a BSN. The
BSN is for gait monitoring and fall prevention, and for mon-
itoring the patient’s ECG and breathing. KALwEN enables
the gait monitoring sensors to communicate securely with
the fall prevention actuators and vice versa.

When the gait monitoring sensors detect a fall, they
broadcast a PANIC signal. The ECG and respiratory sensors
authenticate the PANIC signal, and broadcast their read-
ings. If there is an SMS-capable device in the network,
it will authenticate the PANIC signal, the ECG and res-

piratory sensor readings; and send an emergency text to
the patient’s caregiver. All broadcasts are secured using
KALwEN’s global key and cluster hash chains.

To set up a telemedicine session, the patient needs to
add an Internet-capable LPU to the network so that his/her
physiological data can be transmitted to a remote specialist.
To do so, supposing the system parameter τ = 2, the patient
bootstraps the LPU with two of already deployed sensors
in the SFC. After bootstrapping, the LPU is able to join the
network. After the telemedicine session, the patient simply
removes the LPU from the network.

13.2. Comparison

A mainly qualitative comparison is given in Table III. It is
impossible to compare all four protocols on an equal foot-
ing, because of the different security objectives and threat
models used. Perhaps the only commonality of all pro-
posals is that they all use public-key cryptography. BLIG
is the simplest scheme because it does not support batch
deployment and considers forward key secrecy a violation
of functionality. KALwEN has relatively high complexity
because of the harsh imposed constraints and the stringent
security objectives. KALwEN caters for the absence of an
LPU, and makes allowance for nodes to be removed from
the user’s body without the user’s knowledge. The follow-
ing distinction is particularly important: in other schemes,
a compromised node can forge broadcast packets using the
identity of other nodes; in KALwEN, this attack is not feasi-
ble because broadcast is authenticated. In the KLS scheme,
a healthcare worker is absolutely trustworthy. In KALwEN,
the user trusts only himself/herself. In the LYLR scheme,
pairwise keying material are transmitted encrypted using
the group key, allowing every node to know the pairwise
key of every pair of nodes in the network—this is the price
that LYLR pays for its better bootstrap performance than
KALwEN. KALwEN makes the best effort in isolating
nodes from each other to minimize the impact of a single
node’s compromise.

In terms of equipment, BLIG relies on the user to con-
firm every node addition by comparing blinking patterns;
the KLS scheme adds on BLIG an extra layer of security—a
healthcare worker; the LYLR scheme relies on the user to
perform visual comparison of blinking patterns and to count
the number of nodes; these are the compromises they make
for dispensing with a Faraday cage. Our design is to make
operation as easy and foolproof for the user as possible—no
cognitive effort for comparing blinking patterns, no count-
ing, no need to add nodes one by one—therefore the SFC
is introduced.

In terms of formal proof, the node discovery protocol of
the KLS scheme is proved by the Burrows-Abadi-Needham
(BAN) logic [75]. The catch of BAN logic is that it assumes
all principals are honest, and the KLS scheme makes exactly
this assumption. Our protocols are proved in the stronger
Dolev-Yao model using theorem provers.

1322 Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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Y. W. Law et al. KALwEN:

Table III. Detailed comparison of BSN key management schemes.

BLIG [35,36] KLS [37] LYLR [38] KALwEN

Devices per user

An authorization node and
regular nodes

Patient’s controller, healthcare
worker’s controller and regular
nodes

User’s controller and regular
nodes

User’s SFC and regular nodes

Supported secure communication modes and corresponding key types

Confidential but unauthenticated
broadcast: group key

Confidential but unauthenticated
broadcast: group key

• Secure broadcast by the
controller: group key and hash
chain

• Secure broadcast by the KDC
(delegated): global key and global
hash chain

• Confidential but
unauthenticated broadcast by the
nodes: group key

• Secure broadcast by the nodes:
global key and cluster hash chain

• Secure unicast: pairwise key • Secure unicast: pairwise key
Batch deployment

No No Yes, using the group device
pairing protocol:

Yes, using the bootstrap protocol
(Protocol 1)

• Group key is established using
a multi-party extension of
Diffie-Hellman key
agreement [76]
• The controller distributes the
necessary keying material for
authenticated broadcast and
secure unicast to the nodes,
encrypted using the group key

Performance on TelosB: N/A N/A 25 s for 3–10 nodes 5–40 s for 2–12 nodes
Estimated complexity: N/A N/A H H

Node addition
• The joining node initiates a
public-key-based protocol with
the authorization node and a
deployed node

• The patient’s controller initiates
a public-key-based protocol with
a newly discovered node and the
healthcare worker’s device

A few more steps on top of the
group device pairing protocol

A few more steps on top of the
bootstrap protocol

• The authorization node creates
a log entry

• The new node creates and
shares a pairwise key with the
patient’s controller

• The deployed node gives the
joining node the group key

• The health care worker’s device
sends a signed authorization
message to the patient’s
controller and to the new node

Estimated complexity: H M H H
Node removal

Does not support forward
key secrecy

• Intentional removal: the
patient uses its controller to
distribute a new group key

• Intentional removal: the
patient uses its controller
to distribute a new group
key using logical key hierar-
chy [77] for better efficiency
than the preceding scheme

• A node listens for keep-alive
packets from its neighbors

• Malicious removal: detec-
tion mechanism is unspeci-
fied

• Malicious removal: detec-
tion mechanism is unspeci-
fied

• Failure to receive at least
� − 1 keep-alive packets
within a keep-alive interval
indicates removal (either
intentional or malicious) and
keying material is erased

Estimated complexity: N/A L M L
Formal security proofs

No Node discovery protocol
proved by BAN logic

No Automated proof using the-
orem prover ProVerif and
Scyther

Security level: L L M H

N/A = Not Applicable, L = Low, M = Medium, H = High.

Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd. 1323
DOI: 10.1002/sec
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KALwEN: Y. W. Law et al.

13.3. Answers to potential criticism

‘Is interoperability a realistic requirement?’ For the
ALwEN project, Roessingh Research and Develop-
ment** is making activity sensors whereas Holst Center††

is making ECG sensors. These sensors are from different
makers and they must interoperate with each other. Li et al. s
work [38] also supports our interoperability requirement.
On the contrary, we think it is unrealistic to assume a man-
ufacturer would make all the sensors that end up in a BSN.
‘Why not use factory pre-assigned symmetric keys?’ We
first preclude the possibility of assigning the same key to all
devices from the same manufacturer. Suppose every device
has a unique pre-assigned key, and suppose a user has n

devices. The user needs to manually distribute n − 1 keys
(of other devices) to every device, so that the devices can
establish a group key, amongst other keys. This is a com-
bined effort of O(n2) on the user’s behalf. Furthermore,
there is the logistics problem: the user has to keep track
of the pre-assigned keys. Obviously, the keys must not be
printed on the devices.
‘Nodes do not need to communicate with each other.’
In some applications, the nodes do need to interact with
each other; for example, for time synchronization, context
generation. See User Scenario 2 for a concrete example,
which motivates the requirement for in-network processing.
‘The SFC should be replaced by the personal computer.’
While the personal computer (PC) has become a common
household appliance, computer literacy among the elderly
remains low. In addition, the SFC offers several definite
advantages over the PC:

� The SFC supports batch deployment in a closed secure
environment, whereas the PC does not.

� The SFC presents a dedicated interface to the user and
is hassle-free in terms of software maintenance.

� The average PC nowadays is under constant threats
of cyber-attacks from the Internet. The number of
viruses was estimated to have topped 1 million in
2009 [78]. According to the Anti-Phishing Work-
ing Groups Phishing Activity Trends Report for Q3
of 2009, 48.35% of 22 754 847 scanned comput-
ers remain infected with malware. The problem has
become so serious that in Australia several drastic
measures have been recommended in the recent par-
liamentary report ‘Hackers, Fraudsters and Botnets:
Tackling the Problem of Cyber Crime’. One of the
recommendations is to disconnect infected comput-
ers until they are disinfected. The standalone nature of
the SFC thus compares favorably with the virus-ridden
state of the PC.

‘The SFC is impractical.’ The introduction of the SFC
can be seen as a necessary evil, because an out-of-range

**http://www.rrd.nl
††http://www.holstcentre.com

attacker can eavesdrop on short-range communication using
only low-cost equipment [56]. We do not believe the SFC
should be a usability barrier based on the reasoning that it
does not yet exist, because wireless sensors did not exist
until a few years ago. The bootstrap and node addition pro-
cedures consist of only four steps each. We also note that
other existing designs such as Kuo et al.’s [11] and Blink
’Em All [22] also employ special equipment (Faraday cage
and video camera, respectively) for bootstrapping multiple
nodes at the same time.

While an estimation of the production cost of the SFC
cannot be provided, the intention here is to provide an out-
line of an inexpensive construction. A basic SFC requires
only the following components:

1. a dial and three light indicators;
2. a high-end sensor node as the KDC;
3. a low-end sensor node as the RF jammer;
4. interface logic connecting the dial and indicators to

the KDC and the RF jammer;
5. a tamper-evident metal enclosure.

We mention in Assumption 1 that the SFC is tamper-
resistant, but in practice, it is sufficient to make the SFC
tamper-evident. So long as the user does not use the SFC
when he/she spots evidence of tampering, there is no secu-
rity breach.
‘Why use the SFC as the KDC?’ For one, the SFC is
more resourceful than the nodes. Secondly, it is more cost-
effective to make the SFC tamper-resistant than to make
every node tamper-resistant. Thirdly, this is due to the relax-
ation of the assumption that there is an LPU.
‘Is the design really suitable for the low power operation
of BSNs?’ Experimental results provided in Section 12 on
two major sensor network platforms—TelosB and IRIS—
strongly indicate that KALwEN is indeed suitable for the
low operation of BSNs.
‘The keys-erased-once-switched-off mechanism is
impractical because node resets due to exception
handling could be common.’ The switching off of a node
by a user is a clear sign that the user is making a conscious
decision to remove the node from the network. The reset-
ting of a node due to exception handling is a clear sign that
something is wrong with the software. Proper exception
handling does not reset a node. Unhandled exceptions such
as memory access errors could reset a node. Unhandled
exceptions such as infinite loops do require a node to be
reset, but if a healthcare device frequently encounters such
errors, it is unfit for healthcare purposes in the first place.

14. CONCLUSION AND
FUTURE WORK

KALwEN is a key management architecture for BSNs. It
combines the cryptographic techniques of ECDH, com-
binatorial key pre-distribution, authenticated broadcast by
one-way hash chains and threshold secret sharing in a com-

1324 Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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plete framework. KALwEN addresses the usability, inter-
operability, hardware constraints, and deployment issues of
BSNs. In terms of usability, a user without expert knowledge
needs but to follow a simple set of instructions to bootstrap
or extend a network. Through user-friendly procedures, sen-
sor devices from different manufacturers that expectedly do
not have any pre-shared secret can establish secure com-
munications with each other. The cryptographic primitives
used by KALwEN are lightweight enough to run on sensor
node hardware. KALwEN is decentralized so that it does
not depend on the availability of an LPU. While supporting
secure global broadcast, local broadcast, and local unicast,
KALwEN is able to preserve past key secrecy and FKS.
The fact that all the cryptographic protocols of KALwEN
have been formally verified also makes a convincing case.
Experimental results showing that bootstrapping 12 IRIS
nodes takes a little under 25 s are a strong indication that
KALwEN is practical. KALwEN at this stage is a proposal
for addressing the constraints in Section 1; more tests are
pending for substantiating the usability claim.

Appendix: ProVerif script for
Protocol 1

(* A public channel. *)
free net.

(* A private channel associated with
the SFC.*)

private free sfc.

(* Message tags. *)
free hello,boot.

(* The name of a compromised agent. *)
free spy.

(* Private channels for agent
initalization. *)

private free initialInitiatorData.
private free initialResponderData.

(* Symmetric encryption functions. *)
fun encrypt/2.
reduc decrypt(encrypt(x,y),y)=x.

(* y = the key *)
fun mac/2.
fun h/1.

(* Cryptographic constructors. *)
fun pencrypt/2.

(* asymmetric encryption *)
fun enc/1.

(* extracts encryption key *)
fun dec/1.

(* extracts decryption key *)

(* Cryptographic destructors. *)
reduc pdecrypt(pencrypt(x,enc(y)),

dec(y)) = x.

(* Constructor maps agents to secret
key-pairs. *)

private fun keypair/1.

(* A lookup function for public keys. *)
reduc pubkey(agent)

= enc(keypair(agent)).

(* Diffie-Hellman (DH) function *)
fun dh/2.
fun g/1.
equation dh(x,g(y)) = dh(y,g(x)).

(* The queries. *)
private free secretI, secretR.
query

attacker:secretI; attacker:secretR;
evinj:endInitAuth(x,y)

==>evinj:beginInitAuth(x,y);
evinj:endRespAuth(x,y)

==>evinj:beginRespAuth(x,y).

(* The initiator process. *)
let initiator =

in(initialInitiatorData, (idv,rv));
! (* model arbitrary no. of

sessions *)
new nv;
out(sfc, (idv, hello, g(rv), nv));
in(sfc, (msgv, macv));
let (ids, =idv, =boot, grs, ctextv,

ns) = msgv in
let ksv = dh(rv, grs) in
let km = decrypt(ctextv, ksv) in
if mac((nv, msgv), ksv) = macv then

(if ids<>spy then event endRespAuth
(ids, idv))

| event beginInitAuth(idv, ids);
out(sfc, mac(ns, ksv));

out(net, encrypt(secretI, ksv));
out(net, encrypt(secretI, km));
0.

(* The responder process. *)
let responder =

in(initialResponderData, (ids,rs,km));
!(* model arbitrary no. of sessions *)
in(sfc, (idv, =hello, grv, nv));
new ns;
let ksv = dh(rs, grv) in
let ctextv = encrypt(km, ksv) in
let msgv = (ids, idv, boot, g(rs),

ctextv, ns) in

Security Comm. Networks 2011; 4:1309–1329 © 2010 John Wiley & Sons, Ltd. 1325
DOI: 10.1002/sec
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let macv = mac((nv, msgv), ksv) in
event beginRespAuth(ids, idv);
out(sfc, (msgv, macv));
in(sfc, =mac(ns, ksv));
if idv<>spy then event endInitAuth

(idv, ids);
out(net, encrypt(secretR, ksv));
out(net, encrypt(secretR, km));
0.

(* The initializer process. *)
let initializer =

new agent; (* generate agent name *)
new km; (* membership key *)

(* compute public encryption
key-pair *)

let pkp = keypair(agent) in

(* launch initiator role *)
out(initialInitiatorData,

(agent,dec(pkp)));

(* launch responder role *)
out(initialResponderData,

(agent,dec(pkp),km));

(* publish the public data *)
out(net, (agent, enc(pkp))).

(* The compromised agent. *)
let compromised =

(* compute public encryption
key-pair *)

let pkp = keypair(spy) in

(* publish the key-pair to model
compromise *)

out(net, pkp).

(* The system. *)
process

!initiator (* initiators *)
| !responder (* responders *)
| compromised (* the spy *)
| !initializer
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