
Yet Another Attack On the Chinese Remainder
Theorem Based Hierarchical Access Control

Scheme

Niu Liu1, Shaohua Tang1⋆, and Lingling Xu1

School of Computer Science & Engineering,
South China University of Technology, Guangzhou, China

niuliu83@gmail.com,shtang@IEEE.org,xulingling810710@163.com

Abstract. The hierarchical access control scheme based on Chinese Re-
minder Theorem [49] (CRTHACS) was supposed to be capable of hiding
hierarchical structure, but Geiselmann et al. [18] showed practical at-
tacks on CRTHACS to reveal the hierarchies it hides. Then, Zou et al.
modified it, and gave a new CRTHACS [50] to resist those attacks. Nev-
ertheless, we find that the modified version is still defective if it permits
changes of structure, i.e. the scheme works in a dynamic scenario. In this
paper, we describe our attack on the modified version of CRTHACS. We
extend the description of the CRTHACS in a more proper form making it
easier for us to look into the problem it has. We find the key character of
the vulnerability which we name as double-invariance. We generalize our
attack in an algebraic form and apply it to a series of hierarchical cryp-
tographic access control schemes that share the same vulnerability with
CRTHACS. We also give the countermeasure to fix this vulnerability.

Keywords: communication security, CRTHACS, Chinese remainder theorem,
hierarchical access control, secure group communication, formal security

1 Introduction

The hierarchical access control (HAC) refers to a scenario in which the users or
groups of members of a computer (or communication) system are divided into
a number of disjoint security classes. One class may have more privilege than
another, and thus it gives rise to a hierarchical structure of the group. Usually,
we describe those relations by partial orders or a directed acyclic graph (DAG).

Since users or members in a same security class form a set, we call it a
subgroup. In an HAC scheme, if subgroup Gi has access to Gj ’s messages or
data encrypted by his key, we say there is a partial order Gj ≼ Gi. A partial
ordering ≼ on a set of subgroups G = {G1, · · · , Gn} is a binary relation on S×S
that for all Gi, Gj and Gk in G, we have:

1. Reflexive: Gi ≼ Gi;

⋆ Corresponding Author (email: shtang@IEEE.org)

2 N. Liu et al.

2. Transitive: if Gi ≼ Gj and Gj ≼ Gk then Gi ≼ Gk

3. Antisymmetric: if Gi ≼ Gj and Gj ≼ Gi then Gi = Gj

If Gj ≼ Gi holds, we may say Gi is an ancestor of Gj , or equally, Gj is a
descendant of Gi. To describe the access hierarchy with a DAG, we can draw a
directed line from Gi to Gj for every partial order Gj ≼ Gi. For simplicity, we
may omit those lines that reflect an indirect partial order, i.e. if G3 ≼ G1 but
there is a subgroup G2 such that G3 ≼ G2 and G2 ≼ G1, then we can omit the
line from G1 to G3 as shown in Fig. 1.

G
1

G
2

G
3

Fig. 1. Omit the line of the indirect partial order G3 ≼ G1.

Generally, HAC schemes focus on two kinds of structures: general structures
as shown in Fig. 2, and as special cases of them, the tree-like structures as shown
in Fig. 3. Mostly, there is a trusted third party as the group controller who con-
trols the hierarchical dynamic changes and may help to compute and distribute
subgroup keys.

The first cryptographic solution to HAC problems was proposed by Akl et
al. [1] Their scheme uses discrete logarithm to help ancestral subgroup derive
descendants’ data encryption keys by using public information and his private
knowledge. Afterwards, a large number of cryptographic HAC schemes have been
proposed. Some of them use one way function to derive keys, in which keys in
lower level depend on keys in higher level, such as Sandhu’s [33], Chick’s [12],
Lin’s [32], Yeh’s [47], Hwang’s [24], Wu’s [43], Kayem’s [30], Atallah’s scheme [3]
and etc. Some other HAC schemes use different ways to derive keys so as to make
keys independent from each other and lower the cost in the dynamic changes.
Such schemes include Liaw’s [31], Zou’s [48,49], Wu’s [44], Shen’s [36], Das’s [15],
Tzeng’s scheme [40] and etc.

Goldwassor et al. once described the status quo of designing key distribution
schemes: ‘The problem is deceptively simple. It is easy to propose protocols in
which subtle security problems later emerge.’ [19] So are HAC schemes which
form a subclass of key distribution schemes. Many schemes mentioned above
suffered various attacks: attack [22] on Liaw’s [31], attack [18] on Zou’s [49],
attack [23] on Yeh’s [47], attack [20,41] on Shen’s [36] and Wu’s [44], attack [42]

Yet Another Attack On CRTHACS 3

G
1

G
3

G
6

G
2

G
4

G
5

G
7

G
9

G
8

Fig. 2. A case of general hierarchy.

on Hwang’s scheme [24] and etc. And some of them still have security flaws after
amendment.

In this paper, we find a concrete attack on the improved scheme [50] of Zou’s
hierarchical access control scheme based on Chinese Reminder Theorem(CRTHACS) [49].
Though Zou’s improved version is not the most efficient HAC scheme in the clas-
sification of Crampton [14], we pay attention to it and feel worthy and interesting
to study it mainly because of the following special reasons:

1. To our knowledge, it’s the sole HAC scheme that claims to be able to hide
the hierarchical structure and the receivers in communication. In this case,

4 N. Liu et al.

!

"

!

"

#

#

Fig. 3. A case of tree-like hierarchy.

it sets an example for researchers and engineers who are looking for such
properties. Thus, it’s worthy of a better reexamination.

2. It’s based on the Chinese Reminder Theorem, which can be deemed as the
general form of many other methods. Analysis on CRTHACS is also critical
to other HAC schemes which make use of them. Details see Section 3.

3. While some analyses [25, 46] on group-oriented protocols pay explicit at-
tention to “inter-session” analysis in their formation of security notions,
CRTHACS doesn’t show much concern about this idea. It may result in se-
curity flaws even in a “formally proved” scheme [13,17] when designers ignore
it unconsciously. Our analysis may present a substantive example of showing
how this kind of neglect imperils a protocol. This “inter-session” idea has a
not very short history. The pioneering work of Bellare etc. [4, 5] formalized
the notion of “sessions” of key establishment schemes and the security no-
tion of “session key” in which the consideration of “inter-session” analysis is
contained. In this security notion, it calls for a reductive proof on the inde-
pendence of different sessions. Then lots of researches [3, 7, 11, 25, 29, 37, 46]
followed this idea to give the formal definition of different types of group key
management protocols. In Atallah’s full length paper [3], he discussed the

Yet Another Attack On CRTHACS 5

security notion of indistinguishability and incomputability of HAC schemes
under this framework. It’s seems inevitable to dive into the inter-session rela-
tions if we are to seriously examine the security of a group key management
scheme. When designers ignore it unconsciously, security flaws could emerge
even in a “formally proved” scheme [13, 17]. However, CRTHACS doesn’t
show much concern about this idea. Our analysis may present a substantive
example of showing how this kind of neglect imperils a protocol.

These points guided us in our research. In our study, we find that the scheme
does indeed not fulfil the task of hiding the hierarchical structure. We also find
that a series of HAC schemes share the similar vulnerability with CRTHACS.
One [40] of them was even proposed in 2011, which showed an ignorance of the
problem. Thus, we feel necessary to study the problem in depth.

The rest of this paper is organized as follows. In Section 2, we give our
attack on CRTHACS. In Section 2.1, we briefly show how CRTHACS works;
In Section 2.2, we give an exemplary attack on a concrete case of CRTHACS;
In Section 2.2, we give a toy example; In Section 2.3, we generalize our attack
in the form of algebra, and introduce time into the description of schemes; In
Section 2.4, we show how to fix a scheme that is vulnerable to our attack. In
Section 3, we apply our attack to some other HAC schemes and briefly describe
our attack on one [15] of them. Section 4 concludes our paper.

2 Our Attack on CRTHACS

Zou et al. [49] proposed a Chinese Remainder Theory (CRT) based Hierarchical
Access Control Scheme (CRTHACS) aiming to hide the access hierarchy. Nev-
ertheless, Geiselmann et al. [18] presented three practical attacks based on the
greatest common divisor (GCD) that allowed for revealing at least parts of the
hierarchy. Then, Zou et al. [50,51] modified the scheme to resist those GCD at-
tacks and maintain the property of hiding the hierarchy. Unfortunately, here we
find another attack in dynamic scenarios to reveal the hierarchy in their modified
CRTHACS.

Some notations are given in Table 1 for reference.

2.1 Review of CRTHACS

CRTHACS [51] is applicable to general hierarchies. There is a trusted party as
a group controller (GC). The entire group is divided into n disjoint subgroups
G1, · · · , Gn. Users in these subgroups are managed by a subgroup controller,
which is also denoted by G1, · · · , Gn. Any proper group key management proto-
col can be used in a subgroup. The η ancestors of subgroup Gi are denoted by
Gi1 , · · · , Giη , and the set of them is denoted by AGi.

Initialization: The GC has a pair (PGC, SGC) of public and private keys.
Every subgroup Gi has a pair (Pi, Si) of public and private keys respectively,
and every member Ul in subgroup Gi has a pair (pl, sl) of public and private

6 N. Liu et al.

keys. The GC chooses n+1 pair-wise relatively prime numbers N0, N1, · · · , Nn,
then makes N0 public and keeps Ni in secret. Gi randomly chooses his own data
encryption key ki and sends EPGC

(ESi
(ki)) to the GC.

The GC decrypts all data encryption keys. For subgroup Gi, the GC deter-
mines all of his η ancestors Gi1 , · · · , Giη . Then the GC establishes the following
system of η + 1 congruences and gets the solution of CRTi:

CRTi ≡ {ki}ki1
mod Ni1 ,

CRTi ≡ {ki}ki2
mod Ni2 ,

· · ·
CRTi ≡ {ki}kiη

mod Niη ,

CRTi ≡ {ki}ki mod N0.

(1)

Then, the GC sends EPi(ESGC(Ni, CRTi)) to subgroup controller Gi. The
subgroup controller decrypts them and sends them along with ki to users in the
subgroup securely. Thus, subgroup ControllerGi holds (Pi, Si, ki, Ni, CRTi), and
member l in subgroup Gi holds (pl, sl, ki, Ni, CRTi).

Data Communication: When a user Ul ∈ Gi, with identity IDl, wants to send
a messageM, he sends (IDl, CRTi, Signed MAC, {M}ki), where Signed MAC =
Esl(MACki({M}ki)). Any user U ∈ Gij , where Gij is an ancestor of Gi, is able
to figure out ki in congruence CRTi ≡ {ki}kij

mod Nij , and then the message

M . See Fig. 4 as an example. U72 in group G7 is sending a message M to users
that have access to his level, i. e. users in group G2, G4 and G7.

We notice that, when a user Ul in subgroup Gi sends a message M encrypt-
ed with ki, he actually publishes the CRTi of his own subgroup by sending
(IDl, CRTi, Signed MAC, {M}ki).

Dynamic Key Management : There are two levels of dynamics in CRTHACS,
one is member dynamics such as members’ joining, leaving, etc. in a subgroup.
The other one is subgroup dynamics such as a subgroup’s leaving or joining in
the entire group. Member dynamic changes are dependent on the subgroup key
management protocol, which are not considered here.

Subgroup dynamic changes include: adding, inserting, deleting, splitting a
subgroup and modifying the key of a subgroup etc. For example, when adding a
new subgroup Gi into the group, the GC determines its ancestors. Then, after
Gi sends its secret data encryption key ki to GC securely, GC computes CRTi

according to (1) and sends EPi(ESGC(Ni, CRTi)) to Gi. If Gi has any descendant
Gj , GC shall recompute CRTj and send it to Gj securely.

2.2 A Heuristic Example of Attack

Our attack on CRTHACS is in a dynamic scenario. After several dynamic op-
erations, an outsider attacker, who is even not in any security class, is probably
able to find out at least part of the hierarchy which, according to the claim of
the scheme, was supposed to be invisible to him. We give a heuristic example of
attack as follows. We take the hierarchy in Fig. 2 as an example.

Yet Another Attack On CRTHACS 7

!

"

#

$

%

&

'

(

!"
###

###

###

$%&
!"
'

!
' '() * +

Fig. 4. U72 is broadcasting a message to authorized users.

We assume that the adversary A is able to wiretap all communications in
the group, but unable to decrypt or sign a message with a key that he does not
possess.

Since users in a same subgroup Gi always share a common CRTi no matter
whether it changes, A can roughly distinguish subgroups by their CRTi. Despite
the fact that a user may move from one subgroup to another, A can identify the
new group that the user belongs to with his new CRTi later on. A sees as much
number of subgroups as the number of CRTis used in the communications of
the group.

When the protocol is initiated, the GC computes CRT9 according to (2),
and sends EP9(ESGC(N9, CRT9)) to G9. When a user Ul in G9 wants to send
a message M to others, he sends (IDl, CRT9, Signed MAC, {M}k9) to them,
the CRT9 is thereby made public to any adversary who has been listening to
their public communications. Consequently, A knows that the user Ul belongs

8 N. Liu et al.

 !
!

"

#

$

%

&

'

(

Fig. 5. Modify the data encryption key k3 of G3.

to a subgroup corresponding to CRT9. Similarly, if a user Uv ∈ Gi sends out a
message M ′ to others, he sends out (IDv, CRTi, Signed MAC, {M ′}ki) , then
A knows that Uv’s subgroup owns CRTi.

Yet Another Attack On CRTHACS 9

 !
!

"

#

$

%

&

'

(

)

Fig. 6. Add a new subgroup G10.



CRT9 ≡ {k9}k1 mod N1,
CRT9 ≡ {k9}k2 mod N2,
CRT9 ≡ {k9}k3 mod N3,
CRT9 ≡ {k9}k4 mod N4,
CRT9 ≡ {k9}k6 mod N6,
CRT9 ≡ {k9}k8 mod N8,
CRT9 ≡ {k9}k9 mod N0.

(2)

Afterwards, we assume that G3 modifies its data encryption key k3 to k′3, as
shown in Fig. 5. Then, G3, G5,G6 and G9 have to update their CRTi. The GC
has to recompute CRT9 using (3) by substituting k3 in (2) with k′3 since G9 is
a descendant of G3.

10 N. Liu et al.



CRT ′
9 ≡ {k9}k1 mod N1,

CRT ′
9 ≡ {k9}k2 mod N2,

CRT ′
9 ≡ {k9}k′

3
mod N3,

CRT ′
9 ≡ {k9}k4

mod N4,
CRT ′

9 ≡ {k9}k6 mod N6,
CRT ′

9 ≡ {k9}k8 mod N8,
CRT ′

9 ≡ {k9}k9 mod N0.

(3)

Comparing (2) and (3), we get (4) which shows that N0, N1, N2, N4, N6 and
N8 are factors of (CRT ′

9 − CRT9), i.e. N0N1N2N4N6N8|(CRT ′
9 − CRT9).

CRT ′
9 − CRT9 ≡ 0 mod N1,

CRT ′
9 − CRT9 ≡ 0 mod N2,

CRT ′
9 − CRT9 ≡ 0 mod N4,

CRT ′
9 − CRT9 ≡ 0 mod N6,

CRT ′
9 − CRT9 ≡ 0 mod N8,

CRT ′
9 − CRT9 ≡ 0 mod N0.

(4)

Similarly, the GC also has to recompute CRT ′
3, CRT ′

5 and CRT ′
6. Thus, we

have N0N1|(CRT ′
5 − CRT5) and N0N1N2N4|(CRT ′

6 − CRT6). A will find out
the common factors of (CRT ′

5 − CRT5) and (CRT ′
6 − CRT6), i.e. N0, N1 and

perhaps a few irrelevant numbers.
More dynamic changes will then leak out more information of the probable

structure of the group hierarchy. For example as shown in Fig. 6, on the morrow
of the modification of G3’s data key, the GC adds a new subgroup G10 into the
group as one of G9’s immediate superior. Only CRT9 should be updated. The
GC should then recompute CRT ′′

9 as shown in (5).

CRT ′′
9 ≡ {k9}k1 mod N1,

CRT ′′
9 ≡ {k9}k2 mod N2,

CRT ′′
9 ≡ {k9}k′

3
mod N3,

CRT ′′
9 ≡ {k9}k4 mod N4,

CRT ′′
9 ≡ {k9}k6 mod N6,

CRT ′′
9 ≡ {k9}k8 mod N8,

CRT ′′
9 ≡ {k9}k10 mod N10,

CRT ′′
9 ≡ {k9}k9 mod N0.

(5)

Comparing (3) with (5), we’ll have (6) which is similar to (4). We get that
N0N1N2N3N4N6N8|(CRT ′′

9 − CRT ′
9).

CRT ′′
9 − CRT ′

9 ≡ 0 mod N1,
CRT ′′

9 − CRT ′
9 ≡ 0 mod N2,

CRT ′′
9 − CRT ′

9 ≡ 0 mod N3,
CRT ′′

9 − CRT ′
9 ≡ 0 mod N4,

CRT ′′
9 − CRT ′

9 ≡ 0 mod N6,
CRT ′′

9 − CRT ′
9 ≡ 0 mod N8,

CRT ′′
9 − CRT ′

9 ≡ 0 mod N0.

(6)

Yet Another Attack On CRTHACS 11

The adversary A who eavesdrops on the group communications, now finds
out that a user’s CRTi changed, from CRT9 to CRT ′

9 and then CRT ′′
9 . A gets

(CRT ′′
9 −CRT ′

9), (CRT ′
9 −CRT9). He also notices the change of a user’s CRTi

from CRT6 to CRT ′
6, so he gets (CRT ′

6 − CRT6). Through computing their
greatest common divisors and then factoring them, A has a good chance to
figure out the shared moduli like N0, N1, N2, N4, N6, etc. Then, he may infer
the hierarchical relation from moduli and CRTis.

We shall make it clear that A identify Gi with its CRTi, but he doesn’t
know what Ni of a subgroup Gi is, and which Ni corresponds to which Gi at the
beginning. A subgroup’s CRTi changes whenever there is a subgroup dynamic
change at any of its ancestors. We show as follows what A may know after these
two moves.

After the first move, the data encryption key k3’s modification, CRT6 and
CRT9 change to CRT ′

6 and CRT ′
9. Both (CRT ′

6 − CRT6) and (CRT ′
9 − CRT9)

share factors N0, N1, N2 and N4. A infers that they probably share some same
ancestral subgroups. Similarly, (CRT ′

5 − CRT5) and (CRT ′
6 − CRT6) share the

factor N0 and N1. So do (CRT ′
5 − CRT5) and (CRT ′

9 − CRT9). A may infer
that some ancestors of G6 and G9, which corresponding to N2 and N4, are not
ancestors of G5.

After the second move, only CRT ′
9 changes, and CRT6 doesn’t. Then, A

could infer that G9 is either a sibling or a descendant of G6. (CRT ′
6 − CRT6)

and (CRT ′′
9 − CRT9) also share factors N0, N1, N2 and N4, which is same as

that of (CRT ′
6−CRT6) and (CRT ′

9−CRT9). A may know that the newly added
subgroup is the ancestor of G9, but not G6’s. (CRT ′

9 − CRT9) and (CRT ′′
9 −

CRT ′
9) share N0, N1, N2, N4 and N6, N8. A infers that it’s possible that one of

N6 and N8 corresponds to G6, and the worst case is that both of them belong
to siblings of G6.

To get more clear of this, A should wait for more subgroup dynamic changes,
especially of G6 or his ancestors, to take place. After a few more subgroup dy-
namic changes, A may see some relational patterns emerge repeatedly, and thus
be able to draw numbers of hierarchical relations between different subgroups.

Since the modulus Ni of every leaf node subgroup Gi (such as N5 and N9)
has never shown up in the whole procedure of the protocol , and all that A can
do is to infer from the moduli he gets in subgroup dynamic changes, he may
not be able to figure out the exact structure of the hierarchy entirely. Despite
this uncertainty, our attack of revealing the hierarchy protected by CRTHACS
is still worth noting.

Toy Example Here, we give a toy example of above. We set the length of the
security parameter to be 10 bits. That is to say, the symmetric encryption {x}k
is assumed to be a mapping whose range is between 1 and 210. The moduli Ni

is restricted between 210 + 1 and 211.
Since the algorithm of symmetric encryption {x}k is irrelevant to our method

of attack, we use a random table of the mapping to simulate it. We randomly
choose those eleven pair-wise relatively prime numbers:

12 N. Liu et al.


N1 = 1992, N2 = 1195, N3 = 1499,
N4 = 1681, N5 = 1037, N6 = 1471,
N7 = 1919, N8 = 1237, N9 = 1157,
N10 = 1087.N0 = 1267.

(7)

In description of CRTHACS, N0 is public, and all of the other Ni are kept
secret.

We have encryption table of {ki}kj before and after k3’s change, see Table 2.
We just list {ki}kj that are used in calculating CRTi and leave a block empty if
the {ki}kj is not used.

We have CRTi, CRT ′
i and CRT ′′

i in Table 3, and their differences in the
same table.

An adversary may record the CRTi, so he has Table 3. He tests whether a
(CRT ′

i −CRTi) or a (CRT ′′
i −CRT ′

i) can be divided by N0. If not, that means
ki has changed during that session, and the corresponding difference ((CRT ′

i −
CRTi) or (CRT ′′

i −CRT ′
i)) can’t be used to calculate moduli. In Table 3, we have

N0 - (CRT ′
3 − CRT3), N0|(CRT ′

5 − CRT5), N0|(CRT ′
6 − CRT6), N0|(CRT ′

9 −
CRT9) and N0|(CRT ′′

9 − CRT ′
9). Then, the adversary knows k3 has changed,

and he calculates:

GCD(
CRT ′

5−CRT5

N0
,
CRT ′

6−CRT6

N0
) = 7968,

GCD(
CRT ′

5−CRT5

N0
,
CRT ′

6−CRT6

N0
,
CRT ′

9−CRT9

N0
)

= 1992,

GCD(
CRT ′

9−CRT9

N0
,
CRT ′′

9 −CRT ′
9

N0
)

= 7281273177974280.

(8)

The adversary hereby gets “1992”. If he knows that Ni is restricted between
210+1 and 211, which is normally public, he’ll be sure that G5, G6 and G9 share
a same ancestor whose modulus is 1992 , i. e. N1. He also may infer that G3 is
an ancestor of G5, G6 and G9. Because N0 - (CRT ′

3 − CRT3), he may detect
the change of G3’s data key, which results in the changes of CRT5, CRT6 and
CRT9.

Furthermore, the adversary also gets a number 7281273177974280, which is
the very product of N1, N2, N4, N6 and N8. It’s a very useful clue for further
reasoning on G9’s ancestors and the whole structure.

2.3 The Theoretical Analysis

In this section, we analyze the problem of CRTHACS. We generalize the core
problem into an algebraic form, which may help us find out the similarity of
those schemes that our attack can be adopted. To help with the analysis, we
introduce time t into the description of CRTHACS as session ID. We know that
in a group key management (GKM) protocol, we always identify a change with a
session identity. These session identities are actually related with different time
periods. But, in the description of the CRTHACS, there is no session identity.

Yet Another Attack On CRTHACS 13

Adding it into the scheme helps us describe the relations among sessions, and it
is also the key to find out the vulnerability of this scheme.

Firstly, we use a more general and algebraic form to restate the problem. The
general form of the Chinese Remainder Theorem can be formulated in rings and
ideals. Hungerford has proved the following Theorem 1, i.e. Corollary 2.27 in his
book Algebra [21].

Theorem 1 (Chinese Remainder Theorem [21]). If I1, · · · , Iζ are ideals
in a ring R, then there is a monomorphism of rings

θ : R/(I1 ∩ I2 ∩ · · · ∩ Iζ) → R/I1 ×R/I2×
· · · ×R/Iζ .

(9)

If R2+Iu = R for all u, and Iu+Iv = R (or say they are coprime) for all u ̸= v,
then θ is an isomorphism of rings.

Remark 1. If R has an identity, then R2 = R, whence R2+I = R for every ideal
I of R.

In the CRTHACS, the integer ring Z is the instantiation of the ring R in
Theorem 1. There are η ancestors Gi1 , · · · , Giη of Gi, then ζ in Theorem 1
corresponds to η+1 in this instance. ⟨Ni1⟩, · · · , ⟨Niη ⟩, and ⟨N0⟩ are η+1 ideals
I1, · · · , Iη+1 of Z, where ⟨Nj⟩ stands for an ideal generated by Nj . Because Z is
commutative, ⟨Ni1⟩ ∩ · · · ∩ ⟨Niη ⟩ ∩ ⟨N0⟩ = ⟨Ni1 · · ·NiηN0⟩. The isomorphism is
thus

θ : Z/⟨Ni1 · · ·NiηN0⟩ → Z/⟨Ni1⟩ × · · ·
×Z/⟨Niη ⟩ × Z/⟨N0⟩.

(10)

That is,

θ(CRTi + ⟨Ni1 · · ·NiηN0⟩)
= (CRTi + ⟨Ni1⟩, · · · , CRTi + ⟨Niη ⟩, CRTi + ⟨N0⟩)
= (remi1 + ⟨Ni1⟩, · · · , remiη + ⟨Niη ⟩, remi0 + ⟨N0⟩).

(11)

To describe the subgroup dynamic changes in CRTHACS more precisely, we
introduce time t into the scheme. We extend our notations as in Table 4. We
denote a value V at time t by V [t]. We use the notion ‘determinant subgroups’
instead of ancestors in CRTHACS. After some subgroup dynamic changes, some
determinant subgroups of Gi may have modified their data encryption key, left or
joined in the group and etc. , and certain determinant subgroups of Gi may still
keep unchanged. We denote the set of those unchanged subgroups as UGi[t1, t2].

Therefore, we rewrite (11) at time t to be (12),

θ(CRTi[t] + ⟨N [t]i1 · · ·N [t]iη[t]i
N0⟩)

= (CRTi[t] + ⟨N [t]i1⟩, · · · , CRTi[t] + ⟨N [t]iη[t]i
⟩,

CRTi[t] + ⟨N0⟩)
= (rem[t]i1 + ⟨N [t]i1⟩, · · · , rem[t]iη[t]i

+ ⟨N [t]iη[t]i
⟩,

rem[t]i0 + ⟨N0⟩).

(12)

14 N. Liu et al.

For any determinant subgroup Gil of Gi, if Gil ∈ UGi[t1, t2], then N [t1]il =
N [t2]il and rem[t1]il = rem[t2]il . Hence we have

CRTi[t1] + ⟨N [t1]il⟩ = rem[t1]il + ⟨N [t1]il⟩
= rem[t2]il + ⟨N [t2]il⟩ = CRTi[t2] + ⟨N [t2]il⟩.

(13)

(13) informs that (CRTi[t2]−CRTi[t1]) ∈ ⟨N [t1]il⟩, for any Gil ∈ UGi[t1, t2].
As a result, we have

(CRTi[t2]− CRTi[t1]) ∈ ⟨
∏

Gil
∈UGi[t1,t2]

N [t1]il⟩. (14)

Now, we may reexamine the problem of CRTHACS in the form of algebra.
We suppose that R is a unique factorization domain (UFD) in the following

text. I[t]0, I[t]1, · · · , I[t]η[t]i are η[t]i + 1 ideals of R. I[t]u + I[t]v = R for all
u ̸= v. Therefore, they satisfy the conditions in Theorem 1. We have

θ : R/(I[t]0I[t]1 · · · I[t]η[t]i) → R/I[t]0 ×R/I[t]1×
· · · ×R/I[t]η[t]i .

(15)

Now, we substitute Z and ⟨N [t]i⟩ in (10–14) with R and I[t]i, and retain
other notations in Table 4. We give as follows an exact definition of the critical
feature of CRTHACS that makes our attack feasible.

Definition 1. We say a scheme PT is double-invariant if it holds rem[t1]il =
rem[t2]il and I[t1]il = I[t2]il when Gil ∈ UGi[t1, t2].

CRTHACS is an example of double-invariant schemes. Now, we generalize
our attack to double-invariant schemes in the form of the following theories.

Lemma 1. In a double-invariant scheme PT, R is a unique factorization do-
main. I[t]i, i = 0, · · · , η[t]i are η[t]i pair-wise coprime ideals of R. θ is a
monomorphism described by (15). If there exists a nonempty set UGi[t1, t2],
then

(CRTi[t2]− CRTi[t1]) ∈
∏

Gil
∈UGi[t1,t2]

I[t1]il , (16)

where t1 and t2 are two distinct time points, satisfying t1 < t2.

Proof. Follow the deduction above.

If in R factorization can be practically solved, then our attack will succeed in
some trivial steps. But usually it is not. Moreover, (16) means that (CRTi[t2]−
CRTi[t1]) has the factors that are relevant to ideals corresponding to subgroups
in it, but still could have some factors that are random and irrelevant. Then,
without further steps, we can’t recognize any proper relation, ie. (CRTi[t2] −
CRTi[t1]) and (CRTj [t4] − CRTj [t3]) for any i, j and time t may not exhibit
any explicit relation such as divisibility etc. Thus, we shall go further at least to
figure out those factors or the exact product of them that consist of no irrelevant
elements.

Yet Another Attack On CRTHACS 15

Definition 2. We call CoIt[a(t1, t2), b(t3, t4)] a conditional intersection, which
is defined to be the set {Gj : Gj ∈ UGa[t1, t2]

∩
UGb[t3, t4], I[t1]j = I[t3]j},

where t1 < t2, t3 < t4, Ua and Ub are two subgroups.

This definition helps us identify subgroups whose corresponding ideals Amay
figure out. It can be applied to more than two UGs in a similar way.

CoIt[a(t1, t2), b(t3, t4)] is slightly different from UGa[t1, t2]
∩
UGb[t3, t4]. There

may exist a subgroup Uj keeping unchanged during t1 to t2 and t3 to t4, but
having changed in time between t2 and t3. That is to say, though I[t1]j = I[t2]j
and I[t3]j = I[t4]j , I[t1]j ̸= I[t3]j . As a result, j ∈ UGa[t1, t2]

∩
UGb[t3, t4],

but j /∈ CoIt[a(t1, t2), b(t3, t4)]. CoIt[a(t1, t2), b(t3, t4)] is also different from
UGa[t1, t4]

∩
UGb[t1, t4]. For Uj ∈ CoIt[a(t1, t2), b(t3, t4)], rem[t]j may change

during time t2 to t3, but I[t]j shall not. But for Uj ∈ UGa[t1, t4]
∩
UGb[t1, t4],

both rem[t]j and I[t]j keep unchanged.
We know that in a unique factorization domain R, any two elements u, v ∈ R

have a greatest common divisor (gcd) d. If R is a principal ideal domain (PID),
d can be represented by a linear combination of u and v. Furthermore, if R is a
Euclidean domain, d can be efficiently computed by Euclidean Algorithm.

Lemma 2. In a double-invariant scheme PT, R is a Euclidean domain. I[t]i,
i = 0, · · · , η[t]i are η[t]i pair-wise coprime ideals of R. θ is a monomorphism
described by (15). If there exists a nonempty set CoIt[a(t1, t2), b(t3, t4)], then
the greatest common divisor d as

da(t1,t2),b(t3,t4)
= GCD(CRTa[t1]− CRTa[t2], CRTb[t3]− CRTb[t4])

(17)

can be worked out efficiently, where GCD(α, β) means the greatest common di-
visor of α and β.

Proof. Follow the deduction above.

When a = b and t2 = t3 in CoIt[a(t1, t2), b(t3, t4)], as a special case of
Lemma 2, we have

Lemma 3. In a double-invariant scheme PT, R is a Euclidean domain. I[t]i,
i = 0, · · · , η[t]i are η[t]i pair-wise coprime ideals of R. θ is a monomorphism
described by (15). If there exists a nonempty set UGa[t1, t4], where t1, t2 and t4
are three distinct time points, t1 < t2 < t4, then the greatest common divisor d
as

da(t1,t4) =
GCD(CRTa[t2]− CRTa[t1], CRTa[t4]− CRTa[t2])

(18)

can be worked out efficiently.

Here, UGa[t1, t4] = CoIt[a(t1, t2), b(t3, t4)]. Now, we have our main statement
as follows.

16 N. Liu et al.

Theorem 2. In a double-invariant scheme PT, R is a Euclidean domain. I[t]i,
i = 0, · · · , η[t]i are η[t]i pair-wise coprime ideals of R. If the dynamic changes of
determinant subgroups of a subgroup happen not only once, then we have a good
chance to figure out the product of moduli of some of its determinant subgroups
during dynamic changes (or the product of generators of ideals corresponding to
those determinant subgroups).

Proof. Because every Euclidean domain R is also a principal ideal domain, the
generator of every ideal I[t]i is an element ξ[t]i ∈ R. Since the subgroup dy-
namic changes usually happen once on a determinant subgroup of a subgroup,
nonempty UGs and CoIts emerge continuously in dynamic scenarios. We assume
that there are µ nonempty unchanged sets UGai [t2i−1, t2i], i = 1, · · · , µ, and a
nonempty conditional intersection CoIt[a1(t1, t2), · · · , aµ(t2µ−1, t2µ)]. Here we
shall make clear that ai is identifier of subgroup, two different ais may possibly
identify a same subgroup Gj .

By Lemma 1, we have
∏

Gj∈UGa1
[t1,t2]

ξ[t1]j |(CRTa1 [t2]− CRTa[t1]),

· · ·∏
Gj∈UGaµ [t1,t2]

ξ[t2µ−1]j |(CRTaµ [t2µ]

−CRTaµ [t2µ−1]).

(19)

Then, by Lemma 2, we have

da1(t1,t2),··· ,aµ(t2µ−1,t2µ)

= GCD(CRTa1 [t2]− CRTa[t1], · · · , CRTaµ [t2µ]
−CRTaµ [t2µ−1])

= ∆a1(t1,t2),··· ,aµ(t2µ−1,t2µ)

×
∏

Gj∈CoIt[a1(t1,t2),··· ,aµ(t2µ−1,t2µ)]
ξ[t1]j ,

(20)

where ∆a1(t1,t2),··· ,aµ(t2µ−1,t2µ) denotes:
GCD(CRTa1 [t2]−CRTa[t1],··· ,CRTaµ [t2µ]−CRTaµ [t2µ−1])∏

Gj∈CoIt[a1(t1,t2),··· ,aµ(t2µ−1,t2µ)] ξ[t1]j
.

We may rewrite (19) with notion of CoIt as
CRTa1 [t2]− CRTa1 [t1] = δa1(t1,t2)

×
∏

Gj∈CoIt[a1(t1,t2),··· ,aµ(t2µ−1,t2µ)]
ξ[t1]j ,

· · ·
CRTaµ [t2µ]− CRTaµ [t2µ−1] = δaµ(t2µ−1,t2µ)×∏

Gj∈CoIt[a1(t1,t2),··· ,aµ(t2µ−1,t2µ)]
ξ[t1]j ,

(21)

where δai(t2i−1,t2i), i = 1, · · · , µ are µ numbers, each of which is a product of a
few random numbers. For detail, see A.2. It holds that

∆a1(t1,t2),··· ,aµ(t2µ−1,t2µ)

= GCD(δa1(t1,t2), · · · , δaµ(t2µ−1,t2µ)).
(22)

Yet Another Attack On CRTHACS 17

If∆a1(t1,t2),··· ,aµ(t2µ−1,t2µ) = 1, then we get
∏

Gj∈CoIt[a1(t1,t2),··· ,aµ(t2µ−1,t2µ)]
ξ[t1]j

from (20), the product of generators of the ideals corresponding to those sub-
groups in CoIt. In this case, da1(t1,t2),··· ,aµ(t2µ−1,t2µ) is the very product we need,
i.e. our attack succeeds.

The probability of ∆a1(t1,t2),··· ,aµ(t2µ−1,t2µ) = 1 mainly depends on the fol-
lowing three factors:

1. what the ring R is;
2. the relations between UGs and CoIt;
3. the types of subgroup dynamic changes in it.

Different rings have different rules of coprime, and thus they result in different
probabilities.

If R is the integer ring Z, by the knowledge of probabilistic number the-
ory [39], the probability of two random numbers α, β to be coprime is pz =
Prob[GCD(α, β) = 1 : α, β ∈ Z] = 6

π2 ≈ 0.6079.
If R is a polynomial ring over a finite field Fq where q is a prime number,

by Sugita’s analysis [38], the probability of two random polynomial f, g to be
coprime is

pf = Prob[GCD(f, g) = 1 : f, g ∈ Fq[x]] =
q−1
q . (23)

For the latter two factors, we took the integer ring Z as our example, furthered
our reasoning in detail. For the sake of length, we leave them in Appendix A.
In A.2, we give the estimated ranges of possibilities of success in consideration
of different types of subgroup dynamic changes and relations between UGs and
CoIt. Generally, we find that the more the dynamic moves an adversary captures,
the greater his probabilities of success are. The probabilities of success of our
attack are pretty high.

Experiments in A.3 justify our analysis.

Theorem 2 is the main reason why our attack works. If the generators of
ideals in a scheme are prime, we have the following corollary.

Corollary 1. In a double-invariant scheme PT, R is a Euclidean domain. If all
ideals I[t]i in (15) are prime, the factorization is practical in R and the dynamic
changes of determinant subgroups of a subgroup happen not only once, then we
have a good chance to figure out the generators of ideals of some of its unchanged
determinant subgroups.

2.4 Countermeasure

We find from the lemmas above and Theorem 2, that the double-invariance of
CRTHACS is the critical cause of its security vulnerability. So, removing it is
the key to protect schemes from our attack. We can fulfil this by adding some
session/time-related ‘salt’ into rem[t]i or I[t]i to make them distinct in each
session/time.

In CRTHACS, for a subgroup Gi, GC computes CRTi through (1), which
can be represented as (24) at t1.

18 N. Liu et al.


CRTi[t1] ≡ rem[t1]i1 mod N [t1]i1 ,
CRTi[t1] ≡ rem[t1]i2 mod N [t1]i2 ,
· · ·
CRTi[t1] ≡ rem[t1]iiη mod N [t1]iη ,

CRTi[t1] ≡ {ki}ki mod N0.

(24)

In CRTHACS, if a subgroup change of an ancestor of Gi takes place at time
t2, to any other ancestors Gil of Gi, it still holds that rem[t1]il = rem[t2]il =
{ki}kil

and N [t1]il = N [t2]il = Nil . This is the property we defined in Defini-
tion 1, i.e. double-invariance. We can remove this property by letting rem[t]il or
N [t]il be different at every time point t. To avoid coprime tests of N [t]il for differ-
ent il, we can merely change rem[t]il at each time t. One method is to add a hash
of time as a time stamp into rem[t]il , that is, to let rem[t]il = {ki||hash(t)}kil

,
and when someone sends CRTi[t] he always sends the time t or hash(t) with
it. The hash function is a public cryptographic hash function with a negligible
probability of collision. We omit the formal proof here for the sake of length.

3 Our Attack on Other Schemes

The general form of Chinese Remainder Theorem, i.e. Theorem 1, plays a very
important part in modern cryptography.

We notice that instances of general form of CRT that are applied to build
secret sharing schemes, could also be used to build key management proto-
cols for a group with hierarchy. For example, Chinese Reminder Theorem is
applied to build a secret sharing scheme [2] and a key management protocol
for HAC i.e. CRTHACS [49, 50]. Other types of secret sharing schemes such
as Shamir’s [35], Blakeley’s [8], Karnin’s [28], Brickell’s [10], Wu’s scheme [45],
could also be transformed to group key management protocols for HAC. All the
methods of these secret sharing schemes are the very instances of general form
of CRT. Shamir’s secret sharing scheme [35] may probably be the best known
example of the above. His scheme makes use of polynomial interpolation over a
finite field. We represent the interpolation method in a form similar to (9) as
follows.

In a finite filed F , given ζ points (x1, y1), · · · , (xζ , yζ) with distinct xi’s, we
are able to build up a polynomial f(x) of degree (ζ − 1) by using following
equations, 

f(x) ≡ y1 mod (x− x1),
f(x) ≡ y2 mod (x− x2),
· · ·
f(x) ≡ yζ mod (x− xζ).

(25)

In fact, this is an isomorphism described by

θ : F [x]/⟨(x− x1) · · · (x− xζ)⟩
→ F [x]/⟨x− x1⟩ × · · · × F [x]/⟨x− xζ⟩,

(26)

Yet Another Attack On CRTHACS 19

where F [x] is a polynomial ring over F , ⟨x−xi⟩ is an ideal generated by (x−xi),
F [x]/⟨x− xi⟩ is a quotient ring. Since F is a field, F [x] is a Euclidean domain.

Many schemes of group key management for HAC make use of this, such as
Shen’s [36], Wu’s scheme [44] and etc. , and the modified versions [15, 20, 40] of
them. Unfortunately, all of the above are double-invariant schemes and hence
vulnerable to our attack.

Take Das’s scheme [15] as an example. Das’s scheme is a hierarchical group
key management scheme using Newton’s interpolation function [34]. It’s applied
to a tree-like hierarchy as shown in Fig. 7.

!

"

!

"

#

Fig. 7. A subgroup hierarchy for Das’s scheme.

All computations run over a finite field F . In his scheme, ki is Gi’s data
encryption key, IDi is Gi’s unique identity. h is a cryptographic hash function.
GC computes Newton’s interpolation function Hi(x) at points (h(IDil ||ki), kil),

20 N. Liu et al.

for all il such that Gil ≼ Gi. Then GC publishes Hi(x).
Hi(x) ≡ ki1 mod (x− h(IDi1 ||ki)),
Hi(x) ≡ ki2 mod (x− h(IDi2 ||ki)),
· · ·
Hi(x) ≡ kiη mod (x− h(IDiη ||ki)).
Hi(x) ≡ ki mod (x− h(IDi||ki)).

(27)

Then Gi is able to derive his descendant Gil ’s data encryption key kil as kil =
Hi(h(IDil ||ki)).

Compare it with the notations in Table 4, in Das’s scheme at time t, Hi(x)
corresponds to CRTi[t], ⟨(x − h(IDil ||ki))⟩ corresponds to I[t]il , and kil corre-
sponds to rem[t]il . AGi[t] = {Gil : Gil ≼ Gi} . UGi[t1, t2] is the set of unchanged
descendants of Gi (plus Gi itself) from time t1 to t2.

Since if a subgroup dynamic change takes place at a descendant Gic of Gi

during time between t1 and t2, we can see that both kil and h(IDil ||ki) of Gi’s
descendants Gil ∈ UGi[t1, t1] keep unchanged. Thus, this scheme is double-
invariant. By Theorem 2, Das’s scheme is not secure in dynamic scenarios.

For example, we assume that at time t1 Das’s scheme is applied to a group
with the hierarchy in Fig. 7, and G6 happens to leave the group on the morrow
of that at t2. For G3, We haveH3(x) ≡ k5 mod (x− h(ID5||k3)),

H3(x) ≡ k6 mod (x− h(ID6||k3)),
H3(x) ≡ k3 mod (x− h(ID3||k3)),

(28)

at time t1, and {
H ′

3(x) ≡ k5 mod (x− h(ID5||k3)),
H ′

3(x) ≡ k3 mod (x− h(ID3||k3)),
(29)

at time t2.
By Lemma 1, we have (x−h(ID5||k3))(x−h(ID3||k3))|(H ′

3(x)−H3(x)). Since
finding roots of a polynomial of degree 3 over a finite field can be practically
solved by algorithms [6, 9, 27], h(ID5||k3) and h(ID3||k3) can be worked out as
roots of (H ′

3(x)−H3(x)). Then, we can get data encryption keys of G3 and G5:
k3 = H3(h(ID3||k3)), k5 = H3(h(ID5||k3)). Actually, all data encryption keys of
the group except k6 will be revealed in the same way if our object of analysis is
G1 instead of G3. Furthermore, by Lemma 3 and Theorem 2, it’ll be much easier
to break the scheme if there are two or more dynamic changes taking place in
the group. We use the special form of Lemma 2, which is Lemma 3, since in
Das’s scheme whenever a ̸= b, CoIt[a(t1, t2), b(t3, t4)] is an empty set.

We shall mention that our attack on Das’s scheme is very similar to Wang’s
attack [41] on Shen’s scheme [36]. It’s easy to see that Wang’s attack is another
instance of our Theorem 2.

The countermeasure to fix Das’s scheme is very similar to that of CRTHACS
shown in Section 2.4. So, we omit it here. Zou’s another scheme [48] is also
an HAC scheme that makes use of polynomial interpolation, and it successfully

Yet Another Attack On CRTHACS 21

avoided double-invariance by adding a random integer z into I[t]i as a session
identity (session-related ‘salt’). However, we would like to remind readers that
it’s not the randomness but the uniqueness of z because of which the property
of double-invariance is removed off.

4 Conclusion

In this paper, we gave an attack to reveal the structures of the hierarchy that the
modified CRTHACS [50] intended to hide. We generalized the attack in the form
of rings and their isomorphisms. We redefined the problem in a more proper form
represented in time, as shown in Table 4 and (12), (13), (15). We defined the
key vulnerability of this scheme to our attack as double-invariance and showed
how to resist the attack in the general form.

We also pointed out that a series of HAC schemes share the same prob-
lem with CRTHACS, and gave an exemplary attack on one of them, i.e. Das’s
scheme [15], so as to remind readers that this vulnerability doesn’t only belong
to CRTHACS but is of some generality in certain types of HAC schemes.

To design HAC protocols is “deceptively easy”, we shall be more careful than
ever. “Provable security” and “reductionist” tradition offers a body of work to
follow, including models and definitions as well as examples [5, 11, 26]. Some
studies [3,16,43] have already taken use of them to design provably secure HAC
schemes.

References

1. Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of access
control in a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, 1983. 357372.

2. C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Trans-
actions on Information Theory, 29(2):208–210, 1983.

3. Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. Dynamic
and efficient key management for access hierarchies. ACM Trans. Inf. Syst. Secur.,
12(3):1–43, 2009. 1455531.

4. Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: the
three party case. In STOC ’95, Proceedings of the 27 annual ACM symposium on
Theory of computing, 1995.

5. Mihir Bellare, Phillip Rogaway, and Douglas Stinson. Entity authentication and
key distribution. In Advances in Cryptology, CRYPTO ’93, volume 773 of Lecture
Notes in Computer Science, pages 232–249. Springer Berlin / Heidelberg, 1994.

6. E. R. Berlekamp. Factoring polynomials over finite fields. Bell system technical
journal, 46(1853-1859):3, 1967.

7. Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols
and their security analysis. In Michael Darnell, editor, Crytography and Coding,
volume 1355 of Lecture Notes in Computer Science, pages 30–45. Springer Berlin
Heidelberg, 1997.

8. G. R. Blakley. Safeguarding cryptographic keys. In FIPS Conference Proceedings,
volume 48, pages 313–317. AFIPS Press, 1979. Proc. NCC.

22 N. Liu et al.

9. W. Bosma, J. Cannon, C. Playoust, and A. Steel. Solving problems with MAGMA,
chapter 3. 1999.

10. E. F. Brickell. Some ideal secret sharing schemes. In EUROCRYPT ’89, volume
434 of Advances in cryptology: proceedings, page 468. Springer, 1989.

11. Ran Canetti, Hugo Krawczyk, and Birgit Pfitzmann. Analysis of key-exchange
protocols and their use for building secure channels. In Advances in Cryptology
,EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages
453–474. Springer Berlin / Heidelberg, 2001.

12. Gerald Chick, Stafford Tavares, and Gilles Brassard. Flexible access control with
master keys. In Advances in Cryptology CRYPTO 89, volume 435 of Lecture Notes
in Computer Science, pages 316–322. Springer Berlin / Heidelberg, 1990.

13. Tan Chik-How and Yang Guomin. Comments on “Provably Secure Constant
Round Contributory Group Key Agreement in Dynamic Setting”. IEEE Transac-
tions on Information Theory, 56(11):5887–5888, 2010.

14. J. Crampton, K. Martin, and P. Wild. On key assignment for hierarchical access
control. In 19th IEEE Computer Security Foundations Workshop, pages 14 pp.–
111, 2006.

15. Manik Lal Das, Ashutosh Saxena, Ved P. Gulati, and Deepak B. Phatak. Hier-
archical key management scheme using polynomial interpolation. SIGOPS Oper.
Syst. Rev., 39(1):40–47, 2005. 1044556.

16. A. De Santis, A. Ferrara, and B. Masucci. Efficient provably-secure hierarchical
key assignment schemes. In Mathematical Foundations of Computer Science, pages
371–382, 2007.

17. R. Dutta and R. Barua. Provably secure constant round contributory group
key agreement in dynamic setting. IEEE Transactions on Information Theory,
54(5):2007–2025, 2008.

18. W. Geiselmann and R. Steinwandt. Attacks on a secure group communication
scheme with hierarchical access control. In International Symposium on Informa-
tion Theory (ISIT 2004), page 14, 2004.

19. S. Goldwasser and M. Bellare. Lecture Notes on Cryptography. 2008. p210.
20. Chien-Lung Hsu and Tzong-SunWu. Cryptanalyses and improvements of two cryp-

tographic key assignment schemes for dynamic access control in a user hierarchy.
Computers & Security, 22(5):453–456, 2003. doi: 10.1016/S0167-4048(03)00514-5.

21. T. W. Hungerford. Algebra, volume 73 of graduate texts in mathematics, 1980.
22. Min-Shiang Hwang. An improvement of a dynamic cryptographic key assignment

scheme in a tree hierarchy. Computers & Mathematics with Applications, 37(3):19–
22, 1999. doi: 10.1016/S0898-1221(99)00042-5.

23. Min-Shiang Hwang. Cryptanalysis of YCN key assignment scheme in a hierarchy.
Inf. Process. Lett., 73(3-4):97–101, 2000. 343065.

24. Min-Shiang Hwang and Wei-Pang Yang. Controlling access in large partially
ordered hierarchies using cryptographic keys. Journal of Systems and Software,
67(2):99–107, 2003. doi: 10.1016/S0164-1212(02)00091-2.

25. Mara Isabel Gonzlez Vasco Jens-Matthias Bohli and Rainer Steinwandt. Secure
group key establishment revisited. International Journal of Information Security,
6(4):12, 2007.

26. Katz Jonathan and Shin Ji Sun. Modeling insider attacks on group key-exchange
protocols, 2005. 1102146 180-189.

27. E. Kaltofen. Polynomial factorization: a success story. In Proceedings of the 2003
international symposium on Symbolic and algebraic computation, Philadelphia, PA,
USA., 2003. ACM. 860857 3-4.

Yet Another Attack On CRTHACS 23

28. E. Karnin, J. Greene, and M. Hellman. On secret sharing systems. IEEE Trans-
actions on Information Theory, 29(1):35–41, 1983.

29. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key
exchange. Advances in Cryptology-CRYPTO 2003, pages 110–125, 2003.

30. A. V. D. Kayem, P. Martin, and S. G. Akl. Heuristics for improving cryptographic
key assignment in a hierarchy. In In 21st International Conference on Advanced In-
formation Networking and Applications Workshops (AINAW ’07), volume 1, pages
531–536, 2007.

31. H. T. Liaw, S. J. Wang, and C. L. Lei. A dynamic cryptographic key assign-
ment scheme in a tree structure. Computers & Mathematics with Applications,
25(6):109–114, 1993. doi: 10.1016/0898-1221(93)90305-F.

32. C. H. Lin. Dynamic key management schemes for access control in a hierarchy.
Computer communications, 20(15):1381–1385, 1997. ISSN: 0140-3664.

33. R. S. Sandhu. Cryptographic implementation of a tree hierarchy for access control.
Information Processing Letters, 27:95–98, 1988.

34. J. B. Scarborough. Numerical Mathematical Analysis. John Hopkins Press, Balti-
more, 4th edn edition, 1958.

35. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

36. Victor R. L. Shen and Tzer-Shyong Chen. A novel key management scheme
based on discrete logarithms and polynomial interpolations. Computers & Se-
curity, 21(2):164–171, 2002. doi: 10.1016/S0167-4048(02)00211-0.

37. Victor Shoup and Avi Rubin. Session key distribution using smart cards. In Ueli
Maurer, editor, Advances in Cryptology, EUROCRYPT 96, volume 1070 of Lecture
Notes in Computer Science, pages 321–331. Springer Berlin Heidelberg, 1996.

38. H. Sugita and S. Takanobu. The probability of two Fq-polynomials to be coprime.
Probability and number theory, Advanced Studies in Pure Mathematics, 49:455–478,
2007.

39. G. Tenenbaum. Introduction to analytic and probabilistic number theory, volume 46.
Cambridge Univ Pr, 1995.

40. Shiang-Feng Tzeng, Cheng-Chi Lee, and Tzu-Chun Lin. A novel key management
scheme for dynamic access control in a hierarchy. International Journal of Network
Security, 12(3), 2011.

41. Shyh-Yih Wang and Chi Sung Laih. Cryptanalyses of two key assignment schemes
based on polynomial interpolations. Computers & Security, 24(2):134–138, 2005.
doi: 10.1016/j.cose.2004.07.002.

42. Shyh-Yih Wang and Chi-Sung Laih. Cryptanalysis of Hwang-Yang scheme for
controlling access in large partially ordered hierarchies. Journal of Systems and
Software, 75(1-2):189–192, 2005. doi: 10.1016/j.jss.2004.04.015.

43. Jiang Wu, Ruizhong Wei, Bart Preneel, and Stafford Tavares. An access control
scheme for partially ordered set hierarchy with provable security. In Selected Areas
in Cryptography, volume 3897 of Lecture Notes in Computer Science, pages 221–
232. Springer Berlin / Heidelberg, 2006.

44. T. C. Wu and C. C. Chang. Cryptographic key assignment scheme for hierarchical
access control. International Journal of Computer Systems Science and Engineer-
ing, 16(1):25–28, 2001.

45. Tzong-Chen Wu and Wei-Hua He. A geometric approach for sharing secrets. Com-
puters & Security, 14(2):135–145, 1995.

46. Shouhuai Xu. On the security of group communication schemes. Journal of Com-
puter Security, 15(1/2007):40, 2007.

24 N. Liu et al.

47. J. Yeh, R. Chow, and R. Newman. A key assignment for enforcing access control
policy exceptions. In International Symposium on Internet Technology, pages 54–
59, 1998.

48. X. Zou, Y. Dai, and E. Bertino. A practical and flexible key management mechanis-
m for trusted collaborative computing. In The 27th IEEE Conference on Computer
Communications (INFOCOM 2008), pages 538–546, 2008.

49. X. Zou, B. Ramamurthy, and S. S. Magliveras. Chinese remainder theorem based
hierarchical access control for secure group communication. In Sihan Qing, Tatsua-
ki Okamoto, and Jianying Zhou, editors, Information and Communications Secu-
rity, volume 2229 of Lecture Notes in Computer Science, pages 381–385. Springer
Berlin / Heidelberg, 2001.

50. X. Zou, B. Ramamurthy, and S. S. Magliveras. A GCD attack resistant CRTHACS
for secure group communications. In The International Conference on Information
Technology: Coding and Computing (ITCC 2004), volume 2, pages 153–154 Vol.2,
2004.

51. X. Zou, B. Ramamurthy, and S. S. Magliveras. Secure group communications over
data networks. Springer, 2005.

A Notes on theorem 2

In our Theorem 2, in order to estimate the probability of∆a1(t1,t2),··· ,aµ(t2µ−1,t2µ) =
1 in (22), we have to take an examination on the probability of coprimality of
numbers, each of which is a product of several random numbers.

A.1 Probability of Coprimality

The probability Pr(1, 1) of two random numbers A1 and A2 to be coprime can
be deducted as follows.

For a prime number p, the probability of p - GCD(A1, A2) is 1− 1
p2 . Therefore,

we have Pr(1, 1) =
∏

p(1 − 1
p2). We may know from further deduction that

1
Pr(1,1) =

∑
n

1
n2 = π2

6 , and thus Pr(1, 1) = 6
π2 ≈ 0.6080.

Assuming that we have i1+i2 random numbers A1, · · · , Ai1 and B1, · · · , Bi2 ,
what is the probability Pr(i1, i2) of the two numbers SA = A1 × · · · × Ai1 and
SB = B1 × · · · × Bi2 to be coprime? Deduction is similar to that of above. For
any prime number p, the probability of p - GCD(SA, SB) is 1− [1− (1− 1

p)
i1]×

[1− (1− 1
p)

i2]. Thus, we have:

Pr(i1, i2)
=

∏
p{1− [1− (1− 1

p)
i1]× [1− (1− 1

p)
i2]}. (30)

Similarly, we can get the probability Pr(i1, · · · , iν) of ν numbers, each of
which is a product of ij random numbers, where j = 1, · · · , ν.

Pr(i1, · · · , iν)
=

∏
p{1− [1− (1− 1

p)
i1]× · · · × [1− (1− 1

p)
iν]}. (31)

It’s hard for us to give the exact analytical form of (31) like what we did to
Pr(1, 1), so we use the asymptotic result instead. For example, Pr(1, 2) ≈ 0.4283
and Pr(2, 3, 5) ≈ 0.1926.

Yet Another Attack On CRTHACS 25

A.2 Different Cases in Subgroup Dynamics

There are several kinds of subgroup dynamic changes, mainly including a sub-
group’s leaving, joining the entire group, data key changes of it and etc. Different
dynamic changes lead to different probability of ∆a1(t1,t2),··· ,aµ(t2µ−1,t2µ) = 1,
which is because they form different types of products of random numbers, and
thus related to the probability of coprimality we studied in A.1. We explain it
in detail as follows.

Take CRTHACS as the example. In our heuristic attack in Section 2.2, we
suppose that the system initialled at t1. We put an imaginary subgroup G0

corresponding to N0. It happens two times of subgroup changes; one is the
change of data key k3 of G3 at t2, the other one is adding a new subgroup G10

at t3.
By the solution of Chinese Remainder Theorem, after k3’s change, it holds

that,
CRT5 − CRT ′

5 = Inv5,3 ×N0N1({k5}k3
− {k5}k′

3
),

CRT6 − CRT ′
6 = Inv6,3 ×N0N1N2N4

× ({k6}k3 − {k6}k′
3
),

CRT9 − CRT ′
9 = Inv9,3 ×N0N1N2N4N6N8

× ({k9}k3 − {k9}k′
3
),

(32)

where Inv5,3, Inv6,3 and Inv9,3 satisfy: Inv5,3 ×N0N1 ≡ 1 mod N3,
Inv6,3 ×N0N1N2N4 ≡ 1 mod N3.
Inv9,3 ×N0N1N2N4N6N8 ≡ 1 mod N3.

(33)

In the new notations of Table 4, it holds that
UG5[t1, t2] = {G0, G1},
UG6[t1, t2] = {G0, G1, G2, G4},
UG9[t1, t2] = {G0, G1, G2, G4, G6, G8},
CoIt[5(t1, t2), 6(t1, t2)] = {G0, G1}.

(34)

Comparing (34) to (21) and (22), we have

∆5(t1,t2),6(t1,t2)

=
GCD(CRT5−CRT ′

5,CRT6−CRT ′
6)

N0N1

= GCD[Inv5,3 × ({k5}k3 − {k5}k′
3
),

Inv6,3 ×N2N4 × ({k6}k3 − {k6}k′
3
)].

(35)

We may treat Ni and ({kj}k3 −{kj}k′
3
) as random numbers. Since Inv5,3 and

Inv6,3 are determined by (33), they can’t be considered as random. However,
we can’t treat them as fixed numbers that do not affect the probability. We may
treat them as semi-random.

Though we don’t know the exact probability of ∆5(t1,t2),6(t1,t2) = 1, we may
estimate the range of it. It’s larger than Pr(2, 4) when we consider Inv as random,
and smaller than Pr(1, 3) when otherwise:

Pr(2, 4) < Prob[∆5(t1,t2),6(t1,t2) = 1] < Pr(1, 3), (36)

26 N. Liu et al.

i.e. it is between 0.0911 and 0.3371.
With slight difference, we have that the probability Prob[∆5(t1,t2),6(t1,t2),9(t1,t2) =

1] is in range
[Pr(2, 4)Pr(2, 2) + (1− Pr(2, 4))Pr(2, 3),

Pr(1, 3)Pr(1, 2) + (1− Pr(1, 3))Pr(1, 3)],
(37)

i.e. it is in range [0.1391, 0.3679].
After t3, a new subgroup G10 is added in the hierarchy. We denotes M :=

N0N1N2N3N4N6N8. We have,

CRT ′′
9 − CRT ′

9 = N0N1N2N4N6N8 ×N3

×[
Inv′′

9,0×N10−Inv′
9,0

N0
× {k9}k9

+
Inv′′

9,3×N10−Inv′
9,3

N3
× {k9}k′

3

+Inv′′9,10 × {k9}k10

+
9∑

i=1,i̸=3

(
Inv′′

9,i×N10−Inv′
9,i

Ni
× {k9}ki)],

:= M × TotalSuM,

(38)

where TotalSuM denotes what is in the square bracket in (38), Inv′′9,i and Inv′9,i
satisfy {

Inv′′9,i × M×N10

Ni
≡ 1 mod Ni,

Inv′9,i × M
Ni

≡ 1 mod Ni,
(39)

for i = 0, · · · , 9. Inv′′9,10 satisfies

Inv′′9,10 ×M ≡ 1 mod N10. (40)

Thus by (39), Ni|(Inv′′9,i ×N10 − Inv′9,i), where i = 0, · · · , 9. Thus, TotalSuM
is an integer. Since in it there are many {ki}kj s, which we consider as random,
we may treat TotalSuM as a random integer.

Using the new notations, we have{
UG9[t2, t3] = {G0, G1, G2, G3, G4, G6, G8},
CoIt[9(t1, t2), 9(t2, t3)] = {G0, G1, G2, G4, G6, G8}.

(41)

Comparing to (21), we have

∆9(t1,t2),9(t2,t3)

=
GCD(CRT9−CRT ′

9,CRT ′′
9 −CRT ′

9)
N0N1N2N4N6N8

= GCD[Inv9,3 × ({k9}k3 − {k9}k′
3
),

N3 × TotalSum)].

(42)

Similar to the deduction of (36), we have,

Pr(2, 2) < Prob[∆9(t1,t2),9(t2,t3) = 1] < Pr(1, 2), (43)

i.e. the probability is between 0.2178 and 0.4283.

Yet Another Attack On CRTHACS 27

Wemay further our explore on the structural relation between UGs and CoIt,
and infer that Prob[∆5(t1,t2),6(t1,t2),9(t1,t2),9(t2,t3) = 1] is in range [0.1443, 0.3716].
We also claim that the analysis of a subgroup’s leaving is more or less the same
as its joining, since these two moves are symmetric in terms of time. Details are
omitted here.

We now see that Prob[∆ = 1] indeed depends on the relations between UGs
and CoIt. Different dynamic operations will result in different chances of success
of our attack. Generally, the more the dynamic moves an adversary captures,
the greater his chances of success are. The possibilities of success are too big to
be ignored, which are exemplified by (36), (43) and etc.

A.3 Simulation of Attack

We simulate our attack in a similar way of our toy example, but set the security
parameter to be 100 bits. We repeat our attack 105 times and then record the
ratios of success. The results coincident with our analysis in A.2. The ratios
are considered to be asymptotic to the real probabilities when the number of
repetitions is large. We present them as follows.

Prob[∆5(t1,t2),6(t1,t2) = 1] ≈ 0.1531,
Prob[∆5(t1,t2),5(t1,t2),9(t1,t2) = 1] ≈ 0.2522,
Prob[∆9(t1,t2),9(t2,t3) = 1] ≈ 0.3802,
Prob[∆5(t1,t2),6(t1,t2),9(t1,t2),9(t2,t3) = 1] ≈ 0.3534.

(44)

In A.2, our four ranges of them are: [0.0911, 0.3371], [0.1391, 0.3679], [0.2178,
0.4283], [0.1443, 0.3716].

We test a series of security parameters, from 10 to 250 bits, and find that
it has no noticeable effect on the ratios of success. The number of repetitions
also doesn’t affect these ratios considerably. For example, in the test of 10 bits
the length of security parameter, 107 the times of repetitions, the results are
(0.1599, 0.2587, 0.3842, 0.3540), which only show very little difference with (44).

Magma [9] programming language is adopted in simulations. Please feel free
to contact authors for source codes.

28 N. Liu et al.

Table 1. Common notations.

Notations Meaning

{x}k Symmetric encryption under key k. x stands for one or several messages
combined, different messages are separated by “,”.

Ek(x) public key encryption or signature under key k. x is defined in the same way above.
≼ Partial ordering.
Gi Subgroup with identity i.
ki Data (symmetric) encryption key of Gi.
Ni The modulus used by Gi.
n The number of subgroups in the hierarchy.
ηi The number of ancestors of subgroup Gi.

CRTi The solution of Chinese Remainder Theorem for Gi.
⟨a⟩ It stands for an ideal generated by a in a ring.

GCD(a, b) The greatest common divisor of a and b.
h() A cryptographic hash function.
|| Concatenation of two messages.
| a|b represents that b is divisible by a. Similarly, a - b represents that b is

not divisible by a.
Pr(i1, · · · , iν) The probability of ν numbers, each of which is a product of ij random numbers,

to be coprime. j ∈ {1, · · · , ν}.

Table 2. {ki}kj in the toy example, Section 2.2.

Initial After k3’s change Add G10

{ki}kj j = 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10

i = 1
2
3 596 306 478 593
4 906 919 906 919
5 4 449 976 4 401 976
6 313 128 360 285 498 313 128 821 285 498
7 800 307 581 800 307 581
8
9 967 230 437 880 604 319 788 967 230 180 880 604 319 788 505

Table 3. CRTi and their differences in the toy example.

Subgroup CRTi CRT ′
i CRT ′′

i CRT ′
i − CRTi CRT ′′

i − CRT ′
i

G1 null null null null null
G2 null null null null null
G3 876285380 1455417430 1455417430 579132050 0
G4 1390059561 1390059561 1390059561 0 0
G5 4412627683684 4302143013220 4302143013220 -110484670464 0
G6 5379838652695093273 5707051636970708473 5707051636970708473 327212984275615200 0
G7 1617232194900 1617232194900 1617232194900 0 0
G8 null null null null null
G9 2331170126674 2034093739040 333783794992756 -297076387634 33358038561885

9938357004855 3613086616895 28204966490055 6325270387960 224591879873160
G10 null null null null null

note: The numbers of G9 are too big, so we use two rows for each number.

Yet Another Attack On CRTHACS 29

Table 4. New notations with time t.

Notations Meaning

t The temporal identity to identify a short period of time, in which
no subgroup dynamic
change takes place.

CRTi[t] The CRTi of Gi computed by GC at time t.
AGi[t] The set of all determinant subgroups of Gi at time t,

which may be ancestors or descendants or any other specific
subgroups, depending on the scheme.

η[t]i The number of members in AGi[t], η[t]i = |AGi[t]|.
G[t]il A determinant subgroup of Gi at time t.
N [t]i The corresponding modulus of Gi at time t.
I[t]i The ideal of R corresponding to Gi at time t.
ξ[t]i The generator of an ideal I[t]i in a principal ideal domain.

rem[t]i The remainder class of CRTi[t] mod N [t]i.
UGi[t1, t2] The set of unchanged determinant subgroups of Gi, from time t1 to t2,

where t1 < t2.
CoIt[a(t1, t2), b(t3, t4)] A conditional intersection. See Def. 2.

∆a1(t1,t2),··· ,aµ(t2µ−1,t2µ) It denotes
GCD(CRTa1 [t2]−CRTa[t1],··· ,CRTaµ [t2µ]−CRTaµ [t2µ−1])∏

Gj∈CoIt[a1(t1,t2),··· ,aµ(t2µ−1,t2µ)] ξ[t1]j
, see also (22).

