
Efficient Contextual Transaction Trust Computation in E-Commerce Environments

Haibin Zhang, Yan Wang
Department of Computing
Macquarie University
NSW 2109, Australia

{haibin.zhang, yan.wang}@mq.edu.au

Xiuzhen Zhang
School of Computer Science and IT

RMIT University
Melbourne, Victoria 3001, Australia

xiuzhen.zhang@rmit.edu.au

Abstract—In e-commerce environments, trust is a dom-
inating factor in seller selection. Most existing trust
evaluation studies compute a single value to reflect the
“general” or “global” trust level of a seller provider
without any contextual transaction information taken into
account. As a result, a buyer may be easily deceived
by a malicious seller in a forthcoming transaction. For
example, with the notorious “value imbalance problem”,
a malicious seller can build up a high trust level by
selling cheap products and then starts to deceive buyers
in selling expensive products. To detect this problem and
avoid massive monetary losses of buyers, trust evaluation
should be associated with both past transactions and the
new one, and take transaction context into account. In
particular, the computed trust result should outline the
seller’s reputation profile indicating the trust level in a
specific product or a product category, a price range,
a time period or any necessary combination of them.
However, this need requires complex computation and
thus new data structures and efficient algorithms. In
this paper, we design a new data structure to support
the CTT computation in e-commerce environments. In
addition, based on the new data structures, we further
propose an approach for promptly responding to a buyer’s
CTT query. The conducted experiments illustrate that our
proposed structure and approach can yield much shorter
computation time than the existing approaches.

Keywords-E-Commerce, Contextual Transaction Trust,
Data Warehouse, OLAP

I. INTRODUCTION

The trust of sellers is a crucial issue in open e-commerce
environments [9, 7]. With a simple trust management system
(such as eBay), buyers are vulnerable to some frauds from
malicious sellers. For example, with the notorious value
imbalance problem [6], a seller could try to build up a high
trust level by honestly selling good products with low values
(price); once obtaining a high trust level, he/she begins to
deceive buyers when selling expensive products. Several real
world cases with this problem have been revealed [9]. The
value imbalance problem is one type of the transaction context
imbalance problem. Any type of the problems in this category
may cause fraud and lead to monetary losses of customers. At
Alibaba.com [1], following a few cases of fraud, buyers are
explicitly suggested to manually check if the products offered
by a supplier are in the same categories as the products that
the supplier usually sells.

Clearly, a single trust value can only reflect the “gen-
eral” or “global” trust level of a seller, and it is static to
any forthcoming transaction rather than being specific to
it. However, different transactions have different nature and
contexts; even the same seller needs to be regarded differently
with respect to the trustworthiness in different forthcoming
transactions, instead of using the same and thus static trust
value [18, 15, 19].
Recognizing the importance of context in transaction trust

evaluation, an immediate question to ask is what is transaction
context. Briefly, the context of a transaction can be described
by contextual transaction attributes. More detailed discussion
of these contextual transaction attributes is presented in Sec-
tion III. Here, we only emphasize that some contextual at-
tributes have hierarchical structures and a transaction’s context
can be represented at multiple hierarchical levels (i.e., different
granularities). For example, a buyer plans to buy a ‘Cannon
EOS T3i Digital Camera’ at the price ‘$700’ from a seller.
Besides the trustworthiness of selling this specific product,
he/she could be also concerned about the trustworthiness of
this seller in selling ‘Digital Cameras’ with a price range
of ‘$500-$900’ (i.e., an query w.r.t a higher layer in the
hierarchical product category with a specified price range)
and time range (e.g., in the last one week). Therefore, given
contextual transaction trust (CTT for short) queries with
different granularities, the trust management system should
promptly provide the computation results to potential buyers.
In our earlier work [17], we have introduced a trust vector

which contains a set of trust values corresponding to CTT with
different granularities, and it includes (a) the trust value of a
seller in selling a specific product in a time period, (b) the trust
value of a seller at a specific product category, in a price range
and a time period and (c) the trust value of a seller in a specific
price range. The above vector is bound to each forthcoming
transaction and the past transactions. Even for the same
seller, it may vary with different forthcoming transactions, as
different forthcoming transactions possess different products
and prices. Compared with existing trust management systems,
which provide a single and static trust value, this vector based
trust evaluation has the following advantages:

• This trust vector can represent the reputation profile of
a seller with trust values in different product categories,
price ranges and time periods. More importantly, it may
dynamically vary with different forthcoming transactions.
As the result, the potential buyer could know trust level
of the seller more precisely.

• Potentially malicious transactions with the transaction
context imbalance problem [17] (the value imbalance

2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications

978-0-7695-4745-9/12 $26.00 © 2012 IEEE

DOI 10.1109/TrustCom.2012.139

318

2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications

978-0-7695-4745-9/12 $26.00 © 2012 IEEE

DOI 10.1109/TrustCom.2012.139

318

problem is one type of the transaction context imbalance
problem) can be identified.

As stated above, a buyer’s CTT queries on price ranges
can vary from product to product, and each time range varies
from a previous point (e.g., one month ago) to the present
time. However, in real applications, a seller usually has a large
number of transactions within a long period (e.g. one year).
Therefore, how to compute CTT and promptly respond to CTT
queries of different granularities with a set of trust values, is
a big challenge. Towards solving this challenging problem,
we propose our solutions and our contributions in this paper,
which can be briefly summarized as follows:
(1) We first model the CTT computation as the RA (range

aggregate) problem in spatial data warehouse with some
modification. The RA problem is to compute an aggregate
function over all spatial objects that fall into a query region.
(2) In literature, some existing methods aim to solve the

RA query problem in two-dimensional spatial databases, such
as aR-tree [8] and aP-tree [12]. According to our analysis, we
firstly point out the limitations of these methods in solving
our targeted problem, and then propose a new approach to fast
indexing rating aggregates for CTT computation. In particular,
we propose a hybrid structure of aP+-tree based on aP-tree and
aB+-tree based on B+-tree to further reduce the computation
time of CTT queries.
(3) We have conducted experiments on a real dataset from

eBay with the transactions of 90 days of the most popular
seller for selling ‘Cannon EOS T3i Digital Camera’ and a
synthetic dataset for the transactions of 12 months with 10
times transactions as much as the above popular seller on each
day, respectively. The experiments compare our approach with
the one based on traditional aR-tree or aP-tree for answering
CTT queries. The experimental results illustrate that our
proposed approach is much faster than them in responding
to CTT queries.
(4) To the best of our knowledge, this is the first solution

in the literature to the computation of CTT in e-commerce
environments.
The rest of the paper is organized as follows: Section II

provides a brief overview of both existing trust evaluation
approaches and the OLAP technology. We give a detailed
explanation on CTT query with different granularities in
Section III. In Section IV, we introduce the trust metric for
our proposed trust vector. Section V provides our method
for supporting CTT computation. Section VI evaluates our
approach experimentally, and Section VII concludes our paper.

II. RELATED WORK

A. Trust Evaluation without Contextual Information

In the literature, trust evaluation models are studied in
some application fields. For example, in Peer-to-Peer (P2P)
information sharing networks, a “global” trust value of a
given peer is calculated via collecting binary trust ratings
[5]. However, these existing trust evaluation models focus on
computing a single “final trust level” (e.g. a value in the range
of [0, 1] [10, 18, 16, 7]) to reflect the “general” or “global”
trust status of every seller, and they do not take any contextual
information into account. With such a result, a buyers can
hardly know under what kind of circumstances the seller has

obtained a high trust value. So it fails to predict the likelihood
of the seller for a successful forthcoming transaction.

B. Contextual Trust Evaluation

There are also some existing studies considering the re-
lationship between trust evaluation and context information.
Griffiths [3] proposed a Multi-Dimensional Trust (MDT)
model, which studied contextual trust from multiple facets.
Given the same seller, the trust results computed for dif-
ferent buyers may be different. Similarly, in REGRET [10]
and RATEweb systems [7], the multi-attribute structure was
adopted when calculating a seller’s reputation. But these
models still focus on how to compute a single general or global
trust value, and overlook the fact that transaction context may
vary in historical transactions. Therefore, they also fail to
predict the likelihood of the seller in a successful forthcoming
transaction.
In the literature, context similarity calculation is regarded

as an important means to deal with contextual trust evaluation
problem. Uddin et al. proposed a CAT (Context-Aware Trust)
model to compare the similarity of contexts by using key val-
ues that could describe certain context to some extent [14]. For
example, in task A: “My brother drives me to the airport”, the
keywords are {my brother, drive, car}; in task B: “My brother
flies the plane”, the keywords are {my brother, fly, plane}.
While task A is trustworthy, task B may be untrustworthy,
because two out of three keywords are different. Toivonen
et al. use a more complex ontology structure to calculate
similarity [13]. This idea works for the situation when there
are no or insufficient ratings available to infer the trust level of
a seller in certain transaction context. Following this idea, in
[19], we proposed detailed formulae to calculate transaction
context similarity so as to infer the trust level of forthcoming
transactions in e-commerce environments.
However, these contextual trust evaluation models focus

on combining all the contextual attributes (factors) into one
model and using a single value for trust evaluation which can
not distinguish the contribution of each contextual attribute
specifically. In our paper, first of all, we discuss and model the
contextual transaction attributes in e-commerce environments.
In addition, compared with single value based approach, our
propose trust vector could more precisely reflect the trust
status of a seller in a forthcoming transaction.

C. OLAP (On-Line Analytical Processing)

In OLAP applications, it is common to include hierarchies
for several dimensions. For instance, a sales data warehouse
for a company contains the dimension of Location which is
a hierarchical structure. The data can be grouped by city, but
the users may have queries that involve grouping by country.
Some researchers precalculated some of these results (such
as pre-aggregate the results of the sales data in a specific
location) so as to accelerate the response to such queries [4].
This idea is designed to support static hierarchies only (i.e.
predefined hierarchies). But, in some cases, the hierarchies are
often not known in advance. In section III, we will discuss that
transaction dimensions have dynamic hierarchies that should
be taken into account in CTT computation.

319319

III. TRANSACTION CONTEXT AND CTT QUERIES WITH
DIFFERENT GRANULARITIES

A. Transaction Context

In our work, transaction context is modeled with some
contextual transaction attributes, all of which have influence
on the trustworthiness of a forthcoming transaction.
• Transaction item: Transaction item refers to the product

traded in a transaction, the properties (e.g. product quality
and product category) of which determine the nature of the
transaction. A seller, who sells high quality ‘handbags’, may
provide poor quality ‘Notebook Computer’.
A transaction item belongs to a predefined (static) hierarchy

in product category. The classification of product category is
multilayer, for instance, at eBay, they are at least two layers
in the hierarchy of category. If a specific product is ‘Cannon
EOS T3i Digital Camera’, then its ancestors in category
hierarchy are ‘Digital Camera’ and ‘Cameras & Photo’ in
order. Hence, for CTT queries in transaction item, in addition
to the trustworthiness of this specific product, a buyer may be
also concerned about the trustworthiness of the seller in selling
various products in a subcategory or category. In some existing
products and services categorization standards, such as United
Nations Standard Products and Services Code (UNSPSC)1 and
eCl@ss2, the number of layers can be up to four.
• Transaction amount: Transaction amount refers to the

sum of prices of all products in a transaction. The transactions
of about US$10 are obviously different from those of about
US$10K in nature. The larger the transaction amount, the
more likely for a fraud to happen since the benefits of cheating
are greater. For the sake of simplicity, in this paper, each item
in a transaction is considered separately in trust computation.
A transaction with multiple transaction items are taken as
several transactions with one item each. Consequently, in the
rest context of this paper, the transaction amount equals to the
price of a product.
Furthermore, there is no predefined hierarchy in transaction

amount, because it varies from product to product; and a
buyer’s CTT query on price may also vary. For instance, the
transaction amount between a buyer and a seller is around
$500, and a buyer may be concerned about the trustworthi-
ness of the seller on selling products at the price range of
$400-$600. If the transaction amount changes to $1500, the
corresponding price range query may change to $1000-$2000.
• Transaction time: Transaction time is the time when

a transaction happens. Trust evaluation is time-sensitive, be-
cause the transaction quality may change with time [11].
Transaction time has a specific feature in trust computation.

Any query on temporal dimension should start from a previous
point (e.g. one month ago) and end at the present time.

B. CTT Queries

As stated before, the context of a transaction can be
described at different granularities. Suppose that a buyer
plans to buy ‘Cannon EOS T3i Digital Camera’, his/her
CTT query with transaction context at higher levels can be
<product-subcategory: Digital Camera, price-range: 600-800,

1http://www.unspsc.org/
2http://www.eclass.de/

Figure 1. Transformation process of a RA query

time-range: from a month ago to present>, and a query at
a further higher levels can be <product-subcategory: Digital
Camera, price-range: 600-800> or <Price-range: 600-800>.
In addition, CTT should also be evaluated from other

aspects. For example, at eBay, apart from a general rating
(denote as rg) to reflect a seller’s performance during the
whole transaction, buyers’ ratings also evaluate (i) shipping
time (i.e. whether the seller delivers goods on time, denote as
rst), (ii) communication (i.e. whether the seller has prompt
and friendly communication with buyers, denote as rc), (iii)
shipping charges (i.e. whether the seller charges a reasonable
price for shipment, denote as rsc) and (iv) the quality of
delivered goods (denote as rq). The design of our new data
structures will take into account all the above facets.

IV. CTT METRIC IN OUR PROPOSED TRUST VECTOR
In this section, we will present how to calculate each of the

elements in our proposed trust vector [17], which includes
CTT with different granularities. These trust vector elements
include, (a) the trust value of a seller in selling a specific
product in a time period, (b) the trust value of a seller at a
specific product category, in a price range and a time period
and (c) the trust value of a seller in a specific price range.

A. CTT metrics
In the literature, the researchers averaged the rating val-

ues as metric to evaluate a sellers’ trust value [5, 18, 16].
Following this idea, our approach will calculate the trust
level as the average of rating values in a specific transaction
context to evaluate a sellers’ CTT. In order to satisfy this
requirement, two aspects of the aggregate data are stored
respectively, i.e., count and aggregate ratings (denoted as
agg r). The field count records the number of transactions
and agg r records the sum of ratings that are given by buyers
over these transactions. In section III, we have pointed out
that CTT should also be evaluated from multiple aspects.
Correspondingly, the agg r field could be an array including
several dimensions.

B. The General Idea of Our Approach
1) The Existing Work for RA Query: The range aggrega-

tion (RA) query on spatial data warehouse, as illustrated in
Fig 1(a), is to compute the total number of points that fall into
the query region q (i.e., the region surrounded by [x1, x2] and
[y1, y2]).
Previous research work focused on RA query in a two-

dimensional space. Tao et al. [12] proposed an aP-tree struc-
ture, which converts each spatial point to an interval (see
Fig 1(b)). If the region q is transformed to two vertical lines
x1 : [y1, y2] and x2 : [y1, y2], and then an RA query will turn
to retrieve the number of intervals that intersects two vertical
lines. The total number of points in that region q equals to

320320

Figure 2. An aR-tree example

the difference of them (i.e. 5− 3 = 2). Tao et al. defined the
number of lines intersecting in each border as a vertical range
aggregate (VRA). In such a way, a RA query can be reduced
to two vertical range aggregate (VRA) queries.
In our approach, the above transformation is adopted to deal

with CTT queries in the two dimensions of transaction amount
and transaction time, since it avoids the shortcoming of aR-tree
[8]. The aR-tree maintains x-y coordinates for each minimum
bounding rectangle (MBR) (see Fig 2, R1, R2, R3, R4 are
all MBRs). At the same time, it records the total number
(aggregate function) of objects that fall into that MBR. As
shown in Fig 2(a), to answer the number of spatial objects falls
into the query region q, the MBR R4 will not be accessed,
which is inside the query window, and its pre-aggregated result
(i.e., 3) is directly used. In this case, only R3 needs to be
visited, which is overlapped by query region q. But a serious
problem in the aR-tree is that the query cost depends on the
size of the query region: the larger the query region, the more
MBR overlaps with it (see Fig 2(b)).
In order to index each VRA value, the aP-tree introduces an

additional field agg in each entry of the original multiversion
B-tree (MVBT) [2]; thus the entry format of the aP-tree is
< y, [xstart, xend), agg, pointer >. Since MVBT is suitable
for indexing temporal databases, Tao et al. added a restrictive
condition, i.e., the x-coordinates of the original data points
should be in an ascending order. As a result, a spatial point
with x-y coordinates are transformed to the point in time-
key plane (i.e., x-axis is time space and y-axis is key space),
and each interval in x-axis ([xstart, xend)) represents a time
interval [tstart, tend) which is also called lifespan. For a
leaf entry, the field pointer points to an actual record in data
warehouse. For an intermediate entry, the field pointer points
to its child and the field agg equals to the number of leaf
entries in its subtree alive (the entry with xend = “∗′′ means
it is alive) in lifespan.
2) RA Query in CTT computation: Considering our tar-

geted problem as discussed in section III, we have illus-
trated that transaction context includes a dimension with
the predefined hierarchy and two dimensions with undefined
hierarchies. Obviously, the CTT query in transaction amount
and transaction time dimensions can be converted to the
RA problem, including specific feedback information (i.e. the
average of rating values) to reflect a seller’s trust level.
Meanwhile, taking into account the dimension of product

category, we design a new data structure aP+-tree based on
aP-tree for efficient CTT computation. The new structure is to
create the new root entries to store the static product category
hierarchy. For each root entry, an additional pointer points
to its child, which maintains the aggregated values obtained
from the two dimensions of transaction amount and transaction
time. Moreover, according to the feature of transaction time

as described in section III, where the end time is fixed to
“present” in CTT computation, we design a new data structure
aB+-tree based on B+-tree for computing right border VRA
query. Finally, we propose a hybrid structure of aP+-tree
and aB+-tree to further reduce the computation time of CTT
queries.

C. CTT metrics for each element in trust vector
1) The trust metrics for elements (a) and (b): In this

subsection, we give a general metric for both elements (a)
and (b) in our proposed trust vector, since the computation of
element (a) can be regarded as a special case for computing
element (b). More details on structure design will be illustrated
in the following section.
Recall that a RA query is reduced to two vertical range ag-

gregate (VRA) queries problem. Thus, a CTT query regarding
a past time t to the present time tP can be calculated as:

T
[t,tp]
CTT =

agg r2 − agg r1

count2 − count1
(1)

For the element (a), count1 and agg r1 represent left border
VRA CTT query in a specific product; count2 and agg r2

present right border VRA CTT query in this product. For the
element (b), count1 and agg r1 are from the corresponding
left border VRA CTT query at a specific product category
and transaction amount range; count2 and agg r2 are from
the corresponding right border VRA CTT query at the same
product category and transaction amount range.
2) The trust metric for element (c): CTT at a specific price

range is important for identifying whether a seller cheat via
value imbalance [15]. When a seller has a low averaged trust
value at a specific price range, he/she may be untrustworthy.
In such a case, our method only needs to compute for the
right border VRA CTT query. If all the products sold by a
seller are from k subcategory, count

(i)
2 denotes the number of

transactions at a specific product subcategory (i = 1, 2, 3..k)
and a specific transaction amount range, and agg r2

(i) denotes
the corresponding aggregate ratings. Thus, a CTT query at a
specific price range [ta1, ta2] can be calculated as:

T
[ta1,ta2]
CTT =

∑k

i=1 agg r2
(i)

∑k

i=1 count
(i)
2

(2)

As stated before, product category hierarchy could have
multilayer (e.g. subcategory, subsubcategory, etc).

V. THE APPROACH TO EFFICIENT CTT COMPUTATION
A. Our Proposed aP+-tree
In our proposed the aP+-tree for efficient CTT computation

with different granularities, we designed three different for-
mats (structures) for the entries: root entry, intermediate entry
and leaf entry (see Table I). As discussed in subsection IV-B2,
we introduce a new root entry in addition to original aP-tree,
which contains hierarchy of transaction item categories. For
each root entry, the field pointer points to an intermediate or
a leaf node (each node contains 1 to b entries where b is the
node capacity).
1) Tree construction: In the following, a simple exam-

ple is used to illustrate the construction of an aP-tree.
As shown in Fig 3(a), six points with x-y coordinates
(1, 5), (1, 10), (1, 15), (1, 25), (1, 35), (1, 45) are inserted to a
leaf node A, assuming the capacity of the node is six (b = 6, b

321321

Table I
THE ENTRY FORMAT

Entry Format
Root entry <subcategory,category,[tamin, tamax], count,agg r,pointer>

Intermediate
entry <[tamin, tamax], [tstart, tend), count, agg r, pointer>

Leaf entry <transaction amount, transaction time, count, agg r, pointer>

� ��

� � � � � �

� � � �

Figure 3. The construction of aP-tree

for node capacity). The intermediate entry < 5, [1, ∗), 6, A >
in root R (see Fig 3(a)) implies that there are six entries
in leaf node A, which are alive from xstart = 1 and their
keys are at least 5. When a new entry (2, 55) with different
x-coordinate is inserted to A, the entry < 5, [1, ∗), 6, A >
dies, having its xend modified to 2 (see root R in Fig 3(b)).
Since the leaf node A is overflow after inserting the new
entry (2, 55), it splits into two leaf nodes B and C as
shown in Fig 3(b). The additional two intermediate entries
< 5, [2, ∗), 4, B > and < 35, [2, ∗), 3, C > are generated
with the same xstart = 2, which point to leaf nodes B
and C, respectively. Meanwhile, the whole process is also
accompanied by keys (i.e. y-coordinates) split.
The way to locate a position inserted in an aP-tree

is to iteratively find the live entry [xstart, ∗) whose y-
coordinate is the largest among all the entries. For exam-
ple, Fig 3(c) illustrates the aP-tree after inserting another
three entries (4, 60), (5, 65), (5, 70). When the point (4, 60)
with different x-coordinate is inserted, the intermediate entry
< 35, [2, ∗), 3, C > dies, and a new the intermediate entry
is duplicated from < 35, [2, ∗), 3, C > with its xstart set to
4, and its agg incremented by one (see root R in Fig 3(c)).
Fig 3(d) illustrates that two leaf nodes D and E are generated
after inserting the entry (6, 40). At this time, two additional
intermediate entries make the root nodeR overfull and the two
new roots R and R1 (R1 contains all the alive entries, i.e., <
5, [2, ∗), 4, B >, < 35, [6, ∗), 4, D > and < 60, [6, ∗), 3, E >)
are generated resulting from the spilt of the original root R.
Additionally, different from MVBT, aP-tree has only a single
parameter svo, which denotes the threshold of strong version
overflow. It occurs when the number of entries in a new node
exceeds b∗svo, and more details on construction of an aP-tree
can be found in [12].
The process of aP+-tree construction is similar to aP-tree.

However, different from using only a key (the field y) as the
index in aP-tree, we use the field [tamin, tamax] in aP+-tree to
record the minimum and maximum the transaction amounts in
its subtree. Although each intermediate entry increases a data
field, it could reduce the number of nodes to be accessed, and
we will give a further explanation in the following subsection.
Furthermore, compared with aP-tree, the leaf entry format in
aP+-tree still has the fields count and agg r. That is because
a seller may have the same transactions in a transaction time
unit (the transactions have the same x-coordinate (see Fig 1)),
i.e., it is normal for a seller selling a number of the same
product within a day (the minimum unit of transaction time
is set to a day). But for the different products with the same
transaction amount, we use two leaf entries to differentiate
them so as to position each specific product.
2) Less nodes to be accessed in aP+-tree: To answer a

VRA query 5 : [10, 20] in Fig 3(c), first of all, the entries
in root should be considered, whose lifespans include 5;
thus, entries < 5, [1, 2), 2, A >, < 35, [2, 4), 3, C > and
< 35, [4, 5), 4, C > are eliminated immediately, because they
are already dead before 5. Secondly, among the remaining
alive entries < 5, [2, ∗), 4, B > and < 35, [5, ∗), 6, C >,
< 35, [5, ∗), 6, C > is eliminated because the keys in its
subtree are no less than 35 (i.e. in [35, +∞)), which does
not intersect with the query range [10, 20] in y-axis. In such
a case, only the leaf node B in aP-tree need to be visited
pointed by < 5, [2, ∗), 4, B >, and the result 2 is returned.
Analysis: According to the description above, an impor-

tant observation is that the efficiency of aP-tree depends on
whether the key space (y-coordinates of all records) is inserted
in order. In our example, the key space is also in ascending
order. In such a case, it is easy to infer the range of key space
in its subtree. However, towards our targeted problem, it is
difficult to satisfy that keys are inserted in order, and it is
quite common that the transaction amounts at the start time
and end time are the same, i.e., a seller sells the products with
the same price but at different transaction time. The range of
key space in its subtree is difficult to infer as above, so there
are still a large number of nodes to be accessed in original
aP-tree.
An Example: In subsection V-A1, we have pointed out

that the way to locate a position inserted in aP-tree is
to iteratively find the live entry whose y-coordinate is the
largest among all the entries. For instance, in Fig 4(a), if
the inserted entries are (4, 5), (5, 25), (5, 15), (6, 40) instead
of (4, 60), (5, 65), (5, 70), (6, 40) as in Fig 3(c), the addi-
tional two intermediate entries will be < 5, [6, ∗), 4, D >
and < 40, [6, ∗), 3, E > (see Fig 4(b)), rather than <
35, [6, ∗), 4, D > and < 60, [4, ∗), 3, E > as shown in
Fig 3(d). Assume that a VRA query is 6 : [5, 30], and then
two of three alive intermediate entries (i.e. < 5, [2, ∗), 4, B >,
< 5, [6, ∗), 4, D >) should be visited. If the VRA query
changes to [20, 50], and then all the leaf nodes pointed by
three alive intermediate entries should be visited.
By contrast, in our proposed aP+-tree, the generated

two intermediate entries are < [5, 35], [6, ∗), 4, D > and
< [40, 55], [6, ∗), 3, E >, instead of < 5, [6, ∗), 4, D > and
< 40, [6, ∗), 3, E > (see Fig 4(b)). As a result, for the same
VRA query 6 : [5, 30] as the above example, the leaf node

322322

� � � �
� � �

Figure 4. Another example for construction of aP-tree

pointed by < [5, 25], [2, ∗), 4, B > is not accessed due to
being covered by [5, 30] in aP+-tree, but it will be visited
in aP-tree. Clearly, aP+-tree can further reduce the number of
accessed nodes.

B. Our Proposed aB+-tree in Transaction Amount Space

Now, let us consider the feature of transaction time in
trust computation as described in section III, where each
range query should start from a previous point and end at
the “present”. Hence, the right border VRA query is fixed
to “present” (i.e. the end time) in CTT computation. In
subsection V-A2, we could see that if the right border VRA
query is taken as the end time, all the alive entries (i.e.
the entries with xend = “∗′′) are checked whether their
key-ranges intersect with [y1, y2]. Hence, there are still a
large number of nodes to be accessed due to disordered key
space. At this time, another observation is that, at the right
border, CTT query has been transformed to one-dimensional
transaction amount range CTT queries. Following this idea, in
our approach, we construct a B+-tree in transaction amount
space. Meanwhile, the B+-tree contains additional fields to
store aggregate information (i.e., count and agg r), and we
term this new tree as aB+-tree. In this way, the right border
VRA query will be converted to search in fully ordered
transaction amount space, while aP+-tree for the left border
VRA CTT query.
In order to build up the tree, another entry format <

transaction amount, count, agg r, pointer > is introduced.
Both intermediate and leaf entry in aB+-tree have this format.
The fields count and agg r record the number of transactions
within a transaction amount range and the corresponding
aggregate rating of these transactions. Here, we emphasize
that both aP+-tree and aB+-tree share the same root entry (see
Table I). In addition, the same as aP+-tree, for the different
products with the same transaction amount, we use two leaf
entries to differentiate such a case even if they are in the same
subcategory.
Due to space constraints, we briefly illustrate construction

process of aB+-tree in transaction amount space (with node
capacity 6) as in Fig. 5. Assume that 10 transactions with 6
distinct values of transaction amounts $28, $10, $33, $33, $38,
$10, $40, $28, $10, $5 are inserted to a node. The number 1
in the count field of leaf entry <$5, 1,agg r,pointer> (the
figure only presents transaction amount and count fields in
an entry for sake of simplicity) implies that there are only
one transaction in the transaction amount range (0,$5]. When
a new transaction with a different transaction amount $37 is
inserted, the leaf node is overflow as shown in Fig. 5(b).

For a transaction amount range query, the depth-first traver-
sal (DFT) is performed to search all the leaf nodes for
answering a transaction amount range query. For instance,
a range query is [$10,$30], which is covered by the left
subtree (i.e. (0, $33]) in Fig. 5(b), and then all the entries in
left subtree are visited by accumulating the aggregate fields
count and agg r along the way. Specifically, in this example,
the result 5 is returned for field count (i.e. 3+2=5), which
indicates there are 5 transactions within the transaction amount
[$10,$30] in the query.

�

�

	 	

�

�

 �

	

�

�

	 	

�

	

� �

�

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

Figure 5. The construction process of aB+-tree in transaction amount space

C. Summary
(1) Though we introduce the aB+-tree, in addition to the

aP+-tree, to record the aggregate information in transaction
amount, there is not much increase in space. Let us suppose
that a seller has N transactions in a time period, and there are
M distinct values of transaction amount (M ≤ N). It requires
the additional space with O(M) entries in the aB+-tree. In a
typical case, for example, on average, if every 5 transactions
have the same price (for the same or different products), then
M = N/5.
(2) For an update operation (insertion or remove) in both

an aP-tree and an aR-tree, the time complexity is O(logN)
(the height of the tree), while it is O(logM) in aB+-tree.
Overall, in our approach, the time complexity is O(logN) +
O(logM) = O(logN)(M ≤ N). Similarly, for n update
operations, our approach has the same time complexity as
aP-tree or aR-tree (O(nlogN)). In real operations, when a
new transaction has completed, the new leaf entry is inserted
into the tree with new aggregates computed. Meanwhile, after
all new transactions in the current day have completed, all
transactions completed on the first day (e.g. 12 months ago)
available in the tree should be removed. This aims to maintain
the information of all transactions of a seller in a time period
(e.g. 12 months).
(3) Considering our proposed trust vector that includes CTT

with different granularities in section IV, our approach uses
a hybrid structure of aP+-tree and aB+-tree for computing
elements (a) and (b) in the trust vector and uses aB+-tree for
computing element (c) in the trust vector. Our approach leads
to much shorter computation time than the methods based on
aP-tree or aR-tree in the responses to CTT queries. This is also
demonstrated by experiments, with details to be introduced in
the following section.

VI. EXPERIMENTS
In this section, we evaluate our proposed method in a

scenario where a buyer plans to buy a “Cannon EOS T3i
Digital Camera”. The experimental setup is introduced in
Section VI-A. The results and the analysis are introduced in
Section VI-B.

323323

Figure 6. The transaction information of a real seller at eBay

A. Experiment Setup
The experiments are implemented using C++ running on

a Lenovo Y560 laptop with an Intel Core i5 2.20GHz CPU
and 2GB RAM. eBay has released APIs3, with which we
could obtain detailed feedback and transaction information
for a seller for up to 90 days. We have developed a program
based on eBay APIs and obtained the real dataset including
the information of transactions and ratings from all the 56
sellers who sell ‘Cannon EOS T3i Digital Camera’ on 6th
October 2011 at eBay. Among all 56 sellers, we selected the
most popular seller, who had totally 2600 transactions in 17
different subcategories and 3 different categories within 90
days (approx. 800-900 transactions per month see Fig. 6).
In particular, this seller had a large amount of transactions
in the subcategory ‘Digital Camera’ and this is more suit-
able for our experiments for answering CTT queries with
different granularities. Our experiments are also carried out
on a synthetic dataset, which contains the transactions of a
seller in 12 months. Each transaction in our synthetic dataset
is generated by randomly selecting a transaction from 2600
transactions in the real dataset. Meanwhile, we generate 10
times transactions as much as this popular seller on each day
and the seller has 8000-9000 transactions in each of 12 months
in our synthetic dataset, and the total number of transactions
is around 100,000. The purpose of generating this synthetic
dataset is to test the performance of our approach under the
circumstance with a large volume of transactions in both each
day and a long time period (e.g., 12 months).
With a CTT query on this seller, we only measure the

computation time for the trust vector elements (b) and (c)
proposed in section IV, as (a) and (b) have the same calculat-
ing procedure, i.e., the element (a) can be obtained by further
searching each actual record (pointed by leaf entry) in data
warehouse. We set the minimum unit of transaction time to
a day (i.e., the transactions that occur in the same day have
the same x-coordinate (see Fig 1)). In addition, eBay does not
provide detailed ratings for rg , rst, rc, rsc and rq ; therefore,
our experiments randomly generate integers in [1, 5] for them.
Here, we need to emphasize that their random values do not
have any effect on node access and computation time.

B. The Comparison of Computation Time
In this subsection we compare the computation time of our

approach with the aR-tree based approach and the aP-tree
based approach for answering a CTT query. Each result of
the computation time is the average based on 3 independent
executions. All the trees have the same page size of 512 bytes.

3developer.ebay.com/support/docs

10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

(a) Days

C
om

pu
ta

tio
n

tim
e

(in
 m

s)

100 200 300 400 500
0

5

10

15

20

25

(b) Difference in transaction amount ($)

C
om

pu
ta

tio
n

tim
e

(in
 m

s)

aR−tree
aP−tree
Our approach

aR−tree
aP−tree
Our approach

Figure 7. The computation time of CTT queries on a real dataset

The fields of transaction amount and transaction time in each
entry have 4 bytes each, and the fields of count and agg r
have 2 bytes and 10 bytes (due to five different aggregate
ratings in agg r), respectively. Therefore, for aP-tree, the
capacity of the leaf node and the intermediate node is 19
and 16, respectively. For aR-tree, the corresponding capacity
numbers are 19 and 14. Since our strategy introduces an extra
field to record the maximum transaction amount in its subtree,
the intermediate node’s capacity of aP+-tree is also 14. The
parameter svo for both aP-tree and aP+-tree is set to 5/6.
For aB+-tree, the capacity of both the leaf node and the
intermediate node is 21.
Results on real dataset: The first set of experiments is

conducted on the real dataset. We tested the computation time
for the element (b) in trust vector (i.e., the trust value of a
seller at a specific product subcategory (‘Digital Camera’),
in a price range and a time period). We choose a possible
transaction amount range at [$600,$700]. The time range
starts from 10 days ago to 90 days ago with a step of 10
days. Fig. 7(a) depicts the computation time of three different
approaches. For the aR-tree based approach, when the time
range in a query becomes larger, computation time increases
linearly. By contrast, in the aP-tree based approach, a larger
time range leads to a shorter computation time. As stated
before, the right border VRA CTT query is fixed to “present”
in CTT computation; thus, all the alive nodes need to be
checked. When the query on time range increases it means
that the number of nodes to be accessed in aP-tree for left the
border VRA CTT query will decrease. That is because the
alive nodes with its begin time bigger than the left-end point
of time range will not be visited. As a result, the computation
time decreases monotonously. At the same time, we observe
the same feature of computation time in our approach. More
impressively, our approach has a faster response time in CTT
computation than the aP-tree based approach. That is because,
on one hand we propose aP+-tree to reduce the number of
nodes to be accessed for left border VRA CTT query; on the
other hand, the right border VRA CTT query only needs to
search in fully ordered transaction amount space (i.e., aB+-
tree). On average, for the element (b) in trust vector, the
computation time of our approach is 28% of that of the aR-
tree based approach and 36% of that of the aP-tree based
approach.
Fig. 7(b) depicts the computation time of CTT at a specific

price range (i.e., the element (c) in trust vector). For the
product ‘Cannon EOS T3i Digital Camera’ selling at price

324324

$694 (see Fig. 6), we test the computation time at five possible
transaction amount ranges, i.e., [$600,$700] (difference =
$100), [$500,$700] (difference = $200), [$500,$800] (differ-
ence = $300), [$400,$800] (difference = $400), [$400,$900]
(difference = $500). Note that here the difference in price,
instead of the price itself, may effect the computation time.
The aR-tree based approach has the worst performance due to
a large query region q. In this case, the query region in time
dimension is from 90 days ago to present. By contrast, we
can see that the computation time for aP-tree based approach
is stable. That is because, in such a case, the aP-tree based
approach only needs to compute for the right border VRA
CTT query. Similarly, our approach also computes for the
right border VRA CTT query. But differently, our approach
searches in the aB+-tree with a fully ordered transaction
amount space. Therefore, our strategy is much faster in
computation time. On average, for the element (c) in trust
vector, the computation time of our approach is 7% of that
of the aR-tree based approach and 18% of that of the aP-tree
based approach.
Results on synthetic dataset: The same experiments are

also conducted on the synthetic dataset, which contains ap-
proximately 100,000 transactions of the seller distributed in
12 months. From the results depicted in Fig. 8, we can draw
the same conclusion as above. For element (b) in trust vector,
on average, the computation time of our approach is 8% of
that of the aR-tree based approach and 28% of that of the
aP-tree based approach. For element (c) in trust vector, on
average, the computation time of our approach is 4% of that
of the aR-tree based approach and 13% of that of the aP-tree
based approach.

3 6 9 12

4.5

9.5

14.5

19.5

24.5

29.5

(a) Months

C
om

pu
ta

tio
n

tim
e

(in
 m

s)

100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

(b) Difference in transaction amount ($)

C
om

pu
ta

tio
n

tim
e

(in
 m

s)

aR−tree
aP−tree
Our approach

aR−tree
aP−tree
Our approach

Figure 8. The computation time of CTT queries on a synthetic dataset

VII. CONCLUSION
In the literature, a lot of researchers have pointed out that

it is necessary to introduce context factors in trust evaluation
in e-commerce environments [18, 15]. To this end, in this
paper, we proposed an approach to contextual transaction
trust computation in e-commerce environments based on data
warehouse technology. To the best of our knowledge, this
is the first solution in the literature to the computation of
CTT. In our solution, we first model CTT computation as
a range aggregate (RA) problem. Then, we designed a new
data structure to support CTT computation based on some
existing data structures for the RA problem. In addition, after
identifying the limitations of existing methods for solving
our problem, we proposed an approach to further reduce
the computation time of CTT queries. From the result of

our experiments, we can see that our proposed approach is
much faster than the traditional approaches for RA query in
responding to CTT queries. In addition, there is no significant
increase in data space for our strategy.
In our future work, we plan to design a new data structure

to further reduce the data space with the good performance in
computation time.

REFERENCES
[1] Protect yourself from fraudsters pretending to be gold suppliers,

http://resources.alibaba.com/article/232530/protect yourself
from fraudsters pretending to be gold suppliers.htm.

[2] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer.
An asymptotically optimal multiversion b-tree. The Interna-
tional Journal on Very Large Data Bases, 5(4):264–275, 1996.

[3] N. Griffiths. Task delegation using experience-based multi-
dimensional trust. In IEEE International Conference on Au-
tonomous Agents and Multiagent Systems, pages 489–496,
Utrecht, Netherlands, 2005. IEEE.

[4] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing
data cubes efficiently. In ACM SIGMOD International Confer-
ence on Management of Data, Montreal, Canada, 1996. ACM.

[5] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in p2p net-
works. In International World Wide Web Conference, Budapest,
Hungary, 2003.

[6] R. Kerr and R. Cohen. Modelling trust using transactional,
numerical units. In ACM International Conference on Privacy,
Security and Trust, Oshawa, Canada, 2006. ACM.

[7] Z. Malik and A. Bouguettaya. Rateweb: Reputation assessment
for trust establishment among web services. The International
Journal on Very Large Data Bases, 18(4):885–911, 2009.

[8] D. Papadias, P. Kalnis, J. Zhang, and Y. f. Tao. Efficient
olap operations in spatial data warehouses. In International
Symposium on Spatial and Temporal Databases, pages 443–
459, California, USA, 2001.

[9] B. Rietjens. Trust and reputation on ebay: Towards a legal
framework for feedback intermediaries. Information and Com-
munications Technology Law., 15(1):55–78, 2006.

[10] J. Sabater and C. Sierra. Regret: Reputation in gregarious
societies. In ACM AGENTS, pages 194–195, Montreal, Canada,
2001. ACM.

[11] S. Spitz and Y. Tuchelmann. A trust model considering the
aspects of time. In International Conference on Computer
and Electrical Engineering, pages 550–554, Dubai, UAE, 2009.
IEEE.

[12] Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. Range
aggregate processing in spatial databases. IEEE Transactions
on Knowledge and Data Engineering, 16(12):1555–1570, 2004.

[13] S. Toivonen, G. Lenzini, and I. Uusitalo. Context-aware trust
evaluation functions for dynamic reconfigurable systems. In
Models of Trust for the Web Workshop, Edinburgh, Scotland,
2006.

[14] M. Uddin, M. Zulkernine, and S. Ahamed. Cat: A context-aware
trust model for open and dynamic systems. In ACM Symposium
on Applied Computing, pages 2024–2029, Fortaleza, Brazil,
2008.

[15] Y. Wang and K.-J. Lin. Reputation-oriented trustworthy com-
puting in e-commerce environments. IEEE Internet Computing,
12(4):55–59, 2008.

[16] Y. Wang and V. Varadharajan. Trust2: Developing trust in peer-
to-peer environments. In International Conference on Services
Computing, pages 24–31, Orlando, USA, 2005. IEEE.

[17] Y. Wang, H. B. Zhang, and X. Z. Zhang. A trust vector ap-
proach to contextual transaction trust evaluation in e-commerce
environments. Technical Report, Macquarie University, 2012.

[18] L. Xiong and L. Liu. A reputation-based trust model for peer-
to-peer ecommerce communities. In IEEE International Con-
ference on E-Commerce, pages 275–284, San Diego, California,
USA, 2003. IEEE.

[19] H. B. Zhang, Y. Wang, and X. Z. Zhang. Transaction similarity-
based contextual trust evaluation in e-commerce and e-service
environments. In IEEE International Conference on Web
Services, pages 500–507, Washington DC, USA, 2011. IEEE.

325325

