
Understanding sprint velocity fluctuations for improved project 
plans with Scrum: a case study 

Filipe Albero Pomar1,*,†, Jose A. Calvo-Manzano1, Edgar Caballero1 and 
Magdalena Arcilla-Cobián2 

1Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Madrid, Spain 
Escuela Técnica Superior de Ingeniería Informática, Universidad Nacional de Educación a Distancia, Madrid, Spain 

ABSTRACT 

Starting from the documentation of high sprint velocity fluctuations in a Scrum project, this paper presents a 
thorough approach to identify the sources of issues arising in the context of Scrum implementation. Given 
that Scrum provides guidance on identifying process issues but not their root causes, various approaches are 
explored. This is of great relevance because Scrum defines project schedules relying heavily on sprint 
velocity and because it is the most widely used agile methodology. The findings provide a new approach 
to evaluate such fluctuations and establish a more realistic project assessment than what is currently defined by 
Scrum. In this respect, this paper contributes to improve the understanding of the software development 
process using this agile framework. Copyright © 2014 John Wiley & Sons, Ltd. 

1. INTRODUCTION 

In today’s competitive and fast-paced world, companies are under pressure to adapt to an ever 
changing environment [1]. The software development industry is not an exception. What started as a 
technique to develop industrial products faster has now become part of the IT sector under the name 
of Agile Software Development [2, 3]. Among many methodologies that promise increased agility, 
Scrum [4] is the most widely used globally [3]. 

Scrum has been successfully used in a wide variety of industries to create software projects [5]. As 
opposed to traditional development models, such as waterfall, it defines the creation and delivery of 
software in small increments with little upfront planning. Hence, it allows companies to deliver 
value to their clients earlier and to adapt to changes faster. Although it exploits the benefits of agile 
methodologies, it does present a key drawback. In fact, Scrum does not provide detailed guidance 
on how to identify the root cause of process issues when they occur [4, 6]. 

This paper provides a case study on the implementation of Scrum in a software development project 
of a non-governmental organization. Analysing the role of Scrum within the project, it investigates the 
root cause of high fluctuations in the amount of work done, known as the velocity, in each short 
development cycle, called sprint. This issue is of paramount importance because project scheduling 
is derived from the aforementioned metric [7, 8]. In this respect, this paper contributes to improve 
the understanding of the development process within this agile framework. 

*Correspondence to: Filipe Albero Pomar, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica 
de Madrid, Madrid, Spain. 
†E-mail: filipe.albero.pomar@alumnos.upm.es 

mailto:filipe.albero.pomar@alumnos.upm.es


The paper is structured as follows. Section 2 characterizes the software development settings where 
high sprint velocity fluctuations are observed. Section 3 provides a structured approach for evaluating 
the possible forces at play causing the observed fluctuations. Finally, Section 4 presents conclusions. 

2. CONTEXT 

2.1. The organization 

THE COMPANY (fictitious name for confidentiality reason) is a small non-governmental organization 
based in the UK with a staff of 44 employees. One of the services it provides to the local community is 
a volunteering web-based search engine. Since it was first released in the year 2000, it has become the 
leading website for finding volunteering opportunities in the country. In 2012, the search engine had 
over 1 million registered users and a monthly average of 186K unique visitors and 3.2 million page 
views. The first version of the software was not designed to cope with this traffic; response times 
were slow, new functionalities were needed, but the old codebase was difficult to adapt. To solve 
these problems, a complete rewrite of the system was commissioned. 

The new version of the website was written in-house and passed onto a newly formed team of 
developers to deliver it to production. The new team was formed in April 2011 and given full 
responsibility for bug fixing and creation of new minor features. In December of that year, the 
system went live, completely replacing the legacy codebase. For the following 6 months, the team 
focused on bug fixing and creating new administrative subsystems not present in the original software. 

2.2. Scrum introduction 

Scrum is an empirical process control model founded on three pillars: transparency, inspection 
and adaptation [6, 9]. It states that software must be created in small increments that deliver 
business value to the customer. Instead of big upfront designs and exhaustive bureaucratic 
plans, it fosters the creation of a slim project plan that is revised and augmented as the project 
develops. Each software increment is created in a time-boxed period called sprint that usually 
lasts 2 to 4 weeks [10]. 

The steps for developing software with Scrum start with the creation of a prioritized list of 
requirements called product backlog [5]. Just before each sprint, the team gathers in a sprint 
planning meeting in which it estimates requirements from the product backlog and decides what can 
be implemented. Throughout the sprint, the daily Scrum meeting is carried out to identify issues and 
to communicate what each individual is working on. High visibility tools (i.e. sprint backlog, sprint 
burndown) are used to communicate progress to all parties. To close the short development cycle, 
the team carries out two meetings: sprint review, where developers showcase work that has just 
been completed, and a sprint retrospective, to identify process improvements. The final outcome of 
the sprint is a potentially shippable software increment [11]. 

Scrum identifies three main roles that work together daily throughout the project [4]. The product 
owner represents the business, provides a project vision, and generates requirements and their 
priorities. The Scrum master, often a developer, ensures the correct implementation of Scrum. 
Lastly, the development team is composed by a cross-functional group of software developers. 

2.3. Scrum implementation 

The project implemented Scrum as prescribed. All team members had prior experience with agile 
methodologies, but only one knew Scrum in depth and had used it professionally. The framework 
was taught by the most experienced developer and achieved high buy-in from both developers and 
managers. The project data set available refers to the usage of Scrum from June 2011 to June 2012. 

Throughout the 20 sprints analyzed in this paper, the team composition remains mostly unchanged. 
There are three senior developers, one front-end specialist, and at the 20th iteration, a junior developer 
is added to the team. With the exception of the front-end specialist, all members develop all application 
layers and create tests for each functionality. As defined by Schwaber and Beedle [9], the development 



team and the product owner are collocated and work together daily throughout the project. 
Requirements are written in the form of user stories [12]. Estimations are done using a consensus-
based technique called planning poker [11] to quantify size (in ‘points’) of either new features or 
change requests. At the end of each 2-week sprints, all sizes of work items done are added together 
to what is known as velocity, a widely used agile metric [3]. To the team, its definition of done [4] 
means that the functionality is coded, verified by automated tests, approved by the product owner 
and stored under version control. 

2.4. The project 

The project comprises one main application and eight web-based subsystems that support its operation. 
When considered as a whole, the codebase sizes up to over 50K lines of code, which is equivalent to a 
mid-sized system. 

Scrum identifies some high visibility tools to communicate progress from the development team to 
the rest of the organization [7, 8]. Throughout the project, both the sprint backlog and the sprint 
burndown are maintained. The sprint backlog is a whiteboard where requirements are placed at the 
leftmost part of the board and are physically moved to the right to indicate the progress towards 
completion. The aforementioned whiteboard is divided into four sections, starting from the far left: 
not started, started, signoff pending, and done. Next to the sprint backlog, a sprint burndown chart 
shows the amount of work still left to be done in the current sprint. The team works from one sprint 
to another without planning a wider horizon of a release planning. In fact, this business decision 
complies with Scrum as the sprint planning meeting is a mandatory activity whereas release 
planning is not [4]. For this project, the lack of release planning is never a real issue, as new 
functionalities are regularly delivered and deadlines met. 

Nevertheless, going forward with the project, it becomes evident that better scheduling allows the 
creation of more reliable plans and setting stakeholders’ expectations. In order to predict what can 
be accomplished, Scrum identifies historical sprint velocity as the most reliable forecast of future 
outcomes [11]. In that direction, there are two techniques for predicting future performance, and 
both are based on past accrued velocities (which is the amount of work completed per sprint). First, 
the velocity of each sprint can be plotted to identify any trends (i.e. a downward trend could 
indicate problems [11]). Second, it is possible to calculate a confidence interval to understand the 
probability of future velocities and employ it in the creation of a reliable project schedule [8]. 

Figure 1 shows the development team’s velocity per sprint. In the first three sprints, the team is 
getting used to the planning poker and Scrum; therefore, over optimism leads to somewhat inflated 
estimations. Turning to the analysis of abnormal sprints, sprint 1 marks the use of Scrum. In this 
case, the team is already acquainted with the codebase through ad hoc tasks given to them. Sprints 
15, 18 and 19 have zero velocity as a result of work on a new functionality based on new 
technologies that turn out to be problematic for production use. During sprint 16, the team is 
engaged in the recruitment of a replacement for a senior developer. Finally, a previous employee 
familiar with the system is contracted. 

Figure 1. Historical sprint velocity. 



The descriptive statistics of the historical velocities show a median velocity of 36.5, standard deviation 
of 45.7 and mean of 49.2 points. Furthermore, there is 90% likelihood that in future sprints, the actual 
accrued velocity will fall between 20 and 75 points. The plot of the historical sprint velocity presents 
a strong downward trend that could signal problems. These prevent the creation of a reliable schedule 
for the project and, in fact, suggest that there is a process issue in play [11]. 

The team follows Scrum as prescribed and uses the tools it provides to gauge the project’s progress. 
However, the preliminary analysis signals a potential problem related to the implementation of the 
methodology. In this respect, the Scrum framework does not describe a procedure to identify the root 
cause of the problem. Based on the analysis of the project data, the next sections give a description of 
the troubleshooting efforts carried out to uncover the causes of the velocity fluctuations. This allows 
deriving some general considerations on problem detection, which may lead to the creation of better 
project schedules in Scrum. 

3. SPRINT VELOCITY FLUCTUATION STUDY 

The absence of clear guidelines on identifying root-causes of sprint velocity fluctuations compels 
Scrum practitioners to employ exploratory troubleshooting efforts at their discretion. This section 
describes a structured approach for evaluating the possible forces at play causing the observed 
fluctuations. 

3.1. Commitments are not fulfilled 

The fulfillment of commitments by the team solidifies trust between developers and business people 
[6]. As suggested by Cohn [11], the development team decides what can be accomplished in a sprint 
following the consensus-driven approach. According to this technique, the team takes into 
consideration their availability and task complexities to decide what they can commit to. Even 
though the development team has free choice on deciding what they can commit to, they 
consistently fail to fulfill those commitments. 

In order to gauge the amount of commitments not fulfilled, it is possible to resort to a traditional 
(non-agile) project management metric called Schedule Performance Indicator (SPI) [8]. The SPI is 
calculated as the ratio of earned value on planned value. In the case of Scrum, it can be described as 
the total points completed at the end of a sprint over the total points the team committed to in the 
sprint planning meeting. The descriptive statistics of the SPI series present a median of 64.17% of 
commitments fulfilled and 90% likelihood that commitments will be honoured by 37 to 83% in a 
future sprint. When evaluating SPI, a useful complementary metric is team availability (TA), which 
is the percentage of developers available in the sprint. Figure 2 shows the two aforementioned 
metrics in use. On sprint 1, the team delivers 82% of the work it committed to while having 92% of 
the team present for the entire sprint. It is important to note that either metric could potentially go 
beyond 100%, even if neither case ever occurred. 

Figure 2. Schedule Performance Indicator (SPI) and team availability (TA). 



The graphical analysis shows that commitments are only met three times out of 20 iterations. It 
could be argued that the development team does not finish its work because its focus is deviated 
from the sprint into other tasks that either have no assigned points or are not value-adding activities 
(i.e. unscheduled meetings). Although these scenarios happen sporadically, they are not the norm; 
time for meetings is always taken in consideration when committing to work during the sprint 
planning meeting. For these reasons, SPI alone does not explain the high sprint velocity fluctuations 
but provides input for further investigation. 

3.2. Correlation of team availability and commitment fulfilment 

While unaccounted leave (i.e. because of sickness) may lead to the systemic missing of commitments, 
SPI and TA present a correlation coefficient of 0.12. In this respect, availability does not provide a 
comprehensive explanation of the team poor commitment fulfilment. 

3.3. High work in progress (WIP) 

WIP may be an important factor in the analysis. Features that are too big to be finished in an iteration 
can lead to high WIP. High WIP can cause at least two big problems [8, 11]. First, it leads to high 
context switching that is known to decrease developers’ performance. Second, it means that many 
tasks are started but not completed at the end of the sprint. By not meeting the team’s definition of 
done, those tasks are not added to the sprint’s velocity [11, 13]. To curb WIP, each developer 
avoids working in more than one story at the time. 

In addition, larger tasks (those longer than a day’s work) can slip from one sprint to another, which 
results in high WIP and low delivery. To tackle this problem, larger tasks are broken down into smaller 
ones that can be completed in one work day and only some uncommon tasks are allowed to be at most 
3 days. Furthermore, to create good quality estimations, the development team follows [11] and 
ensures that estimations are made relative to each other and created against a baseline of sample 
user stories. Hence, WIP is kept to a minimum and is not the culprit of high sprint velocity fluctuations. 

3.4. Team dynamics and rework 

Communication between developers and product owner is frequent and honest. This and the clear 
definition of done leads to small amount of rework and allows the team to solve any doubts during 
estimation sessions; in other words, the team is confident that they know all that is needed when 
estimating. Team coherence is never affected by individual’s different cultural backgrounds, as 
warns Cohn [7], because of candid face to face communication. Although there could be politics in 
play pushing the team to over-commit, that is never the case. 

3.5. Hidden complexity 

Ken Schwaber noted in his books that complexity in software projects is influenced by requirements, 
technology and people [6, 9]. When these factors interact, complexity rises and project control 
becomes increasingly challenging. In order to acknowledge complexity, projects can be categorized 
as simple, complicated, complex, or chaos depending on technology certainty and requirements’ 
agreement. The rationale behind these categories helps identify the software development process 
that better adapts to each project. Simple projects can be controlled through any methodology, 
including waterfall; complicated or complex projects benefit most from empirical processes such as 
agile; chaos projects are highly unstable and cannot be properly controlled. Figure 3 [14] (original 
from [15] and presented in the context of software development by [9]) presents a visual 
representation of project complexities’ interrelations. 

The project analyzed in this paper can be classified as complex when taken as a whole because not 
all technologies involved are mastered by developers, and some requirements are far from certain. If 
instead each subsystem is considered as a different project, different complexity classifications 
emerge. There is one simple project, three complicated projects, and five complex projects. By 
aggregating subsystems in the aforementioned categories, it is possible to calculate confidence 
intervals at 90% for their SPIs. The picture that forms is as follows (some activities are included in 



Figure 3. Project complexity. 

the whole sample but excluded from the detailed project samples as a result of their specific nature that 
does not allow an objective association to a specific subsystem): 

• Simple: the team will meet their commitments by 81 to 100% 
• Complicated: the team will meet their commitments by 74 to 100% 
• Complex: the team will meet their commitments by 20 to 100% 

As it can be seen from the confidence intervals, the complexity of the modules directly influences 
how the development team meets their commitments. Simple subsystems contain much more stable 
requirements and defined set of technologies, which allows for greater predictability of work. 
Whereas complicated or complex subsystems present both technological and requirement novelties 
that surface after commitments are made and code is being developed. 

This consideration allows explaining the root cause for the high sprint velocity fluctuations on a cause-
effect basis. Each project’s subsystem has different levels of complexity with respect to requirements and 
technologies. The development team does not account for these important differences in the sprint 
planning meeting because it follows Scrum as prescribed that is creating estimations for the project as a 
single unit. Commitments are made but are often missed because requirements change and some 
technologies used are new to the development team. Hence, the accrued sprint velocities present great 
variations over time. This is of relevance for both the specific project and the agile community because 
Scrum uses a single measurement of historical sprint velocity to derive a project schedule. 

Generally, the interpretation of the results of Scrum implementation greatly benefit from a more 
thorough analysis than that prescribed by the framework itself. In this sense, by detecting the 
specific impact of complexity in the components of one project, we managed to clarify the root 
cause of what is observed to be large sprint velocity fluctuations. 

4. CONCLUSIONS 

This paper investigates possible reasons for high sprint velocity fluctuations in a Scrum project. Given 
that Scrum provides guidance on identifying process issues but not their root causes, different 
approaches are explored. It is shown that sprint velocity fluctuations are caused by the team missing 
their commitments that, in turn, depends on the unaccounted complexities of different subsystems. 
This distortion occurs because Scrum is implemented as prescribed, that is, considering sprint velocity 
for the project as a single unit. Future research could formalize a Scrum extension to account for 
projects that have heterogeneous levels of requirements’ agreement and technologies’ certainty. 

These findings can aid Scrum practitioners in creating more reliable schedules based on historical 
data. The use of historical sprint velocity along with the acknowledgement of the project’s SPI and 
confidence intervals for different system’s modules provide a more realistic project analysis than 



what currently is defined in the Scrum framework. In this respect, this paper contributes to improve the 
understanding of the software development process using this agile framework. 

REFERENCES 

1. Kotter JP. Accelerate! Harvard Business Review, 2012; November. 
2. Takeuchi H, Nonaka I. The New Development Game. Harvard Business Review, 1986; January. 
3. State of Agile Survey. VersionOne, 2011. http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results. 

pdf [28 March 2014]. 
4. Schwaber K, Sutherland J. http://www.scrum.org/Scrum-Guides [28 March 2014]. 
5. Pichler R. Agile Product Management with Scrum. Addison-Wesley: Boston, 2010. 
6. Schwaber K. Agile Project Management With Scrum. Microsoft Press: Redmond, 2004. 
7. Cohn M. Succeeding with Agile Software Development Using Scrum. Addison-Wesley: Boston, 2009. 
8. Griffiths M. PMI-ACP Exam Prep. RMC Publications: Minnesota, 2012. 
9. Schwaber K, Beedle M. Agile Software Development with Scrum. Prentice Hall: Upper Saddle River, 2002. 

10. Kenneth S. Essential Scrum. Addison-Wesley: Boston, 2012. 
11 . Cohn M. Agile Estimating and Planning. Prentice Hall: Upper Saddle River, 2006. 
12. Cohn M. User Stories Applied. Addison-Wesley: Boston, 2004. 
13. Kniberg H. Scrum and XP from the Trenches. C4Media: United States of America, 2007. 
14. Malik N. All Effective Enterprise Architects are Agile. http://blogs.msdn.com/b/nickmalik/archive/2013/01/15/all-ef-

fective-enterprise-architects-are-agile.aspx [28 March 2014]. 
15. Stacey RD. Strategic Management and Oganisational Dynamics: The Challenge of Complexity. Prentice Hall: Harlow, 1999. 

http://www.versionone.com/pdf/2011_State_of_Agile_Development_Survey_Results
http://www.scrum.org/Scrum-Guides
http://blogs.msdn.com/b/nickmalik/archive/2013/01/15/all-effective-enterprise-architects-are-agile.aspx
http://blogs.msdn.com/b/nickmalik/archive/2013/01/15/all-effective-enterprise-architects-are-agile.aspx

